Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[pandora-kernel.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
38
39 #include <asm/irq_regs.h>
40
41 enum event_type_t {
42         EVENT_FLEXIBLE = 0x1,
43         EVENT_PINNED = 0x2,
44         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
45 };
46
47 atomic_t perf_task_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 static LIST_HEAD(pmus);
53 static DEFINE_MUTEX(pmus_lock);
54 static struct srcu_struct pmus_srcu;
55
56 /*
57  * perf event paranoia level:
58  *  -1 - not paranoid at all
59  *   0 - disallow raw tracepoint access for unpriv
60  *   1 - disallow cpu events for unpriv
61  *   2 - disallow kernel profiling for unpriv
62  */
63 int sysctl_perf_event_paranoid __read_mostly = 1;
64
65 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
66
67 /*
68  * max perf event sample rate
69  */
70 int sysctl_perf_event_sample_rate __read_mostly = 100000;
71
72 static atomic64_t perf_event_id;
73
74 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
75                               enum event_type_t event_type);
76
77 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
78                              enum event_type_t event_type);
79
80 void __weak perf_event_print_debug(void)        { }
81
82 extern __weak const char *perf_pmu_name(void)
83 {
84         return "pmu";
85 }
86
87 static inline u64 perf_clock(void)
88 {
89         return local_clock();
90 }
91
92 void perf_pmu_disable(struct pmu *pmu)
93 {
94         int *count = this_cpu_ptr(pmu->pmu_disable_count);
95         if (!(*count)++)
96                 pmu->pmu_disable(pmu);
97 }
98
99 void perf_pmu_enable(struct pmu *pmu)
100 {
101         int *count = this_cpu_ptr(pmu->pmu_disable_count);
102         if (!--(*count))
103                 pmu->pmu_enable(pmu);
104 }
105
106 static DEFINE_PER_CPU(struct list_head, rotation_list);
107
108 /*
109  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
110  * because they're strictly cpu affine and rotate_start is called with IRQs
111  * disabled, while rotate_context is called from IRQ context.
112  */
113 static void perf_pmu_rotate_start(struct pmu *pmu)
114 {
115         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
116         struct list_head *head = &__get_cpu_var(rotation_list);
117
118         WARN_ON(!irqs_disabled());
119
120         if (list_empty(&cpuctx->rotation_list))
121                 list_add(&cpuctx->rotation_list, head);
122 }
123
124 static void get_ctx(struct perf_event_context *ctx)
125 {
126         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
127 }
128
129 static void free_ctx(struct rcu_head *head)
130 {
131         struct perf_event_context *ctx;
132
133         ctx = container_of(head, struct perf_event_context, rcu_head);
134         kfree(ctx);
135 }
136
137 static void put_ctx(struct perf_event_context *ctx)
138 {
139         if (atomic_dec_and_test(&ctx->refcount)) {
140                 if (ctx->parent_ctx)
141                         put_ctx(ctx->parent_ctx);
142                 if (ctx->task)
143                         put_task_struct(ctx->task);
144                 call_rcu(&ctx->rcu_head, free_ctx);
145         }
146 }
147
148 static void unclone_ctx(struct perf_event_context *ctx)
149 {
150         if (ctx->parent_ctx) {
151                 put_ctx(ctx->parent_ctx);
152                 ctx->parent_ctx = NULL;
153         }
154 }
155
156 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
157 {
158         /*
159          * only top level events have the pid namespace they were created in
160          */
161         if (event->parent)
162                 event = event->parent;
163
164         return task_tgid_nr_ns(p, event->ns);
165 }
166
167 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
168 {
169         /*
170          * only top level events have the pid namespace they were created in
171          */
172         if (event->parent)
173                 event = event->parent;
174
175         return task_pid_nr_ns(p, event->ns);
176 }
177
178 /*
179  * If we inherit events we want to return the parent event id
180  * to userspace.
181  */
182 static u64 primary_event_id(struct perf_event *event)
183 {
184         u64 id = event->id;
185
186         if (event->parent)
187                 id = event->parent->id;
188
189         return id;
190 }
191
192 /*
193  * Get the perf_event_context for a task and lock it.
194  * This has to cope with with the fact that until it is locked,
195  * the context could get moved to another task.
196  */
197 static struct perf_event_context *
198 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
199 {
200         struct perf_event_context *ctx;
201
202         rcu_read_lock();
203 retry:
204         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
205         if (ctx) {
206                 /*
207                  * If this context is a clone of another, it might
208                  * get swapped for another underneath us by
209                  * perf_event_task_sched_out, though the
210                  * rcu_read_lock() protects us from any context
211                  * getting freed.  Lock the context and check if it
212                  * got swapped before we could get the lock, and retry
213                  * if so.  If we locked the right context, then it
214                  * can't get swapped on us any more.
215                  */
216                 raw_spin_lock_irqsave(&ctx->lock, *flags);
217                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
218                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
219                         goto retry;
220                 }
221
222                 if (!atomic_inc_not_zero(&ctx->refcount)) {
223                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
224                         ctx = NULL;
225                 }
226         }
227         rcu_read_unlock();
228         return ctx;
229 }
230
231 /*
232  * Get the context for a task and increment its pin_count so it
233  * can't get swapped to another task.  This also increments its
234  * reference count so that the context can't get freed.
235  */
236 static struct perf_event_context *
237 perf_pin_task_context(struct task_struct *task, int ctxn)
238 {
239         struct perf_event_context *ctx;
240         unsigned long flags;
241
242         ctx = perf_lock_task_context(task, ctxn, &flags);
243         if (ctx) {
244                 ++ctx->pin_count;
245                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
246         }
247         return ctx;
248 }
249
250 static void perf_unpin_context(struct perf_event_context *ctx)
251 {
252         unsigned long flags;
253
254         raw_spin_lock_irqsave(&ctx->lock, flags);
255         --ctx->pin_count;
256         raw_spin_unlock_irqrestore(&ctx->lock, flags);
257         put_ctx(ctx);
258 }
259
260 /*
261  * Update the record of the current time in a context.
262  */
263 static void update_context_time(struct perf_event_context *ctx)
264 {
265         u64 now = perf_clock();
266
267         ctx->time += now - ctx->timestamp;
268         ctx->timestamp = now;
269 }
270
271 static u64 perf_event_time(struct perf_event *event)
272 {
273         struct perf_event_context *ctx = event->ctx;
274         return ctx ? ctx->time : 0;
275 }
276
277 /*
278  * Update the total_time_enabled and total_time_running fields for a event.
279  */
280 static void update_event_times(struct perf_event *event)
281 {
282         struct perf_event_context *ctx = event->ctx;
283         u64 run_end;
284
285         if (event->state < PERF_EVENT_STATE_INACTIVE ||
286             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
287                 return;
288
289         if (ctx->is_active)
290                 run_end = perf_event_time(event);
291         else
292                 run_end = event->tstamp_stopped;
293
294         event->total_time_enabled = run_end - event->tstamp_enabled;
295
296         if (event->state == PERF_EVENT_STATE_INACTIVE)
297                 run_end = event->tstamp_stopped;
298         else
299                 run_end = perf_event_time(event);
300
301         event->total_time_running = run_end - event->tstamp_running;
302 }
303
304 /*
305  * Update total_time_enabled and total_time_running for all events in a group.
306  */
307 static void update_group_times(struct perf_event *leader)
308 {
309         struct perf_event *event;
310
311         update_event_times(leader);
312         list_for_each_entry(event, &leader->sibling_list, group_entry)
313                 update_event_times(event);
314 }
315
316 static struct list_head *
317 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
318 {
319         if (event->attr.pinned)
320                 return &ctx->pinned_groups;
321         else
322                 return &ctx->flexible_groups;
323 }
324
325 /*
326  * Add a event from the lists for its context.
327  * Must be called with ctx->mutex and ctx->lock held.
328  */
329 static void
330 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
331 {
332         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
333         event->attach_state |= PERF_ATTACH_CONTEXT;
334
335         /*
336          * If we're a stand alone event or group leader, we go to the context
337          * list, group events are kept attached to the group so that
338          * perf_group_detach can, at all times, locate all siblings.
339          */
340         if (event->group_leader == event) {
341                 struct list_head *list;
342
343                 if (is_software_event(event))
344                         event->group_flags |= PERF_GROUP_SOFTWARE;
345
346                 list = ctx_group_list(event, ctx);
347                 list_add_tail(&event->group_entry, list);
348         }
349
350         list_add_rcu(&event->event_entry, &ctx->event_list);
351         if (!ctx->nr_events)
352                 perf_pmu_rotate_start(ctx->pmu);
353         ctx->nr_events++;
354         if (event->attr.inherit_stat)
355                 ctx->nr_stat++;
356 }
357
358 /*
359  * Called at perf_event creation and when events are attached/detached from a
360  * group.
361  */
362 static void perf_event__read_size(struct perf_event *event)
363 {
364         int entry = sizeof(u64); /* value */
365         int size = 0;
366         int nr = 1;
367
368         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
369                 size += sizeof(u64);
370
371         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
372                 size += sizeof(u64);
373
374         if (event->attr.read_format & PERF_FORMAT_ID)
375                 entry += sizeof(u64);
376
377         if (event->attr.read_format & PERF_FORMAT_GROUP) {
378                 nr += event->group_leader->nr_siblings;
379                 size += sizeof(u64);
380         }
381
382         size += entry * nr;
383         event->read_size = size;
384 }
385
386 static void perf_event__header_size(struct perf_event *event)
387 {
388         struct perf_sample_data *data;
389         u64 sample_type = event->attr.sample_type;
390         u16 size = 0;
391
392         perf_event__read_size(event);
393
394         if (sample_type & PERF_SAMPLE_IP)
395                 size += sizeof(data->ip);
396
397         if (sample_type & PERF_SAMPLE_ADDR)
398                 size += sizeof(data->addr);
399
400         if (sample_type & PERF_SAMPLE_PERIOD)
401                 size += sizeof(data->period);
402
403         if (sample_type & PERF_SAMPLE_READ)
404                 size += event->read_size;
405
406         event->header_size = size;
407 }
408
409 static void perf_event__id_header_size(struct perf_event *event)
410 {
411         struct perf_sample_data *data;
412         u64 sample_type = event->attr.sample_type;
413         u16 size = 0;
414
415         if (sample_type & PERF_SAMPLE_TID)
416                 size += sizeof(data->tid_entry);
417
418         if (sample_type & PERF_SAMPLE_TIME)
419                 size += sizeof(data->time);
420
421         if (sample_type & PERF_SAMPLE_ID)
422                 size += sizeof(data->id);
423
424         if (sample_type & PERF_SAMPLE_STREAM_ID)
425                 size += sizeof(data->stream_id);
426
427         if (sample_type & PERF_SAMPLE_CPU)
428                 size += sizeof(data->cpu_entry);
429
430         event->id_header_size = size;
431 }
432
433 static void perf_group_attach(struct perf_event *event)
434 {
435         struct perf_event *group_leader = event->group_leader, *pos;
436
437         /*
438          * We can have double attach due to group movement in perf_event_open.
439          */
440         if (event->attach_state & PERF_ATTACH_GROUP)
441                 return;
442
443         event->attach_state |= PERF_ATTACH_GROUP;
444
445         if (group_leader == event)
446                 return;
447
448         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
449                         !is_software_event(event))
450                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
451
452         list_add_tail(&event->group_entry, &group_leader->sibling_list);
453         group_leader->nr_siblings++;
454
455         perf_event__header_size(group_leader);
456
457         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
458                 perf_event__header_size(pos);
459 }
460
461 /*
462  * Remove a event from the lists for its context.
463  * Must be called with ctx->mutex and ctx->lock held.
464  */
465 static void
466 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
467 {
468         /*
469          * We can have double detach due to exit/hot-unplug + close.
470          */
471         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
472                 return;
473
474         event->attach_state &= ~PERF_ATTACH_CONTEXT;
475
476         ctx->nr_events--;
477         if (event->attr.inherit_stat)
478                 ctx->nr_stat--;
479
480         list_del_rcu(&event->event_entry);
481
482         if (event->group_leader == event)
483                 list_del_init(&event->group_entry);
484
485         update_group_times(event);
486
487         /*
488          * If event was in error state, then keep it
489          * that way, otherwise bogus counts will be
490          * returned on read(). The only way to get out
491          * of error state is by explicit re-enabling
492          * of the event
493          */
494         if (event->state > PERF_EVENT_STATE_OFF)
495                 event->state = PERF_EVENT_STATE_OFF;
496 }
497
498 static void perf_group_detach(struct perf_event *event)
499 {
500         struct perf_event *sibling, *tmp;
501         struct list_head *list = NULL;
502
503         /*
504          * We can have double detach due to exit/hot-unplug + close.
505          */
506         if (!(event->attach_state & PERF_ATTACH_GROUP))
507                 return;
508
509         event->attach_state &= ~PERF_ATTACH_GROUP;
510
511         /*
512          * If this is a sibling, remove it from its group.
513          */
514         if (event->group_leader != event) {
515                 list_del_init(&event->group_entry);
516                 event->group_leader->nr_siblings--;
517                 goto out;
518         }
519
520         if (!list_empty(&event->group_entry))
521                 list = &event->group_entry;
522
523         /*
524          * If this was a group event with sibling events then
525          * upgrade the siblings to singleton events by adding them
526          * to whatever list we are on.
527          */
528         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
529                 if (list)
530                         list_move_tail(&sibling->group_entry, list);
531                 sibling->group_leader = sibling;
532
533                 /* Inherit group flags from the previous leader */
534                 sibling->group_flags = event->group_flags;
535         }
536
537 out:
538         perf_event__header_size(event->group_leader);
539
540         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
541                 perf_event__header_size(tmp);
542 }
543
544 static inline int
545 event_filter_match(struct perf_event *event)
546 {
547         return event->cpu == -1 || event->cpu == smp_processor_id();
548 }
549
550 static void
551 event_sched_out(struct perf_event *event,
552                   struct perf_cpu_context *cpuctx,
553                   struct perf_event_context *ctx)
554 {
555         u64 tstamp = perf_event_time(event);
556         u64 delta;
557         /*
558          * An event which could not be activated because of
559          * filter mismatch still needs to have its timings
560          * maintained, otherwise bogus information is return
561          * via read() for time_enabled, time_running:
562          */
563         if (event->state == PERF_EVENT_STATE_INACTIVE
564             && !event_filter_match(event)) {
565                 delta = ctx->time - event->tstamp_stopped;
566                 event->tstamp_running += delta;
567                 event->tstamp_stopped = tstamp;
568         }
569
570         if (event->state != PERF_EVENT_STATE_ACTIVE)
571                 return;
572
573         event->state = PERF_EVENT_STATE_INACTIVE;
574         if (event->pending_disable) {
575                 event->pending_disable = 0;
576                 event->state = PERF_EVENT_STATE_OFF;
577         }
578         event->tstamp_stopped = tstamp;
579         event->pmu->del(event, 0);
580         event->oncpu = -1;
581
582         if (!is_software_event(event))
583                 cpuctx->active_oncpu--;
584         ctx->nr_active--;
585         if (event->attr.exclusive || !cpuctx->active_oncpu)
586                 cpuctx->exclusive = 0;
587 }
588
589 static void
590 group_sched_out(struct perf_event *group_event,
591                 struct perf_cpu_context *cpuctx,
592                 struct perf_event_context *ctx)
593 {
594         struct perf_event *event;
595         int state = group_event->state;
596
597         event_sched_out(group_event, cpuctx, ctx);
598
599         /*
600          * Schedule out siblings (if any):
601          */
602         list_for_each_entry(event, &group_event->sibling_list, group_entry)
603                 event_sched_out(event, cpuctx, ctx);
604
605         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
606                 cpuctx->exclusive = 0;
607 }
608
609 static inline struct perf_cpu_context *
610 __get_cpu_context(struct perf_event_context *ctx)
611 {
612         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
613 }
614
615 /*
616  * Cross CPU call to remove a performance event
617  *
618  * We disable the event on the hardware level first. After that we
619  * remove it from the context list.
620  */
621 static void __perf_event_remove_from_context(void *info)
622 {
623         struct perf_event *event = info;
624         struct perf_event_context *ctx = event->ctx;
625         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
626
627         /*
628          * If this is a task context, we need to check whether it is
629          * the current task context of this cpu. If not it has been
630          * scheduled out before the smp call arrived.
631          */
632         if (ctx->task && cpuctx->task_ctx != ctx)
633                 return;
634
635         raw_spin_lock(&ctx->lock);
636
637         event_sched_out(event, cpuctx, ctx);
638
639         list_del_event(event, ctx);
640
641         raw_spin_unlock(&ctx->lock);
642 }
643
644
645 /*
646  * Remove the event from a task's (or a CPU's) list of events.
647  *
648  * Must be called with ctx->mutex held.
649  *
650  * CPU events are removed with a smp call. For task events we only
651  * call when the task is on a CPU.
652  *
653  * If event->ctx is a cloned context, callers must make sure that
654  * every task struct that event->ctx->task could possibly point to
655  * remains valid.  This is OK when called from perf_release since
656  * that only calls us on the top-level context, which can't be a clone.
657  * When called from perf_event_exit_task, it's OK because the
658  * context has been detached from its task.
659  */
660 static void perf_event_remove_from_context(struct perf_event *event)
661 {
662         struct perf_event_context *ctx = event->ctx;
663         struct task_struct *task = ctx->task;
664
665         if (!task) {
666                 /*
667                  * Per cpu events are removed via an smp call and
668                  * the removal is always successful.
669                  */
670                 smp_call_function_single(event->cpu,
671                                          __perf_event_remove_from_context,
672                                          event, 1);
673                 return;
674         }
675
676 retry:
677         task_oncpu_function_call(task, __perf_event_remove_from_context,
678                                  event);
679
680         raw_spin_lock_irq(&ctx->lock);
681         /*
682          * If the context is active we need to retry the smp call.
683          */
684         if (ctx->nr_active && !list_empty(&event->group_entry)) {
685                 raw_spin_unlock_irq(&ctx->lock);
686                 goto retry;
687         }
688
689         /*
690          * The lock prevents that this context is scheduled in so we
691          * can remove the event safely, if the call above did not
692          * succeed.
693          */
694         if (!list_empty(&event->group_entry))
695                 list_del_event(event, ctx);
696         raw_spin_unlock_irq(&ctx->lock);
697 }
698
699 /*
700  * Cross CPU call to disable a performance event
701  */
702 static void __perf_event_disable(void *info)
703 {
704         struct perf_event *event = info;
705         struct perf_event_context *ctx = event->ctx;
706         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
707
708         /*
709          * If this is a per-task event, need to check whether this
710          * event's task is the current task on this cpu.
711          */
712         if (ctx->task && cpuctx->task_ctx != ctx)
713                 return;
714
715         raw_spin_lock(&ctx->lock);
716
717         /*
718          * If the event is on, turn it off.
719          * If it is in error state, leave it in error state.
720          */
721         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
722                 update_context_time(ctx);
723                 update_group_times(event);
724                 if (event == event->group_leader)
725                         group_sched_out(event, cpuctx, ctx);
726                 else
727                         event_sched_out(event, cpuctx, ctx);
728                 event->state = PERF_EVENT_STATE_OFF;
729         }
730
731         raw_spin_unlock(&ctx->lock);
732 }
733
734 /*
735  * Disable a event.
736  *
737  * If event->ctx is a cloned context, callers must make sure that
738  * every task struct that event->ctx->task could possibly point to
739  * remains valid.  This condition is satisifed when called through
740  * perf_event_for_each_child or perf_event_for_each because they
741  * hold the top-level event's child_mutex, so any descendant that
742  * goes to exit will block in sync_child_event.
743  * When called from perf_pending_event it's OK because event->ctx
744  * is the current context on this CPU and preemption is disabled,
745  * hence we can't get into perf_event_task_sched_out for this context.
746  */
747 void perf_event_disable(struct perf_event *event)
748 {
749         struct perf_event_context *ctx = event->ctx;
750         struct task_struct *task = ctx->task;
751
752         if (!task) {
753                 /*
754                  * Disable the event on the cpu that it's on
755                  */
756                 smp_call_function_single(event->cpu, __perf_event_disable,
757                                          event, 1);
758                 return;
759         }
760
761 retry:
762         task_oncpu_function_call(task, __perf_event_disable, event);
763
764         raw_spin_lock_irq(&ctx->lock);
765         /*
766          * If the event is still active, we need to retry the cross-call.
767          */
768         if (event->state == PERF_EVENT_STATE_ACTIVE) {
769                 raw_spin_unlock_irq(&ctx->lock);
770                 goto retry;
771         }
772
773         /*
774          * Since we have the lock this context can't be scheduled
775          * in, so we can change the state safely.
776          */
777         if (event->state == PERF_EVENT_STATE_INACTIVE) {
778                 update_group_times(event);
779                 event->state = PERF_EVENT_STATE_OFF;
780         }
781
782         raw_spin_unlock_irq(&ctx->lock);
783 }
784
785 static int
786 event_sched_in(struct perf_event *event,
787                  struct perf_cpu_context *cpuctx,
788                  struct perf_event_context *ctx)
789 {
790         u64 tstamp = perf_event_time(event);
791
792         if (event->state <= PERF_EVENT_STATE_OFF)
793                 return 0;
794
795         event->state = PERF_EVENT_STATE_ACTIVE;
796         event->oncpu = smp_processor_id();
797         /*
798          * The new state must be visible before we turn it on in the hardware:
799          */
800         smp_wmb();
801
802         if (event->pmu->add(event, PERF_EF_START)) {
803                 event->state = PERF_EVENT_STATE_INACTIVE;
804                 event->oncpu = -1;
805                 return -EAGAIN;
806         }
807
808         event->tstamp_running += tstamp - event->tstamp_stopped;
809
810         event->shadow_ctx_time = tstamp - ctx->timestamp;
811
812         if (!is_software_event(event))
813                 cpuctx->active_oncpu++;
814         ctx->nr_active++;
815
816         if (event->attr.exclusive)
817                 cpuctx->exclusive = 1;
818
819         return 0;
820 }
821
822 static int
823 group_sched_in(struct perf_event *group_event,
824                struct perf_cpu_context *cpuctx,
825                struct perf_event_context *ctx)
826 {
827         struct perf_event *event, *partial_group = NULL;
828         struct pmu *pmu = group_event->pmu;
829         u64 now = ctx->time;
830         bool simulate = false;
831
832         if (group_event->state == PERF_EVENT_STATE_OFF)
833                 return 0;
834
835         pmu->start_txn(pmu);
836
837         if (event_sched_in(group_event, cpuctx, ctx)) {
838                 pmu->cancel_txn(pmu);
839                 return -EAGAIN;
840         }
841
842         /*
843          * Schedule in siblings as one group (if any):
844          */
845         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
846                 if (event_sched_in(event, cpuctx, ctx)) {
847                         partial_group = event;
848                         goto group_error;
849                 }
850         }
851
852         if (!pmu->commit_txn(pmu))
853                 return 0;
854
855 group_error:
856         /*
857          * Groups can be scheduled in as one unit only, so undo any
858          * partial group before returning:
859          * The events up to the failed event are scheduled out normally,
860          * tstamp_stopped will be updated.
861          *
862          * The failed events and the remaining siblings need to have
863          * their timings updated as if they had gone thru event_sched_in()
864          * and event_sched_out(). This is required to get consistent timings
865          * across the group. This also takes care of the case where the group
866          * could never be scheduled by ensuring tstamp_stopped is set to mark
867          * the time the event was actually stopped, such that time delta
868          * calculation in update_event_times() is correct.
869          */
870         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
871                 if (event == partial_group)
872                         simulate = true;
873
874                 if (simulate) {
875                         event->tstamp_running += now - event->tstamp_stopped;
876                         event->tstamp_stopped = now;
877                 } else {
878                         event_sched_out(event, cpuctx, ctx);
879                 }
880         }
881         event_sched_out(group_event, cpuctx, ctx);
882
883         pmu->cancel_txn(pmu);
884
885         return -EAGAIN;
886 }
887
888 /*
889  * Work out whether we can put this event group on the CPU now.
890  */
891 static int group_can_go_on(struct perf_event *event,
892                            struct perf_cpu_context *cpuctx,
893                            int can_add_hw)
894 {
895         /*
896          * Groups consisting entirely of software events can always go on.
