Merge branch 'fix/asoc' into for-linus
[pandora-kernel.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 atomic_t perf_task_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47  * perf event paranoia level:
48  *  -1 - not paranoid at all
49  *   0 - disallow raw tracepoint access for unpriv
50  *   1 - disallow cpu events for unpriv
51  *   2 - disallow kernel profiling for unpriv
52  */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58  * max perf event sample rate
59  */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void)        { }
65
66 extern __weak const char *perf_pmu_name(void)
67 {
68         return "pmu";
69 }
70
71 void perf_pmu_disable(struct pmu *pmu)
72 {
73         int *count = this_cpu_ptr(pmu->pmu_disable_count);
74         if (!(*count)++)
75                 pmu->pmu_disable(pmu);
76 }
77
78 void perf_pmu_enable(struct pmu *pmu)
79 {
80         int *count = this_cpu_ptr(pmu->pmu_disable_count);
81         if (!--(*count))
82                 pmu->pmu_enable(pmu);
83 }
84
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
86
87 /*
88  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89  * because they're strictly cpu affine and rotate_start is called with IRQs
90  * disabled, while rotate_context is called from IRQ context.
91  */
92 static void perf_pmu_rotate_start(struct pmu *pmu)
93 {
94         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95         struct list_head *head = &__get_cpu_var(rotation_list);
96
97         WARN_ON(!irqs_disabled());
98
99         if (list_empty(&cpuctx->rotation_list))
100                 list_add(&cpuctx->rotation_list, head);
101 }
102
103 static void get_ctx(struct perf_event_context *ctx)
104 {
105         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110         struct perf_event_context *ctx;
111
112         ctx = container_of(head, struct perf_event_context, rcu_head);
113         kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_event_context *ctx)
117 {
118         if (atomic_dec_and_test(&ctx->refcount)) {
119                 if (ctx->parent_ctx)
120                         put_ctx(ctx->parent_ctx);
121                 if (ctx->task)
122                         put_task_struct(ctx->task);
123                 call_rcu(&ctx->rcu_head, free_ctx);
124         }
125 }
126
127 static void unclone_ctx(struct perf_event_context *ctx)
128 {
129         if (ctx->parent_ctx) {
130                 put_ctx(ctx->parent_ctx);
131                 ctx->parent_ctx = NULL;
132         }
133 }
134
135 /*
136  * If we inherit events we want to return the parent event id
137  * to userspace.
138  */
139 static u64 primary_event_id(struct perf_event *event)
140 {
141         u64 id = event->id;
142
143         if (event->parent)
144                 id = event->parent->id;
145
146         return id;
147 }
148
149 /*
150  * Get the perf_event_context for a task and lock it.
151  * This has to cope with with the fact that until it is locked,
152  * the context could get moved to another task.
153  */
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156 {
157         struct perf_event_context *ctx;
158
159         rcu_read_lock();
160 retry:
161         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162         if (ctx) {
163                 /*
164                  * If this context is a clone of another, it might
165                  * get swapped for another underneath us by
166                  * perf_event_task_sched_out, though the
167                  * rcu_read_lock() protects us from any context
168                  * getting freed.  Lock the context and check if it
169                  * got swapped before we could get the lock, and retry
170                  * if so.  If we locked the right context, then it
171                  * can't get swapped on us any more.
172                  */
173                 raw_spin_lock_irqsave(&ctx->lock, *flags);
174                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176                         goto retry;
177                 }
178
179                 if (!atomic_inc_not_zero(&ctx->refcount)) {
180                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181                         ctx = NULL;
182                 }
183         }
184         rcu_read_unlock();
185         return ctx;
186 }
187
188 /*
189  * Get the context for a task and increment its pin_count so it
190  * can't get swapped to another task.  This also increments its
191  * reference count so that the context can't get freed.
192  */
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
195 {
196         struct perf_event_context *ctx;
197         unsigned long flags;
198
199         ctx = perf_lock_task_context(task, ctxn, &flags);
200         if (ctx) {
201                 ++ctx->pin_count;
202                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
203         }
204         return ctx;
205 }
206
207 static void perf_unpin_context(struct perf_event_context *ctx)
208 {
209         unsigned long flags;
210
211         raw_spin_lock_irqsave(&ctx->lock, flags);
212         --ctx->pin_count;
213         raw_spin_unlock_irqrestore(&ctx->lock, flags);
214         put_ctx(ctx);
215 }
216
217 static inline u64 perf_clock(void)
218 {
219         return local_clock();
220 }
221
222 /*
223  * Update the record of the current time in a context.
224  */
225 static void update_context_time(struct perf_event_context *ctx)
226 {
227         u64 now = perf_clock();
228
229         ctx->time += now - ctx->timestamp;
230         ctx->timestamp = now;
231 }
232
233 /*
234  * Update the total_time_enabled and total_time_running fields for a event.
235  */
236 static void update_event_times(struct perf_event *event)
237 {
238         struct perf_event_context *ctx = event->ctx;
239         u64 run_end;
240
241         if (event->state < PERF_EVENT_STATE_INACTIVE ||
242             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243                 return;
244
245         if (ctx->is_active)
246                 run_end = ctx->time;
247         else
248                 run_end = event->tstamp_stopped;
249
250         event->total_time_enabled = run_end - event->tstamp_enabled;
251
252         if (event->state == PERF_EVENT_STATE_INACTIVE)
253                 run_end = event->tstamp_stopped;
254         else
255                 run_end = ctx->time;
256
257         event->total_time_running = run_end - event->tstamp_running;
258 }
259
260 /*
261  * Update total_time_enabled and total_time_running for all events in a group.
262  */
263 static void update_group_times(struct perf_event *leader)
264 {
265         struct perf_event *event;
266
267         update_event_times(leader);
268         list_for_each_entry(event, &leader->sibling_list, group_entry)
269                 update_event_times(event);
270 }
271
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
274 {
275         if (event->attr.pinned)
276                 return &ctx->pinned_groups;
277         else
278                 return &ctx->flexible_groups;
279 }
280
281 /*
282  * Add a event from the lists for its context.
283  * Must be called with ctx->mutex and ctx->lock held.
284  */
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287 {
288         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289         event->attach_state |= PERF_ATTACH_CONTEXT;
290
291         /*
292          * If we're a stand alone event or group leader, we go to the context
293          * list, group events are kept attached to the group so that
294          * perf_group_detach can, at all times, locate all siblings.
295          */
296         if (event->group_leader == event) {
297                 struct list_head *list;
298
299                 if (is_software_event(event))
300                         event->group_flags |= PERF_GROUP_SOFTWARE;
301
302                 list = ctx_group_list(event, ctx);
303                 list_add_tail(&event->group_entry, list);
304         }
305
306         list_add_rcu(&event->event_entry, &ctx->event_list);
307         if (!ctx->nr_events)
308                 perf_pmu_rotate_start(ctx->pmu);
309         ctx->nr_events++;
310         if (event->attr.inherit_stat)
311                 ctx->nr_stat++;
312 }
313
314 static void perf_group_attach(struct perf_event *event)
315 {
316         struct perf_event *group_leader = event->group_leader;
317
318         /*
319          * We can have double attach due to group movement in perf_event_open.
320          */
321         if (event->attach_state & PERF_ATTACH_GROUP)
322                 return;
323
324         event->attach_state |= PERF_ATTACH_GROUP;
325
326         if (group_leader == event)
327                 return;
328
329         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
330                         !is_software_event(event))
331                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
332
333         list_add_tail(&event->group_entry, &group_leader->sibling_list);
334         group_leader->nr_siblings++;
335 }
336
337 /*
338  * Remove a event from the lists for its context.
339  * Must be called with ctx->mutex and ctx->lock held.
340  */
341 static void
342 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
343 {
344         /*
345          * We can have double detach due to exit/hot-unplug + close.
346          */
347         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
348                 return;
349
350         event->attach_state &= ~PERF_ATTACH_CONTEXT;
351
352         ctx->nr_events--;
353         if (event->attr.inherit_stat)
354                 ctx->nr_stat--;
355
356         list_del_rcu(&event->event_entry);
357
358         if (event->group_leader == event)
359                 list_del_init(&event->group_entry);
360
361         update_group_times(event);
362
363         /*
364          * If event was in error state, then keep it
365          * that way, otherwise bogus counts will be
366          * returned on read(). The only way to get out
367          * of error state is by explicit re-enabling
368          * of the event
369          */
370         if (event->state > PERF_EVENT_STATE_OFF)
371                 event->state = PERF_EVENT_STATE_OFF;
372 }
373
374 static void perf_group_detach(struct perf_event *event)
375 {
376         struct perf_event *sibling, *tmp;
377         struct list_head *list = NULL;
378
379         /*
380          * We can have double detach due to exit/hot-unplug + close.
381          */
382         if (!(event->attach_state & PERF_ATTACH_GROUP))
383                 return;
384
385         event->attach_state &= ~PERF_ATTACH_GROUP;
386
387         /*
388          * If this is a sibling, remove it from its group.
389          */
390         if (event->group_leader != event) {
391                 list_del_init(&event->group_entry);
392                 event->group_leader->nr_siblings--;
393                 return;
394         }
395
396         if (!list_empty(&event->group_entry))
397                 list = &event->group_entry;
398
399         /*
400          * If this was a group event with sibling events then
401          * upgrade the siblings to singleton events by adding them
402          * to whatever list we are on.
403          */
404         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
405                 if (list)
406                         list_move_tail(&sibling->group_entry, list);
407                 sibling->group_leader = sibling;
408
409                 /* Inherit group flags from the previous leader */
410                 sibling->group_flags = event->group_flags;
411         }
412 }
413
414 static inline int
415 event_filter_match(struct perf_event *event)
416 {
417         return event->cpu == -1 || event->cpu == smp_processor_id();
418 }
419
420 static void
421 event_sched_out(struct perf_event *event,
422                   struct perf_cpu_context *cpuctx,
423                   struct perf_event_context *ctx)
424 {
425         u64 delta;
426         /*
427          * An event which could not be activated because of
428          * filter mismatch still needs to have its timings
429          * maintained, otherwise bogus information is return
430          * via read() for time_enabled, time_running:
431          */
432         if (event->state == PERF_EVENT_STATE_INACTIVE
433             && !event_filter_match(event)) {
434                 delta = ctx->time - event->tstamp_stopped;
435                 event->tstamp_running += delta;
436                 event->tstamp_stopped = ctx->time;
437         }
438
439         if (event->state != PERF_EVENT_STATE_ACTIVE)
440                 return;
441
442         event->state = PERF_EVENT_STATE_INACTIVE;
443         if (event->pending_disable) {
444                 event->pending_disable = 0;
445                 event->state = PERF_EVENT_STATE_OFF;
446         }
447         event->tstamp_stopped = ctx->time;
448         event->pmu->del(event, 0);
449         event->oncpu = -1;
450
451         if (!is_software_event(event))
452                 cpuctx->active_oncpu--;
453         ctx->nr_active--;
454         if (event->attr.exclusive || !cpuctx->active_oncpu)
455                 cpuctx->exclusive = 0;
456 }
457
458 static void
459 group_sched_out(struct perf_event *group_event,
460                 struct perf_cpu_context *cpuctx,
461                 struct perf_event_context *ctx)
462 {
463         struct perf_event *event;
464         int state = group_event->state;
465
466         event_sched_out(group_event, cpuctx, ctx);
467
468         /*
469          * Schedule out siblings (if any):
470          */
471         list_for_each_entry(event, &group_event->sibling_list, group_entry)
472                 event_sched_out(event, cpuctx, ctx);
473
474         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
475                 cpuctx->exclusive = 0;
476 }
477
478 static inline struct perf_cpu_context *
479 __get_cpu_context(struct perf_event_context *ctx)
480 {
481         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
482 }
483
484 /*
485  * Cross CPU call to remove a performance event
486  *
487  * We disable the event on the hardware level first. After that we
488  * remove it from the context list.
489  */
490 static void __perf_event_remove_from_context(void *info)
491 {
492         struct perf_event *event = info;
493         struct perf_event_context *ctx = event->ctx;
494         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
495
496         /*
497          * If this is a task context, we need to check whether it is
498          * the current task context of this cpu. If not it has been
499          * scheduled out before the smp call arrived.