897          */
898         if (event->group_flags & PERF_GROUP_SOFTWARE)
899                 return 1;
900         /*
901          * If an exclusive group is already on, no other hardware
902          * events can go on.
903          */
904         if (cpuctx->exclusive)
905                 return 0;
906         /*
907          * If this group is exclusive and there are already
908          * events on the CPU, it can't go on.
909          */
910         if (event->attr.exclusive && cpuctx->active_oncpu)
911                 return 0;
912         /*
913          * Otherwise, try to add it if all previous groups were able
914          * to go on.
915          */
916         return can_add_hw;
917 }
918
919 static void add_event_to_ctx(struct perf_event *event,
920                                struct perf_event_context *ctx)
921 {
922         u64 tstamp = perf_event_time(event);
923
924         list_add_event(event, ctx);
925         perf_group_attach(event);
926         event->tstamp_enabled = tstamp;
927         event->tstamp_running = tstamp;
928         event->tstamp_stopped = tstamp;
929 }
930
931 /*
932  * Cross CPU call to install and enable a performance event
933  *
934  * Must be called with ctx->mutex held
935  */
936 static void __perf_install_in_context(void *info)
937 {
938         struct perf_event *event = info;
939         struct perf_event_context *ctx = event->ctx;
940         struct perf_event *leader = event->group_leader;
941         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
942         int err;
943
944         /*
945          * If this is a task context, we need to check whether it is
946          * the current task context of this cpu. If not it has been
947          * scheduled out before the smp call arrived.
948          * Or possibly this is the right context but it isn't
949          * on this cpu because it had no events.
950          */
951         if (ctx->task && cpuctx->task_ctx != ctx) {
952                 if (cpuctx->task_ctx || ctx->task != current)
953                         return;
954                 cpuctx->task_ctx = ctx;
955         }
956
957         raw_spin_lock(&ctx->lock);
958         ctx->is_active = 1;
959         update_context_time(ctx);
960
961         add_event_to_ctx(event, ctx);
962
963         if (!event_filter_match(event))
964                 goto unlock;
965
966         /*
967          * Don't put the event on if it is disabled or if
968          * it is in a group and the group isn't on.
969          */
970         if (event->state != PERF_EVENT_STATE_INACTIVE ||
971             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
972                 goto unlock;
973
974         /*
975          * An exclusive event can't go on if there are already active
976          * hardware events, and no hardware event can go on if there
977          * is already an exclusive event on.
978          */
979         if (!group_can_go_on(event, cpuctx, 1))
980                 err = -EEXIST;
981         else
982                 err = event_sched_in(event, cpuctx, ctx);
983
984         if (err) {
985                 /*
986                  * This event couldn't go on.  If it is in a group
987                  * then we have to pull the whole group off.
988                  * If the event group is pinned then put it in error state.
989                  */
990                 if (leader != event)
991                         group_sched_out(leader, cpuctx, ctx);
992                 if (leader->attr.pinned) {
993                         update_group_times(leader);
994                         leader->state = PERF_EVENT_STATE_ERROR;
995                 }
996         }
997
998 unlock:
999         raw_spin_unlock(&ctx->lock);
1000 }
1001
1002 /*
1003  * Attach a performance event to a context
1004  *
1005  * First we add the event to the list with the hardware enable bit
1006  * in event->hw_config cleared.
1007  *
1008  * If the event is attached to a task which is on a CPU we use a smp
1009  * call to enable it in the task context. The task might have been
1010  * scheduled away, but we check this in the smp call again.
1011  *
1012  * Must be called with ctx->mutex held.
1013  */
1014 static void
1015 perf_install_in_context(struct perf_event_context *ctx,
1016                         struct perf_event *event,
1017                         int cpu)
1018 {
1019         struct task_struct *task = ctx->task;
1020
1021         event->ctx = ctx;
1022
1023         if (!task) {
1024                 /*
1025                  * Per cpu events are installed via an smp call and
1026                  * the install is always successful.
1027                  */
1028                 smp_call_function_single(cpu, __perf_install_in_context,
1029                                          event, 1);
1030                 return;
1031         }
1032
1033 retry:
1034         task_oncpu_function_call(task, __perf_install_in_context,
1035                                  event);
1036
1037         raw_spin_lock_irq(&ctx->lock);
1038         /*
1039          * we need to retry the smp call.
1040          */
1041         if (ctx->is_active && list_empty(&event->group_entry)) {
1042                 raw_spin_unlock_irq(&ctx->lock);
1043                 goto retry;
1044         }
1045
1046         /*
1047          * The lock prevents that this context is scheduled in so we
1048          * can add the event safely, if it the call above did not
1049          * succeed.
1050          */
1051         if (list_empty(&event->group_entry))
1052                 add_event_to_ctx(event, ctx);
1053         raw_spin_unlock_irq(&ctx->lock);
1054 }
1055
1056 /*
1057  * Put a event into inactive state and update time fields.
1058  * Enabling the leader of a group effectively enables all
1059  * the group members that aren't explicitly disabled, so we
1060  * have to update their ->tstamp_enabled also.
1061  * Note: this works for group members as well as group leaders
1062  * since the non-leader members' sibling_lists will be empty.
1063  */
1064 static void __perf_event_mark_enabled(struct perf_event *event,
1065                                         struct perf_event_context *ctx)
1066 {
1067         struct perf_event *sub;
1068         u64 tstamp = perf_event_time(event);
1069
1070         event->state = PERF_EVENT_STATE_INACTIVE;
1071         event->tstamp_enabled = tstamp - event->total_time_enabled;
1072         list_for_each_entry(sub, &event->sibling_list, group_entry) {
1073                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1074                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1075         }
1076 }
1077
1078 /*
1079  * Cross CPU call to enable a performance event
1080  */
1081 static void __perf_event_enable(void *info)
1082 {
1083         struct perf_event *event = info;
1084         struct perf_event_context *ctx = event->ctx;
1085         struct perf_event *leader = event->group_leader;
1086         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1087         int err;
1088
1089         /*
1090          * If this is a per-task event, need to check whether this
1091          * event's task is the current task on this cpu.
1092          */
1093         if (ctx->task && cpuctx->task_ctx != ctx) {
1094                 if (cpuctx->task_ctx || ctx->task != current)
1095                         return;
1096                 cpuctx->task_ctx = ctx;
1097         }
1098
1099         raw_spin_lock(&ctx->lock);
1100         ctx->is_active = 1;
1101         update_context_time(ctx);
1102
1103         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1104                 goto unlock;
1105         __perf_event_mark_enabled(event, ctx);
1106
1107         if (!event_filter_match(event))
1108                 goto unlock;
1109
1110         /*
1111          * If the event is in a group and isn't the group leader,
1112          * then don't put it on unless the group is on.
1113          */
1114         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1115                 goto unlock;
1116
1117         if (!group_can_go_on(event, cpuctx, 1)) {
1118                 err = -EEXIST;
1119         } else {
1120                 if (event == leader)
1121                         err = group_sched_in(event, cpuctx, ctx);
1122                 else
1123                         err = event_sched_in(event, cpuctx, ctx);
1124         }
1125
1126         if (err) {
1127                 /*
1128                  * If this event can't go on and it's part of a
1129                  * group, then the whole group has to come off.
1130                  */
1131                 if (leader != event)
1132                         group_sched_out(leader, cpuctx, ctx);
1133                 if (leader->attr.pinned) {
1134                         update_group_times(leader);
1135                         leader->state = PERF_EVENT_STATE_ERROR;
1136                 }
1137         }
1138
1139 unlock:
1140         raw_spin_unlock(&ctx->lock);
1141 }
1142
1143 /*
1144  * Enable a event.
1145  *
1146  * If event->ctx is a cloned context, callers must make sure that
1147  * every task struct that event->ctx->task could possibly point to
1148  * remains valid.  This condition is satisfied when called through
1149  * perf_event_for_each_child or perf_event_for_each as described
1150  * for perf_event_disable.
1151  */
1152 void perf_event_enable(struct perf_event *event)
1153 {
1154         struct perf_event_context *ctx = event->ctx;
1155         struct task_struct *task = ctx->task;
1156
1157         if (!task) {
1158                 /*
1159                  * Enable the event on the cpu that it's on
1160                  */
1161                 smp_call_function_single(event->cpu, __perf_event_enable,
1162                                          event, 1);
1163                 return;
1164         }
1165
1166         raw_spin_lock_irq(&ctx->lock);
1167         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1168                 goto out;
1169
1170         /*
1171          * If the event is in error state, clear that first.
1172          * That way, if we see the event in error state below, we
1173          * know that it has gone back into error state, as distinct
1174          * from the task having been scheduled away before the
1175          * cross-call arrived.
1176          */
1177         if (event->state == PERF_EVENT_STATE_ERROR)
1178                 event->state = PERF_EVENT_STATE_OFF;
1179
1180 retry:
1181         raw_spin_unlock_irq(&ctx->lock);
1182         task_oncpu_function_call(task, __perf_event_enable, event);
1183
1184         raw_spin_lock_irq(&ctx->lock);
1185
1186         /*
1187          * If the context is active and the event is still off,
1188          * we need to retry the cross-call.
1189          */
1190         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1191                 goto retry;
1192
1193         /*
1194          * Since we have the lock this context can't be scheduled
1195          * in, so we can change the state safely.
1196          */
1197         if (event->state == PERF_EVENT_STATE_OFF)
1198                 __perf_event_mark_enabled(event, ctx);
1199
1200 out:
1201         raw_spin_unlock_irq(&ctx->lock);
1202 }
1203
1204 static int perf_event_refresh(struct perf_event *event, int refresh)
1205 {
1206         /*
1207          * not supported on inherited events
1208          */
1209         if (event->attr.inherit || !is_sampling_event(event))
1210                 return -EINVAL;
1211
1212         atomic_add(refresh, &event->event_limit);
1213         perf_event_enable(event);
1214
1215         return 0;
1216 }
1217
1218 static void ctx_sched_out(struct perf_event_context *ctx,
1219                           struct perf_cpu_context *cpuctx,
1220                           enum event_type_t event_type)
1221 {
1222         struct perf_event *event;
1223
1224         raw_spin_lock(&ctx->lock);
1225         perf_pmu_disable(ctx->pmu);
1226         ctx->is_active = 0;
1227         if (likely(!ctx->nr_events))
1228                 goto out;
1229         update_context_time(ctx);
1230
1231         if (!ctx->nr_active)
1232                 goto out;
1233
1234         if (event_type & EVENT_PINNED) {
1235                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1236                         group_sched_out(event, cpuctx, ctx);
1237         }
1238
1239         if (event_type & EVENT_FLEXIBLE) {
1240                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1241                         group_sched_out(event, cpuctx, ctx);
1242         }
1243 out:
1244         perf_pmu_enable(ctx->pmu);
1245         raw_spin_unlock(&ctx->lock);
1246 }
1247
1248 /*
1249  * Test whether two contexts are equivalent, i.e. whether they
1250  * have both been cloned from the same version of the same context
1251  * and they both have the same number of enabled events.
1252  * If the number of enabled events is the same, then the set
1253  * of enabled events should be the same, because these are both
1254  * inherited contexts, therefore we can't access individual events
1255  * in them directly with an fd; we can only enable/disable all
1256  * events via prctl, or enable/disable all events in a family
1257  * via ioctl, which will have the same effect on both contexts.
1258  */
1259 static int context_equiv(struct perf_event_context *ctx1,
1260                          struct perf_event_context *ctx2)
1261 {
1262         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1263                 && ctx1->parent_gen == ctx2->parent_gen
1264                 && !ctx1->pin_count && !ctx2->pin_count;
1265 }
1266
1267 static void __perf_event_sync_stat(struct perf_event *event,
1268                                      struct perf_event *next_event)
1269 {
1270         u64 value;
1271
1272         if (!event->attr.inherit_stat)
1273                 return;
1274
1275         /*
1276          * Update the event value, we cannot use perf_event_read()
1277          * because we're in the middle of a context switch and have IRQs
1278          * disabled, which upsets smp_call_function_single(), however
1279          * we know the event must be on the current CPU, therefore we
1280          * don't need to use it.
1281          */
1282         switch (event->state) {
1283         case PERF_EVENT_STATE_ACTIVE:
1284                 event->pmu->read(event);
1285                 /* fall-through */
1286
1287         case PERF_EVENT_STATE_INACTIVE:
1288                 update_event_times(event);
1289                 break;
1290
1291         default:
1292                 break;
1293         }
1294
1295         /*
1296          * In order to keep per-task stats reliable we need to flip the event
1297          * values when we flip the contexts.
1298          */
1299         value = local64_read(&next_event->count);
1300         value = local64_xchg(&event->count, value);
1301         local64_set(&next_event->count, value);
1302
1303         swap(event->total_time_enabled, next_event->total_time_enabled);
1304         swap(event->total_time_running, next_event->total_time_running);
1305
1306         /*
1307          * Since we swizzled the values, update the user visible data too.
1308          */
1309         perf_event_update_userpage(event);
1310         perf_event_update_userpage(next_event);
1311 }
1312
1313 #define list_next_entry(pos, member) \
1314         list_entry(pos->member.next, typeof(*pos), member)
1315
1316 static void perf_event_sync_stat(struct perf_event_context *ctx,
1317                                    struct perf_event_context *next_ctx)
1318 {
1319         struct perf_event *event, *next_event;
1320
1321         if (!ctx->nr_stat)
1322                 return;
1323
1324         update_context_time(ctx);
1325
1326         event = list_first_entry(&ctx->event_list,
1327                                    struct perf_event, event_entry);
1328
1329         next_event = list_first_entry(&next_ctx->event_list,
1330                                         struct perf_event, event_entry);
1331
1332         while (&event->event_entry != &ctx->event_list &&
1333                &next_event->event_entry != &next_ctx->event_list) {
1334
1335                 __perf_event_sync_stat(event, next_event);
1336
1337                 event = list_next_entry(event, event_entry);
1338                 next_event = list_next_entry(next_event, event_entry);
1339         }
1340 }
1341
1342 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1343                                   struct task_struct *next)
1344 {
1345         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1346         struct perf_event_context *next_ctx;
1347         struct perf_event_context *parent;
1348         struct perf_cpu_context *cpuctx;
1349         int do_switch = 1;
1350
1351         if (likely(!ctx))
1352                 return;
1353
1354         cpuctx = __get_cpu_context(ctx);
1355         if (!cpuctx->task_ctx)
1356                 return;
1357
1358         rcu_read_lock();
1359         parent = rcu_dereference(ctx->parent_ctx);
1360         next_ctx = next->perf_event_ctxp[ctxn];
1361         if (parent && next_ctx &&
1362             rcu_dereference(next_ctx->parent_ctx) == parent) {
1363                 /*
1364                  * Looks like the two contexts are clones, so we might be
1365                  * able to optimize the context switch.  We lock both
1366                  * contexts and check that they are clones under the
1367                  * lock (including re-checking that neither has been
1368                  * uncloned in the meantime).  It doesn't matter which
1369                  * order we take the locks because no other cpu could
1370                  * be trying to lock both of these tasks.
1371                  */
1372                 raw_spin_lock(&ctx->lock);
1373                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1374                 if (context_equiv(ctx, next_ctx)) {
1375                         /*
1376                          * XXX do we need a memory barrier of sorts
1377                          * wrt to rcu_dereference() of perf_event_ctxp
1378                          */
1379                         task->perf_event_ctxp[ctxn] = next_ctx;
1380                         next->perf_event_ctxp[ctxn] = ctx;
1381                         ctx->task = next;
1382                         next_ctx->task = task;
1383                         do_switch = 0;
1384
1385                         perf_event_sync_stat(ctx, next_ctx);
1386                 }
1387                 raw_spin_unlock(&next_ctx->lock);
1388                 raw_spin_unlock(&ctx->lock);
1389         }
1390         rcu_read_unlock();
1391
1392         if (do_switch) {
1393                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1394                 cpuctx->task_ctx = NULL;
1395         }
1396 }
1397
1398 #define for_each_task_context_nr(ctxn)                                  \
1399         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1400
1401 /*
1402  * Called from scheduler to remove the events of the current task,
1403  * with interrupts disabled.
1404  *
1405  * We stop each event and update the event value in event->count.
1406  *
1407  * This does not protect us against NMI, but disable()
1408  * sets the disabled bit in the control field of event _before_
1409  * accessing the event control register. If a NMI hits, then it will
1410  * not restart the event.
1411  */
1412 void __perf_event_task_sched_out(struct task_struct *task,
1413                                  struct task_struct *next)
1414 {
1415         int ctxn;
1416
1417         for_each_task_context_nr(ctxn)
1418                 perf_event_context_sched_out(task, ctxn, next);
1419 }
1420
1421 static void task_ctx_sched_out(struct perf_event_context *ctx,
1422                                enum event_type_t event_type)
1423 {
1424         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1425
1426         if (!cpuctx->task_ctx)
1427                 return;
1428
1429         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1430                 return;
1431
1432         ctx_sched_out(ctx, cpuctx, event_type);
1433         cpuctx->task_ctx = NULL;
1434 }
1435
1436 /*
1437  * Called with IRQs disabled
1438  */
1439 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1440                               enum event_type_t event_type)
1441 {
1442         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1443 }
1444
1445 static void
1446 ctx_pinned_sched_in(struct perf_event_context *ctx,
1447                     struct perf_cpu_context *cpuctx)
1448 {
1449         struct perf_event *event;
1450
1451         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1452                 if (event->state <= PERF_EVENT_STATE_OFF)
1453                         continue;
1454                 if (!event_filter_match(event))
1455                         continue;
1456
1457                 if (group_can_go_on(event, cpuctx, 1))
1458                         group_sched_in(event, cpuctx, ctx);
1459
1460                 /*
1461                  * If this pinned group hasn't been scheduled,
1462                  * put it in error state.
1463                  */
1464                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1465                         update_group_times(event);
1466                         event->state = PERF_EVENT_STATE_ERROR;
1467                 }
1468         }
1469 }
1470
1471 static void
1472 ctx_flexible_sched_in(struct perf_event_context *ctx,
1473                       struct perf_cpu_context *cpuctx)
1474 {
1475         struct perf_event *event;
1476         int can_add_hw = 1;
1477
1478         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1479                 /* Ignore events in OFF or ERROR state */
1480                 if (event->state <= PERF_EVENT_STATE_OFF)
1481                         continue;
1482                 /*
1483                  * Listen to the 'cpu' scheduling filter constraint
1484                  * of events:
1485                  */
1486                 if (!event_filter_match(event))
1487                         continue;
1488
1489                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1490                         if (group_sched_in(event, cpuctx, ctx))
1491                                 can_add_hw = 0;
1492                 }
1493         }
1494 }
1495
1496 static void
1497 ctx_sched_in(struct perf_event_context *ctx,
1498              struct perf_cpu_context *cpuctx,
1499              enum event_type_t event_type)
1500 {
1501         raw_spin_lock(&ctx->lock);
1502         ctx->is_active = 1;
1503         if (likely(!ctx->nr_events))
1504                 goto out;
1505
1506         ctx->timestamp = perf_clock();
1507
1508         /*
1509          * First go through the list and put on any pinned groups
1510          * in order to give them the best chance of going on.
1511          */
1512         if (event_type & EVENT_PINNED)
1513                 ctx_pinned_sched_in(ctx, cpuctx);
1514
1515         /* Then walk through the lower prio flexible groups */
1516         if (event_type & EVENT_FLEXIBLE)
1517                 ctx_flexible_sched_in(ctx, cpuctx);
1518
1519 out:
1520         raw_spin_unlock(&ctx->lock);
1521 }
1522
1523 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1524                              enum event_type_t event_type)
1525 {
1526         struct perf_event_context *ctx = &cpuctx->ctx;
1527
1528         ctx_sched_in(ctx, cpuctx, event_type);
1529 }
1530
1531 static void task_ctx_sched_in(struct perf_event_context *ctx,
1532                               enum event_type_t event_type)
1533 {
1534         struct perf_cpu_context *cpuctx;
1535
1536         cpuctx = __get_cpu_context(ctx);
1537         if (cpuctx->task_ctx == ctx)
1538                 return;
1539
1540         ctx_sched_in(ctx, cpuctx, event_type);
1541         cpuctx->task_ctx = ctx;
1542 }
1543
1544 void perf_event_context_sched_in(struct perf_event_context *ctx)
1545 {
1546         struct perf_cpu_context *cpuctx;
1547
1548         cpuctx = __get_cpu_context(ctx);
1549         if (cpuctx->task_ctx == ctx)
1550                 return;
1551
1552         perf_pmu_disable(ctx->pmu);
1553         /*
1554          * We want to keep the following priority order:
1555          * cpu pinned (that don't need to move), task pinned,
1556          * cpu flexible, task flexible.
1557          */
1558         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1559
1560         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1561         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1562         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1563
1564         cpuctx->task_ctx = ctx;
1565
1566         /*
1567          * Since these rotations are per-cpu, we need to ensure the
1568          * cpu-context we got scheduled on is actually rotating.
1569          */
1570         perf_pmu_rotate_start(ctx->pmu);
1571         perf_pmu_enable(ctx->pmu);
1572 }
1573
1574 /*
1575  * Called from scheduler to add the events of the current task
1576  * with interrupts disabled.
1577  *
1578  * We restore the event value and then enable it.
1579  *
1580  * This does not protect us against NMI, but enable()
1581  * sets the enabled bit in the control field of event _before_
1582  * accessing the event control register. If a NMI hits, then it will
1583  * keep the event running.
1584  */
1585 void __perf_event_task_sched_in(struct task_struct *task)
1586 {
1587         struct perf_event_context *ctx;
1588         int ctxn;
1589
1590         for_each_task_context_nr(ctxn) {
1591                 ctx = task->perf_event_ctxp[ctxn];
1592                 if (likely(!ctx))
1593                         continue;
1594
1595                 perf_event_context_sched_in(ctx);
1596         }
1597 }
1598
1599 #define MAX_INTERRUPTS (~0ULL)
1600
1601 static void perf_log_throttle(struct perf_event *event, int enable);
1602
1603 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1604 {
1605         u64 frequency = event->attr.sample_freq;
1606         u64 sec = NSEC_PER_SEC;
1607         u64 divisor, dividend;
1608
1609         int count_fls, nsec_fls, frequency_fls, sec_fls;
1610
1611         count_fls = fls64(count);
1612         nsec_fls = fls64(nsec);
1613         frequency_fls = fls64(frequency);
1614         sec_fls = 30;
1615
1616         /*
1617          * We got @count in @nsec, with a target of sample_freq HZ
1618          * the target period becomes:
1619          *
1620          *             @count * 10^9
1621          * period = -------------------
1622          *          @nsec * sample_freq
1623          *
1624          */
1625
1626         /*
1627          * Reduce accuracy by one bit such that @a and @b converge
1628          * to a similar magnitude.
1629          */
1630 #define REDUCE_FLS(a, b)                \
1631 do {                                    \
1632         if (a##_fls > b##_fls) {        \
1633                 a >>= 1;                \
1634                 a##_fls--;              \
1635         } else {                        \
1636                 b >>= 1;                \
1637                 b##_fls--;              \
1638         }                               \
1639 } while (0)
1640
1641         /*
1642          * Reduce accuracy until either term fits in a u64, then proceed with
1643          * the other, so that finally we can do a u64/u64 division.
1644          */
1645         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1646                 REDUCE_FLS(nsec, frequency);
1647                 REDUCE_FLS(sec, count);
1648         }
1649
1650         if (count_fls + sec_fls > 64) {
1651                 divisor = nsec * frequency;
1652
1653                 while (count_fls + sec_fls > 64) {
1654                         REDUCE_FLS(count, sec);
1655                         divisor >>= 1;
1656                 }
1657
1658                 dividend = count * sec;
1659         } else {
1660                 dividend = count * sec;
1661
1662                 while (nsec_fls + frequency_fls > 64) {
1663                         REDUCE_FLS(nsec, frequency);
1664                         dividend >>= 1;
1665                 }
1666
1667                 divisor = nsec * frequency;
1668         }
1669
1670         if (!divisor)
1671                 return dividend;
1672
1673         return div64_u64(dividend, divisor);
1674 }
1675
1676 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1677 {
1678         struct hw_perf_event *hwc = &event->hw;
1679         s64 period, sample_period;
1680         s64 delta;
1681
1682         period = perf_calculate_period(event, nsec, count);
1683
1684         delta = (s64)(period - hwc->sample_period);
1685         delta = (delta + 7) / 8; /* low pass filter */
1686
1687         sample_period = hwc->sample_period + delta;
1688
1689         if (!sample_period)
1690                 sample_period = 1;
1691
1692         hwc->sample_period = sample_period;
1693
1694         if (local64_read(&hwc->period_left) > 8*sample_period) {
1695                 event->pmu->stop(event, PERF_EF_UPDATE);
1696                 local64_set(&hwc->period_left, 0);
1697                 event->pmu->start(event, PERF_EF_RELOAD);
1698         }
1699 }
1700
1701 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1702 {
1703         struct perf_event *event;
1704         struct hw_perf_event *hwc;
1705         u64 interrupts, now;
1706         s64 delta;
1707
1708         raw_spin_lock(&ctx->lock);
1709         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1710                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1711                         continue;
1712
1713                 if (!event_filter_match(event))
1714                         continue;
1715
1716                 hwc = &event->hw;
1717
1718                 interrupts = hwc->interrupts;
1719                 hwc->interrupts = 0;
1720
1721                 /*
1722                  * unthrottle events on the tick
1723                  */
1724                 if (interrupts == MAX_INTERRUPTS) {
1725                         perf_log_throttle(event, 1);
1726                         event->pmu->start(event, 0);
1727                 }
1728
1729                 if (!event->attr.freq || !event->attr.sample_freq)
1730                         continue;
1731
1732                 event->pmu->read(event);
1733                 now = local64_read(&event->count);
1734                 delta = now - hwc->freq_count_stamp;
1735                 hwc->freq_count_stamp = now;
1736
1737                 if (delta > 0)
1738                         perf_adjust_period(event, period, delta);
1739         }
1740         raw_spin_unlock(&ctx->lock);
1741 }
1742
1743 /*
1744  * Round-robin a context's events:
1745  */
1746 static void rotate_ctx(struct perf_event_context *ctx)
1747 {
1748         raw_spin_lock(&ctx->lock);
1749
1750         /*
1751          * Rotate the first entry last of non-pinned groups. Rotation might be
1752          * disabled by the inheritance code.
1753          */
1754         if (!ctx->rotate_disable)
1755                 list_rotate_left(&ctx->flexible_groups);
1756
1757         raw_spin_unlock(&ctx->lock);
1758 }
1759
1760 /*
1761  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1762  * because they're strictly cpu affine and rotate_start is called with IRQs
1763  * disabled, while rotate_context is called from IRQ context.
1764  */
1765 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1766 {
1767         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1768         struct perf_event_context *ctx = NULL;
1769         int rotate = 0, remove = 1;
1770
1771         if (cpuctx->ctx.nr_events) {
1772                 remove = 0;
1773                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1774                         rotate = 1;
1775         }
1776
1777         ctx = cpuctx->task_ctx;
1778         if (ctx && ctx->nr_events) {
1779                 remove = 0;
1780                 if (ctx->nr_events != ctx->nr_active)
1781                         rotate = 1;
1782         }
1783
1784         perf_pmu_disable(cpuctx->ctx.pmu);
1785         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1786         if (ctx)
1787                 perf_ctx_adjust_freq(ctx, interval);
1788
1789         if (!rotate)
1790                 goto done;
1791
1792         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1793         if (ctx)
1794                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1795
1796         rotate_ctx(&cpuctx->ctx);
1797         if (ctx)
1798                 rotate_ctx(ctx);
1799
1800         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1801         if (ctx)
1802                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1803
1804 done:
1805         if (remove)
1806                 list_del_init(&cpuctx->rotation_list);
1807
1808         perf_pmu_enable(cpuctx->ctx.pmu);
1809 }
1810
1811 void perf_event_task_tick(void)
1812 {
1813         struct list_head *head = &__get_cpu_var(rotation_list);
1814         struct perf_cpu_context *cpuctx, *tmp;
1815
1816         WARN_ON(!irqs_disabled());
1817
1818         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1819                 if (cpuctx->jiffies_interval == 1 ||
1820                                 !(jiffies % cpuctx->jiffies_interval))
1821                         perf_rotate_context(cpuctx);
1822         }
1823 }
1824
1825 static int event_enable_on_exec(struct perf_event *event,
1826                                 struct perf_event_context *ctx)
1827 {
1828         if (!event->attr.enable_on_exec)
1829                 return 0;
1830
1831         event->attr.enable_on_exec = 0;
1832         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1833                 return 0;
1834
1835         __perf_event_mark_enabled(event, ctx);
1836
1837         return 1;
1838 }
1839
1840 /*
1841  * Enable all of a task's events that have been marked enable-on-exec.
1842  * This expects task == current.
1843  */
1844 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1845 {
1846         struct perf_event *event;
1847         unsigned long flags;
1848         int enabled = 0;
1849         int ret;
1850
1851         local_irq_save(flags);
1852         if (!ctx || !ctx->nr_events)
1853                 goto out;
1854
1855         task_ctx_sched_out(ctx, EVENT_ALL);
1856
1857         raw_spin_lock(&ctx->lock);
1858
1859         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1860                 ret = event_enable_on_exec(event, ctx);
1861                 if (ret)
1862                         enabled = 1;
1863         }
1864
1865         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1866                 ret = event_enable_on_exec(event, ctx);
1867                 if (ret)
1868                         enabled = 1;
1869         }
1870
1871         /*
1872          * Unclone this context if we enabled any event.
1873          */
1874         if (enabled)
1875                 unclone_ctx(ctx);
1876
1877         raw_spin_unlock(&ctx->lock);
1878
1879         perf_event_context_sched_in(ctx);
1880 out:
1881         local_irq_restore(flags);
1882 }
1883
1884 /*
1885  * Cross CPU call to read the hardware event
1886  */
1887 static void __perf_event_read(void *info)
1888 {
1889         struct perf_event *event = info;
1890         struct perf_event_context *ctx = event->ctx;
1891         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1892
1893         /*
1894          * If this is a task context, we need to check whether it is
1895          * the current task context of this cpu.  If not it has been
1896          * scheduled out before the smp call arrived.  In that case
1897          * event->count would have been updated to a recent sample
1898          * when the event was scheduled out.
1899          */
1900         if (ctx->task && cpuctx->task_ctx != ctx)
1901                 return;
1902
1903         raw_spin_lock(&ctx->lock);
1904         update_context_time(ctx);
1905         update_event_times(event);
1906         raw_spin_unlock(&ctx->lock);
1907
1908         event->pmu->read(event);
1909 }
1910
1911 static inline u64 perf_event_count(struct perf_event *event)
1912 {
1913         return local64_read(&event->count) + atomic64_read(&event->child_count);
1914 }
1915
1916 static u64 perf_event_read(struct perf_event *event)
1917 {
1918         /*
1919          * If event is enabled and currently active on a CPU, update the
1920          * value in the event structure:
1921          */
1922         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1923                 smp_call_function_single(event->oncpu,
1924                                          __perf_event_read, event, 1);
1925         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1926                 struct perf_event_context *ctx = event->ctx;
1927                 unsigned long flags;
1928
1929                 raw_spin_lock_irqsave(&ctx->lock, flags);
1930                 /*
1931                  * may read while context is not active
1932                  * (e.g., thread is blocked), in that case
1933                  * we cannot update context time
1934                  */
1935                 if (ctx->is_active)
1936                         update_context_time(ctx);
1937                 update_event_times(event);
1938                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1939         }
1940
1941         return perf_event_count(event);
1942 }
1943
1944 /*
1945  * Callchain support
1946  */
1947
1948 struct callchain_cpus_entries {
1949         struct rcu_head                 rcu_head;
1950         struct perf_callchain_entry     *cpu_entries[0];
1951 };
1952
1953 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1954 static atomic_t nr_callchain_events;
1955 static DEFINE_MUTEX(callchain_mutex);
1956 struct callchain_cpus_entries *callchain_cpus_entries;
1957
1958
1959 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1960                                   struct pt_regs *regs)
1961 {
1962 }
1963
1964 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1965                                 struct pt_regs *regs)
1966 {
1967 }
1968
1969 static void release_callchain_buffers_rcu(struct rcu_head *head)
1970 {
1971         struct callchain_cpus_entries *entries;
1972         int cpu;
1973
1974         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1975
1976         for_each_possible_cpu(cpu)
1977                 kfree(entries->cpu_entries[cpu]);
1978
1979         kfree(entries);
1980 }
1981
1982 static void release_callchain_buffers(void)
1983 {
1984         struct callchain_cpus_entries *entries;
1985
1986         entries = callchain_cpus_entries;
1987         rcu_assign_pointer(callchain_cpus_entries, NULL);
1988         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1989 }
1990
1991 static int alloc_callchain_buffers(void)
1992 {
1993         int cpu;
1994         int size;
1995         struct callchain_cpus_entries *entries;
1996
1997         /*
1998          * We can't use the percpu allocation API for data that can be
1999          * accessed from NMI. Use a temporary manual per cpu allocation
2000          * until that gets sorted out.
2001          */
2002         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
2003                 num_possible_cpus();
2004
2005         entries = kzalloc(size, GFP_KERNEL);
2006         if (!entries)
2007                 return -ENOMEM;
2008
2009         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2010
2011         for_each_possible_cpu(cpu) {
2012                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2013                                                          cpu_to_node(cpu));
2014                 if (!entries->cpu_entries[cpu])
2015                         goto fail;
2016         }
2017
2018         rcu_assign_pointer(callchain_cpus_entries, entries);
2019
2020         return 0;
2021
2022 fail:
2023         for_each_possible_cpu(cpu)
2024                 kfree(entries->cpu_entries[cpu]);
2025         kfree(entries);
2026
2027         return -ENOMEM;
2028 }
2029
2030 static int get_callchain_buffers(void)
2031 {
2032         int err = 0;
2033         int count;
2034
2035         mutex_lock(&callchain_mutex);
2036
2037         count = atomic_inc_return(&nr_callchain_events);
2038         if (WARN_ON_ONCE(count < 1)) {
2039                 err = -EINVAL;
2040                 goto exit;
2041         }
2042
2043         if (count > 1) {
2044                 /* If the allocation failed, give up */
2045                 if (!callchain_cpus_entries)
2046                         err = -ENOMEM;
2047                 goto exit;
2048         }
2049
2050         err = alloc_callchain_buffers();
2051         if (err)
2052                 release_callchain_buffers();
2053 exit:
2054         mutex_unlock(&callchain_mutex);
2055
2056         return err;
2057 }
2058
2059 static void put_callchain_buffers(void)
2060 {
2061         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2062                 release_callchain_buffers();
2063                 mutex_unlock(&callchain_mutex);
2064         }
2065 }
2066
2067 static int get_recursion_context(int *recursion)
2068 {
2069         int rctx;
2070
2071         if (in_nmi())
2072                 rctx = 3;
2073         else if (in_irq())
2074                 rctx = 2;
2075         else if (in_softirq())
2076                 rctx = 1;
2077         else
2078                 rctx = 0;
2079
2080         if (recursion[rctx])
2081                 return -1;
2082
2083         recursion[rctx]++;
2084         barrier();
2085
2086         return rctx;
2087 }
2088
2089 static inline void put_recursion_context(int *recursion, int rctx)
2090 {
2091         barrier();
2092         recursion[rctx]--;
2093 }
2094
2095 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2096 {
2097         int cpu;
2098         struct callchain_cpus_entries *entries;
2099
2100         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2101         if (*rctx == -1)
2102                 return NULL;
2103
2104         entries = rcu_dereference(callchain_cpus_entries);
2105         if (!entries)
2106                 return NULL;
2107
2108         cpu = smp_processor_id();
2109
2110         return &entries->cpu_entries[cpu][*rctx];
2111 }
2112
2113 static void
2114 put_callchain_entry(int rctx)
2115 {
2116         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2117 }
2118
2119 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2120 {
2121         int rctx;
2122         struct perf_callchain_entry *entry;
2123
2124
2125         entry = get_callchain_entry(&rctx);
2126         if (rctx == -1)
2127                 return NULL;
2128
2129         if (!entry)
2130                 goto exit_put;
2131
2132         entry->nr = 0;
2133
2134         if (!user_mode(regs)) {
2135                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2136                 perf_callchain_kernel(entry, regs);
2137                 if (current->mm)
2138                         regs = task_pt_regs(current);
2139                 else
2140                         regs = NULL;
2141         }
2142
2143         if (regs) {
2144                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2145                 perf_callchain_user(entry, regs);
2146         }
2147
2148 exit_put:
2149         put_callchain_entry(rctx);
2150
2151         return entry;
2152 }
2153
2154 /*
2155  * Initialize the perf_event context in a task_struct:
2156  */
2157 static void __perf_event_init_context(struct perf_event_context *ctx)
2158 {
2159         raw_spin_lock_init(&ctx->lock);
2160         mutex_init(&ctx->mutex);
2161         INIT_LIST_HEAD(&ctx->pinned_groups);
2162         INIT_LIST_HEAD(&ctx->flexible_groups);
2163         INIT_LIST_HEAD(&ctx->event_list);
2164         atomic_set(&ctx->refcount, 1);
2165 }
2166
2167 static struct perf_event_context *
2168 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2169 {
2170         struct perf_event_context *ctx;
2171
2172         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2173         if (!ctx)
2174                 return NULL;
2175
2176         __perf_event_init_context(ctx);
2177         if (task) {
2178                 ctx->task = task;
2179                 get_task_struct(task);
2180         }
2181         ctx->pmu = pmu;
2182
2183         return ctx;
2184 }
2185
2186 static struct task_struct *
2187 find_lively_task_by_vpid(pid_t vpid)
2188 {
2189         struct task_struct *task;
2190         int err;
2191
2192         rcu_read_lock();
2193         if (!vpid)
2194                 task = current;
2195         else
2196                 task = find_task_by_vpid(vpid);
2197         if (task)
2198                 get_task_struct(task);
2199         rcu_read_unlock();
2200
2201         if (!task)
2202                 return ERR_PTR(-ESRCH);
2203
2204         /*
2205          * Can't attach events to a dying task.
2206          */
2207         err = -ESRCH;
2208         if (task->flags & PF_EXITING)
2209                 goto errout;
2210
2211         /* Reuse ptrace permission checks for now. */
2212         err = -EACCES;
2213         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2214                 goto errout;
2215
2216         return task;
2217 errout:
2218         put_task_struct(task);
2219         return ERR_PTR(err);
2220
2221 }
2222
2223 static struct perf_event_context *
2224 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2225 {
2226         struct perf_event_context *ctx;
2227         struct perf_cpu_context *cpuctx;
2228         unsigned long flags;
2229         int ctxn, err;
2230
2231         if (!task && cpu != -1) {
2232                 /* Must be root to operate on a CPU event: */
2233                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2234                         return ERR_PTR(-EACCES);
2235
2236                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2237                         return ERR_PTR(-EINVAL);
2238
2239                 /*
2240                  * We could be clever and allow to attach a event to an
2241                  * offline CPU and activate it when the CPU comes up, but
2242                  * that's for later.
2243                  */
2244                 if (!cpu_online(cpu))
2245                         return ERR_PTR(-ENODEV);
2246
2247                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2248                 ctx = &cpuctx->ctx;
2249                 get_ctx(ctx);
2250
2251                 return ctx;
2252         }
2253
2254         err = -EINVAL;
2255         ctxn = pmu->task_ctx_nr;
2256         if (ctxn < 0)
2257                 goto errout;
2258
2259 retry:
2260         ctx = perf_lock_task_context(task, ctxn, &flags);
2261         if (ctx) {
2262                 unclone_ctx(ctx);
2263                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2264         }
2265
2266         if (!ctx) {
2267                 ctx = alloc_perf_context(pmu, task);
2268                 err = -ENOMEM;
2269                 if (!ctx)
2270                         goto errout;
2271
2272                 get_ctx(ctx);
2273
2274                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2275                         /*
2276                          * We raced with some other task; use
2277                          * the context they set.
2278                          */
2279                         put_task_struct(task);
2280                         kfree(ctx);
2281                         goto retry;
2282                 }
2283         }
2284
2285         return ctx;
2286
2287 errout:
2288         return ERR_PTR(err);
2289 }
2290
2291 static void perf_event_free_filter(struct perf_event *event);
2292
2293 static void free_event_rcu(struct rcu_head *head)
2294 {
2295         struct perf_event *event;
2296
2297         event = container_of(head, struct perf_event, rcu_head);
2298         if (event->ns)
2299                 put_pid_ns(event->ns);
2300         perf_event_free_filter(event);
2301         kfree(event);
2302 }
2303
2304 static void perf_buffer_put(struct perf_buffer *buffer);
2305
2306 static void free_event(struct perf_event *event)
2307 {
2308         irq_work_sync(&event->pending);
2309
2310         if (!event->parent) {
2311                 if (event->attach_state & PERF_ATTACH_TASK)
2312                         jump_label_dec(&perf_task_events);
2313                 if (event->attr.mmap || event->attr.mmap_data)
2314                         atomic_dec(&nr_mmap_events);
2315                 if (event->attr.comm)
2316                         atomic_dec(&nr_comm_events);
2317                 if (event->attr.task)
2318                         atomic_dec(&nr_task_events);
2319                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2320                         put_callchain_buffers();
2321         }
2322
2323         if (event->buffer) {
2324                 perf_buffer_put(event->buffer);
2325                 event->buffer = NULL;
2326         }
2327
2328         if (event->destroy)
2329                 event->destroy(event);
2330
2331         if (event->ctx)
2332                 put_ctx(event->ctx);
2333
2334         call_rcu(&event->rcu_head, free_event_rcu);
2335 }
2336
2337 int perf_event_release_kernel(struct perf_event *event)
2338 {
2339         struct perf_event_context *ctx = event->ctx;
2340
2341         /*
2342          * Remove from the PMU, can't get re-enabled since we got
2343          * here because the last ref went.
2344          */
2345         perf_event_disable(event);
2346
2347         WARN_ON_ONCE(ctx->parent_ctx);
2348         /*
2349          * There are two ways this annotation is useful:
2350          *
2351          *  1) there is a lock recursion from perf_event_exit_task
2352          *     see the comment there.
2353          *
2354          *  2) there is a lock-inversion with mmap_sem through
2355          *     perf_event_read_group(), which takes faults while
2356          *     holding ctx->mutex, however this is called after
2357          *     the last filedesc died, so there is no possibility
2358          *     to trigger the AB-BA case.
2359          */
2360         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2361         raw_spin_lock_irq(&ctx->lock);
2362         perf_group_detach(event);
2363         list_del_event(event, ctx);
2364         raw_spin_unlock_irq(&ctx->lock);
2365         mutex_unlock(&ctx->mutex);
2366
2367         free_event(event);
2368
2369         return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2372
2373 /*
2374  * Called when the last reference to the file is gone.
2375  */
2376 static int perf_release(struct inode *inode, struct file *file)
2377 {
2378         struct perf_event *event = file->private_data;
2379         struct task_struct *owner;
2380
2381         file->private_data = NULL;
2382
2383         rcu_read_lock();
2384         owner = ACCESS_ONCE(event->owner);
2385         /*
2386          * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2387          * !owner it means the list deletion is complete and we can indeed
2388          * free this event, otherwise we need to serialize on
2389          * owner->perf_event_mutex.
2390          */
2391         smp_read_barrier_depends();
2392         if (owner) {
2393                 /*
2394                  * Since delayed_put_task_struct() also drops the last
2395                  * task reference we can safely take a new reference
2396                  * while holding the rcu_read_lock().
2397                  */
2398                 get_task_struct(owner);
2399         }
2400         rcu_read_unlock();
2401
2402         if (owner) {
2403                 mutex_lock(&owner->perf_event_mutex);
2404                 /*
2405                  * We have to re-check the event->owner field, if it is cleared
2406                  * we raced with perf_event_exit_task(), acquiring the mutex
2407                  * ensured they're done, and we can proceed with freeing the
2408                  * event.
2409                  */
2410                 if (event->owner)
2411                         list_del_init(&event->owner_entry);
2412                 mutex_unlock(&owner->perf_event_mutex);
2413                 put_task_struct(owner);
2414         }
2415
2416         return perf_event_release_kernel(event);
2417 }
2418
2419 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2420 {
2421         struct perf_event *child;
2422         u64 total = 0;
2423
2424         *enabled = 0;
2425         *running = 0;
2426
2427         mutex_lock(&event->child_mutex);
2428         total += perf_event_read(event);
2429         *enabled += event->total_time_enabled +
2430                         atomic64_read(&event->child_total_time_enabled);
2431         *running += event->total_time_running +
2432                         atomic64_read(&event->child_total_time_running);
2433
2434         list_for_each_entry(child, &event->child_list, child_list) {
2435                 total += perf_event_read(child);
2436                 *enabled += child->total_time_enabled;
2437                 *running += child->total_time_running;
2438         }
2439         mutex_unlock(&event->child_mutex);
2440
2441         return total;
2442 }
2443 EXPORT_SYMBOL_GPL(perf_event_read_value);
2444
2445 static int perf_event_read_group(struct perf_event *event,
2446                                    u64 read_format, char __user *buf)
2447 {
2448         struct perf_event *leader = event->group_leader, *sub;
2449         int n = 0, size = 0, ret = -EFAULT;
2450         struct perf_event_context *ctx = leader->ctx;
2451         u64 values[5];
2452         u64 count, enabled, running;
2453
2454         mutex_lock(&ctx->mutex);
2455         count = perf_event_read_value(leader, &enabled, &running);
2456
2457         values[n++] = 1 + leader->nr_siblings;
2458         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2459                 values[n++] = enabled;
2460         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2461                 values[n++] = running;
2462         values[n++] = count;
2463         if (read_format & PERF_FORMAT_ID)
2464                 values[n++] = primary_event_id(leader);
2465
2466         size = n * sizeof(u64);
2467
2468         if (copy_to_user(buf, values, size))
2469                 goto unlock;
2470
2471         ret = size;
2472
2473         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2474                 n = 0;
2475
2476                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2477                 if (read_format & PERF_FORMAT_ID)
2478                         values[n++] = primary_event_id(sub);
2479
2480                 size = n * sizeof(u64);
2481
2482                 if (copy_to_user(buf + ret, values, size)) {
2483                         ret = -EFAULT;
2484                         goto unlock;
2485                 }
2486
2487                 ret += size;
2488         }
2489 unlock:
2490         mutex_unlock(&ctx->mutex);
2491
2492         return ret;
2493 }
2494
2495 static int perf_event_read_one(struct perf_event *event,
2496                                  u64 read_format, char __user *buf)
2497 {
2498         u64 enabled, running;
2499         u64 values[4];
2500         int n = 0;
2501
2502         values[n++] = perf_event_read_value(event, &enabled, &running);
2503         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2504                 values[n++] = enabled;
2505         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2506                 values[n++] = running;
2507         if (read_format & PERF_FORMAT_ID)
2508                 values[n++] = primary_event_id(event);
2509
2510         if (copy_to_user(buf, values, n * sizeof(u64)))
2511                 return -EFAULT;
2512
2513         return n * sizeof(u64);
2514 }
2515
2516 /*
2517  * Read the performance event - simple non blocking version for now
2518  */
2519 static ssize_t
2520 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2521 {
2522         u64 read_format = event->attr.read_format;
2523         int ret;
2524
2525         /*
2526          * Return end-of-file for a read on a event that is in
2527          * error state (i.e. because it was pinned but it couldn't be
2528          * scheduled on to the CPU at some point).