500          */
501         if (ctx->task && cpuctx->task_ctx != ctx)
502                 return;
503
504         raw_spin_lock(&ctx->lock);
505
506         event_sched_out(event, cpuctx, ctx);
507
508         list_del_event(event, ctx);
509
510         raw_spin_unlock(&ctx->lock);
511 }
512
513
514 /*
515  * Remove the event from a task's (or a CPU's) list of events.
516  *
517  * Must be called with ctx->mutex held.
518  *
519  * CPU events are removed with a smp call. For task events we only
520  * call when the task is on a CPU.
521  *
522  * If event->ctx is a cloned context, callers must make sure that
523  * every task struct that event->ctx->task could possibly point to
524  * remains valid.  This is OK when called from perf_release since
525  * that only calls us on the top-level context, which can't be a clone.
526  * When called from perf_event_exit_task, it's OK because the
527  * context has been detached from its task.
528  */
529 static void perf_event_remove_from_context(struct perf_event *event)
530 {
531         struct perf_event_context *ctx = event->ctx;
532         struct task_struct *task = ctx->task;
533
534         if (!task) {
535                 /*
536                  * Per cpu events are removed via an smp call and
537                  * the removal is always successful.
538                  */
539                 smp_call_function_single(event->cpu,
540                                          __perf_event_remove_from_context,
541                                          event, 1);
542                 return;
543         }
544
545 retry:
546         task_oncpu_function_call(task, __perf_event_remove_from_context,
547                                  event);
548
549         raw_spin_lock_irq(&ctx->lock);
550         /*
551          * If the context is active we need to retry the smp call.
552          */
553         if (ctx->nr_active && !list_empty(&event->group_entry)) {
554                 raw_spin_unlock_irq(&ctx->lock);
555                 goto retry;
556         }
557
558         /*
559          * The lock prevents that this context is scheduled in so we
560          * can remove the event safely, if the call above did not
561          * succeed.
562          */
563         if (!list_empty(&event->group_entry))
564                 list_del_event(event, ctx);
565         raw_spin_unlock_irq(&ctx->lock);
566 }
567
568 /*
569  * Cross CPU call to disable a performance event
570  */
571 static void __perf_event_disable(void *info)
572 {
573         struct perf_event *event = info;
574         struct perf_event_context *ctx = event->ctx;
575         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
576
577         /*
578          * If this is a per-task event, need to check whether this
579          * event's task is the current task on this cpu.
580          */
581         if (ctx->task && cpuctx->task_ctx != ctx)
582                 return;
583
584         raw_spin_lock(&ctx->lock);
585
586         /*
587          * If the event is on, turn it off.
588          * If it is in error state, leave it in error state.
589          */
590         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
591                 update_context_time(ctx);
592                 update_group_times(event);
593                 if (event == event->group_leader)
594                         group_sched_out(event, cpuctx, ctx);
595                 else
596                         event_sched_out(event, cpuctx, ctx);
597                 event->state = PERF_EVENT_STATE_OFF;
598         }
599
600         raw_spin_unlock(&ctx->lock);
601 }
602
603 /*
604  * Disable a event.
605  *
606  * If event->ctx is a cloned context, callers must make sure that
607  * every task struct that event->ctx->task could possibly point to
608  * remains valid.  This condition is satisifed when called through
609  * perf_event_for_each_child or perf_event_for_each because they
610  * hold the top-level event's child_mutex, so any descendant that
611  * goes to exit will block in sync_child_event.
612  * When called from perf_pending_event it's OK because event->ctx
613  * is the current context on this CPU and preemption is disabled,
614  * hence we can't get into perf_event_task_sched_out for this context.
615  */
616 void perf_event_disable(struct perf_event *event)
617 {
618         struct perf_event_context *ctx = event->ctx;
619         struct task_struct *task = ctx->task;
620
621         if (!task) {
622                 /*
623                  * Disable the event on the cpu that it's on
624                  */
625                 smp_call_function_single(event->cpu, __perf_event_disable,
626                                          event, 1);
627                 return;
628         }
629
630 retry:
631         task_oncpu_function_call(task, __perf_event_disable, event);
632
633         raw_spin_lock_irq(&ctx->lock);
634         /*
635          * If the event is still active, we need to retry the cross-call.
636          */
637         if (event->state == PERF_EVENT_STATE_ACTIVE) {
638                 raw_spin_unlock_irq(&ctx->lock);
639                 goto retry;
640         }
641
642         /*
643          * Since we have the lock this context can't be scheduled
644          * in, so we can change the state safely.
645          */
646         if (event->state == PERF_EVENT_STATE_INACTIVE) {
647                 update_group_times(event);
648                 event->state = PERF_EVENT_STATE_OFF;
649         }
650
651         raw_spin_unlock_irq(&ctx->lock);
652 }
653
654 static int
655 event_sched_in(struct perf_event *event,
656                  struct perf_cpu_context *cpuctx,
657                  struct perf_event_context *ctx)
658 {
659         if (event->state <= PERF_EVENT_STATE_OFF)
660                 return 0;
661
662         event->state = PERF_EVENT_STATE_ACTIVE;
663         event->oncpu = smp_processor_id();
664         /*
665          * The new state must be visible before we turn it on in the hardware:
666          */
667         smp_wmb();
668
669         if (event->pmu->add(event, PERF_EF_START)) {
670                 event->state = PERF_EVENT_STATE_INACTIVE;
671                 event->oncpu = -1;
672                 return -EAGAIN;
673         }
674
675         event->tstamp_running += ctx->time - event->tstamp_stopped;
676
677         event->shadow_ctx_time = ctx->time - ctx->timestamp;
678
679         if (!is_software_event(event))
680                 cpuctx->active_oncpu++;
681         ctx->nr_active++;
682
683         if (event->attr.exclusive)
684                 cpuctx->exclusive = 1;
685
686         return 0;
687 }
688
689 static int
690 group_sched_in(struct perf_event *group_event,
691                struct perf_cpu_context *cpuctx,
692                struct perf_event_context *ctx)
693 {
694         struct perf_event *event, *partial_group = NULL;
695         struct pmu *pmu = group_event->pmu;
696         u64 now = ctx->time;
697         bool simulate = false;
698
699         if (group_event->state == PERF_EVENT_STATE_OFF)
700                 return 0;
701
702         pmu->start_txn(pmu);
703
704         if (event_sched_in(group_event, cpuctx, ctx)) {
705                 pmu->cancel_txn(pmu);
706                 return -EAGAIN;
707         }
708
709         /*
710          * Schedule in siblings as one group (if any):
711          */
712         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
713                 if (event_sched_in(event, cpuctx, ctx)) {
714                         partial_group = event;
715                         goto group_error;
716                 }
717         }
718
719         if (!pmu->commit_txn(pmu))
720                 return 0;
721
722 group_error:
723         /*
724          * Groups can be scheduled in as one unit only, so undo any
725          * partial group before returning:
726          * The events up to the failed event are scheduled out normally,
727          * tstamp_stopped will be updated.
728          *
729          * The failed events and the remaining siblings need to have
730          * their timings updated as if they had gone thru event_sched_in()
731          * and event_sched_out(). This is required to get consistent timings
732          * across the group. This also takes care of the case where the group
733          * could never be scheduled by ensuring tstamp_stopped is set to mark
734          * the time the event was actually stopped, such that time delta
735          * calculation in update_event_times() is correct.
736          */
737         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
738                 if (event == partial_group)
739                         simulate = true;
740
741                 if (simulate) {
742                         event->tstamp_running += now - event->tstamp_stopped;
743                         event->tstamp_stopped = now;
744                 } else {
745                         event_sched_out(event, cpuctx, ctx);
746                 }
747         }
748         event_sched_out(group_event, cpuctx, ctx);
749
750         pmu->cancel_txn(pmu);
751
752         return -EAGAIN;
753 }
754
755 /*
756  * Work out whether we can put this event group on the CPU now.
757  */
758 static int group_can_go_on(struct perf_event *event,
759                            struct perf_cpu_context *cpuctx,
760                            int can_add_hw)
761 {
762         /*
763          * Groups consisting entirely of software events can always go on.
764          */
765         if (event->group_flags & PERF_GROUP_SOFTWARE)
766                 return 1;
767         /*
768          * If an exclusive group is already on, no other hardware
769          * events can go on.
770          */
771         if (cpuctx->exclusive)
772                 return 0;
773         /*
774          * If this group is exclusive and there are already
775          * events on the CPU, it can't go on.
776          */
777         if (event->attr.exclusive && cpuctx->active_oncpu)
778                 return 0;
779         /*
780          * Otherwise, try to add it if all previous groups were able
781          * to go on.
782          */
783         return can_add_hw;
784 }
785
786 static void add_event_to_ctx(struct perf_event *event,
787                                struct perf_event_context *ctx)
788 {
789         list_add_event(event, ctx);
790         perf_group_attach(event);
791         event->tstamp_enabled = ctx->time;
792         event->tstamp_running = ctx->time;
793         event->tstamp_stopped = ctx->time;
794 }
795
796 /*
797  * Cross CPU call to install and enable a performance event
798  *
799  * Must be called with ctx->mutex held
800  */
801 static void __perf_install_in_context(void *info)
802 {
803         struct perf_event *event = info;
804         struct perf_event_context *ctx = event->ctx;
805         struct perf_event *leader = event->group_leader;
806         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
807         int err;
808
809         /*
810          * If this is a task context, we need to check whether it is
811          * the current task context of this cpu. If not it has been
812          * scheduled out before the smp call arrived.
813          * Or possibly this is the right context but it isn't
814          * on this cpu because it had no events.
815          */
816         if (ctx->task && cpuctx->task_ctx != ctx) {
817                 if (cpuctx->task_ctx || ctx->task != current)
818                         return;
819                 cpuctx->task_ctx = ctx;
820         }
821
822         raw_spin_lock(&ctx->lock);
823         ctx->is_active = 1;
824         update_context_time(ctx);
825
826         add_event_to_ctx(event, ctx);
827
828         if (event->cpu != -1 && event->cpu != smp_processor_id())
829                 goto unlock;
830
831         /*
832          * Don't put the event on if it is disabled or if
833          * it is in a group and the group isn't on.
834          */
835         if (event->state != PERF_EVENT_STATE_INACTIVE ||
836             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
837                 goto unlock;
838
839         /*
840          * An exclusive event can't go on if there are already active
841          * hardware events, and no hardware event can go on if there
842          * is already an exclusive event on.
843          */
844         if (!group_can_go_on(event, cpuctx, 1))
845                 err = -EEXIST;
846         else
847                 err = event_sched_in(event, cpuctx, ctx);
848
849         if (err) {
850                 /*
851                  * This event couldn't go on.  If it is in a group
852                  * then we have to pull the whole group off.
853                  * If the event group is pinned then put it in error state.
854                  */
855                 if (leader != event)
856                         group_sched_out(leader, cpuctx, ctx);
857                 if (leader->attr.pinned) {
858                         update_group_times(leader);
859                         leader->state = PERF_EVENT_STATE_ERROR;
860                 }
861         }
862
863 unlock:
864         raw_spin_unlock(&ctx->lock);
865 }
866
867 /*
868  * Attach a performance event to a context
869  *
870  * First we add the event to the list with the hardware enable bit
871  * in event->hw_config cleared.
872  *
873  * If the event is attached to a task which is on a CPU we use a smp
874  * call to enable it in the task context. The task might have been
875  * scheduled away, but we check this in the smp call again.
876  *
877  * Must be called with ctx->mutex held.
878  */
879 static void
880 perf_install_in_context(struct perf_event_context *ctx,
881                         struct perf_event *event,
882                         int cpu)
883 {
884         struct task_struct *task = ctx->task;
885
886         event->ctx = ctx;
887
888         if (!task) {
889                 /*
890                  * Per cpu events are installed via an smp call and
891                  * the install is always successful.
892                  */
893                 smp_call_function_single(cpu, __perf_install_in_context,
894                                          event, 1);
895                 return;
896         }
897
898 retry:
899         task_oncpu_function_call(task, __perf_install_in_context,
900                                  event);
901
902         raw_spin_lock_irq(&ctx->lock);
903         /*
904          * we need to retry the smp call.
905          */
906         if (ctx->is_active && list_empty(&event->group_entry)) {
907                 raw_spin_unlock_irq(&ctx->lock);
908                 goto retry;
909         }
910
911         /*
912          * The lock prevents that this context is scheduled in so we
913          * can add the event safely, if it the call above did not
914          * succeed.