2529          */
2530         if (event->state == PERF_EVENT_STATE_ERROR)
2531                 return 0;
2532
2533         if (count < event->read_size)
2534                 return -ENOSPC;
2535
2536         WARN_ON_ONCE(event->ctx->parent_ctx);
2537         if (read_format & PERF_FORMAT_GROUP)
2538                 ret = perf_event_read_group(event, read_format, buf);
2539         else
2540                 ret = perf_event_read_one(event, read_format, buf);
2541
2542         return ret;
2543 }
2544
2545 static ssize_t
2546 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2547 {
2548         struct perf_event *event = file->private_data;
2549
2550         return perf_read_hw(event, buf, count);
2551 }
2552
2553 static unsigned int perf_poll(struct file *file, poll_table *wait)
2554 {
2555         struct perf_event *event = file->private_data;
2556         struct perf_buffer *buffer;
2557         unsigned int events = POLL_HUP;
2558
2559         rcu_read_lock();
2560         buffer = rcu_dereference(event->buffer);
2561         if (buffer)
2562                 events = atomic_xchg(&buffer->poll, 0);
2563         rcu_read_unlock();
2564
2565         poll_wait(file, &event->waitq, wait);
2566
2567         return events;
2568 }
2569
2570 static void perf_event_reset(struct perf_event *event)
2571 {
2572         (void)perf_event_read(event);
2573         local64_set(&event->count, 0);
2574         perf_event_update_userpage(event);
2575 }
2576
2577 /*
2578  * Holding the top-level event's child_mutex means that any
2579  * descendant process that has inherited this event will block
2580  * in sync_child_event if it goes to exit, thus satisfying the
2581  * task existence requirements of perf_event_enable/disable.
2582  */
2583 static void perf_event_for_each_child(struct perf_event *event,
2584                                         void (*func)(struct perf_event *))
2585 {
2586         struct perf_event *child;
2587
2588         WARN_ON_ONCE(event->ctx->parent_ctx);
2589         mutex_lock(&event->child_mutex);
2590         func(event);
2591         list_for_each_entry(child, &event->child_list, child_list)
2592                 func(child);
2593         mutex_unlock(&event->child_mutex);
2594 }
2595
2596 static void perf_event_for_each(struct perf_event *event,
2597                                   void (*func)(struct perf_event *))
2598 {
2599         struct perf_event_context *ctx = event->ctx;
2600         struct perf_event *sibling;
2601
2602         WARN_ON_ONCE(ctx->parent_ctx);
2603         mutex_lock(&ctx->mutex);
2604         event = event->group_leader;
2605
2606         perf_event_for_each_child(event, func);
2607         func(event);
2608         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2609                 perf_event_for_each_child(event, func);
2610         mutex_unlock(&ctx->mutex);
2611 }
2612
2613 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2614 {
2615         struct perf_event_context *ctx = event->ctx;
2616         int ret = 0;
2617         u64 value;
2618
2619         if (!is_sampling_event(event))
2620                 return -EINVAL;
2621
2622         if (copy_from_user(&value, arg, sizeof(value)))
2623                 return -EFAULT;
2624
2625         if (!value)
2626                 return -EINVAL;
2627
2628         raw_spin_lock_irq(&ctx->lock);
2629         if (event->attr.freq) {
2630                 if (value > sysctl_perf_event_sample_rate) {
2631                         ret = -EINVAL;
2632                         goto unlock;
2633                 }
2634
2635                 event->attr.sample_freq = value;
2636         } else {
2637                 event->attr.sample_period = value;
2638                 event->hw.sample_period = value;
2639         }
2640 unlock:
2641         raw_spin_unlock_irq(&ctx->lock);
2642
2643         return ret;
2644 }
2645
2646 static const struct file_operations perf_fops;
2647
2648 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2649 {
2650         struct file *file;
2651
2652         file = fget_light(fd, fput_needed);
2653         if (!file)
2654                 return ERR_PTR(-EBADF);
2655
2656         if (file->f_op != &perf_fops) {
2657                 fput_light(file, *fput_needed);
2658                 *fput_needed = 0;
2659                 return ERR_PTR(-EBADF);
2660         }
2661
2662         return file->private_data;
2663 }
2664
2665 static int perf_event_set_output(struct perf_event *event,
2666                                  struct perf_event *output_event);
2667 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2668
2669 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2670 {
2671         struct perf_event *event = file->private_data;
2672         void (*func)(struct perf_event *);
2673         u32 flags = arg;
2674
2675         switch (cmd) {
2676         case PERF_EVENT_IOC_ENABLE:
2677                 func = perf_event_enable;
2678                 break;
2679         case PERF_EVENT_IOC_DISABLE:
2680                 func = perf_event_disable;
2681                 break;
2682         case PERF_EVENT_IOC_RESET:
2683                 func = perf_event_reset;
2684                 break;
2685
2686         case PERF_EVENT_IOC_REFRESH:
2687                 return perf_event_refresh(event, arg);
2688
2689         case PERF_EVENT_IOC_PERIOD:
2690                 return perf_event_period(event, (u64 __user *)arg);
2691
2692         case PERF_EVENT_IOC_SET_OUTPUT:
2693         {
2694                 struct perf_event *output_event = NULL;
2695                 int fput_needed = 0;
2696                 int ret;
2697
2698                 if (arg != -1) {
2699                         output_event = perf_fget_light(arg, &fput_needed);
2700                         if (IS_ERR(output_event))
2701                                 return PTR_ERR(output_event);
2702                 }
2703
2704                 ret = perf_event_set_output(event, output_event);
2705                 if (output_event)
2706                         fput_light(output_event->filp, fput_needed);
2707
2708                 return ret;
2709         }
2710
2711         case PERF_EVENT_IOC_SET_FILTER:
2712                 return perf_event_set_filter(event, (void __user *)arg);
2713
2714         default:
2715                 return -ENOTTY;
2716         }
2717
2718         if (flags & PERF_IOC_FLAG_GROUP)
2719                 perf_event_for_each(event, func);
2720         else
2721                 perf_event_for_each_child(event, func);
2722
2723         return 0;
2724 }
2725
2726 int perf_event_task_enable(void)
2727 {
2728         struct perf_event *event;
2729
2730         mutex_lock(&current->perf_event_mutex);
2731         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2732                 perf_event_for_each_child(event, perf_event_enable);
2733         mutex_unlock(&current->perf_event_mutex);
2734
2735         return 0;
2736 }
2737
2738 int perf_event_task_disable(void)
2739 {
2740         struct perf_event *event;
2741
2742         mutex_lock(&current->perf_event_mutex);
2743         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2744                 perf_event_for_each_child(event, perf_event_disable);
2745         mutex_unlock(&current->perf_event_mutex);
2746
2747         return 0;
2748 }
2749
2750 #ifndef PERF_EVENT_INDEX_OFFSET
2751 # define PERF_EVENT_INDEX_OFFSET 0
2752 #endif
2753
2754 static int perf_event_index(struct perf_event *event)
2755 {
2756         if (event->hw.state & PERF_HES_STOPPED)
2757                 return 0;
2758
2759         if (event->state != PERF_EVENT_STATE_ACTIVE)
2760                 return 0;
2761
2762         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2763 }
2764
2765 /*
2766  * Callers need to ensure there can be no nesting of this function, otherwise
2767  * the seqlock logic goes bad. We can not serialize this because the arch
2768  * code calls this from NMI context.
2769  */
2770 void perf_event_update_userpage(struct perf_event *event)
2771 {
2772         struct perf_event_mmap_page *userpg;
2773         struct perf_buffer *buffer;
2774
2775         rcu_read_lock();
2776         buffer = rcu_dereference(event->buffer);
2777         if (!buffer)
2778                 goto unlock;
2779
2780         userpg = buffer->user_page;
2781
2782         /*
2783          * Disable preemption so as to not let the corresponding user-space
2784          * spin too long if we get preempted.
2785          */
2786         preempt_disable();
2787         ++userpg->lock;
2788         barrier();
2789         userpg->index = perf_event_index(event);
2790         userpg->offset = perf_event_count(event);
2791         if (event->state == PERF_EVENT_STATE_ACTIVE)
2792                 userpg->offset -= local64_read(&event->hw.prev_count);
2793
2794         userpg->time_enabled = event->total_time_enabled +
2795                         atomic64_read(&event->child_total_time_enabled);
2796
2797         userpg->time_running = event->total_time_running +
2798                         atomic64_read(&event->child_total_time_running);
2799
2800         barrier();
2801         ++userpg->lock;
2802         preempt_enable();
2803 unlock:
2804         rcu_read_unlock();
2805 }
2806
2807 static unsigned long perf_data_size(struct perf_buffer *buffer);
2808
2809 static void
2810 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2811 {
2812         long max_size = perf_data_size(buffer);
2813
2814         if (watermark)
2815                 buffer->watermark = min(max_size, watermark);
2816
2817         if (!buffer->watermark)
2818                 buffer->watermark = max_size / 2;
2819
2820         if (flags & PERF_BUFFER_WRITABLE)
2821                 buffer->writable = 1;
2822
2823         atomic_set(&buffer->refcount, 1);
2824 }
2825
2826 #ifndef CONFIG_PERF_USE_VMALLOC
2827
2828 /*
2829  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2830  */
2831
2832 static struct page *
2833 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2834 {
2835         if (pgoff > buffer->nr_pages)
2836                 return NULL;
2837
2838         if (pgoff == 0)
2839                 return virt_to_page(buffer->user_page);
2840
2841         return virt_to_page(buffer->data_pages[pgoff - 1]);
2842 }
2843
2844 static void *perf_mmap_alloc_page(int cpu)
2845 {
2846         struct page *page;
2847         int node;
2848
2849         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2850         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2851         if (!page)
2852                 return NULL;
2853
2854         return page_address(page);
2855 }
2856
2857 static struct perf_buffer *
2858 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2859 {
2860         struct perf_buffer *buffer;
2861         unsigned long size;
2862         int i;
2863
2864         size = sizeof(struct perf_buffer);
2865         size += nr_pages * sizeof(void *);
2866
2867         buffer = kzalloc(size, GFP_KERNEL);
2868         if (!buffer)
2869                 goto fail;
2870
2871         buffer->user_page = perf_mmap_alloc_page(cpu);
2872         if (!buffer->user_page)
2873                 goto fail_user_page;
2874
2875         for (i = 0; i < nr_pages; i++) {
2876                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2877                 if (!buffer->data_pages[i])
2878                         goto fail_data_pages;
2879         }
2880
2881         buffer->nr_pages = nr_pages;
2882
2883         perf_buffer_init(buffer, watermark, flags);
2884
2885         return buffer;
2886
2887 fail_data_pages:
2888         for (i--; i >= 0; i--)
2889                 free_page((unsigned long)buffer->data_pages[i]);
2890
2891         free_page((unsigned long)buffer->user_page);
2892
2893 fail_user_page:
2894         kfree(buffer);
2895
2896 fail:
2897         return NULL;
2898 }
2899
2900 static void perf_mmap_free_page(unsigned long addr)
2901 {
2902         struct page *page = virt_to_page((void *)addr);
2903
2904         page->mapping = NULL;
2905         __free_page(page);
2906 }
2907
2908 static void perf_buffer_free(struct perf_buffer *buffer)
2909 {
2910         int i;
2911
2912         perf_mmap_free_page((unsigned long)buffer->user_page);
2913         for (i = 0; i < buffer->nr_pages; i++)
2914                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2915         kfree(buffer);
2916 }
2917
2918 static inline int page_order(struct perf_buffer *buffer)
2919 {
2920         return 0;
2921 }
2922
2923 #else
2924
2925 /*
2926  * Back perf_mmap() with vmalloc memory.
2927  *
2928  * Required for architectures that have d-cache aliasing issues.
2929  */
2930
2931 static inline int page_order(struct perf_buffer *buffer)
2932 {
2933         return buffer->page_order;
2934 }
2935
2936 static struct page *
2937 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2938 {
2939         if (pgoff > (1UL << page_order(buffer)))
2940                 return NULL;
2941
2942         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2943 }
2944
2945 static void perf_mmap_unmark_page(void *addr)
2946 {
2947         struct page *page = vmalloc_to_page(addr);
2948
2949         page->mapping = NULL;
2950 }
2951
2952 static void perf_buffer_free_work(struct work_struct *work)
2953 {
2954         struct perf_buffer *buffer;
2955         void *base;
2956         int i, nr;
2957
2958         buffer = container_of(work, struct perf_buffer, work);
2959         nr = 1 << page_order(buffer);
2960
2961         base = buffer->user_page;
2962         for (i = 0; i < nr + 1; i++)
2963                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2964
2965         vfree(base);
2966         kfree(buffer);
2967 }
2968
2969 static void perf_buffer_free(struct perf_buffer *buffer)
2970 {
2971         schedule_work(&buffer->work);
2972 }
2973
2974 static struct perf_buffer *
2975 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2976 {
2977         struct perf_buffer *buffer;
2978         unsigned long size;
2979         void *all_buf;
2980
2981         size = sizeof(struct perf_buffer);
2982         size += sizeof(void *);
2983
2984         buffer = kzalloc(size, GFP_KERNEL);
2985         if (!buffer)
2986                 goto fail;
2987
2988         INIT_WORK(&buffer->work, perf_buffer_free_work);
2989
2990         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2991         if (!all_buf)
2992                 goto fail_all_buf;
2993
2994         buffer->user_page = all_buf;
2995         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2996         buffer->page_order = ilog2(nr_pages);
2997         buffer->nr_pages = 1;
2998
2999         perf_buffer_init(buffer, watermark, flags);
3000
3001         return buffer;
3002
3003 fail_all_buf:
3004         kfree(buffer);
3005
3006 fail:
3007         return NULL;
3008 }
3009
3010 #endif
3011
3012 static unsigned long perf_data_size(struct perf_buffer *buffer)
3013 {
3014         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3015 }
3016
3017 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3018 {
3019         struct perf_event *event = vma->vm_file->private_data;
3020         struct perf_buffer *buffer;
3021         int ret = VM_FAULT_SIGBUS;
3022
3023         if (vmf->flags & FAULT_FLAG_MKWRITE) {
3024                 if (vmf->pgoff == 0)
3025                         ret = 0;
3026                 return ret;
3027         }
3028
3029         rcu_read_lock();
3030         buffer = rcu_dereference(event->buffer);
3031         if (!buffer)
3032                 goto unlock;
3033
3034         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3035                 goto unlock;
3036
3037         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3038         if (!vmf->page)
3039                 goto unlock;
3040
3041         get_page(vmf->page);
3042         vmf->page->mapping = vma->vm_file->f_mapping;
3043         vmf->page->index   = vmf->pgoff;
3044
3045         ret = 0;
3046 unlock:
3047         rcu_read_unlock();
3048
3049         return ret;
3050 }
3051
3052 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3053 {
3054         struct perf_buffer *buffer;
3055
3056         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3057         perf_buffer_free(buffer);
3058 }
3059
3060 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3061 {
3062         struct perf_buffer *buffer;
3063
3064         rcu_read_lock();
3065         buffer = rcu_dereference(event->buffer);
3066         if (buffer) {
3067                 if (!atomic_inc_not_zero(&buffer->refcount))
3068                         buffer = NULL;
3069         }
3070         rcu_read_unlock();
3071
3072         return buffer;
3073 }
3074
3075 static void perf_buffer_put(struct perf_buffer *buffer)
3076 {
3077         if (!atomic_dec_and_test(&buffer->refcount))
3078                 return;
3079
3080         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3081 }
3082
3083 static void perf_mmap_open(struct vm_area_struct *vma)
3084 {
3085         struct perf_event *event = vma->vm_file->private_data;
3086
3087         atomic_inc(&event->mmap_count);
3088 }
3089
3090 static void perf_mmap_close(struct vm_area_struct *vma)
3091 {
3092         struct perf_event *event = vma->vm_file->private_data;
3093
3094         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3095                 unsigned long size = perf_data_size(event->buffer);
3096                 struct user_struct *user = event->mmap_user;
3097                 struct perf_buffer *buffer = event->buffer;
3098
3099                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3100                 vma->vm_mm->locked_vm -= event->mmap_locked;
3101                 rcu_assign_pointer(event->buffer, NULL);
3102                 mutex_unlock(&event->mmap_mutex);
3103
3104                 perf_buffer_put(buffer);
3105                 free_uid(user);
3106         }
3107 }
3108
3109 static const struct vm_operations_struct perf_mmap_vmops = {
3110         .open           = perf_mmap_open,
3111         .close          = perf_mmap_close,
3112         .fault          = perf_mmap_fault,
3113         .page_mkwrite   = perf_mmap_fault,
3114 };
3115
3116 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3117 {
3118         struct perf_event *event = file->private_data;
3119         unsigned long user_locked, user_lock_limit;
3120         struct user_struct *user = current_user();
3121         unsigned long locked, lock_limit;
3122         struct perf_buffer *buffer;
3123         unsigned long vma_size;
3124         unsigned long nr_pages;
3125         long user_extra, extra;
3126         int ret = 0, flags = 0;
3127
3128         /*
3129          * Don't allow mmap() of inherited per-task counters. This would
3130          * create a performance issue due to all children writing to the
3131          * same buffer.
3132          */
3133         if (event->cpu == -1 && event->attr.inherit)
3134                 return -EINVAL;
3135
3136         if (!(vma->vm_flags & VM_SHARED))
3137                 return -EINVAL;
3138
3139         vma_size = vma->vm_end - vma->vm_start;
3140         nr_pages = (vma_size / PAGE_SIZE) - 1;
3141
3142         /*
3143          * If we have buffer pages ensure they're a power-of-two number, so we
3144          * can do bitmasks instead of modulo.
3145          */
3146         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3147                 return -EINVAL;
3148
3149         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3150                 return -EINVAL;
3151
3152         if (vma->vm_pgoff != 0)
3153                 return -EINVAL;
3154
3155         WARN_ON_ONCE(event->ctx->parent_ctx);
3156         mutex_lock(&event->mmap_mutex);
3157         if (event->buffer) {
3158                 if (event->buffer->nr_pages == nr_pages)
3159                         atomic_inc(&event->buffer->refcount);
3160                 else
3161                         ret = -EINVAL;
3162                 goto unlock;
3163         }
3164
3165         user_extra = nr_pages + 1;
3166         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3167
3168         /*
3169          * Increase the limit linearly with more CPUs:
3170          */
3171         user_lock_limit *= num_online_cpus();
3172
3173         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3174
3175         extra = 0;
3176         if (user_locked > user_lock_limit)
3177                 extra = user_locked - user_lock_limit;
3178
3179         lock_limit = rlimit(RLIMIT_MEMLOCK);
3180         lock_limit >>= PAGE_SHIFT;
3181         locked = vma->vm_mm->locked_vm + extra;
3182
3183         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3184                 !capable(CAP_IPC_LOCK)) {
3185                 ret = -EPERM;
3186                 goto unlock;
3187         }
3188
3189         WARN_ON(event->buffer);
3190
3191         if (vma->vm_flags & VM_WRITE)
3192                 flags |= PERF_BUFFER_WRITABLE;
3193
3194         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3195                                    event->cpu, flags);
3196         if (!buffer) {
3197                 ret = -ENOMEM;
3198                 goto unlock;
3199         }
3200         rcu_assign_pointer(event->buffer, buffer);
3201
3202         atomic_long_add(user_extra, &user->locked_vm);
3203         event->mmap_locked = extra;
3204         event->mmap_user = get_current_user();
3205         vma->vm_mm->locked_vm += event->mmap_locked;
3206
3207 unlock:
3208         if (!ret)
3209                 atomic_inc(&event->mmap_count);
3210         mutex_unlock(&event->mmap_mutex);
3211
3212         vma->vm_flags |= VM_RESERVED;
3213         vma->vm_ops = &perf_mmap_vmops;
3214
3215         return ret;
3216 }
3217
3218 static int perf_fasync(int fd, struct file *filp, int on)
3219 {
3220         struct inode *inode = filp->f_path.dentry->d_inode;
3221         struct perf_event *event = filp->private_data;
3222         int retval;
3223
3224         mutex_lock(&inode->i_mutex);
3225         retval = fasync_helper(fd, filp, on, &event->fasync);
3226         mutex_unlock(&inode->i_mutex);
3227
3228         if (retval < 0)
3229                 return retval;
3230
3231         return 0;
3232 }
3233
3234 static const struct file_operations perf_fops = {
3235         .llseek                 = no_llseek,
3236         .release                = perf_release,
3237         .read                   = perf_read,
3238         .poll                   = perf_poll,
3239         .unlocked_ioctl         = perf_ioctl,
3240         .compat_ioctl           = perf_ioctl,
3241         .mmap                   = perf_mmap,
3242         .fasync                 = perf_fasync,
3243 };
3244
3245 /*
3246  * Perf event wakeup
3247  *
3248  * If there's data, ensure we set the poll() state and publish everything
3249  * to user-space before waking everybody up.
3250  */
3251
3252 void perf_event_wakeup(struct perf_event *event)
3253 {
3254         wake_up_all(&event->waitq);
3255
3256         if (event->pending_kill) {
3257                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3258                 event->pending_kill = 0;
3259         }
3260 }
3261
3262 static void perf_pending_event(struct irq_work *entry)
3263 {
3264         struct perf_event *event = container_of(entry,
3265                         struct perf_event, pending);
3266
3267         if (event->pending_disable) {
3268                 event->pending_disable = 0;
3269                 __perf_event_disable(event);
3270         }
3271
3272         if (event->pending_wakeup) {
3273                 event->pending_wakeup = 0;
3274                 perf_event_wakeup(event);
3275         }
3276 }
3277
3278 /*
3279  * We assume there is only KVM supporting the callbacks.
3280  * Later on, we might change it to a list if there is
3281  * another virtualization implementation supporting the callbacks.
3282  */
3283 struct perf_guest_info_callbacks *perf_guest_cbs;
3284
3285 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3286 {
3287         perf_guest_cbs = cbs;
3288         return 0;
3289 }
3290 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3291
3292 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3293 {
3294         perf_guest_cbs = NULL;
3295         return 0;
3296 }
3297 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3298
3299 /*
3300  * Output
3301  */
3302 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3303                               unsigned long offset, unsigned long head)
3304 {
3305         unsigned long mask;
3306
3307         if (!buffer->writable)
3308                 return true;
3309
3310         mask = perf_data_size(buffer) - 1;
3311
3312         offset = (offset - tail) & mask;
3313         head   = (head   - tail) & mask;
3314
3315         if ((int)(head - offset) < 0)
3316                 return false;
3317
3318         return true;
3319 }
3320
3321 static void perf_output_wakeup(struct perf_output_handle *handle)
3322 {
3323         atomic_set(&handle->buffer->poll, POLL_IN);
3324
3325         if (handle->nmi) {
3326                 handle->event->pending_wakeup = 1;
3327                 irq_work_queue(&handle->event->pending);
3328         } else
3329                 perf_event_wakeup(handle->event);
3330 }
3331
3332 /*
3333  * We need to ensure a later event_id doesn't publish a head when a former
3334  * event isn't done writing. However since we need to deal with NMIs we
3335  * cannot fully serialize things.
3336  *
3337  * We only publish the head (and generate a wakeup) when the outer-most
3338  * event completes.
3339  */
3340 static void perf_output_get_handle(struct perf_output_handle *handle)
3341 {
3342         struct perf_buffer *buffer = handle->buffer;
3343
3344         preempt_disable();
3345         local_inc(&buffer->nest);
3346         handle->wakeup = local_read(&buffer->wakeup);
3347 }
3348
3349 static void perf_output_put_handle(struct perf_output_handle *handle)
3350 {
3351         struct perf_buffer *buffer = handle->buffer;
3352         unsigned long head;
3353
3354 again:
3355         head = local_read(&buffer->head);
3356
3357         /*
3358          * IRQ/NMI can happen here, which means we can miss a head update.
3359          */
3360
3361         if (!local_dec_and_test(&buffer->nest))
3362                 goto out;
3363
3364         /*
3365          * Publish the known good head. Rely on the full barrier implied
3366          * by atomic_dec_and_test() order the buffer->head read and this
3367          * write.
3368          */
3369         buffer->user_page->data_head = head;
3370
3371         /*
3372          * Now check if we missed an update, rely on the (compiler)
3373          * barrier in atomic_dec_and_test() to re-read buffer->head.
3374          */
3375         if (unlikely(head != local_read(&buffer->head))) {
3376                 local_inc(&buffer->nest);
3377                 goto again;
3378         }
3379
3380         if (handle->wakeup != local_read(&buffer->wakeup))
3381                 perf_output_wakeup(handle);
3382
3383 out:
3384         preempt_enable();
3385 }
3386
3387 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3388                       const void *buf, unsigned int len)
3389 {
3390         do {
3391                 unsigned long size = min_t(unsigned long, handle->size, len);
3392
3393                 memcpy(handle->addr, buf, size);
3394
3395                 len -= size;
3396                 handle->addr += size;
3397                 buf += size;
3398                 handle->size -= size;
3399                 if (!handle->size) {
3400                         struct perf_buffer *buffer = handle->buffer;
3401
3402                         handle->page++;
3403                         handle->page &= buffer->nr_pages - 1;
3404                         handle->addr = buffer->data_pages[handle->page];
3405                         handle->size = PAGE_SIZE << page_order(buffer);
3406                 }
3407         } while (len);
3408 }
3409
3410 static void __perf_event_header__init_id(struct perf_event_header *header,
3411                                          struct perf_sample_data *data,
3412                                          struct perf_event *event)
3413 {
3414         u64 sample_type = event->attr.sample_type;
3415
3416         data->type = sample_type;
3417         header->size += event->id_header_size;
3418
3419         if (sample_type & PERF_SAMPLE_TID) {
3420                 /* namespace issues */
3421                 data->tid_entry.pid = perf_event_pid(event, current);
3422                 data->tid_entry.tid = perf_event_tid(event, current);
3423         }
3424
3425         if (sample_type & PERF_SAMPLE_TIME)
3426                 data->time = perf_clock();
3427
3428         if (sample_type & PERF_SAMPLE_ID)
3429                 data->id = primary_event_id(event);
3430
3431         if (sample_type & PERF_SAMPLE_STREAM_ID)
3432                 data->stream_id = event->id;
3433
3434         if (sample_type & PERF_SAMPLE_CPU) {
3435                 data->cpu_entry.cpu      = raw_smp_processor_id();
3436                 data->cpu_entry.reserved = 0;
3437         }
3438 }
3439
3440 static void perf_event_header__init_id(struct perf_event_header *header,
3441                                        struct perf_sample_data *data,
3442                                        struct perf_event *event)
3443 {
3444         if (event->attr.sample_id_all)
3445                 __perf_event_header__init_id(header, data, event);
3446 }
3447
3448 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3449                                            struct perf_sample_data *data)
3450 {
3451         u64 sample_type = data->type;
3452
3453         if (sample_type & PERF_SAMPLE_TID)
3454                 perf_output_put(handle, data->tid_entry);
3455
3456         if (sample_type & PERF_SAMPLE_TIME)
3457                 perf_output_put(handle, data->time);
3458
3459         if (sample_type & PERF_SAMPLE_ID)
3460                 perf_output_put(handle, data->id);
3461
3462         if (sample_type & PERF_SAMPLE_STREAM_ID)
3463                 perf_output_put(handle, data->stream_id);
3464
3465         if (sample_type & PERF_SAMPLE_CPU)
3466                 perf_output_put(handle, data->cpu_entry);
3467 }
3468
3469 static void perf_event__output_id_sample(struct perf_event *event,
3470                                          struct perf_output_handle *handle,
3471                                          struct perf_sample_data *sample)
3472 {
3473         if (event->attr.sample_id_all)
3474                 __perf_event__output_id_sample(handle, sample);
3475 }
3476
3477 int perf_output_begin(struct perf_output_handle *handle,
3478                       struct perf_event *event, unsigned int size,
3479                       int nmi, int sample)
3480 {
3481         struct perf_buffer *buffer;
3482         unsigned long tail, offset, head;
3483         int have_lost;
3484         struct perf_sample_data sample_data;
3485         struct {
3486                 struct perf_event_header header;
3487                 u64                      id;
3488                 u64                      lost;
3489         } lost_event;
3490
3491         rcu_read_lock();
3492         /*
3493          * For inherited events we send all the output towards the parent.
3494          */
3495         if (event->parent)
3496                 event = event->parent;
3497
3498         buffer = rcu_dereference(event->buffer);
3499         if (!buffer)
3500                 goto out;
3501
3502         handle->buffer  = buffer;
3503         handle->event   = event;
3504         handle->nmi     = nmi;
3505         handle->sample  = sample;
3506
3507         if (!buffer->nr_pages)
3508                 goto out;
3509
3510         have_lost = local_read(&buffer->lost);
3511         if (have_lost) {
3512                 lost_event.header.size = sizeof(lost_event);
3513                 perf_event_header__init_id(&lost_event.header, &sample_data,
3514                                            event);
3515                 size += lost_event.header.size;
3516         }
3517
3518         perf_output_get_handle(handle);
3519
3520         do {
3521                 /*
3522                  * Userspace could choose to issue a mb() before updating the
3523                  * tail pointer. So that all reads will be completed before the
3524                  * write is issued.
3525                  */
3526                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3527                 smp_rmb();
3528                 offset = head = local_read(&buffer->head);
3529                 head += size;
3530                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3531                         goto fail;
3532         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3533
3534         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3535                 local_add(buffer->watermark, &buffer->wakeup);
3536
3537         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3538         handle->page &= buffer->nr_pages - 1;
3539         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3540         handle->addr = buffer->data_pages[handle->page];
3541         handle->addr += handle->size;
3542         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3543
3544         if (have_lost) {
3545                 lost_event.header.type = PERF_RECORD_LOST;
3546                 lost_event.header.misc = 0;
3547                 lost_event.id          = event->id;
3548                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3549
3550                 perf_output_put(handle, lost_event);
3551                 perf_event__output_id_sample(event, handle, &sample_data);
3552         }
3553
3554         return 0;
3555
3556 fail:
3557         local_inc(&buffer->lost);
3558         perf_output_put_handle(handle);
3559 out:
3560         rcu_read_unlock();
3561
3562         return -ENOSPC;
3563 }
3564
3565 void perf_output_end(struct perf_output_handle *handle)
3566 {
3567         struct perf_event *event = handle->event;
3568         struct perf_buffer *buffer = handle->buffer;
3569
3570         int wakeup_events = event->attr.wakeup_events;
3571
3572         if (handle->sample && wakeup_events) {
3573                 int events = local_inc_return(&buffer->events);
3574                 if (events >= wakeup_events) {
3575                         local_sub(wakeup_events, &buffer->events);
3576                         local_inc(&buffer->wakeup);
3577                 }
3578         }
3579
3580         perf_output_put_handle(handle);
3581         rcu_read_unlock();
3582 }
3583
3584 static void perf_output_read_one(struct perf_output_handle *handle,
3585                                  struct perf_event *event,
3586                                  u64 enabled, u64 running)
3587 {
3588         u64 read_format = event->attr.read_format;
3589         u64 values[4];
3590         int n = 0;
3591
3592         values[n++] = perf_event_count(event);
3593         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3594                 values[n++] = enabled +
3595                         atomic64_read(&event->child_total_time_enabled);
3596         }
3597         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3598                 values[n++] = running +
3599                         atomic64_read(&event->child_total_time_running);
3600         }
3601         if (read_format & PERF_FORMAT_ID)
3602                 values[n++] = primary_event_id(event);
3603
3604         perf_output_copy(handle, values, n * sizeof(u64));
3605 }
3606
3607 /*
3608  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3609  */
3610 static void perf_output_read_group(struct perf_output_handle *handle,
3611                             struct perf_event *event,
3612                             u64 enabled, u64 running)
3613 {
3614         struct perf_event *leader = event->group_leader, *sub;
3615         u64 read_format = event->attr.read_format;
3616         u64 values[5];
3617         int n = 0;
3618
3619         values[n++] = 1 + leader->nr_siblings;
3620
3621         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3622                 values[n++] = enabled;
3623
3624         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3625                 values[n++] = running;
3626
3627         if (leader != event)
3628                 leader->pmu->read(leader);
3629
3630         values[n++] = perf_event_count(leader);
3631         if (read_format & PERF_FORMAT_ID)
3632                 values[n++] = primary_event_id(leader);
3633
3634         perf_output_copy(handle, values, n * sizeof(u64));
3635
3636         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3637                 n = 0;
3638
3639                 if (sub != event)
3640                         sub->pmu->read(sub);
3641
3642                 values[n++] = perf_event_count(sub);
3643                 if (read_format & PERF_FORMAT_ID)
3644                         values[n++] = primary_event_id(sub);
3645
3646                 perf_output_copy(handle, values, n * sizeof(u64));
3647         }
3648 }
3649
3650 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3651                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
3652
3653 static void perf_output_read(struct perf_output_handle *handle,
3654                              struct perf_event *event)
3655 {
3656         u64 enabled = 0, running = 0, now, ctx_time;
3657         u64 read_format = event->attr.read_format;
3658
3659         /*
3660          * compute total_time_enabled, total_time_running
3661          * based on snapshot values taken when the event
3662          * was last scheduled in.
3663          *
3664          * we cannot simply called update_context_time()
3665          * because of locking issue as we are called in
3666          * NMI context
3667          */
3668         if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3669                 now = perf_clock();
3670                 ctx_time = event->shadow_ctx_time + now;
3671                 enabled = ctx_time - event->tstamp_enabled;
3672                 running = ctx_time - event->tstamp_running;
3673         }
3674
3675         if (event->attr.read_format & PERF_FORMAT_GROUP)
3676                 perf_output_read_group(handle, event, enabled, running);
3677         else
3678                 perf_output_read_one(handle, event, enabled, running);
3679 }
3680
3681 void perf_output_sample(struct perf_output_handle *handle,
3682                         struct perf_event_header *header,
3683                         struct perf_sample_data *data,
3684                         struct perf_event *event)
3685 {
3686         u64 sample_type = data->type;
3687
3688         perf_output_put(handle, *header);
3689
3690         if (sample_type & PERF_SAMPLE_IP)
3691                 perf_output_put(handle, data->ip);
3692
3693         if (sample_type & PERF_SAMPLE_TID)
3694                 perf_output_put(handle, data->tid_entry);
3695
3696         if (sample_type & PERF_SAMPLE_TIME)
3697                 perf_output_put(handle, data->time);
3698
3699         if (sample_type & PERF_SAMPLE_ADDR)
3700                 perf_output_put(handle, data->addr);
3701
3702         if (sample_type & PERF_SAMPLE_ID)
3703                 perf_output_put(handle, data->id);
3704
3705         if (sample_type & PERF_SAMPLE_STREAM_ID)
3706                 perf_output_put(handle, data->stream_id);
3707
3708         if (sample_type & PERF_SAMPLE_CPU)
3709                 perf_output_put(handle, data->cpu_entry);
3710
3711         if (sample_type & PERF_SAMPLE_PERIOD)
3712                 perf_output_put(handle, data->period);
3713
3714         if (sample_type & PERF_SAMPLE_READ)
3715                 perf_output_read(handle, event);
3716
3717         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3718                 if (data->callchain) {
3719                         int size = 1;
3720
3721                         if (data->callchain)
3722                                 size += data->callchain->nr;
3723
3724                         size *= sizeof(u64);
3725
3726                         perf_output_copy(handle, data->callchain, size);
3727                 } else {
3728                         u64 nr = 0;
3729                         perf_output_put(handle, nr);
3730                 }
3731         }
3732
3733         if (sample_type & PERF_SAMPLE_RAW) {
3734                 if (data->raw) {
3735                         perf_output_put(handle, data->raw->size);
3736                         perf_output_copy(handle, data->raw->data,
3737                                          data->raw->size);
3738                 } else {
3739                         struct {
3740                                 u32     size;
3741                                 u32     data;
3742                         } raw = {
3743                                 .size = sizeof(u32),
3744                                 .data = 0,
3745                         };
3746                         perf_output_put(handle, raw);
3747                 }
3748         }
3749 }
3750
3751 void perf_prepare_sample(struct perf_event_header *header,
3752                          struct perf_sample_data *data,
3753                          struct perf_event *event,
3754                          struct pt_regs *regs)
3755 {
3756         u64 sample_type = event->attr.sample_type;
3757
3758         header->type = PERF_RECORD_SAMPLE;
3759         header->size = sizeof(*header) + event->header_size;
3760
3761         header->misc = 0;
3762         header->misc |= perf_misc_flags(regs);
3763
3764         __perf_event_header__init_id(header, data, event);
3765
3766         if (sample_type & PERF_SAMPLE_IP)
3767                 data->ip = perf_instruction_pointer(regs);
3768
3769         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3770                 int size = 1;
3771
3772                 data->callchain = perf_callchain(regs);
3773
3774                 if (data->callchain)
3775                         size += data->callchain->nr;
3776
3777                 header->size += size * sizeof(u64);
3778         }
3779
3780         if (sample_type & PERF_SAMPLE_RAW) {
3781                 int size = sizeof(u32);
3782
3783                 if (data->raw)
3784                         size += data->raw->size;
3785                 else
3786                         size += sizeof(u32);
3787
3788                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3789                 header->size += size;
3790         }
3791 }
3792
3793 static void perf_event_output(struct perf_event *event, int nmi,
3794                                 struct perf_sample_data *data,
3795                                 struct pt_regs *regs)
3796 {
3797         struct perf_output_handle handle;
3798         struct perf_event_header header;
3799
3800         /* protect the callchain buffers */
3801         rcu_read_lock();
3802
3803         perf_prepare_sample(&header, data, event, regs);
3804
3805         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3806                 goto exit;
3807
3808         perf_output_sample(&handle, &header, data, event);
3809
3810         perf_output_end(&handle);
3811
3812 exit:
3813         rcu_read_unlock();
3814 }
3815
3816 /*
3817  * read event_id
3818  */
3819
3820 struct perf_read_event {
3821         struct perf_event_header        header;
3822
3823         u32                             pid;
3824         u32                             tid;
3825 };
3826
3827 static void
3828 perf_event_read_event(struct perf_event *event,
3829                         struct task_struct *task)
3830 {
3831         struct perf_output_handle handle;
3832         struct perf_sample_data sample;
3833         struct perf_read_event read_event = {
3834                 .header = {
3835                         .type = PERF_RECORD_READ,
3836                         .misc = 0,
3837                         .size = sizeof(read_event) + event->read_size,
3838                 },
3839                 .pid = perf_event_pid(event, task),
3840                 .tid = perf_event_tid(event, task),
3841         };
3842         int ret;
3843
3844         perf_event_header__init_id(&read_event.header, &sample, event);
3845         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3846         if (ret)
3847                 return;
3848
3849         perf_output_put(&handle, read_event);
3850         perf_output_read(&handle, event);
3851         perf_event__output_id_sample(event, &handle, &sample);
3852
3853         perf_output_end(&handle);
3854 }
3855
3856 /*
3857  * task tracking -- fork/exit
3858  *
3859  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3860  */
3861
3862 struct perf_task_event {
3863         struct task_struct              *task;
3864         struct perf_event_context       *task_ctx;
3865
3866         struct {
3867                 struct perf_event_header        header;
3868
3869                 u32                             pid;
3870                 u32                             ppid;
3871                 u32                             tid;
3872                 u32                             ptid;
3873                 u64                             time;
3874         } event_id;
3875 };
3876
3877 static void perf_event_task_output(struct perf_event *event,
3878                                      struct perf_task_event *task_event)
3879 {
3880         struct perf_output_handle handle;
3881         struct perf_sample_data sample;
3882         struct task_struct *task = task_event->task;
3883         int ret, size = task_event->event_id.header.size;
3884
3885         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
3886
3887         ret = perf_output_begin(&handle, event,
3888                                 task_event->event_id.header.size, 0, 0);
3889         if (ret)
3890                 goto out;
3891
3892         task_event->event_id.pid = perf_event_pid(event, task);
3893         task_event->event_id.ppid = perf_event_pid(event, current);
3894
3895         task_event->event_id.tid = perf_event_tid(event, task);
3896         task_event->event_id.ptid = perf_event_tid(event, current);
3897
3898         perf_output_put(&handle, task_event->event_id);
3899
3900         perf_event__output_id_sample(event, &handle, &sample);
3901
3902         perf_output_end(&handle);
3903 out:
3904         task_event->event_id.header.size = size;
3905 }
3906
3907 static int perf_event_task_match(struct perf_event *event)
3908 {
3909         if (event->state < PERF_EVENT_STATE_INACTIVE)
3910                 return 0;
3911
3912         if (!event_filter_match(event))
3913                 return 0;
3914
3915         if (event->attr.comm || event->attr.mmap ||
3916             event->attr.mmap_data || event->attr.task)
3917                 return 1;
3918
3919         return 0;
3920 }
3921
3922 static void perf_event_task_ctx(struct perf_event_context *ctx,
3923                                   struct perf_task_event *task_event)
3924 {
3925         struct perf_event *event;
3926
3927         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3928                 if (perf_event_task_match(event))
3929                         perf_event_task_output(event, task_event);
3930         }
3931 }
3932
3933 static void perf_event_task_event(struct perf_task_event *task_event)
3934 {
3935         struct perf_cpu_context *cpuctx;
3936         struct perf_event_context *ctx;
3937         struct pmu *pmu;
3938         int ctxn;
3939
3940         rcu_read_lock();
3941         list_for_each_entry_rcu(pmu, &pmus, entry) {
3942                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3943                 if (cpuctx->active_pmu != pmu)
3944                         goto next;
3945                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3946
3947                 ctx = task_event->task_ctx;
3948                 if (!ctx) {
3949                         ctxn = pmu->task_ctx_nr;
3950                         if (ctxn < 0)
3951                                 goto next;
3952                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3953                 }
3954                 if (ctx)
3955                         perf_event_task_ctx(ctx, task_event);
3956 next:
3957                 put_cpu_ptr(pmu->pmu_cpu_context);
3958         }
3959         rcu_read_unlock();
3960 }
3961
3962 static void perf_event_task(struct task_struct *task,
3963                               struct perf_event_context *task_ctx,
3964                               int new)
3965 {
3966         struct perf_task_event task_event;
3967
3968         if (!atomic_read(&nr_comm_events) &&
3969             !atomic_read(&nr_mmap_events) &&
3970             !atomic_read(&nr_task_events))
3971                 return;
3972
3973         task_event = (struct perf_task_event){
3974                 .task     = task,
3975                 .task_ctx = task_ctx,
3976                 .event_id    = {
3977                         .header = {
3978                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3979                                 .misc = 0,
3980                                 .size = sizeof(task_event.event_id),
3981                         },
3982                         /* .pid  */
3983                         /* .ppid */
3984                         /* .tid  */
3985                         /* .ptid */
3986                         .time = perf_clock(),
3987                 },
3988         };
3989
3990         perf_event_task_event(&task_event);
3991 }
3992
3993 void perf_event_fork(struct task_struct *task)
3994 {
3995         perf_event_task(task, NULL, 1);
3996 }
3997
3998 /*
3999  * comm tracking
4000  */
4001
4002 struct perf_comm_event {
4003         struct task_struct      *task;
4004         char                    *comm;
4005         int                     comm_size;
4006
4007         struct {
4008                 struct perf_event_header        header;
4009
4010                 u32                             pid;
4011                 u32                             tid;
4012         } event_id;
4013 };
4014
4015 static void perf_event_comm_output(struct perf_event *event,
4016                                      struct perf_comm_event *comm_event)
4017 {
4018         struct perf_output_handle handle;
4019         struct perf_sample_data sample;
4020         int size = comm_event->event_id.header.size;
4021         int ret;
4022
4023         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4024         ret = perf_output_begin(&handle, event,
4025                                 comm_event->event_id.header.size, 0, 0);
4026
4027         if (ret)
4028                 goto out;
4029
4030         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4031         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4032
4033         perf_output_put(&handle, comm_event->event_id);
4034         perf_output_copy(&handle, comm_event->comm,
4035                                    comm_event->comm_size);
4036
4037         perf_event__output_id_sample(event, &handle, &sample);
4038
4039         perf_output_end(&handle);
4040 out:
4041         comm_event->event_id.header.size = size;
4042 }
4043
4044 static int perf_event_comm_match(struct perf_event *event)
4045 {
4046         if (event->state < PERF_EVENT_STATE_INACTIVE)
4047                 return 0;
4048
4049         if (!event_filter_match(event))
4050                 return 0;
4051
4052         if (event->attr.comm)
4053                 return 1;
4054
4055         return 0;
4056 }
4057
4058 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4059                                   struct perf_comm_event *comm_event)
4060 {
4061         struct perf_event *event;
4062
4063         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4064                 if (perf_event_comm_match(event))
4065                         perf_event_comm_output(event, comm_event);
4066         }
4067 }
4068
4069 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4070 {
4071         struct perf_cpu_context *cpuctx;
4072         struct perf_event_context *ctx;
4073         char comm[TASK_COMM_LEN];
4074         unsigned int size;
4075         struct pmu *pmu;
4076         int ctxn;
4077
4078         memset(comm, 0, sizeof(comm));
4079         strlcpy(comm, comm_event->task->comm, sizeof(comm));
4080         size = ALIGN(strlen(comm)+1, sizeof(u64));
4081
4082         comm_event->comm = comm;
4083         comm_event->comm_size = size;
4084
4085         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4086         rcu_read_lock();
4087         list_for_each_entry_rcu(pmu, &pmus, entry) {
4088                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4089                 if (cpuctx->active_pmu != pmu)
4090                         goto next;
4091                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4092
4093                 ctxn = pmu->task_ctx_nr;
4094                 if (ctxn < 0)
4095                         goto next;
4096
4097                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4098                 if (ctx)
4099                         perf_event_comm_ctx(ctx, comm_event);
4100 next:
4101                 put_cpu_ptr(pmu->pmu_cpu_context);
4102         }
4103         rcu_read_unlock();
4104 }
4105
4106 void perf_event_comm(struct task_struct *task)
4107 {
4108         struct perf_comm_event comm_event;
4109         struct perf_event_context *ctx;
4110         int ctxn;
4111
4112         for_each_task_context_nr(ctxn) {
4113                 ctx = task->perf_event_ctxp[ctxn];
4114                 if (!ctx)
4115                         continue;
4116
4117                 perf_event_enable_on_exec(ctx);
4118         }
4119
4120         if (!atomic_read(&nr_comm_events))
4121                 return;
4122
4123         comm_event = (struct perf_comm_event){
4124                 .task   = task,
4125                 /* .comm      */
4126                 /* .comm_size */
4127                 .event_id  = {
4128                         .header = {
4129                                 .type = PERF_RECORD_COMM,
4130                                 .misc = 0,
4131                                 /* .size */
4132                         },
4133                         /* .pid */
4134                         /* .tid */
4135                 },
4136         };
4137
4138         perf_event_comm_event(&comm_event);
4139 }
4140
4141 /*
4142  * mmap tracking
4143  */
4144
4145 struct perf_mmap_event {
4146         struct vm_area_struct   *vma;
4147
4148         const char              *file_name;
4149         int                     file_size;
4150
4151         struct {
4152                 struct perf_event_header        header;
4153
4154                 u32                             pid;
4155                 u32                             tid;
4156                 u64                             start;
4157                 u64                             len;
4158                 u64                             pgoff;
4159         } event_id;
4160 };
4161
4162 static void perf_event_mmap_output(struct perf_event *event,
4163                                      struct perf_mmap_event *mmap_event)
4164 {
4165         struct perf_output_handle handle;
4166         struct perf_sample_data sample;
4167         int size = mmap_event->event_id.header.size;
4168         int ret;
4169
4170         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4171         ret = perf_output_begin(&handle, event,
4172                                 mmap_event->event_id.header.size, 0, 0);
4173         if (ret)
4174                 goto out;
4175
4176         mmap_event->event_id.pid = perf_event_pid(event, current);
4177         mmap_event->event_id.tid = perf_event_tid(event, current);
4178
4179         perf_output_put(&handle, mmap_event->event_id);
4180         perf_output_copy(&handle, mmap_event->file_name,
4181                                    mmap_event->file_size);
4182
4183         perf_event__output_id_sample(event, &handle, &sample);
4184
4185         perf_output_end(&handle);
4186 out:
4187         mmap_event->event_id.header.size = size;
4188 }
4189
4190 static int perf_event_mmap_match(struct perf_event *event,
4191                                    struct perf_mmap_event *mmap_event,
4192                                    int executable)
4193 {
4194         if (event->state < PERF_EVENT_STATE_INACTIVE)
4195                 return 0;
4196
4197         if (!event_filter_match(event))
4198                 return 0;
4199
4200         if ((!executable && event->attr.mmap_data) ||
4201             (executable && event->attr.mmap))
4202                 return 1;
4203
4204         return 0;
4205 }
4206
4207 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4208                                   struct perf_mmap_event *mmap_event,
4209                                   int executable)
4210 {
4211         struct perf_event *event;
4212
4213         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4214                 if (perf_event_mmap_match(event, mmap_event, executable))
4215                         perf_event_mmap_output(event, mmap_event);
4216         }
4217 }
4218
4219 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4220 {
4221         struct perf_cpu_context *cpuctx;
4222         struct perf_event_context *ctx;
4223         struct vm_area_struct *vma = mmap_event->vma;
4224         struct file *file = vma->vm_file;
4225         unsigned int size;
4226         char tmp[16];
4227         char *buf = NULL;
4228         const char *name;
4229         struct pmu *pmu;
4230         int ctxn;
4231
4232         memset(tmp, 0, sizeof(tmp));
4233
4234         if (file) {
4235                 /*
4236                  * d_path works from the end of the buffer backwards, so we
4237                  * need to add enough zero bytes after the string to handle
4238                  * the 64bit alignment we do later.