915          */
916         if (list_empty(&event->group_entry))
917                 add_event_to_ctx(event, ctx);
918         raw_spin_unlock_irq(&ctx->lock);
919 }
920
921 /*
922  * Put a event into inactive state and update time fields.
923  * Enabling the leader of a group effectively enables all
924  * the group members that aren't explicitly disabled, so we
925  * have to update their ->tstamp_enabled also.
926  * Note: this works for group members as well as group leaders
927  * since the non-leader members' sibling_lists will be empty.
928  */
929 static void __perf_event_mark_enabled(struct perf_event *event,
930                                         struct perf_event_context *ctx)
931 {
932         struct perf_event *sub;
933
934         event->state = PERF_EVENT_STATE_INACTIVE;
935         event->tstamp_enabled = ctx->time - event->total_time_enabled;
936         list_for_each_entry(sub, &event->sibling_list, group_entry) {
937                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
938                         sub->tstamp_enabled =
939                                 ctx->time - sub->total_time_enabled;
940                 }
941         }
942 }
943
944 /*
945  * Cross CPU call to enable a performance event
946  */
947 static void __perf_event_enable(void *info)
948 {
949         struct perf_event *event = info;
950         struct perf_event_context *ctx = event->ctx;
951         struct perf_event *leader = event->group_leader;
952         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
953         int err;
954
955         /*
956          * If this is a per-task event, need to check whether this
957          * event's task is the current task on this cpu.
958          */
959         if (ctx->task && cpuctx->task_ctx != ctx) {
960                 if (cpuctx->task_ctx || ctx->task != current)
961                         return;
962                 cpuctx->task_ctx = ctx;
963         }
964
965         raw_spin_lock(&ctx->lock);
966         ctx->is_active = 1;
967         update_context_time(ctx);
968
969         if (event->state >= PERF_EVENT_STATE_INACTIVE)
970                 goto unlock;
971         __perf_event_mark_enabled(event, ctx);
972
973         if (event->cpu != -1 && event->cpu != smp_processor_id())
974                 goto unlock;
975
976         /*
977          * If the event is in a group and isn't the group leader,
978          * then don't put it on unless the group is on.
979          */
980         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
981                 goto unlock;
982
983         if (!group_can_go_on(event, cpuctx, 1)) {
984                 err = -EEXIST;
985         } else {
986                 if (event == leader)
987                         err = group_sched_in(event, cpuctx, ctx);
988                 else
989                         err = event_sched_in(event, cpuctx, ctx);
990         }
991
992         if (err) {
993                 /*
994                  * If this event can't go on and it's part of a
995                  * group, then the whole group has to come off.
996                  */
997                 if (leader != event)
998                         group_sched_out(leader, cpuctx, ctx);
999                 if (leader->attr.pinned) {
1000                         update_group_times(leader);
1001                         leader->state = PERF_EVENT_STATE_ERROR;
1002                 }
1003         }
1004
1005 unlock:
1006         raw_spin_unlock(&ctx->lock);
1007 }
1008
1009 /*
1010  * Enable a event.
1011  *
1012  * If event->ctx is a cloned context, callers must make sure that
1013  * every task struct that event->ctx->task could possibly point to
1014  * remains valid.  This condition is satisfied when called through
1015  * perf_event_for_each_child or perf_event_for_each as described
1016  * for perf_event_disable.
1017  */
1018 void perf_event_enable(struct perf_event *event)
1019 {
1020         struct perf_event_context *ctx = event->ctx;
1021         struct task_struct *task = ctx->task;
1022
1023         if (!task) {
1024                 /*
1025                  * Enable the event on the cpu that it's on
1026                  */
1027                 smp_call_function_single(event->cpu, __perf_event_enable,
1028                                          event, 1);
1029                 return;
1030         }
1031
1032         raw_spin_lock_irq(&ctx->lock);
1033         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1034                 goto out;
1035
1036         /*
1037          * If the event is in error state, clear that first.
1038          * That way, if we see the event in error state below, we
1039          * know that it has gone back into error state, as distinct
1040          * from the task having been scheduled away before the
1041          * cross-call arrived.
1042          */
1043         if (event->state == PERF_EVENT_STATE_ERROR)
1044                 event->state = PERF_EVENT_STATE_OFF;
1045
1046 retry:
1047         raw_spin_unlock_irq(&ctx->lock);
1048         task_oncpu_function_call(task, __perf_event_enable, event);
1049
1050         raw_spin_lock_irq(&ctx->lock);
1051
1052         /*
1053          * If the context is active and the event is still off,
1054          * we need to retry the cross-call.
1055          */
1056         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1057                 goto retry;
1058
1059         /*
1060          * Since we have the lock this context can't be scheduled
1061          * in, so we can change the state safely.
1062          */
1063         if (event->state == PERF_EVENT_STATE_OFF)
1064                 __perf_event_mark_enabled(event, ctx);
1065
1066 out:
1067         raw_spin_unlock_irq(&ctx->lock);
1068 }
1069
1070 static int perf_event_refresh(struct perf_event *event, int refresh)
1071 {
1072         /*
1073          * not supported on inherited events
1074          */
1075         if (event->attr.inherit)
1076                 return -EINVAL;
1077
1078         atomic_add(refresh, &event->event_limit);
1079         perf_event_enable(event);
1080
1081         return 0;
1082 }
1083
1084 enum event_type_t {
1085         EVENT_FLEXIBLE = 0x1,
1086         EVENT_PINNED = 0x2,
1087         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1088 };
1089
1090 static void ctx_sched_out(struct perf_event_context *ctx,
1091                           struct perf_cpu_context *cpuctx,
1092                           enum event_type_t event_type)
1093 {
1094         struct perf_event *event;
1095
1096         raw_spin_lock(&ctx->lock);
1097         perf_pmu_disable(ctx->pmu);
1098         ctx->is_active = 0;
1099         if (likely(!ctx->nr_events))
1100                 goto out;
1101         update_context_time(ctx);
1102
1103         if (!ctx->nr_active)
1104                 goto out;
1105
1106         if (event_type & EVENT_PINNED) {
1107                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1108                         group_sched_out(event, cpuctx, ctx);
1109         }
1110
1111         if (event_type & EVENT_FLEXIBLE) {
1112                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1113                         group_sched_out(event, cpuctx, ctx);
1114         }
1115 out:
1116         perf_pmu_enable(ctx->pmu);
1117         raw_spin_unlock(&ctx->lock);
1118 }
1119
1120 /*
1121  * Test whether two contexts are equivalent, i.e. whether they
1122  * have both been cloned from the same version of the same context
1123  * and they both have the same number of enabled events.
1124  * If the number of enabled events is the same, then the set
1125  * of enabled events should be the same, because these are both
1126  * inherited contexts, therefore we can't access individual events
1127  * in them directly with an fd; we can only enable/disable all
1128  * events via prctl, or enable/disable all events in a family
1129  * via ioctl, which will have the same effect on both contexts.
1130  */
1131 static int context_equiv(struct perf_event_context *ctx1,
1132                          struct perf_event_context *ctx2)
1133 {
1134         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1135                 && ctx1->parent_gen == ctx2->parent_gen
1136                 && !ctx1->pin_count && !ctx2->pin_count;
1137 }
1138
1139 static void __perf_event_sync_stat(struct perf_event *event,
1140                                      struct perf_event *next_event)
1141 {
1142         u64 value;
1143
1144         if (!event->attr.inherit_stat)
1145                 return;
1146
1147         /*
1148          * Update the event value, we cannot use perf_event_read()
1149          * because we're in the middle of a context switch and have IRQs
1150          * disabled, which upsets smp_call_function_single(), however
1151          * we know the event must be on the current CPU, therefore we
1152          * don't need to use it.
1153          */
1154         switch (event->state) {
1155         case PERF_EVENT_STATE_ACTIVE:
1156                 event->pmu->read(event);
1157                 /* fall-through */
1158
1159         case PERF_EVENT_STATE_INACTIVE:
1160                 update_event_times(event);
1161                 break;
1162
1163         default:
1164                 break;
1165         }
1166
1167         /*
1168          * In order to keep per-task stats reliable we need to flip the event
1169          * values when we flip the contexts.
1170          */
1171         value = local64_read(&next_event->count);
1172         value = local64_xchg(&event->count, value);
1173         local64_set(&next_event->count, value);
1174
1175         swap(event->total_time_enabled, next_event->total_time_enabled);
1176         swap(event->total_time_running, next_event->total_time_running);
1177
1178         /*
1179          * Since we swizzled the values, update the user visible data too.
1180          */
1181         perf_event_update_userpage(event);
1182         perf_event_update_userpage(next_event);
1183 }
1184
1185 #define list_next_entry(pos, member) \
1186         list_entry(pos->member.next, typeof(*pos), member)
1187
1188 static void perf_event_sync_stat(struct perf_event_context *ctx,
1189                                    struct perf_event_context *next_ctx)
1190 {
1191         struct perf_event *event, *next_event;
1192
1193         if (!ctx->nr_stat)
1194                 return;
1195
1196         update_context_time(ctx);
1197
1198         event = list_first_entry(&ctx->event_list,
1199                                    struct perf_event, event_entry);
1200
1201         next_event = list_first_entry(&next_ctx->event_list,
1202                                         struct perf_event, event_entry);
1203
1204         while (&event->event_entry != &ctx->event_list &&
1205                &next_event->event_entry != &next_ctx->event_list) {
1206
1207                 __perf_event_sync_stat(event, next_event);
1208
1209                 event = list_next_entry(event, event_entry);
1210                 next_event = list_next_entry(next_event, event_entry);
1211         }
1212 }
1213
1214 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1215                                   struct task_struct *next)
1216 {
1217         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1218         struct perf_event_context *next_ctx;
1219         struct perf_event_context *parent;
1220         struct perf_cpu_context *cpuctx;
1221         int do_switch = 1;
1222
1223         if (likely(!ctx))
1224                 return;
1225
1226         cpuctx = __get_cpu_context(ctx);
1227         if (!cpuctx->task_ctx)
1228                 return;
1229
1230         rcu_read_lock();
1231         parent = rcu_dereference(ctx->parent_ctx);
1232         next_ctx = next->perf_event_ctxp[ctxn];
1233         if (parent && next_ctx &&
1234             rcu_dereference(next_ctx->parent_ctx) == parent) {
1235                 /*
1236                  * Looks like the two contexts are clones, so we might be
1237                  * able to optimize the context switch.  We lock both
1238                  * contexts and check that they are clones under the
1239                  * lock (including re-checking that neither has been
1240                  * uncloned in the meantime).  It doesn't matter which
1241                  * order we take the locks because no other cpu could
1242                  * be trying to lock both of these tasks.
1243                  */
1244                 raw_spin_lock(&ctx->lock);
1245                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1246                 if (context_equiv(ctx, next_ctx)) {
1247                         /*
1248                          * XXX do we need a memory barrier of sorts
1249                          * wrt to rcu_dereference() of perf_event_ctxp
1250                          */
1251                         task->perf_event_ctxp[ctxn] = next_ctx;
1252                         next->perf_event_ctxp[ctxn] = ctx;
1253                         ctx->task = next;
1254                         next_ctx->task = task;
1255                         do_switch = 0;
1256
1257                         perf_event_sync_stat(ctx, next_ctx);
1258                 }
1259                 raw_spin_unlock(&next_ctx->lock);
1260                 raw_spin_unlock(&ctx->lock);
1261         }
1262         rcu_read_unlock();
1263
1264         if (do_switch) {
1265                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1266                 cpuctx->task_ctx = NULL;
1267         }
1268 }
1269
1270 #define for_each_task_context_nr(ctxn)                                  \
1271         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1272
1273 /*
1274  * Called from scheduler to remove the events of the current task,
1275  * with interrupts disabled.
1276  *
1277  * We stop each event and update the event value in event->count.
1278  *
1279  * This does not protect us against NMI, but disable()
1280  * sets the disabled bit in the control field of event _before_
1281  * accessing the event control register. If a NMI hits, then it will
1282  * not restart the event.