4239                  */
4240                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4241                 if (!buf) {
4242                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4243                         goto got_name;
4244                 }
4245                 name = d_path(&file->f_path, buf, PATH_MAX);
4246                 if (IS_ERR(name)) {
4247                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4248                         goto got_name;
4249                 }
4250         } else {
4251                 if (arch_vma_name(mmap_event->vma)) {
4252                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4253                                        sizeof(tmp));
4254                         goto got_name;
4255                 }
4256
4257                 if (!vma->vm_mm) {
4258                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4259                         goto got_name;
4260                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4261                                 vma->vm_end >= vma->vm_mm->brk) {
4262                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4263                         goto got_name;
4264                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4265                                 vma->vm_end >= vma->vm_mm->start_stack) {
4266                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4267                         goto got_name;
4268                 }
4269
4270                 name = strncpy(tmp, "//anon", sizeof(tmp));
4271                 goto got_name;
4272         }
4273
4274 got_name:
4275         size = ALIGN(strlen(name)+1, sizeof(u64));
4276
4277         mmap_event->file_name = name;
4278         mmap_event->file_size = size;
4279
4280         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4281
4282         rcu_read_lock();
4283         list_for_each_entry_rcu(pmu, &pmus, entry) {
4284                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4285                 if (cpuctx->active_pmu != pmu)
4286                         goto next;
4287                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4288                                         vma->vm_flags & VM_EXEC);
4289
4290                 ctxn = pmu->task_ctx_nr;
4291                 if (ctxn < 0)
4292                         goto next;
4293
4294                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4295                 if (ctx) {
4296                         perf_event_mmap_ctx(ctx, mmap_event,
4297                                         vma->vm_flags & VM_EXEC);
4298                 }
4299 next:
4300                 put_cpu_ptr(pmu->pmu_cpu_context);
4301         }
4302         rcu_read_unlock();
4303
4304         kfree(buf);
4305 }
4306
4307 void perf_event_mmap(struct vm_area_struct *vma)
4308 {
4309         struct perf_mmap_event mmap_event;
4310
4311         if (!atomic_read(&nr_mmap_events))
4312                 return;
4313
4314         mmap_event = (struct perf_mmap_event){
4315                 .vma    = vma,
4316                 /* .file_name */
4317                 /* .file_size */
4318                 .event_id  = {
4319                         .header = {
4320                                 .type = PERF_RECORD_MMAP,
4321                                 .misc = PERF_RECORD_MISC_USER,
4322                                 /* .size */
4323                         },
4324                         /* .pid */
4325                         /* .tid */
4326                         .start  = vma->vm_start,
4327                         .len    = vma->vm_end - vma->vm_start,
4328                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4329                 },
4330         };
4331
4332         perf_event_mmap_event(&mmap_event);
4333 }
4334
4335 /*
4336  * IRQ throttle logging
4337  */
4338
4339 static void perf_log_throttle(struct perf_event *event, int enable)
4340 {
4341         struct perf_output_handle handle;
4342         struct perf_sample_data sample;
4343         int ret;
4344
4345         struct {
4346                 struct perf_event_header        header;
4347                 u64                             time;
4348                 u64                             id;
4349                 u64                             stream_id;
4350         } throttle_event = {
4351                 .header = {
4352                         .type = PERF_RECORD_THROTTLE,
4353                         .misc = 0,
4354                         .size = sizeof(throttle_event),
4355                 },
4356                 .time           = perf_clock(),
4357                 .id             = primary_event_id(event),
4358                 .stream_id      = event->id,
4359         };
4360
4361         if (enable)
4362                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4363
4364         perf_event_header__init_id(&throttle_event.header, &sample, event);
4365
4366         ret = perf_output_begin(&handle, event,
4367                                 throttle_event.header.size, 1, 0);
4368         if (ret)
4369                 return;
4370
4371         perf_output_put(&handle, throttle_event);
4372         perf_event__output_id_sample(event, &handle, &sample);
4373         perf_output_end(&handle);
4374 }
4375
4376 /*
4377  * Generic event overflow handling, sampling.
4378  */
4379
4380 static int __perf_event_overflow(struct perf_event *event, int nmi,
4381                                    int throttle, struct perf_sample_data *data,
4382                                    struct pt_regs *regs)
4383 {
4384         int events = atomic_read(&event->event_limit);
4385         struct hw_perf_event *hwc = &event->hw;
4386         int ret = 0;
4387
4388         /*
4389          * Non-sampling counters might still use the PMI to fold short
4390          * hardware counters, ignore those.
4391          */
4392         if (unlikely(!is_sampling_event(event)))
4393                 return 0;
4394
4395         if (!throttle) {
4396                 hwc->interrupts++;
4397         } else {
4398                 if (hwc->interrupts != MAX_INTERRUPTS) {
4399                         hwc->interrupts++;
4400                         if (HZ * hwc->interrupts >
4401                                         (u64)sysctl_perf_event_sample_rate) {
4402                                 hwc->interrupts = MAX_INTERRUPTS;
4403                                 perf_log_throttle(event, 0);
4404                                 ret = 1;
4405                         }
4406                 } else {
4407                         /*
4408                          * Keep re-disabling events even though on the previous
4409                          * pass we disabled it - just in case we raced with a
4410                          * sched-in and the event got enabled again:
4411                          */
4412                         ret = 1;
4413                 }
4414         }
4415
4416         if (event->attr.freq) {
4417                 u64 now = perf_clock();
4418                 s64 delta = now - hwc->freq_time_stamp;
4419
4420                 hwc->freq_time_stamp = now;
4421
4422                 if (delta > 0 && delta < 2*TICK_NSEC)
4423                         perf_adjust_period(event, delta, hwc->last_period);
4424         }
4425
4426         /*
4427          * XXX event_limit might not quite work as expected on inherited
4428          * events
4429          */
4430
4431         event->pending_kill = POLL_IN;
4432         if (events && atomic_dec_and_test(&event->event_limit)) {
4433                 ret = 1;
4434                 event->pending_kill = POLL_HUP;
4435                 if (nmi) {
4436                         event->pending_disable = 1;
4437                         irq_work_queue(&event->pending);
4438                 } else
4439                         perf_event_disable(event);
4440         }
4441
4442         if (event->overflow_handler)
4443                 event->overflow_handler(event, nmi, data, regs);
4444         else
4445                 perf_event_output(event, nmi, data, regs);
4446
4447         return ret;
4448 }
4449
4450 int perf_event_overflow(struct perf_event *event, int nmi,
4451                           struct perf_sample_data *data,
4452                           struct pt_regs *regs)
4453 {
4454         return __perf_event_overflow(event, nmi, 1, data, regs);
4455 }
4456
4457 /*
4458  * Generic software event infrastructure
4459  */
4460
4461 struct swevent_htable {
4462         struct swevent_hlist            *swevent_hlist;
4463         struct mutex                    hlist_mutex;
4464         int                             hlist_refcount;
4465
4466         /* Recursion avoidance in each contexts */
4467         int                             recursion[PERF_NR_CONTEXTS];
4468 };
4469
4470 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4471
4472 /*
4473  * We directly increment event->count and keep a second value in
4474  * event->hw.period_left to count intervals. This period event
4475  * is kept in the range [-sample_period, 0] so that we can use the
4476  * sign as trigger.
4477  */
4478
4479 static u64 perf_swevent_set_period(struct perf_event *event)
4480 {
4481         struct hw_perf_event *hwc = &event->hw;
4482         u64 period = hwc->last_period;
4483         u64 nr, offset;
4484         s64 old, val;
4485
4486         hwc->last_period = hwc->sample_period;
4487
4488 again:
4489         old = val = local64_read(&hwc->period_left);
4490         if (val < 0)
4491                 return 0;
4492
4493         nr = div64_u64(period + val, period);
4494         offset = nr * period;
4495         val -= offset;
4496         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4497                 goto again;
4498
4499         return nr;
4500 }
4501
4502 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4503                                     int nmi, struct perf_sample_data *data,
4504                                     struct pt_regs *regs)
4505 {
4506         struct hw_perf_event *hwc = &event->hw;
4507         int throttle = 0;
4508
4509         data->period = event->hw.last_period;
4510         if (!overflow)
4511                 overflow = perf_swevent_set_period(event);
4512
4513         if (hwc->interrupts == MAX_INTERRUPTS)
4514                 return;
4515
4516         for (; overflow; overflow--) {
4517                 if (__perf_event_overflow(event, nmi, throttle,
4518                                             data, regs)) {
4519                         /*
4520                          * We inhibit the overflow from happening when
4521                          * hwc->interrupts == MAX_INTERRUPTS.
4522                          */
4523                         break;
4524                 }
4525                 throttle = 1;
4526         }
4527 }
4528
4529 static void perf_swevent_event(struct perf_event *event, u64 nr,
4530                                int nmi, struct perf_sample_data *data,
4531                                struct pt_regs *regs)
4532 {
4533         struct hw_perf_event *hwc = &event->hw;
4534
4535         local64_add(nr, &event->count);
4536
4537         if (!regs)
4538                 return;
4539
4540         if (!is_sampling_event(event))
4541                 return;
4542
4543         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4544                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4545
4546         if (local64_add_negative(nr, &hwc->period_left))
4547                 return;
4548
4549         perf_swevent_overflow(event, 0, nmi, data, regs);
4550 }
4551
4552 static int perf_exclude_event(struct perf_event *event,
4553                               struct pt_regs *regs)
4554 {
4555         if (event->hw.state & PERF_HES_STOPPED)
4556                 return 0;
4557
4558         if (regs) {
4559                 if (event->attr.exclude_user && user_mode(regs))
4560                         return 1;
4561
4562                 if (event->attr.exclude_kernel && !user_mode(regs))
4563                         return 1;
4564         }
4565
4566         return 0;
4567 }
4568
4569 static int perf_swevent_match(struct perf_event *event,
4570                                 enum perf_type_id type,
4571                                 u32 event_id,
4572                                 struct perf_sample_data *data,
4573                                 struct pt_regs *regs)
4574 {
4575         if (event->attr.type != type)
4576                 return 0;
4577
4578         if (event->attr.config != event_id)
4579                 return 0;
4580
4581         if (perf_exclude_event(event, regs))
4582                 return 0;
4583
4584         return 1;
4585 }
4586
4587 static inline u64 swevent_hash(u64 type, u32 event_id)
4588 {
4589         u64 val = event_id | (type << 32);
4590
4591         return hash_64(val, SWEVENT_HLIST_BITS);
4592 }
4593
4594 static inline struct hlist_head *
4595 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4596 {
4597         u64 hash = swevent_hash(type, event_id);
4598
4599         return &hlist->heads[hash];
4600 }
4601
4602 /* For the read side: events when they trigger */
4603 static inline struct hlist_head *
4604 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4605 {
4606         struct swevent_hlist *hlist;
4607
4608         hlist = rcu_dereference(swhash->swevent_hlist);
4609         if (!hlist)
4610                 return NULL;
4611
4612         return __find_swevent_head(hlist, type, event_id);
4613 }
4614
4615 /* For the event head insertion and removal in the hlist */
4616 static inline struct hlist_head *
4617 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4618 {
4619         struct swevent_hlist *hlist;
4620         u32 event_id = event->attr.config;
4621         u64 type = event->attr.type;
4622
4623         /*
4624          * Event scheduling is always serialized against hlist allocation
4625          * and release. Which makes the protected version suitable here.
4626          * The context lock guarantees that.
4627          */
4628         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4629                                           lockdep_is_held(&event->ctx->lock));
4630         if (!hlist)
4631                 return NULL;
4632
4633         return __find_swevent_head(hlist, type, event_id);
4634 }
4635
4636 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4637                                     u64 nr, int nmi,
4638                                     struct perf_sample_data *data,
4639                                     struct pt_regs *regs)
4640 {
4641         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4642         struct perf_event *event;
4643         struct hlist_node *node;
4644         struct hlist_head *head;
4645
4646         rcu_read_lock();
4647         head = find_swevent_head_rcu(swhash, type, event_id);
4648         if (!head)
4649                 goto end;
4650
4651         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4652                 if (perf_swevent_match(event, type, event_id, data, regs))
4653                         perf_swevent_event(event, nr, nmi, data, regs);
4654         }
4655 end:
4656         rcu_read_unlock();
4657 }
4658
4659 int perf_swevent_get_recursion_context(void)
4660 {
4661         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4662
4663         return get_recursion_context(swhash->recursion);
4664 }
4665 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4666
4667 inline void perf_swevent_put_recursion_context(int rctx)
4668 {
4669         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4670
4671         put_recursion_context(swhash->recursion, rctx);
4672 }
4673
4674 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4675                             struct pt_regs *regs, u64 addr)
4676 {
4677         struct perf_sample_data data;
4678         int rctx;
4679
4680         preempt_disable_notrace();
4681         rctx = perf_swevent_get_recursion_context();
4682         if (rctx < 0)
4683                 return;
4684
4685         perf_sample_data_init(&data, addr);
4686
4687         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4688
4689         perf_swevent_put_recursion_context(rctx);
4690         preempt_enable_notrace();
4691 }
4692
4693 static void perf_swevent_read(struct perf_event *event)
4694 {
4695 }
4696
4697 static int perf_swevent_add(struct perf_event *event, int flags)
4698 {
4699         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4700         struct hw_perf_event *hwc = &event->hw;
4701         struct hlist_head *head;
4702
4703         if (is_sampling_event(event)) {
4704                 hwc->last_period = hwc->sample_period;
4705                 perf_swevent_set_period(event);
4706         }
4707
4708         hwc->state = !(flags & PERF_EF_START);
4709
4710         head = find_swevent_head(swhash, event);
4711         if (WARN_ON_ONCE(!head))
4712                 return -EINVAL;
4713
4714         hlist_add_head_rcu(&event->hlist_entry, head);
4715
4716         return 0;
4717 }
4718
4719 static void perf_swevent_del(struct perf_event *event, int flags)
4720 {
4721         hlist_del_rcu(&event->hlist_entry);
4722 }
4723
4724 static void perf_swevent_start(struct perf_event *event, int flags)
4725 {
4726         event->hw.state = 0;
4727 }
4728
4729 static void perf_swevent_stop(struct perf_event *event, int flags)
4730 {
4731         event->hw.state = PERF_HES_STOPPED;
4732 }
4733
4734 /* Deref the hlist from the update side */
4735 static inline struct swevent_hlist *
4736 swevent_hlist_deref(struct swevent_htable *swhash)
4737 {
4738         return rcu_dereference_protected(swhash->swevent_hlist,
4739                                          lockdep_is_held(&swhash->hlist_mutex));
4740 }
4741
4742 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4743 {
4744         struct swevent_hlist *hlist;
4745
4746         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4747         kfree(hlist);
4748 }
4749
4750 static void swevent_hlist_release(struct swevent_htable *swhash)
4751 {
4752         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4753
4754         if (!hlist)
4755                 return;
4756
4757         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4758         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4759 }
4760
4761 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4762 {
4763         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4764
4765         mutex_lock(&swhash->hlist_mutex);
4766
4767         if (!--swhash->hlist_refcount)
4768                 swevent_hlist_release(swhash);
4769
4770         mutex_unlock(&swhash->hlist_mutex);
4771 }
4772
4773 static void swevent_hlist_put(struct perf_event *event)
4774 {
4775         int cpu;
4776
4777         if (event->cpu != -1) {
4778                 swevent_hlist_put_cpu(event, event->cpu);
4779                 return;
4780         }
4781
4782         for_each_possible_cpu(cpu)
4783                 swevent_hlist_put_cpu(event, cpu);
4784 }
4785
4786 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4787 {
4788         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4789         int err = 0;
4790
4791         mutex_lock(&swhash->hlist_mutex);
4792
4793         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4794                 struct swevent_hlist *hlist;
4795
4796                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4797                 if (!hlist) {
4798                         err = -ENOMEM;
4799                         goto exit;
4800                 }
4801                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4802         }
4803         swhash->hlist_refcount++;
4804 exit:
4805         mutex_unlock(&swhash->hlist_mutex);
4806
4807         return err;
4808 }
4809
4810 static int swevent_hlist_get(struct perf_event *event)
4811 {
4812         int err;
4813         int cpu, failed_cpu;
4814
4815         if (event->cpu != -1)
4816                 return swevent_hlist_get_cpu(event, event->cpu);
4817
4818         get_online_cpus();
4819         for_each_possible_cpu(cpu) {
4820                 err = swevent_hlist_get_cpu(event, cpu);
4821                 if (err) {
4822                         failed_cpu = cpu;
4823                         goto fail;
4824                 }
4825         }
4826         put_online_cpus();
4827
4828         return 0;
4829 fail:
4830         for_each_possible_cpu(cpu) {
4831                 if (cpu == failed_cpu)
4832                         break;
4833                 swevent_hlist_put_cpu(event, cpu);
4834         }
4835
4836         put_online_cpus();
4837         return err;
4838 }
4839
4840 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4841
4842 static void sw_perf_event_destroy(struct perf_event *event)
4843 {
4844         u64 event_id = event->attr.config;
4845
4846         WARN_ON(event->parent);
4847
4848         jump_label_dec(&perf_swevent_enabled[event_id]);
4849         swevent_hlist_put(event);
4850 }
4851
4852 static int perf_swevent_init(struct perf_event *event)
4853 {
4854         int event_id = event->attr.config;
4855
4856         if (event->attr.type != PERF_TYPE_SOFTWARE)
4857                 return -ENOENT;
4858
4859         switch (event_id) {
4860         case PERF_COUNT_SW_CPU_CLOCK:
4861         case PERF_COUNT_SW_TASK_CLOCK:
4862                 return -ENOENT;
4863
4864         default:
4865                 break;
4866         }
4867
4868         if (event_id >= PERF_COUNT_SW_MAX)
4869                 return -ENOENT;
4870
4871         if (!event->parent) {
4872                 int err;
4873
4874                 err = swevent_hlist_get(event);
4875                 if (err)
4876                         return err;
4877
4878                 jump_label_inc(&perf_swevent_enabled[event_id]);
4879                 event->destroy = sw_perf_event_destroy;
4880         }
4881
4882         return 0;
4883 }
4884
4885 static struct pmu perf_swevent = {
4886         .task_ctx_nr    = perf_sw_context,
4887
4888         .event_init     = perf_swevent_init,
4889         .add            = perf_swevent_add,
4890         .del            = perf_swevent_del,
4891         .start          = perf_swevent_start,
4892         .stop           = perf_swevent_stop,
4893         .read           = perf_swevent_read,
4894 };
4895
4896 #ifdef CONFIG_EVENT_TRACING
4897
4898 static int perf_tp_filter_match(struct perf_event *event,
4899                                 struct perf_sample_data *data)
4900 {
4901         void *record = data->raw->data;
4902
4903         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4904                 return 1;
4905         return 0;
4906 }
4907
4908 static int perf_tp_event_match(struct perf_event *event,
4909                                 struct perf_sample_data *data,
4910                                 struct pt_regs *regs)
4911 {
4912         /*
4913          * All tracepoints are from kernel-space.
4914          */
4915         if (event->attr.exclude_kernel)
4916                 return 0;
4917
4918         if (!perf_tp_filter_match(event, data))
4919                 return 0;
4920
4921         return 1;
4922 }
4923
4924 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4925                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4926 {
4927         struct perf_sample_data data;
4928         struct perf_event *event;
4929         struct hlist_node *node;
4930
4931         struct perf_raw_record raw = {
4932                 .size = entry_size,
4933                 .data = record,
4934         };
4935
4936         perf_sample_data_init(&data, addr);
4937         data.raw = &raw;
4938
4939         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4940                 if (perf_tp_event_match(event, &data, regs))
4941                         perf_swevent_event(event, count, 1, &data, regs);
4942         }
4943
4944         perf_swevent_put_recursion_context(rctx);
4945 }
4946 EXPORT_SYMBOL_GPL(perf_tp_event);
4947
4948 static void tp_perf_event_destroy(struct perf_event *event)
4949 {
4950         perf_trace_destroy(event);
4951 }
4952
4953 static int perf_tp_event_init(struct perf_event *event)
4954 {
4955         int err;
4956
4957         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4958                 return -ENOENT;
4959
4960         err = perf_trace_init(event);
4961         if (err)
4962                 return err;
4963
4964         event->destroy = tp_perf_event_destroy;
4965
4966         return 0;
4967 }
4968
4969 static struct pmu perf_tracepoint = {
4970         .task_ctx_nr    = perf_sw_context,
4971
4972         .event_init     = perf_tp_event_init,
4973         .add            = perf_trace_add,
4974         .del            = perf_trace_del,
4975         .start          = perf_swevent_start,
4976         .stop           = perf_swevent_stop,
4977         .read           = perf_swevent_read,
4978 };
4979
4980 static inline void perf_tp_register(void)
4981 {
4982         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
4983 }
4984
4985 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4986 {
4987         char *filter_str;
4988         int ret;
4989
4990         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4991                 return -EINVAL;
4992
4993         filter_str = strndup_user(arg, PAGE_SIZE);
4994         if (IS_ERR(filter_str))
4995                 return PTR_ERR(filter_str);
4996
4997         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4998
4999         kfree(filter_str);
5000         return ret;
5001 }
5002
5003 static void perf_event_free_filter(struct perf_event *event)
5004 {
5005         ftrace_profile_free_filter(event);
5006 }
5007
5008 #else
5009
5010 static inline void perf_tp_register(void)
5011 {
5012 }
5013
5014 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5015 {
5016         return -ENOENT;
5017 }
5018
5019 static void perf_event_free_filter(struct perf_event *event)
5020 {
5021 }
5022
5023 #endif /* CONFIG_EVENT_TRACING */
5024
5025 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5026 void perf_bp_event(struct perf_event *bp, void *data)
5027 {
5028         struct perf_sample_data sample;
5029         struct pt_regs *regs = data;
5030
5031         perf_sample_data_init(&sample, bp->attr.bp_addr);
5032
5033         if (!bp->hw.state && !perf_exclude_event(bp, regs))
5034                 perf_swevent_event(bp, 1, 1, &sample, regs);
5035 }
5036 #endif
5037
5038 /*
5039  * hrtimer based swevent callback
5040  */
5041
5042 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5043 {
5044         enum hrtimer_restart ret = HRTIMER_RESTART;
5045         struct perf_sample_data data;
5046         struct pt_regs *regs;
5047         struct perf_event *event;
5048         u64 period;
5049
5050         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5051         event->pmu->read(event);
5052
5053         perf_sample_data_init(&data, 0);
5054         data.period = event->hw.last_period;
5055         regs = get_irq_regs();
5056
5057         if (regs && !perf_exclude_event(event, regs)) {
5058                 if (!(event->attr.exclude_idle && current->pid == 0))
5059                         if (perf_event_overflow(event, 0, &data, regs))
5060                                 ret = HRTIMER_NORESTART;
5061         }
5062
5063         period = max_t(u64, 10000, event->hw.sample_period);
5064         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5065
5066         return ret;
5067 }
5068
5069 static void perf_swevent_start_hrtimer(struct perf_event *event)
5070 {
5071         struct hw_perf_event *hwc = &event->hw;
5072         s64 period;
5073
5074         if (!is_sampling_event(event))
5075                 return;
5076
5077         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5078         hwc->hrtimer.function = perf_swevent_hrtimer;
5079
5080         period = local64_read(&hwc->period_left);
5081         if (period) {
5082                 if (period < 0)
5083                         period = 10000;
5084
5085                 local64_set(&hwc->period_left, 0);
5086         } else {
5087                 period = max_t(u64, 10000, hwc->sample_period);
5088         }
5089         __hrtimer_start_range_ns(&hwc->hrtimer,
5090                                 ns_to_ktime(period), 0,
5091                                 HRTIMER_MODE_REL_PINNED, 0);
5092 }
5093
5094 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5095 {
5096         struct hw_perf_event *hwc = &event->hw;
5097
5098         if (is_sampling_event(event)) {
5099                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5100                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5101
5102                 hrtimer_cancel(&hwc->hrtimer);
5103         }
5104 }
5105
5106 /*
5107  * Software event: cpu wall time clock
5108  */
5109
5110 static void cpu_clock_event_update(struct perf_event *event)
5111 {
5112         s64 prev;
5113         u64 now;
5114
5115         now = local_clock();
5116         prev = local64_xchg(&event->hw.prev_count, now);
5117         local64_add(now - prev, &event->count);
5118 }
5119
5120 static void cpu_clock_event_start(struct perf_event *event, int flags)
5121 {
5122         local64_set(&event->hw.prev_count, local_clock());
5123         perf_swevent_start_hrtimer(event);
5124 }
5125
5126 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5127 {
5128         perf_swevent_cancel_hrtimer(event);
5129         cpu_clock_event_update(event);
5130 }
5131
5132 static int cpu_clock_event_add(struct perf_event *event, int flags)
5133 {
5134         if (flags & PERF_EF_START)
5135                 cpu_clock_event_start(event, flags);
5136
5137         return 0;
5138 }
5139
5140 static void cpu_clock_event_del(struct perf_event *event, int flags)
5141 {
5142         cpu_clock_event_stop(event, flags);
5143 }
5144
5145 static void cpu_clock_event_read(struct perf_event *event)
5146 {
5147         cpu_clock_event_update(event);
5148 }
5149
5150 static int cpu_clock_event_init(struct perf_event *event)
5151 {
5152         if (event->attr.type != PERF_TYPE_SOFTWARE)
5153                 return -ENOENT;
5154
5155         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5156                 return -ENOENT;
5157
5158         return 0;
5159 }
5160
5161 static struct pmu perf_cpu_clock = {
5162         .task_ctx_nr    = perf_sw_context,
5163
5164         .event_init     = cpu_clock_event_init,
5165         .add            = cpu_clock_event_add,
5166         .del            = cpu_clock_event_del,
5167         .start          = cpu_clock_event_start,
5168         .stop           = cpu_clock_event_stop,
5169         .read           = cpu_clock_event_read,
5170 };
5171
5172 /*
5173  * Software event: task time clock
5174  */
5175
5176 static void task_clock_event_update(struct perf_event *event, u64 now)
5177 {
5178         u64 prev;
5179         s64 delta;
5180
5181         prev = local64_xchg(&event->hw.prev_count, now);
5182         delta = now - prev;
5183         local64_add(delta, &event->count);
5184 }
5185
5186 static void task_clock_event_start(struct perf_event *event, int flags)
5187 {
5188         local64_set(&event->hw.prev_count, event->ctx->time);
5189         perf_swevent_start_hrtimer(event);
5190 }
5191
5192 static void task_clock_event_stop(struct perf_event *event, int flags)
5193 {
5194         perf_swevent_cancel_hrtimer(event);
5195         task_clock_event_update(event, event->ctx->time);
5196 }
5197
5198 static int task_clock_event_add(struct perf_event *event, int flags)
5199 {
5200         if (flags & PERF_EF_START)
5201                 task_clock_event_start(event, flags);
5202
5203         return 0;
5204 }
5205
5206 static void task_clock_event_del(struct perf_event *event, int flags)
5207 {
5208         task_clock_event_stop(event, PERF_EF_UPDATE);
5209 }
5210
5211 static void task_clock_event_read(struct perf_event *event)
5212 {
5213         u64 time;
5214
5215         if (!in_nmi()) {
5216                 update_context_time(event->ctx);
5217                 time = event->ctx->time;
5218         } else {
5219                 u64 now = perf_clock();
5220                 u64 delta = now - event->ctx->timestamp;
5221                 time = event->ctx->time + delta;
5222         }
5223
5224         task_clock_event_update(event, time);
5225 }
5226
5227 static int task_clock_event_init(struct perf_event *event)
5228 {
5229         if (event->attr.type != PERF_TYPE_SOFTWARE)
5230                 return -ENOENT;
5231
5232         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5233                 return -ENOENT;
5234
5235         return 0;
5236 }
5237
5238 static struct pmu perf_task_clock = {
5239         .task_ctx_nr    = perf_sw_context,
5240
5241         .event_init     = task_clock_event_init,
5242         .add            = task_clock_event_add,
5243         .del            = task_clock_event_del,
5244         .start          = task_clock_event_start,
5245         .stop           = task_clock_event_stop,
5246         .read           = task_clock_event_read,
5247 };
5248
5249 static void perf_pmu_nop_void(struct pmu *pmu)
5250 {
5251 }
5252
5253 static int perf_pmu_nop_int(struct pmu *pmu)
5254 {
5255         return 0;
5256 }
5257
5258 static void perf_pmu_start_txn(struct pmu *pmu)
5259 {
5260         perf_pmu_disable(pmu);
5261 }
5262
5263 static int perf_pmu_commit_txn(struct pmu *pmu)
5264 {
5265         perf_pmu_enable(pmu);
5266         return 0;
5267 }
5268
5269 static void perf_pmu_cancel_txn(struct pmu *pmu)
5270 {
5271         perf_pmu_enable(pmu);
5272 }
5273
5274 /*
5275  * Ensures all contexts with the same task_ctx_nr have the same
5276  * pmu_cpu_context too.
5277  */
5278 static void *find_pmu_context(int ctxn)
5279 {
5280         struct pmu *pmu;
5281
5282         if (ctxn < 0)
5283                 return NULL;
5284
5285         list_for_each_entry(pmu, &pmus, entry) {
5286                 if (pmu->task_ctx_nr == ctxn)
5287                         return pmu->pmu_cpu_context;
5288         }
5289
5290         return NULL;
5291 }
5292
5293 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5294 {
5295         int cpu;
5296
5297         for_each_possible_cpu(cpu) {
5298                 struct perf_cpu_context *cpuctx;
5299
5300                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5301
5302                 if (cpuctx->active_pmu == old_pmu)
5303                         cpuctx->active_pmu = pmu;
5304         }
5305 }
5306
5307 static void free_pmu_context(struct pmu *pmu)
5308 {
5309         struct pmu *i;
5310
5311         mutex_lock(&pmus_lock);
5312         /*
5313          * Like a real lame refcount.
5314          */
5315         list_for_each_entry(i, &pmus, entry) {
5316                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5317                         update_pmu_context(i, pmu);
5318                         goto out;
5319                 }
5320         }
5321
5322         free_percpu(pmu->pmu_cpu_context);
5323 out:
5324         mutex_unlock(&pmus_lock);
5325 }
5326 static struct idr pmu_idr;
5327
5328 static ssize_t
5329 type_show(struct device *dev, struct device_attribute *attr, char *page)
5330 {
5331         struct pmu *pmu = dev_get_drvdata(dev);
5332
5333         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5334 }
5335
5336 static struct device_attribute pmu_dev_attrs[] = {
5337        __ATTR_RO(type),
5338        __ATTR_NULL,
5339 };
5340
5341 static int pmu_bus_running;
5342 static struct bus_type pmu_bus = {
5343         .name           = "event_source",
5344         .dev_attrs      = pmu_dev_attrs,
5345 };
5346
5347 static void pmu_dev_release(struct device *dev)
5348 {
5349         kfree(dev);
5350 }
5351
5352 static int pmu_dev_alloc(struct pmu *pmu)
5353 {
5354         int ret = -ENOMEM;
5355
5356         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5357         if (!pmu->dev)
5358                 goto out;
5359
5360         device_initialize(pmu->dev);
5361         ret = dev_set_name(pmu->dev, "%s", pmu->name);
5362         if (ret)
5363                 goto free_dev;
5364
5365         dev_set_drvdata(pmu->dev, pmu);
5366         pmu->dev->bus = &pmu_bus;
5367         pmu->dev->release = pmu_dev_release;
5368         ret = device_add(pmu->dev);
5369         if (ret)
5370                 goto free_dev;
5371
5372 out:
5373         return ret;
5374
5375 free_dev:
5376         put_device(pmu->dev);
5377         goto out;
5378 }
5379
5380 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5381 {
5382         int cpu, ret;
5383
5384         mutex_lock(&pmus_lock);
5385         ret = -ENOMEM;
5386         pmu->pmu_disable_count = alloc_percpu(int);
5387         if (!pmu->pmu_disable_count)
5388                 goto unlock;
5389
5390         pmu->type = -1;
5391         if (!name)
5392                 goto skip_type;
5393         pmu->name = name;
5394
5395         if (type < 0) {
5396                 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5397                 if (!err)
5398                         goto free_pdc;
5399
5400                 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5401                 if (err) {
5402                         ret = err;
5403                         goto free_pdc;
5404                 }
5405         }
5406         pmu->type = type;
5407
5408         if (pmu_bus_running) {
5409                 ret = pmu_dev_alloc(pmu);
5410                 if (ret)
5411                         goto free_idr;
5412         }
5413
5414 skip_type:
5415         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5416         if (pmu->pmu_cpu_context)
5417                 goto got_cpu_context;
5418
5419         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5420         if (!pmu->pmu_cpu_context)
5421                 goto free_dev;
5422
5423         for_each_possible_cpu(cpu) {
5424                 struct perf_cpu_context *cpuctx;
5425
5426                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5427                 __perf_event_init_context(&cpuctx->ctx);
5428                 cpuctx->ctx.type = cpu_context;
5429                 cpuctx->ctx.pmu = pmu;
5430                 cpuctx->jiffies_interval = 1;
5431                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5432                 cpuctx->active_pmu = pmu;
5433         }
5434
5435 got_cpu_context:
5436         if (!pmu->start_txn) {
5437                 if (pmu->pmu_enable) {
5438                         /*
5439                          * If we have pmu_enable/pmu_disable calls, install
5440                          * transaction stubs that use that to try and batch
5441                          * hardware accesses.
5442                          */
5443                         pmu->start_txn  = perf_pmu_start_txn;
5444                         pmu->commit_txn = perf_pmu_commit_txn;
5445                         pmu->cancel_txn = perf_pmu_cancel_txn;
5446                 } else {
5447                         pmu->start_txn  = perf_pmu_nop_void;
5448                         pmu->commit_txn = perf_pmu_nop_int;
5449                         pmu->cancel_txn = perf_pmu_nop_void;
5450                 }
5451         }
5452
5453         if (!pmu->pmu_enable) {
5454                 pmu->pmu_enable  = perf_pmu_nop_void;
5455                 pmu->pmu_disable = perf_pmu_nop_void;
5456         }
5457
5458         list_add_rcu(&pmu->entry, &pmus);
5459         ret = 0;
5460 unlock:
5461         mutex_unlock(&pmus_lock);
5462
5463         return ret;
5464
5465 free_dev:
5466         device_del(pmu->dev);
5467         put_device(pmu->dev);
5468
5469 free_idr:
5470         if (pmu->type >= PERF_TYPE_MAX)
5471                 idr_remove(&pmu_idr, pmu->type);
5472
5473 free_pdc:
5474         free_percpu(pmu->pmu_disable_count);
5475         goto unlock;
5476 }
5477
5478 void perf_pmu_unregister(struct pmu *pmu)
5479 {
5480         mutex_lock(&pmus_lock);
5481         list_del_rcu(&pmu->entry);
5482         mutex_unlock(&pmus_lock);
5483
5484         /*
5485          * We dereference the pmu list under both SRCU and regular RCU, so
5486          * synchronize against both of those.
5487          */
5488         synchronize_srcu(&pmus_srcu);
5489         synchronize_rcu();
5490
5491         free_percpu(pmu->pmu_disable_count);
5492         if (pmu->type >= PERF_TYPE_MAX)
5493                 idr_remove(&pmu_idr, pmu->type);
5494         device_del(pmu->dev);
5495         put_device(pmu->dev);
5496         free_pmu_context(pmu);
5497 }
5498
5499 struct pmu *perf_init_event(struct perf_event *event)
5500 {
5501         struct pmu *pmu = NULL;
5502         int idx;
5503
5504         idx = srcu_read_lock(&pmus_srcu);
5505
5506         rcu_read_lock();
5507         pmu = idr_find(&pmu_idr, event->attr.type);
5508         rcu_read_unlock();
5509         if (pmu)
5510                 goto unlock;
5511
5512         list_for_each_entry_rcu(pmu, &pmus, entry) {
5513                 int ret = pmu->event_init(event);
5514                 if (!ret)
5515                         goto unlock;
5516
5517                 if (ret != -ENOENT) {
5518                         pmu = ERR_PTR(ret);
5519                         goto unlock;
5520                 }
5521         }
5522         pmu = ERR_PTR(-ENOENT);
5523 unlock:
5524         srcu_read_unlock(&pmus_srcu, idx);
5525
5526         return pmu;
5527 }
5528
5529 /*
5530  * Allocate and initialize a event structure
5531  */
5532 static struct perf_event *
5533 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5534                  struct task_struct *task,
5535                  struct perf_event *group_leader,
5536                  struct perf_event *parent_event,
5537                  perf_overflow_handler_t overflow_handler)
5538 {
5539         struct pmu *pmu;
5540         struct perf_event *event;
5541         struct hw_perf_event *hwc;
5542         long err;
5543
5544         event = kzalloc(sizeof(*event), GFP_KERNEL);
5545         if (!event)
5546                 return ERR_PTR(-ENOMEM);
5547
5548         /*
5549          * Single events are their own group leaders, with an
5550          * empty sibling list:
5551          */
5552         if (!group_leader)
5553                 group_leader = event;
5554
5555         mutex_init(&event->child_mutex);
5556         INIT_LIST_HEAD(&event->child_list);
5557
5558         INIT_LIST_HEAD(&event->group_entry);
5559         INIT_LIST_HEAD(&event->event_entry);
5560         INIT_LIST_HEAD(&event->sibling_list);
5561         init_waitqueue_head(&event->waitq);
5562         init_irq_work(&event->pending, perf_pending_event);
5563
5564         mutex_init(&event->mmap_mutex);
5565
5566         event->cpu              = cpu;
5567         event->attr             = *attr;
5568         event->group_leader     = group_leader;
5569         event->pmu              = NULL;
5570         event->oncpu            = -1;
5571
5572         event->parent           = parent_event;
5573
5574         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5575         event->id               = atomic64_inc_return(&perf_event_id);
5576
5577         event->state            = PERF_EVENT_STATE_INACTIVE;
5578
5579         if (task) {
5580                 event->attach_state = PERF_ATTACH_TASK;
5581 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5582                 /*
5583                  * hw_breakpoint is a bit difficult here..
5584                  */
5585                 if (attr->type == PERF_TYPE_BREAKPOINT)
5586                         event->hw.bp_target = task;
5587 #endif
5588         }
5589
5590         if (!overflow_handler && parent_event)
5591                 overflow_handler = parent_event->overflow_handler;
5592         
5593         event->overflow_handler = overflow_handler;
5594
5595         if (attr->disabled)
5596                 event->state = PERF_EVENT_STATE_OFF;
5597
5598         pmu = NULL;
5599
5600         hwc = &event->hw;
5601         hwc->sample_period = attr->sample_period;
5602         if (attr->freq && attr->sample_freq)
5603                 hwc->sample_period = 1;
5604         hwc->last_period = hwc->sample_period;
5605
5606         local64_set(&hwc->period_left, hwc->sample_period);
5607
5608         /*
5609          * we currently do not support PERF_FORMAT_GROUP on inherited events
5610          */
5611         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5612                 goto done;
5613
5614         pmu = perf_init_event(event);
5615
5616 done:
5617         err = 0;
5618         if (!pmu)
5619                 err = -EINVAL;
5620         else if (IS_ERR(pmu))
5621                 err = PTR_ERR(pmu);
5622
5623         if (err) {
5624                 if (event->ns)
5625                         put_pid_ns(event->ns);
5626                 kfree(event);
5627                 return ERR_PTR(err);
5628         }
5629
5630         event->pmu = pmu;
5631
5632         if (!event->parent) {
5633                 if (event->attach_state & PERF_ATTACH_TASK)
5634                         jump_label_inc(&perf_task_events);
5635                 if (event->attr.mmap || event->attr.mmap_data)
5636                         atomic_inc(&nr_mmap_events);
5637                 if (event->attr.comm)
5638                         atomic_inc(&nr_comm_events);
5639                 if (event->attr.task)
5640                         atomic_inc(&nr_task_events);
5641                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5642                         err = get_callchain_buffers();
5643                         if (err) {
5644                                 free_event(event);
5645                                 return ERR_PTR(err);
5646                         }
5647                 }
5648         }
5649
5650         return event;
5651 }
5652
5653 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5654                           struct perf_event_attr *attr)
5655 {
5656         u32 size;
5657         int ret;
5658
5659         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5660                 return -EFAULT;
5661
5662         /*
5663          * zero the full structure, so that a short copy will be nice.
5664          */
5665         memset(attr, 0, sizeof(*attr));
5666
5667         ret = get_user(size, &uattr->size);
5668         if (ret)
5669                 return ret;
5670
5671         if (size > PAGE_SIZE)   /* silly large */
5672                 goto err_size;
5673
5674         if (!size)              /* abi compat */
5675                 size = PERF_ATTR_SIZE_VER0;
5676
5677         if (size < PERF_ATTR_SIZE_VER0)
5678                 goto err_size;
5679
5680         /*
5681          * If we're handed a bigger struct than we know of,
5682          * ensure all the unknown bits are 0 - i.e. new
5683          * user-space does not rely on any kernel feature
5684          * extensions we dont know about yet.
5685          */
5686         if (size > sizeof(*attr)) {
5687                 unsigned char __user *addr;
5688                 unsigned char __user *end;
5689                 unsigned char val;
5690
5691                 addr = (void __user *)uattr + sizeof(*attr);
5692                 end  = (void __user *)uattr + size;
5693
5694                 for (; addr < end; addr++) {
5695                         ret = get_user(val, addr);
5696                         if (ret)
5697                                 return ret;
5698                         if (val)
5699                                 goto err_size;
5700                 }
5701                 size = sizeof(*attr);
5702         }
5703
5704         ret = copy_from_user(attr, uattr, size);
5705         if (ret)
5706                 return -EFAULT;
5707
5708         /*
5709          * If the type exists, the corresponding creation will verify
5710          * the attr->config.
5711          */
5712         if (attr->type >= PERF_TYPE_MAX)
5713                 return -EINVAL;
5714
5715         if (attr->__reserved_1)
5716                 return -EINVAL;
5717
5718         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5719                 return -EINVAL;
5720
5721         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5722                 return -EINVAL;
5723
5724 out:
5725         return ret;
5726
5727 err_size:
5728         put_user(sizeof(*attr), &uattr->size);
5729         ret = -E2BIG;
5730         goto out;
5731 }
5732
5733 static int
5734 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5735 {
5736         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5737         int ret = -EINVAL;
5738
5739         if (!output_event)
5740                 goto set;
5741
5742         /* don't allow circular references */
5743         if (event == output_event)
5744                 goto out;
5745
5746         /*
5747          * Don't allow cross-cpu buffers
5748          */
5749         if (output_event->cpu != event->cpu)
5750                 goto out;
5751
5752         /*
5753          * If its not a per-cpu buffer, it must be the same task.
5754          */
5755         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5756                 goto out;
5757
5758 set:
5759         mutex_lock(&event->mmap_mutex);
5760         /* Can't redirect output if we've got an active mmap() */
5761         if (atomic_read(&event->mmap_count))
5762                 goto unlock;
5763
5764         if (output_event) {
5765                 /* get the buffer we want to redirect to */
5766                 buffer = perf_buffer_get(output_event);
5767                 if (!buffer)
5768                         goto unlock;
5769         }
5770
5771         old_buffer = event->buffer;
5772         rcu_assign_pointer(event->buffer, buffer);
5773         ret = 0;
5774 unlock:
5775         mutex_unlock(&event->mmap_mutex);
5776
5777         if (old_buffer)
5778                 perf_buffer_put(old_buffer);
5779 out:
5780         return ret;
5781 }
5782
5783 /**
5784  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5785  *
5786  * @attr_uptr:  event_id type attributes for monitoring/sampling
5787  * @pid:                target pid
5788  * @cpu:                target cpu
5789  * @group_fd:           group leader event fd
5790  */
5791 SYSCALL_DEFINE5(perf_event_open,
5792                 struct perf_event_attr __user *, attr_uptr,
5793                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5794 {
5795         struct perf_event *group_leader = NULL, *output_event = NULL;
5796         struct perf_event *event, *sibling;
5797         struct perf_event_attr attr;
5798         struct perf_event_context *ctx;
5799         struct file *event_file = NULL;
5800         struct file *group_file = NULL;
5801         struct task_struct *task = NULL;
5802         struct pmu *pmu;
5803         int event_fd;
5804         int move_group = 0;
5805         int fput_needed = 0;
5806         int err;
5807
5808         /* for future expandability... */
5809         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5810                 return -EINVAL;
5811
5812         err = perf_copy_attr(attr_uptr, &attr);
5813         if (err)
5814                 return err;
5815
5816         if (!attr.exclude_kernel) {
5817                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5818                         return -EACCES;
5819         }
5820
5821         if (attr.freq) {
5822                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5823                         return -EINVAL;
5824         }
5825
5826         event_fd = get_unused_fd_flags(O_RDWR);
5827         if (event_fd < 0)
5828                 return event_fd;
5829
5830         if (group_fd != -1) {
5831                 group_leader = perf_fget_light(group_fd, &fput_needed);
5832                 if (IS_ERR(group_leader)) {
5833                         err = PTR_ERR(group_leader);
5834                         goto err_fd;
5835                 }
5836                 group_file = group_leader->filp;
5837                 if (flags & PERF_FLAG_FD_OUTPUT)
5838                         output_event = group_leader;
5839                 if (flags & PERF_FLAG_FD_NO_GROUP)
5840                         group_leader = NULL;
5841         }
5842
5843         if (pid != -1) {
5844                 task = find_lively_task_by_vpid(pid);
5845                 if (IS_ERR(task)) {
5846                         err = PTR_ERR(task);
5847                         goto err_group_fd;
5848                 }
5849         }
5850
5851         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5852         if (IS_ERR(event)) {
5853                 err = PTR_ERR(event);
5854                 goto err_task;
5855         }
5856
5857         /*
5858          * Special case software events and allow them to be part of
5859          * any hardware group.
5860          */
5861         pmu = event->pmu;
5862
5863         if (group_leader &&
5864             (is_software_event(event) != is_software_event(group_leader))) {
5865                 if (is_software_event(event)) {
5866                         /*
5867                          * If event and group_leader are not both a software
5868                          * event, and event is, then group leader is not.
5869                          *
5870                          * Allow the addition of software events to !software
5871                          * groups, this is safe because software events never
5872                          * fail to schedule.
5873                          */
5874                         pmu = group_leader->pmu;
5875                 } else if (is_software_event(group_leader) &&
5876                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5877                         /*
5878                          * In case the group is a pure software group, and we
5879                          * try to add a hardware event, move the whole group to
5880                          * the hardware context.