1283  */
1284 void __perf_event_task_sched_out(struct task_struct *task,
1285                                  struct task_struct *next)
1286 {
1287         int ctxn;
1288
1289         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1290
1291         for_each_task_context_nr(ctxn)
1292                 perf_event_context_sched_out(task, ctxn, next);
1293 }
1294
1295 static void task_ctx_sched_out(struct perf_event_context *ctx,
1296                                enum event_type_t event_type)
1297 {
1298         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1299
1300         if (!cpuctx->task_ctx)
1301                 return;
1302
1303         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1304                 return;
1305
1306         ctx_sched_out(ctx, cpuctx, event_type);
1307         cpuctx->task_ctx = NULL;
1308 }
1309
1310 /*
1311  * Called with IRQs disabled
1312  */
1313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1314                               enum event_type_t event_type)
1315 {
1316         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1317 }
1318
1319 static void
1320 ctx_pinned_sched_in(struct perf_event_context *ctx,
1321                     struct perf_cpu_context *cpuctx)
1322 {
1323         struct perf_event *event;
1324
1325         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1326                 if (event->state <= PERF_EVENT_STATE_OFF)
1327                         continue;
1328                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1329                         continue;
1330
1331                 if (group_can_go_on(event, cpuctx, 1))
1332                         group_sched_in(event, cpuctx, ctx);
1333
1334                 /*
1335                  * If this pinned group hasn't been scheduled,
1336                  * put it in error state.
1337                  */
1338                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1339                         update_group_times(event);
1340                         event->state = PERF_EVENT_STATE_ERROR;
1341                 }
1342         }
1343 }
1344
1345 static void
1346 ctx_flexible_sched_in(struct perf_event_context *ctx,
1347                       struct perf_cpu_context *cpuctx)
1348 {
1349         struct perf_event *event;
1350         int can_add_hw = 1;
1351
1352         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1353                 /* Ignore events in OFF or ERROR state */
1354                 if (event->state <= PERF_EVENT_STATE_OFF)
1355                         continue;
1356                 /*
1357                  * Listen to the 'cpu' scheduling filter constraint
1358                  * of events:
1359                  */
1360                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1361                         continue;
1362
1363                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1364                         if (group_sched_in(event, cpuctx, ctx))
1365                                 can_add_hw = 0;
1366                 }
1367         }
1368 }
1369
1370 static void
1371 ctx_sched_in(struct perf_event_context *ctx,
1372              struct perf_cpu_context *cpuctx,
1373              enum event_type_t event_type)
1374 {
1375         raw_spin_lock(&ctx->lock);
1376         ctx->is_active = 1;
1377         if (likely(!ctx->nr_events))
1378                 goto out;
1379
1380         ctx->timestamp = perf_clock();
1381
1382         /*
1383          * First go through the list and put on any pinned groups
1384          * in order to give them the best chance of going on.
1385          */
1386         if (event_type & EVENT_PINNED)
1387                 ctx_pinned_sched_in(ctx, cpuctx);
1388
1389         /* Then walk through the lower prio flexible groups */
1390         if (event_type & EVENT_FLEXIBLE)
1391                 ctx_flexible_sched_in(ctx, cpuctx);
1392
1393 out:
1394         raw_spin_unlock(&ctx->lock);
1395 }
1396
1397 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1398                              enum event_type_t event_type)
1399 {
1400         struct perf_event_context *ctx = &cpuctx->ctx;
1401
1402         ctx_sched_in(ctx, cpuctx, event_type);
1403 }
1404
1405 static void task_ctx_sched_in(struct perf_event_context *ctx,
1406                               enum event_type_t event_type)
1407 {
1408         struct perf_cpu_context *cpuctx;
1409
1410         cpuctx = __get_cpu_context(ctx);
1411         if (cpuctx->task_ctx == ctx)
1412                 return;
1413
1414         ctx_sched_in(ctx, cpuctx, event_type);
1415         cpuctx->task_ctx = ctx;
1416 }
1417
1418 void perf_event_context_sched_in(struct perf_event_context *ctx)
1419 {
1420         struct perf_cpu_context *cpuctx;
1421
1422         cpuctx = __get_cpu_context(ctx);
1423         if (cpuctx->task_ctx == ctx)
1424                 return;
1425
1426         perf_pmu_disable(ctx->pmu);
1427         /*
1428          * We want to keep the following priority order:
1429          * cpu pinned (that don't need to move), task pinned,
1430          * cpu flexible, task flexible.
1431          */
1432         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1433
1434         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1435         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1436         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1437
1438         cpuctx->task_ctx = ctx;
1439
1440         /*
1441          * Since these rotations are per-cpu, we need to ensure the
1442          * cpu-context we got scheduled on is actually rotating.
1443          */
1444         perf_pmu_rotate_start(ctx->pmu);
1445         perf_pmu_enable(ctx->pmu);
1446 }
1447
1448 /*
1449  * Called from scheduler to add the events of the current task
1450  * with interrupts disabled.
1451  *
1452  * We restore the event value and then enable it.
1453  *
1454  * This does not protect us against NMI, but enable()
1455  * sets the enabled bit in the control field of event _before_
1456  * accessing the event control register. If a NMI hits, then it will
1457  * keep the event running.
1458  */
1459 void __perf_event_task_sched_in(struct task_struct *task)
1460 {
1461         struct perf_event_context *ctx;
1462         int ctxn;
1463
1464         for_each_task_context_nr(ctxn) {
1465                 ctx = task->perf_event_ctxp[ctxn];
1466                 if (likely(!ctx))
1467                         continue;
1468
1469                 perf_event_context_sched_in(ctx);
1470         }
1471 }
1472
1473 #define MAX_INTERRUPTS (~0ULL)
1474
1475 static void perf_log_throttle(struct perf_event *event, int enable);
1476
1477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1478 {
1479         u64 frequency = event->attr.sample_freq;
1480         u64 sec = NSEC_PER_SEC;
1481         u64 divisor, dividend;
1482
1483         int count_fls, nsec_fls, frequency_fls, sec_fls;
1484
1485         count_fls = fls64(count);
1486         nsec_fls = fls64(nsec);
1487         frequency_fls = fls64(frequency);
1488         sec_fls = 30;
1489
1490         /*
1491          * We got @count in @nsec, with a target of sample_freq HZ
1492          * the target period becomes:
1493          *
1494          *             @count * 10^9
1495          * period = -------------------
1496          *          @nsec * sample_freq
1497          *
1498          */
1499
1500         /*
1501          * Reduce accuracy by one bit such that @a and @b converge
1502          * to a similar magnitude.
1503          */
1504 #define REDUCE_FLS(a, b)                \
1505 do {                                    \
1506         if (a##_fls > b##_fls) {        \
1507                 a >>= 1;                \
1508                 a##_fls--;              \
1509         } else {                        \
1510                 b >>= 1;                \
1511                 b##_fls--;              \
1512         }                               \
1513 } while (0)
1514
1515         /*
1516          * Reduce accuracy until either term fits in a u64, then proceed with
1517          * the other, so that finally we can do a u64/u64 division.
1518          */
1519         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1520                 REDUCE_FLS(nsec, frequency);
1521                 REDUCE_FLS(sec, count);
1522         }
1523
1524         if (count_fls + sec_fls > 64) {
1525                 divisor = nsec * frequency;
1526
1527                 while (count_fls + sec_fls > 64) {
1528                         REDUCE_FLS(count, sec);
1529                         divisor >>= 1;
1530                 }
1531
1532                 dividend = count * sec;
1533         } else {
1534                 dividend = count * sec;
1535
1536                 while (nsec_fls + frequency_fls > 64) {
1537                         REDUCE_FLS(nsec, frequency);
1538                         dividend >>= 1;
1539                 }
1540
1541                 divisor = nsec * frequency;
1542         }
1543
1544         if (!divisor)
1545                 return dividend;
1546
1547         return div64_u64(dividend, divisor);
1548 }
1549
1550 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1551 {
1552         struct hw_perf_event *hwc = &event->hw;
1553         s64 period, sample_period;
1554         s64 delta;
1555
1556         period = perf_calculate_period(event, nsec, count);
1557
1558         delta = (s64)(period - hwc->sample_period);
1559         delta = (delta + 7) / 8; /* low pass filter */
1560
1561         sample_period = hwc->sample_period + delta;
1562
1563         if (!sample_period)
1564                 sample_period = 1;
1565
1566         hwc->sample_period = sample_period;
1567
1568         if (local64_read(&hwc->period_left) > 8*sample_period) {
1569                 event->pmu->stop(event, PERF_EF_UPDATE);
1570                 local64_set(&hwc->period_left, 0);
1571                 event->pmu->start(event, PERF_EF_RELOAD);
1572         }
1573 }
1574
1575 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1576 {
1577         struct perf_event *event;
1578         struct hw_perf_event *hwc;
1579         u64 interrupts, now;
1580         s64 delta;
1581
1582         raw_spin_lock(&ctx->lock);
1583         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1584                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1585                         continue;
1586
1587                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1588                         continue;
1589
1590                 hwc = &event->hw;
1591
1592                 interrupts = hwc->interrupts;
1593                 hwc->interrupts = 0;
1594
1595                 /*
1596                  * unthrottle events on the tick
1597                  */
1598                 if (interrupts == MAX_INTERRUPTS) {
1599                         perf_log_throttle(event, 1);
1600                         event->pmu->start(event, 0);
1601                 }
1602
1603                 if (!event->attr.freq || !event->attr.sample_freq)
1604                         continue;
1605
1606                 event->pmu->read(event);
1607                 now = local64_read(&event->count);
1608                 delta = now - hwc->freq_count_stamp;
1609                 hwc->freq_count_stamp = now;
1610
1611                 if (delta > 0)
1612                         perf_adjust_period(event, period, delta);
1613         }
1614         raw_spin_unlock(&ctx->lock);
1615 }
1616
1617 /*
1618  * Round-robin a context's events:
1619  */
1620 static void rotate_ctx(struct perf_event_context *ctx)
1621 {
1622         raw_spin_lock(&ctx->lock);
1623
1624         /* Rotate the first entry last of non-pinned groups */
1625         list_rotate_left(&ctx->flexible_groups);
1626
1627         raw_spin_unlock(&ctx->lock);
1628 }
1629
1630 /*
1631  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1632  * because they're strictly cpu affine and rotate_start is called with IRQs
1633  * disabled, while rotate_context is called from IRQ context.
1634  */
1635 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1636 {
1637         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1638         struct perf_event_context *ctx = NULL;
1639         int rotate = 0, remove = 1;
1640
1641         if (cpuctx->ctx.nr_events) {
1642                 remove = 0;
1643                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1644                         rotate = 1;
1645         }
1646
1647         ctx = cpuctx->task_ctx;
1648         if (ctx && ctx->nr_events) {
1649                 remove = 0;
1650                 if (ctx->nr_events != ctx->nr_active)
1651                         rotate = 1;
1652         }
1653
1654         perf_pmu_disable(cpuctx->ctx.pmu);
1655         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1656         if (ctx)
1657                 perf_ctx_adjust_freq(ctx, interval);
1658
1659         if (!rotate)
1660                 goto done;
1661
1662         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1663         if (ctx)
1664                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1665
1666         rotate_ctx(&cpuctx->ctx);
1667         if (ctx)
1668                 rotate_ctx(ctx);
1669
1670         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1671         if (ctx)
1672                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1673
1674 done:
1675         if (remove)
1676                 list_del_init(&cpuctx->rotation_list);
1677
1678         perf_pmu_enable(cpuctx->ctx.pmu);
1679 }
1680
1681 void perf_event_task_tick(void)
1682 {
1683         struct list_head *head = &__get_cpu_var(rotation_list);
1684         struct perf_cpu_context *cpuctx, *tmp;
1685
1686         WARN_ON(!irqs_disabled());
1687
1688         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1689                 if (cpuctx->jiffies_interval == 1 ||
1690                                 !(jiffies % cpuctx->jiffies_interval))
1691                         perf_rotate_context(cpuctx);
1692         }
1693 }
1694
1695 static int event_enable_on_exec(struct perf_event *event,
1696                                 struct perf_event_context *ctx)
1697 {
1698         if (!event->attr.enable_on_exec)
1699                 return 0;
1700
1701         event->attr.enable_on_exec = 0;
1702         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1703                 return 0;
1704
1705         __perf_event_mark_enabled(event, ctx);
1706
1707         return 1;
1708 }
1709
1710 /*
1711  * Enable all of a task's events that have been marked enable-on-exec.
1712  * This expects task == current.