5881                          */
5882                         move_group = 1;
5883                 }
5884         }
5885
5886         /*
5887          * Get the target context (task or percpu):
5888          */
5889         ctx = find_get_context(pmu, task, cpu);
5890         if (IS_ERR(ctx)) {
5891                 err = PTR_ERR(ctx);
5892                 goto err_alloc;
5893         }
5894
5895         /*
5896          * Look up the group leader (we will attach this event to it):
5897          */
5898         if (group_leader) {
5899                 err = -EINVAL;
5900
5901                 /*
5902                  * Do not allow a recursive hierarchy (this new sibling
5903                  * becoming part of another group-sibling):
5904                  */
5905                 if (group_leader->group_leader != group_leader)
5906                         goto err_context;
5907                 /*
5908                  * Do not allow to attach to a group in a different
5909                  * task or CPU context:
5910                  */
5911                 if (move_group) {
5912                         if (group_leader->ctx->type != ctx->type)
5913                                 goto err_context;
5914                 } else {
5915                         if (group_leader->ctx != ctx)
5916                                 goto err_context;
5917                 }
5918
5919                 /*
5920                  * Only a group leader can be exclusive or pinned
5921                  */
5922                 if (attr.exclusive || attr.pinned)
5923                         goto err_context;
5924         }
5925
5926         if (output_event) {
5927                 err = perf_event_set_output(event, output_event);
5928                 if (err)
5929                         goto err_context;
5930         }
5931
5932         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5933         if (IS_ERR(event_file)) {
5934                 err = PTR_ERR(event_file);
5935                 goto err_context;
5936         }
5937
5938         if (move_group) {
5939                 struct perf_event_context *gctx = group_leader->ctx;
5940
5941                 mutex_lock(&gctx->mutex);
5942                 perf_event_remove_from_context(group_leader);
5943                 list_for_each_entry(sibling, &group_leader->sibling_list,
5944                                     group_entry) {
5945                         perf_event_remove_from_context(sibling);
5946                         put_ctx(gctx);
5947                 }
5948                 mutex_unlock(&gctx->mutex);
5949                 put_ctx(gctx);
5950         }
5951
5952         event->filp = event_file;
5953         WARN_ON_ONCE(ctx->parent_ctx);
5954         mutex_lock(&ctx->mutex);
5955
5956         if (move_group) {
5957                 perf_install_in_context(ctx, group_leader, cpu);
5958                 get_ctx(ctx);
5959                 list_for_each_entry(sibling, &group_leader->sibling_list,
5960                                     group_entry) {
5961                         perf_install_in_context(ctx, sibling, cpu);
5962                         get_ctx(ctx);
5963                 }
5964         }
5965
5966         perf_install_in_context(ctx, event, cpu);
5967         ++ctx->generation;
5968         mutex_unlock(&ctx->mutex);
5969
5970         event->owner = current;
5971
5972         mutex_lock(&current->perf_event_mutex);
5973         list_add_tail(&event->owner_entry, &current->perf_event_list);
5974         mutex_unlock(&current->perf_event_mutex);
5975
5976         /*
5977          * Precalculate sample_data sizes
5978          */
5979         perf_event__header_size(event);
5980         perf_event__id_header_size(event);
5981
5982         /*
5983          * Drop the reference on the group_event after placing the
5984          * new event on the sibling_list. This ensures destruction
5985          * of the group leader will find the pointer to itself in
5986          * perf_group_detach().
5987          */
5988         fput_light(group_file, fput_needed);
5989         fd_install(event_fd, event_file);
5990         return event_fd;
5991
5992 err_context:
5993         put_ctx(ctx);
5994 err_alloc:
5995         free_event(event);
5996 err_task:
5997         if (task)
5998                 put_task_struct(task);
5999 err_group_fd:
6000         fput_light(group_file, fput_needed);
6001 err_fd:
6002         put_unused_fd(event_fd);
6003         return err;
6004 }
6005
6006 /**
6007  * perf_event_create_kernel_counter
6008  *
6009  * @attr: attributes of the counter to create
6010  * @cpu: cpu in which the counter is bound
6011  * @task: task to profile (NULL for percpu)
6012  */
6013 struct perf_event *
6014 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6015                                  struct task_struct *task,
6016                                  perf_overflow_handler_t overflow_handler)
6017 {
6018         struct perf_event_context *ctx;
6019         struct perf_event *event;
6020         int err;
6021
6022         /*
6023          * Get the target context (task or percpu):
6024          */
6025
6026         event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6027         if (IS_ERR(event)) {
6028                 err = PTR_ERR(event);
6029                 goto err;
6030         }
6031
6032         ctx = find_get_context(event->pmu, task, cpu);
6033         if (IS_ERR(ctx)) {
6034                 err = PTR_ERR(ctx);
6035                 goto err_free;
6036         }
6037
6038         event->filp = NULL;
6039         WARN_ON_ONCE(ctx->parent_ctx);
6040         mutex_lock(&ctx->mutex);
6041         perf_install_in_context(ctx, event, cpu);
6042         ++ctx->generation;
6043         mutex_unlock(&ctx->mutex);
6044
6045         return event;
6046
6047 err_free:
6048         free_event(event);
6049 err:
6050         return ERR_PTR(err);
6051 }
6052 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6053
6054 static void sync_child_event(struct perf_event *child_event,
6055                                struct task_struct *child)
6056 {
6057         struct perf_event *parent_event = child_event->parent;
6058         u64 child_val;
6059
6060         if (child_event->attr.inherit_stat)
6061                 perf_event_read_event(child_event, child);
6062
6063         child_val = perf_event_count(child_event);
6064
6065         /*
6066          * Add back the child's count to the parent's count:
6067          */
6068         atomic64_add(child_val, &parent_event->child_count);
6069         atomic64_add(child_event->total_time_enabled,
6070                      &parent_event->child_total_time_enabled);
6071         atomic64_add(child_event->total_time_running,
6072                      &parent_event->child_total_time_running);
6073
6074         /*
6075          * Remove this event from the parent's list
6076          */
6077         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6078         mutex_lock(&parent_event->child_mutex);
6079         list_del_init(&child_event->child_list);
6080         mutex_unlock(&parent_event->child_mutex);
6081
6082         /*
6083          * Release the parent event, if this was the last
6084          * reference to it.
6085          */
6086         fput(parent_event->filp);
6087 }
6088
6089 static void
6090 __perf_event_exit_task(struct perf_event *child_event,
6091                          struct perf_event_context *child_ctx,
6092                          struct task_struct *child)
6093 {
6094         struct perf_event *parent_event;
6095
6096         perf_event_remove_from_context(child_event);
6097
6098         parent_event = child_event->parent;
6099         /*
6100          * It can happen that parent exits first, and has events
6101          * that are still around due to the child reference. These
6102          * events need to be zapped - but otherwise linger.
6103          */
6104         if (parent_event) {
6105                 sync_child_event(child_event, child);
6106                 free_event(child_event);
6107         }
6108 }
6109
6110 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6111 {
6112         struct perf_event *child_event, *tmp;
6113         struct perf_event_context *child_ctx;
6114         unsigned long flags;
6115
6116         if (likely(!child->perf_event_ctxp[ctxn])) {
6117                 perf_event_task(child, NULL, 0);
6118                 return;
6119         }
6120
6121         local_irq_save(flags);
6122         /*
6123          * We can't reschedule here because interrupts are disabled,
6124          * and either child is current or it is a task that can't be
6125          * scheduled, so we are now safe from rescheduling changing
6126          * our context.
6127          */
6128         child_ctx = child->perf_event_ctxp[ctxn];
6129         task_ctx_sched_out(child_ctx, EVENT_ALL);
6130
6131         /*
6132          * Take the context lock here so that if find_get_context is
6133          * reading child->perf_event_ctxp, we wait until it has
6134          * incremented the context's refcount before we do put_ctx below.
6135          */
6136         raw_spin_lock(&child_ctx->lock);
6137         child->perf_event_ctxp[ctxn] = NULL;
6138         /*
6139          * If this context is a clone; unclone it so it can't get
6140          * swapped to another process while we're removing all
6141          * the events from it.
6142          */
6143         unclone_ctx(child_ctx);
6144         update_context_time(child_ctx);
6145         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6146
6147         /*
6148          * Report the task dead after unscheduling the events so that we
6149          * won't get any samples after PERF_RECORD_EXIT. We can however still
6150          * get a few PERF_RECORD_READ events.
6151          */
6152         perf_event_task(child, child_ctx, 0);
6153
6154         /*
6155          * We can recurse on the same lock type through:
6156          *
6157          *   __perf_event_exit_task()
6158          *     sync_child_event()
6159          *       fput(parent_event->filp)
6160          *         perf_release()
6161          *           mutex_lock(&ctx->mutex)
6162          *
6163          * But since its the parent context it won't be the same instance.
6164          */
6165         mutex_lock(&child_ctx->mutex);
6166
6167 again:
6168         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6169                                  group_entry)
6170                 __perf_event_exit_task(child_event, child_ctx, child);
6171
6172         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6173                                  group_entry)
6174                 __perf_event_exit_task(child_event, child_ctx, child);
6175
6176         /*
6177          * If the last event was a group event, it will have appended all
6178          * its siblings to the list, but we obtained 'tmp' before that which
6179          * will still point to the list head terminating the iteration.
6180          */
6181         if (!list_empty(&child_ctx->pinned_groups) ||
6182             !list_empty(&child_ctx->flexible_groups))
6183                 goto again;
6184
6185         mutex_unlock(&child_ctx->mutex);
6186
6187         put_ctx(child_ctx);
6188 }
6189
6190 /*
6191  * When a child task exits, feed back event values to parent events.
6192  */
6193 void perf_event_exit_task(struct task_struct *child)
6194 {
6195         struct perf_event *event, *tmp;
6196         int ctxn;
6197
6198         mutex_lock(&child->perf_event_mutex);
6199         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6200                                  owner_entry) {
6201                 list_del_init(&event->owner_entry);
6202
6203                 /*
6204                  * Ensure the list deletion is visible before we clear
6205                  * the owner, closes a race against perf_release() where
6206                  * we need to serialize on the owner->perf_event_mutex.
6207                  */
6208                 smp_wmb();
6209                 event->owner = NULL;
6210         }
6211         mutex_unlock(&child->perf_event_mutex);
6212
6213         for_each_task_context_nr(ctxn)
6214                 perf_event_exit_task_context(child, ctxn);
6215 }
6216
6217 static void perf_free_event(struct perf_event *event,
6218                             struct perf_event_context *ctx)
6219 {
6220         struct perf_event *parent = event->parent;
6221
6222         if (WARN_ON_ONCE(!parent))
6223                 return;
6224
6225         mutex_lock(&parent->child_mutex);
6226         list_del_init(&event->child_list);
6227         mutex_unlock(&parent->child_mutex);
6228
6229         fput(parent->filp);
6230
6231         perf_group_detach(event);
6232         list_del_event(event, ctx);
6233         free_event(event);
6234 }
6235
6236 /*
6237  * free an unexposed, unused context as created by inheritance by
6238  * perf_event_init_task below, used by fork() in case of fail.
6239  */
6240 void perf_event_free_task(struct task_struct *task)
6241 {
6242         struct perf_event_context *ctx;
6243         struct perf_event *event, *tmp;
6244         int ctxn;
6245
6246         for_each_task_context_nr(ctxn) {
6247                 ctx = task->perf_event_ctxp[ctxn];
6248                 if (!ctx)
6249                         continue;
6250
6251                 mutex_lock(&ctx->mutex);
6252 again:
6253                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6254                                 group_entry)
6255                         perf_free_event(event, ctx);
6256
6257                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6258                                 group_entry)
6259                         perf_free_event(event, ctx);
6260
6261                 if (!list_empty(&ctx->pinned_groups) ||
6262                                 !list_empty(&ctx->flexible_groups))
6263                         goto again;
6264
6265                 mutex_unlock(&ctx->mutex);
6266
6267                 put_ctx(ctx);
6268         }
6269 }
6270
6271 void perf_event_delayed_put(struct task_struct *task)
6272 {
6273         int ctxn;
6274
6275         for_each_task_context_nr(ctxn)
6276                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6277 }
6278
6279 /*
6280  * inherit a event from parent task to child task:
6281  */
6282 static struct perf_event *
6283 inherit_event(struct perf_event *parent_event,
6284               struct task_struct *parent,
6285               struct perf_event_context *parent_ctx,
6286               struct task_struct *child,
6287               struct perf_event *group_leader,
6288               struct perf_event_context *child_ctx)
6289 {
6290         struct perf_event *child_event;
6291         unsigned long flags;
6292
6293         /*
6294          * Instead of creating recursive hierarchies of events,
6295          * we link inherited events back to the original parent,
6296          * which has a filp for sure, which we use as the reference
6297          * count:
6298          */
6299         if (parent_event->parent)
6300                 parent_event = parent_event->parent;
6301
6302         child_event = perf_event_alloc(&parent_event->attr,
6303                                            parent_event->cpu,
6304                                            child,
6305                                            group_leader, parent_event,
6306                                            NULL);
6307         if (IS_ERR(child_event))
6308                 return child_event;
6309         get_ctx(child_ctx);
6310
6311         /*
6312          * Make the child state follow the state of the parent event,
6313          * not its attr.disabled bit.  We hold the parent's mutex,
6314          * so we won't race with perf_event_{en, dis}able_family.
6315          */
6316         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6317                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6318         else
6319                 child_event->state = PERF_EVENT_STATE_OFF;
6320
6321         if (parent_event->attr.freq) {
6322                 u64 sample_period = parent_event->hw.sample_period;
6323                 struct hw_perf_event *hwc = &child_event->hw;
6324
6325                 hwc->sample_period = sample_period;
6326                 hwc->last_period   = sample_period;
6327
6328                 local64_set(&hwc->period_left, sample_period);
6329         }
6330
6331         child_event->ctx = child_ctx;
6332         child_event->overflow_handler = parent_event->overflow_handler;
6333
6334         /*
6335          * Precalculate sample_data sizes
6336          */
6337         perf_event__header_size(child_event);
6338         perf_event__id_header_size(child_event);
6339
6340         /*
6341          * Link it up in the child's context:
6342          */
6343         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6344         add_event_to_ctx(child_event, child_ctx);
6345         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6346
6347         /*
6348          * Get a reference to the parent filp - we will fput it
6349          * when the child event exits. This is safe to do because
6350          * we are in the parent and we know that the filp still
6351          * exists and has a nonzero count:
6352          */
6353         atomic_long_inc(&parent_event->filp->f_count);
6354
6355         /*
6356          * Link this into the parent event's child list
6357          */
6358         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6359         mutex_lock(&parent_event->child_mutex);
6360         list_add_tail(&child_event->child_list, &parent_event->child_list);
6361         mutex_unlock(&parent_event->child_mutex);
6362
6363         return child_event;
6364 }
6365
6366 static int inherit_group(struct perf_event *parent_event,
6367               struct task_struct *parent,
6368               struct perf_event_context *parent_ctx,
6369               struct task_struct *child,
6370               struct perf_event_context *child_ctx)
6371 {
6372         struct perf_event *leader;
6373         struct perf_event *sub;
6374         struct perf_event *child_ctr;
6375
6376         leader = inherit_event(parent_event, parent, parent_ctx,
6377                                  child, NULL, child_ctx);
6378         if (IS_ERR(leader))
6379                 return PTR_ERR(leader);
6380         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6381                 child_ctr = inherit_event(sub, parent, parent_ctx,
6382                                             child, leader, child_ctx);
6383                 if (IS_ERR(child_ctr))
6384                         return PTR_ERR(child_ctr);
6385         }
6386         return 0;
6387 }
6388
6389 static int
6390 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6391                    struct perf_event_context *parent_ctx,
6392                    struct task_struct *child, int ctxn,
6393                    int *inherited_all)
6394 {
6395         int ret;
6396         struct perf_event_context *child_ctx;
6397
6398         if (!event->attr.inherit) {
6399                 *inherited_all = 0;
6400                 return 0;
6401         }
6402
6403         child_ctx = child->perf_event_ctxp[ctxn];
6404         if (!child_ctx) {
6405                 /*
6406                  * This is executed from the parent task context, so
6407                  * inherit events that have been marked for cloning.
6408                  * First allocate and initialize a context for the
6409                  * child.
6410                  */
6411
6412                 child_ctx = alloc_perf_context(event->pmu, child);
6413                 if (!child_ctx)
6414                         return -ENOMEM;
6415
6416                 child->perf_event_ctxp[ctxn] = child_ctx;
6417         }
6418
6419         ret = inherit_group(event, parent, parent_ctx,
6420                             child, child_ctx);
6421
6422         if (ret)
6423                 *inherited_all = 0;
6424
6425         return ret;
6426 }
6427
6428 /*
6429  * Initialize the perf_event context in task_struct
6430  */
6431 int perf_event_init_context(struct task_struct *child, int ctxn)
6432 {
6433         struct perf_event_context *child_ctx, *parent_ctx;
6434         struct perf_event_context *cloned_ctx;
6435         struct perf_event *event;
6436         struct task_struct *parent = current;
6437         int inherited_all = 1;
6438         unsigned long flags;
6439         int ret = 0;
6440
6441         child->perf_event_ctxp[ctxn] = NULL;
6442
6443         mutex_init(&child->perf_event_mutex);
6444         INIT_LIST_HEAD(&child->perf_event_list);
6445
6446         if (likely(!parent->perf_event_ctxp[ctxn]))
6447                 return 0;
6448
6449         /*
6450          * If the parent's context is a clone, pin it so it won't get
6451          * swapped under us.
6452          */
6453         parent_ctx = perf_pin_task_context(parent, ctxn);
6454
6455         /*
6456          * No need to check if parent_ctx != NULL here; since we saw
6457          * it non-NULL earlier, the only reason for it to become NULL
6458          * is if we exit, and since we're currently in the middle of
6459          * a fork we can't be exiting at the same time.
6460          */
6461
6462         /*
6463          * Lock the parent list. No need to lock the child - not PID
6464          * hashed yet and not running, so nobody can access it.
6465          */
6466         mutex_lock(&parent_ctx->mutex);
6467
6468         /*
6469          * We dont have to disable NMIs - we are only looking at
6470          * the list, not manipulating it:
6471          */
6472         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6473                 ret = inherit_task_group(event, parent, parent_ctx,
6474                                          child, ctxn, &inherited_all);
6475                 if (ret)
6476                         break;
6477         }
6478
6479         /*
6480          * We can't hold ctx->lock when iterating the ->flexible_group list due
6481          * to allocations, but we need to prevent rotation because
6482          * rotate_ctx() will change the list from interrupt context.
6483          */
6484         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6485         parent_ctx->rotate_disable = 1;
6486         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6487
6488         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6489                 ret = inherit_task_group(event, parent, parent_ctx,
6490                                          child, ctxn, &inherited_all);
6491                 if (ret)
6492                         break;
6493         }
6494
6495         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6496         parent_ctx->rotate_disable = 0;
6497         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6498
6499         child_ctx = child->perf_event_ctxp[ctxn];
6500
6501         if (child_ctx && inherited_all) {
6502                 /*
6503                  * Mark the child context as a clone of the parent
6504                  * context, or of whatever the parent is a clone of.
6505                  * Note that if the parent is a clone, it could get
6506                  * uncloned at any point, but that doesn't matter
6507                  * because the list of events and the generation
6508                  * count can't have changed since we took the mutex.
6509                  */
6510                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6511                 if (cloned_ctx) {
6512                         child_ctx->parent_ctx = cloned_ctx;
6513                         child_ctx->parent_gen = parent_ctx->parent_gen;
6514                 } else {
6515                         child_ctx->parent_ctx = parent_ctx;
6516                         child_ctx->parent_gen = parent_ctx->generation;
6517                 }
6518                 get_ctx(child_ctx->parent_ctx);
6519         }
6520
6521         mutex_unlock(&parent_ctx->mutex);
6522
6523         perf_unpin_context(parent_ctx);
6524
6525         return ret;
6526 }
6527
6528 /*
6529  * Initialize the perf_event context in task_struct
6530  */
6531 int perf_event_init_task(struct task_struct *child)
6532 {
6533         int ctxn, ret;
6534
6535         for_each_task_context_nr(ctxn) {
6536                 ret = perf_event_init_context(child, ctxn);
6537                 if (ret)
6538                         return ret;
6539         }
6540
6541         return 0;
6542 }
6543
6544 static void __init perf_event_init_all_cpus(void)
6545 {
6546         struct swevent_htable *swhash;
6547         int cpu;
6548
6549         for_each_possible_cpu(cpu) {
6550                 swhash = &per_cpu(swevent_htable, cpu);
6551                 mutex_init(&swhash->hlist_mutex);
6552                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6553         }
6554 }
6555
6556 static void __cpuinit perf_event_init_cpu(int cpu)
6557 {
6558         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6559
6560         mutex_lock(&swhash->hlist_mutex);
6561         if (swhash->hlist_refcount > 0) {
6562                 struct swevent_hlist *hlist;
6563
6564                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6565                 WARN_ON(!hlist);
6566                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6567         }
6568         mutex_unlock(&swhash->hlist_mutex);
6569 }
6570
6571 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6572 static void perf_pmu_rotate_stop(struct pmu *pmu)
6573 {
6574         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6575
6576         WARN_ON(!irqs_disabled());
6577
6578         list_del_init(&cpuctx->rotation_list);
6579 }
6580
6581 static void __perf_event_exit_context(void *__info)
6582 {
6583         struct perf_event_context *ctx = __info;
6584         struct perf_event *event, *tmp;
6585
6586         perf_pmu_rotate_stop(ctx->pmu);
6587
6588         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6589                 __perf_event_remove_from_context(event);
6590         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6591                 __perf_event_remove_from_context(event);
6592 }
6593
6594 static void perf_event_exit_cpu_context(int cpu)
6595 {
6596         struct perf_event_context *ctx;
6597         struct pmu *pmu;
6598         int idx;
6599
6600         idx = srcu_read_lock(&pmus_srcu);
6601         list_for_each_entry_rcu(pmu, &pmus, entry) {
6602                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6603
6604                 mutex_lock(&ctx->mutex);
6605                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6606                 mutex_unlock(&ctx->mutex);
6607         }
6608         srcu_read_unlock(&pmus_srcu, idx);
6609 }
6610
6611 static void perf_event_exit_cpu(int cpu)
6612 {
6613         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6614
6615         mutex_lock(&swhash->hlist_mutex);
6616         swevent_hlist_release(swhash);
6617         mutex_unlock(&swhash->hlist_mutex);
6618
6619         perf_event_exit_cpu_context(cpu);
6620 }
6621 #else
6622 static inline void perf_event_exit_cpu(int cpu) { }
6623 #endif
6624
6625 static int
6626 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6627 {
6628         int cpu;
6629
6630         for_each_online_cpu(cpu)
6631                 perf_event_exit_cpu(cpu);
6632
6633         return NOTIFY_OK;
6634 }
6635
6636 /*
6637  * Run the perf reboot notifier at the very last possible moment so that
6638  * the generic watchdog code runs as long as possible.
6639  */
6640 static struct notifier_block perf_reboot_notifier = {
6641         .notifier_call = perf_reboot,
6642         .priority = INT_MIN,
6643 };
6644
6645 static int __cpuinit
6646 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6647 {
6648         unsigned int cpu = (long)hcpu;
6649
6650         switch (action & ~CPU_TASKS_FROZEN) {
6651
6652         case CPU_UP_PREPARE:
6653         case CPU_DOWN_FAILED:
6654                 perf_event_init_cpu(cpu);
6655                 break;
6656
6657         case CPU_UP_CANCELED:
6658         case CPU_DOWN_PREPARE:
6659                 perf_event_exit_cpu(cpu);
6660                 break;
6661
6662         default:
6663                 break;
6664         }
6665
6666         return NOTIFY_OK;
6667 }
6668
6669 void __init perf_event_init(void)
6670 {
6671         int ret;
6672
6673         idr_init(&pmu_idr);
6674
6675         perf_event_init_all_cpus();
6676         init_srcu_struct(&pmus_srcu);
6677         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6678         perf_pmu_register(&perf_cpu_clock, NULL, -1);
6679         perf_pmu_register(&perf_task_clock, NULL, -1);
6680         perf_tp_register();
6681         perf_cpu_notifier(perf_cpu_notify);
6682         register_reboot_notifier(&perf_reboot_notifier);
6683
6684         ret = init_hw_breakpoint();
6685         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6686 }
6687
6688 static int __init perf_event_sysfs_init(void)
6689 {
6690         struct pmu *pmu;
6691         int ret;
6692
6693         mutex_lock(&pmus_lock);
6694
6695         ret = bus_register(&pmu_bus);
6696         if (ret)
6697                 goto unlock;
6698
6699         list_for_each_entry(pmu, &pmus, entry) {
6700                 if (!pmu->name || pmu->type < 0)
6701                         continue;
6702
6703                 ret = pmu_dev_alloc(pmu);
6704                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6705         }
6706         pmu_bus_running = 1;
6707         ret = 0;
6708
6709 unlock:
6710         mutex_unlock(&pmus_lock);
6711
6712         return ret;
6713 }
6714 device_initcall(perf_event_sysfs_init);