1713  */
1714 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1715 {
1716         struct perf_event *event;
1717         unsigned long flags;
1718         int enabled = 0;
1719         int ret;
1720
1721         local_irq_save(flags);
1722         if (!ctx || !ctx->nr_events)
1723                 goto out;
1724
1725         task_ctx_sched_out(ctx, EVENT_ALL);
1726
1727         raw_spin_lock(&ctx->lock);
1728
1729         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1730                 ret = event_enable_on_exec(event, ctx);
1731                 if (ret)
1732                         enabled = 1;
1733         }
1734
1735         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1736                 ret = event_enable_on_exec(event, ctx);
1737                 if (ret)
1738                         enabled = 1;
1739         }
1740
1741         /*
1742          * Unclone this context if we enabled any event.
1743          */
1744         if (enabled)
1745                 unclone_ctx(ctx);
1746
1747         raw_spin_unlock(&ctx->lock);
1748
1749         perf_event_context_sched_in(ctx);
1750 out:
1751         local_irq_restore(flags);
1752 }
1753
1754 /*
1755  * Cross CPU call to read the hardware event
1756  */
1757 static void __perf_event_read(void *info)
1758 {
1759         struct perf_event *event = info;
1760         struct perf_event_context *ctx = event->ctx;
1761         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1762
1763         /*
1764          * If this is a task context, we need to check whether it is
1765          * the current task context of this cpu.  If not it has been
1766          * scheduled out before the smp call arrived.  In that case
1767          * event->count would have been updated to a recent sample
1768          * when the event was scheduled out.
1769          */
1770         if (ctx->task && cpuctx->task_ctx != ctx)
1771                 return;
1772
1773         raw_spin_lock(&ctx->lock);
1774         update_context_time(ctx);
1775         update_event_times(event);
1776         raw_spin_unlock(&ctx->lock);
1777
1778         event->pmu->read(event);
1779 }
1780
1781 static inline u64 perf_event_count(struct perf_event *event)
1782 {
1783         return local64_read(&event->count) + atomic64_read(&event->child_count);
1784 }
1785
1786 static u64 perf_event_read(struct perf_event *event)
1787 {
1788         /*
1789          * If event is enabled and currently active on a CPU, update the
1790          * value in the event structure:
1791          */
1792         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1793                 smp_call_function_single(event->oncpu,
1794                                          __perf_event_read, event, 1);
1795         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1796                 struct perf_event_context *ctx = event->ctx;
1797                 unsigned long flags;
1798
1799                 raw_spin_lock_irqsave(&ctx->lock, flags);
1800                 /*
1801                  * may read while context is not active
1802                  * (e.g., thread is blocked), in that case
1803                  * we cannot update context time
1804                  */
1805                 if (ctx->is_active)
1806                         update_context_time(ctx);
1807                 update_event_times(event);
1808                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1809         }
1810
1811         return perf_event_count(event);
1812 }
1813
1814 /*
1815  * Callchain support
1816  */
1817
1818 struct callchain_cpus_entries {
1819         struct rcu_head                 rcu_head;
1820         struct perf_callchain_entry     *cpu_entries[0];
1821 };
1822
1823 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1824 static atomic_t nr_callchain_events;
1825 static DEFINE_MUTEX(callchain_mutex);
1826 struct callchain_cpus_entries *callchain_cpus_entries;
1827
1828
1829 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1830                                   struct pt_regs *regs)
1831 {
1832 }
1833
1834 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1835                                 struct pt_regs *regs)
1836 {
1837 }
1838
1839 static void release_callchain_buffers_rcu(struct rcu_head *head)
1840 {
1841         struct callchain_cpus_entries *entries;
1842         int cpu;
1843
1844         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1845
1846         for_each_possible_cpu(cpu)
1847                 kfree(entries->cpu_entries[cpu]);
1848
1849         kfree(entries);
1850 }
1851
1852 static void release_callchain_buffers(void)
1853 {
1854         struct callchain_cpus_entries *entries;
1855
1856         entries = callchain_cpus_entries;
1857         rcu_assign_pointer(callchain_cpus_entries, NULL);
1858         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1859 }
1860
1861 static int alloc_callchain_buffers(void)
1862 {
1863         int cpu;
1864         int size;
1865         struct callchain_cpus_entries *entries;
1866
1867         /*
1868          * We can't use the percpu allocation API for data that can be
1869          * accessed from NMI. Use a temporary manual per cpu allocation
1870          * until that gets sorted out.
1871          */
1872         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1873                 num_possible_cpus();
1874
1875         entries = kzalloc(size, GFP_KERNEL);
1876         if (!entries)
1877                 return -ENOMEM;
1878
1879         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1880
1881         for_each_possible_cpu(cpu) {
1882                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1883                                                          cpu_to_node(cpu));
1884                 if (!entries->cpu_entries[cpu])
1885                         goto fail;
1886         }
1887
1888         rcu_assign_pointer(callchain_cpus_entries, entries);
1889
1890         return 0;
1891
1892 fail:
1893         for_each_possible_cpu(cpu)
1894                 kfree(entries->cpu_entries[cpu]);
1895         kfree(entries);
1896
1897         return -ENOMEM;
1898 }
1899
1900 static int get_callchain_buffers(void)
1901 {
1902         int err = 0;
1903         int count;
1904
1905         mutex_lock(&callchain_mutex);
1906
1907         count = atomic_inc_return(&nr_callchain_events);
1908         if (WARN_ON_ONCE(count < 1)) {
1909                 err = -EINVAL;
1910                 goto exit;
1911         }
1912
1913         if (count > 1) {
1914                 /* If the allocation failed, give up */
1915                 if (!callchain_cpus_entries)
1916                         err = -ENOMEM;
1917                 goto exit;
1918         }
1919
1920         err = alloc_callchain_buffers();
1921         if (err)
1922                 release_callchain_buffers();
1923 exit:
1924         mutex_unlock(&callchain_mutex);
1925
1926         return err;
1927 }
1928
1929 static void put_callchain_buffers(void)
1930 {
1931         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1932                 release_callchain_buffers();
1933                 mutex_unlock(&callchain_mutex);
1934         }
1935 }
1936
1937 static int get_recursion_context(int *recursion)
1938 {
1939         int rctx;
1940
1941         if (in_nmi())
1942                 rctx = 3;
1943         else if (in_irq())
1944                 rctx = 2;
1945         else if (in_softirq())
1946                 rctx = 1;
1947         else
1948                 rctx = 0;
1949
1950         if (recursion[rctx])
1951                 return -1;
1952
1953         recursion[rctx]++;
1954         barrier();
1955
1956         return rctx;
1957 }
1958
1959 static inline void put_recursion_context(int *recursion, int rctx)
1960 {
1961         barrier();
1962         recursion[rctx]--;
1963 }
1964
1965 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1966 {
1967         int cpu;
1968         struct callchain_cpus_entries *entries;
1969
1970         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1971         if (*rctx == -1)
1972                 return NULL;
1973
1974         entries = rcu_dereference(callchain_cpus_entries);
1975         if (!entries)
1976                 return NULL;
1977
1978         cpu = smp_processor_id();
1979
1980         return &entries->cpu_entries[cpu][*rctx];
1981 }
1982
1983 static void
1984 put_callchain_entry(int rctx)
1985 {
1986         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1987 }
1988
1989 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1990 {
1991         int rctx;
1992         struct perf_callchain_entry *entry;
1993
1994
1995         entry = get_callchain_entry(&rctx);
1996         if (rctx == -1)
1997                 return NULL;
1998
1999         if (!entry)
2000                 goto exit_put;
2001
2002         entry->nr = 0;
2003
2004         if (!user_mode(regs)) {
2005                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2006                 perf_callchain_kernel(entry, regs);
2007                 if (current->mm)
2008                         regs = task_pt_regs(current);
2009                 else
2010                         regs = NULL;
2011         }
2012
2013         if (regs) {
2014                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2015                 perf_callchain_user(entry, regs);
2016         }
2017
2018 exit_put:
2019         put_callchain_entry(rctx);
2020
2021         return entry;
2022 }
2023
2024 /*
2025  * Initialize the perf_event context in a task_struct:
2026  */
2027 static void __perf_event_init_context(struct perf_event_context *ctx)
2028 {
2029         raw_spin_lock_init(&ctx->lock);
2030         mutex_init(&ctx->mutex);
2031         INIT_LIST_HEAD(&ctx->pinned_groups);
2032         INIT_LIST_HEAD(&ctx->flexible_groups);
2033         INIT_LIST_HEAD(&ctx->event_list);
2034         atomic_set(&ctx->refcount, 1);
2035 }
2036
2037 static struct perf_event_context *
2038 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2039 {
2040         struct perf_event_context *ctx;
2041
2042         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2043         if (!ctx)
2044                 return NULL;
2045
2046         __perf_event_init_context(ctx);
2047         if (task) {
2048                 ctx->task = task;
2049                 get_task_struct(task);
2050         }
2051         ctx->pmu = pmu;
2052
2053         return ctx;
2054 }
2055
2056 static struct task_struct *
2057 find_lively_task_by_vpid(pid_t vpid)
2058 {
2059         struct task_struct *task;
2060         int err;
2061
2062         rcu_read_lock();
2063         if (!vpid)
2064                 task = current;
2065         else
2066                 task = find_task_by_vpid(vpid);
2067         if (task)
2068                 get_task_struct(task);
2069         rcu_read_unlock();
2070
2071         if (!task)
2072                 return ERR_PTR(-ESRCH);
2073
2074         /*
2075          * Can't attach events to a dying task.
2076          */
2077         err = -ESRCH;
2078         if (task->flags & PF_EXITING)
2079                 goto errout;
2080
2081         /* Reuse ptrace permission checks for now. */
2082         err = -EACCES;
2083         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2084                 goto errout;
2085
2086         return task;
2087 errout:
2088         put_task_struct(task);
2089         return ERR_PTR(err);
2090
2091 }
2092
2093 static struct perf_event_context *
2094 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2095 {
2096         struct perf_event_context *ctx;
2097         struct perf_cpu_context *cpuctx;
2098         unsigned long flags;
2099         int ctxn, err;
2100
2101         if (!task && cpu != -1) {
2102                 /* Must be root to operate on a CPU event: */
2103                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2104                         return ERR_PTR(-EACCES);
2105
2106                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2107                         return ERR_PTR(-EINVAL);
2108
2109                 /*
2110                  * We could be clever and allow to attach a event to an
2111                  * offline CPU and activate it when the CPU comes up, but
2112                  * that's for later.
2113                  */
2114                 if (!cpu_online(cpu))
2115                         return ERR_PTR(-ENODEV);
2116
2117                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2118                 ctx = &cpuctx->ctx;
2119                 get_ctx(ctx);
2120
2121                 return ctx;
2122         }
2123
2124         err = -EINVAL;
2125         ctxn = pmu->task_ctx_nr;
2126         if (ctxn < 0)
2127                 goto errout;
2128
2129 retry:
2130         ctx = perf_lock_task_context(task, ctxn, &flags);
2131         if (ctx) {
2132                 unclone_ctx(ctx);
2133                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2134         }
2135
2136         if (!ctx) {
2137                 ctx = alloc_perf_context(pmu, task);
2138                 err = -ENOMEM;
2139                 if (!ctx)
2140                         goto errout;
2141
2142                 get_ctx(ctx);
2143
2144                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2145                         /*
2146                          * We raced with some other task; use
2147                          * the context they set.
2148                          */
2149                         put_task_struct(task);
2150                         kfree(ctx);
2151                         goto retry;
2152                 }
2153         }
2154
2155         return ctx;
2156
2157 errout:
2158         return ERR_PTR(err);
2159 }
2160
2161 static void perf_event_free_filter(struct perf_event *event);
2162
2163 static void free_event_rcu(struct rcu_head *head)
2164 {
2165         struct perf_event *event;
2166
2167         event = container_of(head, struct perf_event, rcu_head);
2168         if (event->ns)
2169                 put_pid_ns(event->ns);
2170         perf_event_free_filter(event);
2171         kfree(event);
2172 }
2173
2174 static void perf_buffer_put(struct perf_buffer *buffer);
2175
2176 static void free_event(struct perf_event *event)
2177 {
2178         irq_work_sync(&event->pending);
2179
2180         if (!event->parent) {
2181                 if (event->attach_state & PERF_ATTACH_TASK)
2182                         jump_label_dec(&perf_task_events);
2183                 if (event->attr.mmap || event->attr.mmap_data)
2184                         atomic_dec(&nr_mmap_events);
2185                 if (event->attr.comm)
2186                         atomic_dec(&nr_comm_events);
2187                 if (event->attr.task)
2188                         atomic_dec(&nr_task_events);
2189                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2190                         put_callchain_buffers();
2191         }
2192
2193         if (event->buffer) {
2194                 perf_buffer_put(event->buffer);
2195                 event->buffer = NULL;
2196         }
2197
2198         if (event->destroy)
2199                 event->destroy(event);
2200
2201         if (event->ctx)
2202                 put_ctx(event->ctx);
2203
2204         call_rcu(&event->rcu_head, free_event_rcu);
2205 }
2206
2207 int perf_event_release_kernel(struct perf_event *event)
2208 {
2209         struct perf_event_context *ctx = event->ctx;
2210
2211         /*
2212          * Remove from the PMU, can't get re-enabled since we got
2213          * here because the last ref went.
2214          */
2215         perf_event_disable(event);
2216
2217         WARN_ON_ONCE(ctx->parent_ctx);
2218         /*
2219          * There are two ways this annotation is useful:
2220          *
2221          *  1) there is a lock recursion from perf_event_exit_task
2222          *     see the comment there.
2223          *
2224          *  2) there is a lock-inversion with mmap_sem through
2225          *     perf_event_read_group(), which takes faults while
2226          *     holding ctx->mutex, however this is called after
2227          *     the last filedesc died, so there is no possibility
2228          *     to trigger the AB-BA case.
2229          */
2230         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2231         raw_spin_lock_irq(&ctx->lock);
2232         perf_group_detach(event);
2233         list_del_event(event, ctx);
2234         raw_spin_unlock_irq(&ctx->lock);
2235         mutex_unlock(&ctx->mutex);
2236
2237         mutex_lock(&event->owner->perf_event_mutex);
2238         list_del_init(&event->owner_entry);
2239         mutex_unlock(&event->owner->perf_event_mutex);
2240         put_task_struct(event->owner);
2241
2242         free_event(event);
2243
2244         return 0;
2245 }
2246 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2247
2248 /*
2249  * Called when the last reference to the file is gone.
2250  */
2251 static int perf_release(struct inode *inode, struct file *file)
2252 {
2253         struct perf_event *event = file->private_data;
2254
2255         file->private_data = NULL;
2256
2257         return perf_event_release_kernel(event);
2258 }
2259
2260 static int perf_event_read_size(struct perf_event *event)
2261 {
2262         int entry = sizeof(u64); /* value */
2263         int size = 0;
2264         int nr = 1;
2265
2266         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2267                 size += sizeof(u64);
2268
2269         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2270                 size += sizeof(u64);
2271
2272         if (event->attr.read_format & PERF_FORMAT_ID)
2273                 entry += sizeof(u64);
2274
2275         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2276                 nr += event->group_leader->nr_siblings;
2277                 size += sizeof(u64);
2278         }
2279
2280         size += entry * nr;
2281
2282         return size;
2283 }
2284
2285 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2286 {
2287         struct perf_event *child;
2288         u64 total = 0;
2289
2290         *enabled = 0;
2291         *running = 0;
2292
2293         mutex_lock(&event->child_mutex);
2294         total += perf_event_read(event);
2295         *enabled += event->total_time_enabled +
2296                         atomic64_read(&event->child_total_time_enabled);
2297         *running += event->total_time_running +
2298                         atomic64_read(&event->child_total_time_running);
2299
2300         list_for_each_entry(child, &event->child_list, child_list) {
2301                 total += perf_event_read(child);
2302                 *enabled += child->total_time_enabled;
2303                 *running += child->total_time_running;
2304         }
2305         mutex_unlock(&event->child_mutex);
2306
2307         return total;
2308 }
2309 EXPORT_SYMBOL_GPL(perf_event_read_value);
2310
2311 static int perf_event_read_group(struct perf_event *event,
2312                                    u64 read_format, char __user *buf)
2313 {
2314         struct perf_event *leader = event->group_leader, *sub;
2315         int n = 0, size = 0, ret = -EFAULT;
2316         struct perf_event_context *ctx = leader->ctx;
2317         u64 values[5];
2318         u64 count, enabled, running;
2319
2320         mutex_lock(&ctx->mutex);
2321         count = perf_event_read_value(leader, &enabled, &running);
2322
2323         values[n++] = 1 + leader->nr_siblings;
2324         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2325                 values[n++] = enabled;
2326         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2327                 values[n++] = running;
2328         values[n++] = count;
2329         if (read_format & PERF_FORMAT_ID)
2330                 values[n++] = primary_event_id(leader);
2331
2332         size = n * sizeof(u64);
2333
2334         if (copy_to_user(buf, values, size))
2335                 goto unlock;
2336
2337         ret = size;
2338
2339         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2340                 n = 0;
2341
2342                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2343                 if (read_format & PERF_FORMAT_ID)
2344                         values[n++] = primary_event_id(sub);
2345
2346                 size = n * sizeof(u64);
2347
2348                 if (copy_to_user(buf + ret, values, size)) {
2349                         ret = -EFAULT;
2350                         goto unlock;
2351                 }
2352
2353                 ret += size;
2354         }
2355 unlock:
2356         mutex_unlock(&ctx->mutex);
2357
2358         return ret;
2359 }
2360
2361 static int perf_event_read_one(struct perf_event *event,
2362                                  u64 read_format, char __user *buf)
2363 {
2364         u64 enabled, running;
2365         u64 values[4];
2366         int n = 0;
2367
2368         values[n++] = perf_event_read_value(event, &enabled, &running);
2369         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2370                 values[n++] = enabled;
2371         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2372                 values[n++] = running;
2373         if (read_format & PERF_FORMAT_ID)
2374                 values[n++] = primary_event_id(event);
2375
2376         if (copy_to_user(buf, values, n * sizeof(u64)))
2377                 return -EFAULT;
2378
2379         return n * sizeof(u64);
2380 }
2381
2382 /*
2383  * Read the performance event - simple non blocking version for now
2384  */
2385 static ssize_t
2386 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2387 {
2388         u64 read_format = event->attr.read_format;
2389         int ret;
2390
2391         /*
2392          * Return end-of-file for a read on a event that is in
2393          * error state (i.e. because it was pinned but it couldn't be
2394          * scheduled on to the CPU at some point).
2395          */
2396         if (event->state == PERF_EVENT_STATE_ERROR)
2397                 return 0;
2398
2399         if (count < perf_event_read_size(event))
2400                 return -ENOSPC;
2401
2402         WARN_ON_ONCE(event->ctx->parent_ctx);
2403         if (read_format & PERF_FORMAT_GROUP)
2404                 ret = perf_event_read_group(event, read_format, buf);
2405         else
2406                 ret = perf_event_read_one(event, read_format, buf);
2407
2408         return ret;
2409 }
2410
2411 static ssize_t
2412 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2413 {
2414         struct perf_event *event = file->private_data;
2415
2416         return perf_read_hw(event, buf, count);
2417 }
2418
2419 static unsigned int perf_poll(struct file *file, poll_table *wait)
2420 {
2421         struct perf_event *event = file->private_data;
2422         struct perf_buffer *buffer;
2423         unsigned int events = POLL_HUP;
2424
2425         rcu_read_lock();
2426         buffer = rcu_dereference(event->buffer);
2427         if (buffer)
2428                 events = atomic_xchg(&buffer->poll, 0);
2429         rcu_read_unlock();
2430
2431         poll_wait(file, &event->waitq, wait);
2432
2433         return events;
2434 }
2435
2436 static void perf_event_reset(struct perf_event *event)
2437 {
2438         (void)perf_event_read(event);
2439         local64_set(&event->count, 0);
2440         perf_event_update_userpage(event);
2441 }
2442
2443 /*
2444  * Holding the top-level event's child_mutex means that any
2445  * descendant process that has inherited this event will block
2446  * in sync_child_event if it goes to exit, thus satisfying the
2447  * task existence requirements of perf_event_enable/disable.
2448  */
2449 static void perf_event_for_each_child(struct perf_event *event,
2450                                         void (*func)(struct perf_event *))
2451 {
2452         struct perf_event *child;
2453
2454         WARN_ON_ONCE(event->ctx->parent_ctx);
2455         mutex_lock(&event->child_mutex);
2456         func(event);
2457         list_for_each_entry(child, &event->child_list, child_list)
2458                 func(child);
2459         mutex_unlock(&event->child_mutex);
2460 }
2461
2462 static void perf_event_for_each(struct perf_event *event,
2463                                   void (*func)(struct perf_event *))
2464 {
2465         struct perf_event_context *ctx = event->ctx;
2466         struct perf_event *sibling;
2467
2468         WARN_ON_ONCE(ctx->parent_ctx);
2469         mutex_lock(&ctx->mutex);
2470         event = event->group_leader;
2471
2472         perf_event_for_each_child(event, func);
2473         func(event);
2474         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2475                 perf_event_for_each_child(event, func);
2476         mutex_unlock(&ctx->mutex);
2477 }
2478
2479 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2480 {
2481         struct perf_event_context *ctx = event->ctx;
2482         int ret = 0;
2483         u64 value;
2484
2485         if (!event->attr.sample_period)
2486                 return -EINVAL;
2487
2488         if (copy_from_user(&value, arg, sizeof(value)))
2489                 return -EFAULT;
2490
2491         if (!value)
2492                 return -EINVAL;
2493
2494         raw_spin_lock_irq(&ctx->lock);
2495         if (event->attr.freq) {
2496                 if (value > sysctl_perf_event_sample_rate) {
2497                         ret = -EINVAL;
2498                         goto unlock;
2499                 }
2500
2501                 event->attr.sample_freq = value;
2502         } else {
2503                 event->attr.sample_period = value;
2504                 event->hw.sample_period = value;
2505         }
2506 unlock:
2507         raw_spin_unlock_irq(&ctx->lock);
2508
2509         return ret;
2510 }
2511
2512 static const struct file_operations perf_fops;
2513
2514 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2515 {
2516         struct file *file;
2517
2518         file = fget_light(fd, fput_needed);
2519         if (!file)
2520                 return ERR_PTR(-EBADF);
2521
2522         if (file->f_op != &perf_fops) {
2523                 fput_light(file, *fput_needed);
2524                 *fput_needed = 0;
2525                 return ERR_PTR(-EBADF);
2526         }
2527
2528         return file->private_data;
2529 }
2530
2531 static int perf_event_set_output(struct perf_event *event,
2532                                  struct perf_event *output_event);
2533 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2534
2535 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2536 {
2537         struct perf_event *event = file->private_data;
2538         void (*func)(struct perf_event *);
2539         u32 flags = arg;
2540
2541         switch (cmd) {
2542         case PERF_EVENT_IOC_ENABLE:
2543                 func = perf_event_enable;
2544                 break;
2545         case PERF_EVENT_IOC_DISABLE:
2546                 func = perf_event_disable;
2547                 break;
2548         case PERF_EVENT_IOC_RESET:
2549                 func = perf_event_reset;
2550                 break;
2551
2552         case PERF_EVENT_IOC_REFRESH:
2553                 return perf_event_refresh(event, arg);
2554
2555         case PERF_EVENT_IOC_PERIOD:
2556                 return perf_event_period(event, (u64 __user *)arg);
2557
2558         case PERF_EVENT_IOC_SET_OUTPUT:
2559         {
2560                 struct perf_event *output_event = NULL;
2561                 int fput_needed = 0;
2562                 int ret;
2563
2564                 if (arg != -1) {
2565                         output_event = perf_fget_light(arg, &fput_needed);
2566                         if (IS_ERR(output_event))
2567                                 return PTR_ERR(output_event);
2568                 }
2569
2570                 ret = perf_event_set_output(event, output_event);
2571                 if (output_event)
2572                         fput_light(output_event->filp, fput_needed);
2573
2574                 return ret;
2575         }
2576
2577         case PERF_EVENT_IOC_SET_FILTER:
2578                 return perf_event_set_filter(event, (void __user *)arg);
2579
2580         default:
2581                 return -ENOTTY;
2582         }
2583
2584         if (flags & PERF_IOC_FLAG_GROUP)
2585                 perf_event_for_each(event, func);
2586         else
2587                 perf_event_for_each_child(event, func);
2588
2589         return 0;
2590 }
2591
2592 int perf_event_task_enable(void)
2593 {
2594         struct perf_event *event;
2595
2596         mutex_lock(&current->perf_event_mutex);
2597         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2598                 perf_event_for_each_child(event, perf_event_enable);
2599         mutex_unlock(&current->perf_event_mutex);
2600
2601         return 0;
2602 }
2603
2604 int perf_event_task_disable(void)
2605 {
2606         struct perf_event *event;
2607
2608         mutex_lock(&current->perf_event_mutex);
2609         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2610                 perf_event_for_each_child(event, perf_event_disable);
2611         mutex_unlock(&current->perf_event_mutex);
2612
2613         return 0;
2614 }
2615
2616 #ifndef PERF_EVENT_INDEX_OFFSET
2617 # define PERF_EVENT_INDEX_OFFSET 0
2618 #endif
2619
2620 static int perf_event_index(struct perf_event *event)
2621 {
2622         if (event->hw.state & PERF_HES_STOPPED)
2623                 return 0;
2624
2625         if (event->state != PERF_EVENT_STATE_ACTIVE)
2626                 return 0;
2627
2628         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2629 }
2630
2631 /*
2632  * Callers need to ensure there can be no nesting of this function, otherwise
2633  * the seqlock logic goes bad. We can not serialize this because the arch
2634  * code calls this from NMI context.
2635  */
2636 void perf_event_update_userpage(struct perf_event *event)
2637 {
2638         struct perf_event_mmap_page *userpg;
2639         struct perf_buffer *buffer;
2640
2641         rcu_read_lock();
2642         buffer = rcu_dereference(event->buffer);
2643         if (!buffer)
2644                 goto unlock;
2645
2646         userpg = buffer->user_page;
2647
2648         /*
2649          * Disable preemption so as to not let the corresponding user-space
2650          * spin too long if we get preempted.
2651          */
2652         preempt_disable();
2653         ++userpg->lock;
2654         barrier();
2655         userpg->index = perf_event_index(event);
2656         userpg->offset = perf_event_count(event);
2657         if (event->state == PERF_EVENT_STATE_ACTIVE)
2658                 userpg->offset -= local64_read(&event->hw.prev_count);
2659
2660         userpg->time_enabled = event->total_time_enabled +
2661                         atomic64_read(&event->child_total_time_enabled);
2662
2663         userpg->time_running = event->total_time_running +
2664                         atomic64_read(&event->child_total_time_running);
2665
2666         barrier();
2667         ++userpg->lock;
2668         preempt_enable();
2669 unlock:
2670         rcu_read_unlock();
2671 }
2672
2673 static unsigned long perf_data_size(struct perf_buffer *buffer);
2674
2675 static void
2676 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2677 {
2678         long max_size = perf_data_size(buffer);
2679
2680         if (watermark)
2681                 buffer->watermark = min(max_size, watermark);
2682
2683         if (!buffer->watermark)
2684                 buffer->watermark = max_size / 2;
2685
2686         if (flags & PERF_BUFFER_WRITABLE)
2687                 buffer->writable = 1;
2688
2689         atomic_set(&buffer->refcount, 1);
2690 }
2691
2692 #ifndef CONFIG_PERF_USE_VMALLOC
2693
2694 /*
2695  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2696  */
2697
2698 static struct page *
2699 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2700 {
2701         if (pgoff > buffer->nr_pages)
2702                 return NULL;
2703
2704         if (pgoff == 0)
2705                 return virt_to_page(buffer->user_page);
2706
2707         return virt_to_page(buffer->data_pages[pgoff - 1]);
2708 }
2709
2710 static void *perf_mmap_alloc_page(int cpu)
2711 {
2712         struct page *page;
2713         int node;
2714
2715         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2716         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2717         if (!page)
2718                 return NULL;
2719
2720         return page_address(page);
2721 }
2722
2723 static struct perf_buffer *
2724 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2725 {
2726         struct perf_buffer *buffer;
2727         unsigned long size;
2728         int i;
2729
2730         size = sizeof(struct perf_buffer);
2731         size += nr_pages * sizeof(void *);
2732
2733         buffer = kzalloc(size, GFP_KERNEL);
2734         if (!buffer)
2735                 goto fail;
2736
2737         buffer->user_page = perf_mmap_alloc_page(cpu);
2738         if (!buffer->user_page)
2739                 goto fail_user_page;
2740
2741         for (i = 0; i < nr_pages; i++) {
2742                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2743                 if (!buffer->data_pages[i])
2744                         goto fail_data_pages;
2745         }
2746
2747         buffer->nr_pages = nr_pages;
2748
2749         perf_buffer_init(buffer, watermark, flags);
2750
2751         return buffer;
2752
2753 fail_data_pages:
2754         for (i--; i >= 0; i--)
2755                 free_page((unsigned long)buffer->data_pages[i]);
2756
2757         free_page((unsigned long)buffer->user_page);
2758
2759 fail_user_page:
2760         kfree(buffer);
2761
2762 fail:
2763         return NULL;
2764 }
2765
2766 static void perf_mmap_free_page(unsigned long addr)
2767 {
2768         struct page *page = virt_to_page((void *)addr);
2769
2770         page->mapping = NULL;
2771         __free_page(page);
2772 }
2773
2774 static void perf_buffer_free(struct perf_buffer *buffer)
2775 {
2776         int i;
2777
2778         perf_mmap_free_page((unsigned long)buffer->user_page);
2779         for (i = 0; i < buffer->nr_pages; i++)
2780                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2781         kfree(buffer);
2782 }
2783
2784 static inline int page_order(struct perf_buffer *buffer)
2785 {
2786         return 0;
2787 }
2788
2789 #else
2790
2791 /*
2792  * Back perf_mmap() with vmalloc memory.
2793  *
2794  * Required for architectures that have d-cache aliasing issues.
2795  */
2796
2797 static inline int page_order(struct perf_buffer *buffer)
2798 {
2799         return buffer->page_order;
2800 }
2801
2802 static struct page *
2803 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2804 {
2805         if (pgoff > (1UL << page_order(buffer)))
2806                 return NULL;
2807
2808         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2809 }
2810
2811 static void perf_mmap_unmark_page(void *addr)
2812 {
2813         struct page *page = vmalloc_to_page(addr);
2814
2815         page->mapping = NULL;
2816 }
2817
2818 static void perf_buffer_free_work(struct work_struct *work)
2819 {
2820         struct perf_buffer *buffer;
2821         void *base;
2822         int i, nr;
2823
2824         buffer = container_of(work, struct perf_buffer, work);
2825         nr = 1 << page_order(buffer);
2826
2827         base = buffer->user_page;
2828         for (i = 0; i < nr + 1; i++)
2829                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2830
2831         vfree(base);
2832         kfree(buffer);
2833 }
2834
2835 static void perf_buffer_free(struct perf_buffer *buffer)
2836 {
2837         schedule_work(&buffer->work);
2838 }
2839
2840 static struct perf_buffer *
2841 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2842 {
2843         struct perf_buffer *buffer;
2844         unsigned long size;
2845         void *all_buf;
2846
2847         size = sizeof(struct perf_buffer);
2848         size += sizeof(void *);
2849
2850         buffer = kzalloc(size, GFP_KERNEL);
2851         if (!buffer)
2852                 goto fail;
2853
2854         INIT_WORK(&buffer->work, perf_buffer_free_work);
2855
2856         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2857         if (!all_buf)
2858                 goto fail_all_buf;
2859
2860         buffer->user_page = all_buf;
2861         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2862         buffer->page_order = ilog2(nr_pages);
2863         buffer->nr_pages = 1;
2864
2865         perf_buffer_init(buffer, watermark, flags);
2866
2867         return buffer;
2868
2869 fail_all_buf:
2870         kfree(buffer);
2871
2872 fail:
2873         return NULL;
2874 }
2875
2876 #endif
2877
2878 static unsigned long perf_data_size(struct perf_buffer *buffer)
2879 {
2880         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2881 }
2882
2883 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2884 {
2885         struct perf_event *event = vma->vm_file->private_data;
2886         struct perf_buffer *buffer;
2887         int ret = VM_FAULT_SIGBUS;
2888
2889         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2890                 if (vmf->pgoff == 0)
2891                         ret = 0;
2892                 return ret;
2893         }
2894
2895         rcu_read_lock();
2896         buffer = rcu_dereference(event->buffer);
2897         if (!buffer)
2898                 goto unlock;
2899
2900         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2901                 goto unlock;
2902
2903         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2904         if (!vmf->page)
2905                 goto unlock;
2906
2907         get_page(vmf->page);
2908         vmf->page->mapping = vma->vm_file->f_mapping;
2909         vmf->page->index   = vmf->pgoff;
2910
2911         ret = 0;
2912 unlock:
2913         rcu_read_unlock();
2914
2915         return ret;
2916 }
2917
2918 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2919 {
2920         struct perf_buffer *buffer;
2921
2922         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2923         perf_buffer_free(buffer);
2924 }
2925
2926 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2927 {
2928         struct perf_buffer *buffer;
2929
2930         rcu_read_lock();
2931         buffer = rcu_dereference(event->buffer);
2932         if (buffer) {
2933                 if (!atomic_inc_not_zero(&buffer->refcount))
2934                         buffer = NULL;
2935         }
2936         rcu_read_unlock();
2937
2938         return buffer;
2939 }
2940
2941 static void perf_buffer_put(struct perf_buffer *buffer)
2942 {
2943         if (!atomic_dec_and_test(&buffer->refcount))
2944                 return;
2945
2946         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2947 }
2948
2949 static void perf_mmap_open(struct vm_area_struct *vma)
2950 {
2951         struct perf_event *event = vma->vm_file->private_data;
2952
2953         atomic_inc(&event->mmap_count);
2954 }
2955
2956 static void perf_mmap_close(struct vm_area_struct *vma)
2957 {
2958         struct perf_event *event = vma->vm_file->private_data;
2959
2960         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2961                 unsigned long size = perf_data_size(event->buffer);
2962                 struct user_struct *user = event->mmap_user;
2963                 struct perf_buffer *buffer = event->buffer;
2964
2965                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2966                 vma->vm_mm->locked_vm -= event->mmap_locked;
2967                 rcu_assign_pointer(event->buffer, NULL);
2968                 mutex_unlock(&event->mmap_mutex);
2969
2970                 perf_buffer_put(buffer);
2971                 free_uid(user);
2972         }
2973 }
2974
2975 static const struct vm_operations_struct perf_mmap_vmops = {
2976         .open           = perf_mmap_open,
2977         .close          = perf_mmap_close,
2978         .fault          = perf_mmap_fault,
2979         .page_mkwrite   = perf_mmap_fault,
2980 };
2981
2982 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2983 {
2984         struct perf_event *event = file->private_data;
2985         unsigned long user_locked, user_lock_limit;
2986         struct user_struct *user = current_user();
2987         unsigned long locked, lock_limit;
2988         struct perf_buffer *buffer;
2989         unsigned long vma_size;
2990         unsigned long nr_pages;
2991         long user_extra, extra;
2992         int ret = 0, flags = 0;
2993
2994         /*
2995          * Don't allow mmap() of inherited per-task counters. This would
2996          * create a performance issue due to all children writing to the
2997          * same buffer.
2998          */
2999         if (event->cpu == -1 && event->attr.inherit)
3000                 return -EINVAL;
3001
3002         if (!(vma->vm_flags & VM_SHARED))
3003                 return -EINVAL;
3004
3005         vma_size = vma->vm_end - vma->vm_start;
3006         nr_pages = (vma_size / PAGE_SIZE) - 1;
3007
3008         /*
3009          * If we have buffer pages ensure they're a power-of-two number, so we
3010          * can do bitmasks instead of modulo.
3011          */
3012         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3013                 return -EINVAL;
3014
3015         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3016                 return -EINVAL;
3017
3018         if (vma->vm_pgoff != 0)
3019                 return -EINVAL;
3020
3021         WARN_ON_ONCE(event->ctx->parent_ctx);
3022         mutex_lock(&event->mmap_mutex);
3023         if (event->buffer) {
3024                 if (event->buffer->nr_pages == nr_pages)
3025                         atomic_inc(&event->buffer->refcount);
3026                 else
3027                         ret = -EINVAL;
3028                 goto unlock;
3029         }
3030
3031         user_extra = nr_pages + 1;
3032         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3033
3034         /*
3035          * Increase the limit linearly with more CPUs:
3036          */
3037         user_lock_limit *= num_online_cpus();
3038
3039         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3040
3041         extra = 0;
3042         if (user_locked > user_lock_limit)
3043                 extra = user_locked - user_lock_limit;
3044
3045         lock_limit = rlimit(RLIMIT_MEMLOCK);
3046         lock_limit >>= PAGE_SHIFT;
3047         locked = vma->vm_mm->locked_vm + extra;
3048
3049         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3050                 !capable(CAP_IPC_LOCK)) {
3051                 ret = -EPERM;
3052                 goto unlock;
3053         }
3054
3055         WARN_ON(event->buffer);
3056
3057         if (vma->vm_flags & VM_WRITE)
3058                 flags |= PERF_BUFFER_WRITABLE;
3059
3060         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3061                                    event->cpu, flags);
3062         if (!buffer) {
3063                 ret = -ENOMEM;
3064                 goto unlock;
3065         }
3066         rcu_assign_pointer(event->buffer, buffer);
3067
3068         atomic_long_add(user_extra, &user->locked_vm);
3069         event->mmap_locked = extra;
3070         event->mmap_user = get_current_user();
3071         vma->vm_mm->locked_vm += event->mmap_locked;
3072
3073 unlock:
3074         if (!ret)
3075                 atomic_inc(&event->mmap_count);
3076         mutex_unlock(&event->mmap_mutex);
3077
3078         vma->vm_flags |= VM_RESERVED;
3079         vma->vm_ops = &perf_mmap_vmops;
3080
3081         return ret;
3082 }
3083
3084 static int perf_fasync(int fd, struct file *filp, int on)
3085 {
3086         struct inode *inode = filp->f_path.dentry->d_inode;
3087         struct perf_event *event = filp->private_data;
3088         int retval;
3089
3090         mutex_lock(&inode->i_mutex);
3091         retval = fasync_helper(fd, filp, on, &event->fasync);
3092         mutex_unlock(&inode->i_mutex);
3093
3094         if (retval < 0)
3095                 return retval;
3096
3097         return 0;
3098 }
3099
3100 static const struct file_operations perf_fops = {
3101         .llseek                 = no_llseek,
3102         .release                = perf_release,
3103         .read                   = perf_read,
3104         .poll                   = perf_poll,
3105         .unlocked_ioctl         = perf_ioctl,
3106         .compat_ioctl           = perf_ioctl,
3107         .mmap                   = perf_mmap,
3108         .fasync                 = perf_fasync,
3109 };
3110
3111 /*
3112  * Perf event wakeup
3113  *
3114  * If there's data, ensure we set the poll() state and publish everything
3115  * to user-space before waking everybody up.
3116  */
3117
3118 void perf_event_wakeup(struct perf_event *event)
3119 {
3120         wake_up_all(&event->waitq);
3121
3122         if (event->pending_kill) {
3123                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3124                 event->pending_kill = 0;
3125         }
3126 }
3127
3128 static void perf_pending_event(struct irq_work *entry)
3129 {
3130         struct perf_event *event = container_of(entry,
3131                         struct perf_event, pending);
3132
3133         if (event->pending_disable) {
3134                 event->pending_disable = 0;
3135                 __perf_event_disable(event);
3136         }
3137
3138         if (event->pending_wakeup) {
3139                 event->pending_wakeup = 0;
3140                 perf_event_wakeup(event);
3141         }
3142 }
3143
3144 /*
3145  * We assume there is only KVM supporting the callbacks.
3146  * Later on, we might change it to a list if there is
3147  * another virtualization implementation supporting the callbacks.
3148  */
3149 struct perf_guest_info_callbacks *perf_guest_cbs;
3150
3151 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3152 {
3153         perf_guest_cbs = cbs;
3154         return 0;
3155 }
3156 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3157
3158 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3159 {
3160         perf_guest_cbs = NULL;
3161         return 0;
3162 }
3163 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3164
3165 /*
3166  * Output
3167  */
3168 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3169                               unsigned long offset, unsigned long head)
3170 {
3171         unsigned long mask;
3172
3173         if (!buffer->writable)
3174                 return true;
3175
3176         mask = perf_data_size(buffer) - 1;
3177
3178         offset = (offset - tail) & mask;
3179         head   = (head   - tail) & mask;
3180
3181         if ((int)(head - offset) < 0)
3182                 return false;
3183
3184         return true;
3185 }
3186
3187 static void perf_output_wakeup(struct perf_output_handle *handle)
3188 {
3189         atomic_set(&handle->buffer->poll, POLL_IN);
3190
3191         if (handle->nmi) {
3192                 handle->event->pending_wakeup = 1;
3193                 irq_work_queue(&handle->event->pending);
3194         } else
3195                 perf_event_wakeup(handle->event);
3196 }
3197
3198 /*
3199  * We need to ensure a later event_id doesn't publish a head when a former
3200  * event isn't done writing. However since we need to deal with NMIs we
3201  * cannot fully serialize things.
3202  *
3203  * We only publish the head (and generate a wakeup) when the outer-most
3204  * event completes.
3205  */
3206 static void perf_output_get_handle(struct perf_output_handle *handle)
3207 {
3208         struct perf_buffer *buffer = handle->buffer;
3209
3210         preempt_disable();
3211         local_inc(&buffer->nest);
3212         handle->wakeup = local_read(&buffer->wakeup);
3213 }
3214
3215 static void perf_output_put_handle(struct perf_output_handle *handle)
3216 {
3217         struct perf_buffer *buffer = handle->buffer;
3218         unsigned long head;
3219
3220 again:
3221         head = local_read(&buffer->head);
3222
3223         /*
3224          * IRQ/NMI can happen here, which means we can miss a head update.
3225          */
3226
3227         if (!local_dec_and_test(&buffer->nest))
3228                 goto out;
3229
3230         /*
3231          * Publish the known good head. Rely on the full barrier implied
3232          * by atomic_dec_and_test() order the buffer->head read and this
3233          * write.
3234          */
3235         buffer->user_page->data_head = head;
3236
3237         /*
3238          * Now check if we missed an update, rely on the (compiler)
3239          * barrier in atomic_dec_and_test() to re-read buffer->head.
3240          */
3241         if (unlikely(head != local_read(&buffer->head))) {
3242                 local_inc(&buffer->nest);
3243                 goto again;
3244         }
3245
3246         if (handle->wakeup != local_read(&buffer->wakeup))
3247                 perf_output_wakeup(handle);
3248
3249 out:
3250         preempt_enable();
3251 }
3252
3253 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3254                       const void *buf, unsigned int len)
3255 {
3256         do {
3257                 unsigned long size = min_t(unsigned long, handle->size, len);
3258
3259                 memcpy(handle->addr, buf, size);
3260
3261                 len -= size;
3262                 handle->addr += size;
3263                 buf += size;
3264                 handle->size -= size;
3265                 if (!handle->size) {
3266                         struct perf_buffer *buffer = handle->buffer;
3267
3268                         handle->page++;
3269                         handle->page &= buffer->nr_pages - 1;
3270                         handle->addr = buffer->data_pages[handle->page];
3271                         handle->size = PAGE_SIZE << page_order(buffer);
3272                 }
3273         } while (len);
3274 }
3275
3276 int perf_output_begin(struct perf_output_handle *handle,
3277                       struct perf_event *event, unsigned int size,
3278                       int nmi, int sample)
3279 {
3280         struct perf_buffer *buffer;
3281         unsigned long tail, offset, head;
3282         int have_lost;
3283         struct {
3284                 struct perf_event_header header;
3285                 u64                      id;
3286                 u64                      lost;
3287         } lost_event;
3288
3289         rcu_read_lock();
3290         /*
3291          * For inherited events we send all the output towards the parent.
3292          */
3293         if (event->parent)
3294                 event = event->parent;
3295
3296         buffer = rcu_dereference(event->buffer);
3297         if (!buffer)
3298                 goto out;
3299
3300         handle->buffer  = buffer;
3301         handle->event   = event;
3302         handle->nmi     = nmi;
3303         handle->sample  = sample;
3304
3305         if (!buffer->nr_pages)
3306                 goto out;
3307
3308         have_lost = local_read(&buffer->lost);
3309         if (have_lost)
3310                 size += sizeof(lost_event);
3311
3312         perf_output_get_handle(handle);
3313
3314         do {
3315                 /*
3316                  * Userspace could choose to issue a mb() before updating the
3317                  * tail pointer. So that all reads will be completed before the
3318                  * write is issued.
3319                  */
3320                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3321                 smp_rmb();
3322                 offset = head = local_read(&buffer->head);
3323                 head += size;
3324                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3325                         goto fail;
3326         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3327
3328         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3329                 local_add(buffer->watermark, &buffer->wakeup);
3330
3331         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3332         handle->page &= buffer->nr_pages - 1;
3333         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3334         handle->addr = buffer->data_pages[handle->page];
3335         handle->addr += handle->size;
3336         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3337
3338         if (have_lost) {
3339                 lost_event.header.type = PERF_RECORD_LOST;
3340                 lost_event.header.misc = 0;
3341                 lost_event.header.size = sizeof(lost_event);
3342                 lost_event.id          = event->id;
3343                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3344
3345                 perf_output_put(handle, lost_event);
3346         }
3347
3348         return 0;
3349
3350 fail:
3351         local_inc(&buffer->lost);
3352         perf_output_put_handle(handle);
3353 out:
3354         rcu_read_unlock();
3355
3356         return -ENOSPC;
3357 }
3358
3359 void perf_output_end(struct perf_output_handle *handle)
3360 {
3361         struct perf_event *event = handle->event;
3362         struct perf_buffer *buffer = handle->buffer;
3363
3364         int wakeup_events = event->attr.wakeup_events;
3365
3366         if (handle->sample && wakeup_events) {
3367                 int events = local_inc_return(&buffer->events);
3368                 if (events >= wakeup_events) {
3369                         local_sub(wakeup_events, &buffer->events);
3370                         local_inc(&buffer->wakeup);
3371                 }
3372         }
3373
3374         perf_output_put_handle(handle);
3375         rcu_read_unlock();
3376 }
3377
3378 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3379 {
3380         /*
3381          * only top level events have the pid namespace they were created in
3382          */
3383         if (event->parent)
3384                 event = event->parent;
3385
3386         return task_tgid_nr_ns(p, event->ns);
3387 }
3388
3389 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3390 {
3391         /*
3392          * only top level events have the pid namespace they were created in
3393          */
3394         if (event->parent)
3395                 event = event->parent;
3396
3397         return task_pid_nr_ns(p, event->ns);
3398 }
3399
3400 static void perf_output_read_one(struct perf_output_handle *handle,
3401                                  struct perf_event *event,
3402                                  u64 enabled, u64 running)
3403 {
3404         u64 read_format = event->attr.read_format;
3405         u64 values[4];
3406         int n = 0;
3407
3408         values[n++] = perf_event_count(event);
3409         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3410                 values[n++] = enabled +
3411                         atomic64_read(&event->child_total_time_enabled);
3412         }
3413         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3414                 values[n++] = running +
3415                         atomic64_read(&event->child_total_time_running);
3416         }
3417         if (read_format & PERF_FORMAT_ID)
3418                 values[n++] = primary_event_id(event);
3419
3420         perf_output_copy(handle, values, n * sizeof(u64));
3421 }
3422
3423 /*
3424  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3425  */
3426 static void perf_output_read_group(struct perf_output_handle *handle,
3427                             struct perf_event *event,
3428                             u64 enabled, u64 running)
3429 {
3430         struct perf_event *leader = event->group_leader, *sub;
3431         u64 read_format = event->attr.read_format;
3432         u64 values[5];
3433         int n = 0;
3434
3435         values[n++] = 1 + leader->nr_siblings;
3436
3437         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3438                 values[n++] = enabled;
3439
3440         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3441                 values[n++] = running;
3442
3443         if (leader != event)
3444                 leader->pmu->read(leader);
3445
3446         values[n++] = perf_event_count(leader);
3447         if (read_format & PERF_FORMAT_ID)
3448                 values[n++] = primary_event_id(leader);
3449
3450         perf_output_copy(handle, values, n * sizeof(u64));
3451
3452         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3453                 n = 0;
3454
3455                 if (sub != event)
3456                         sub->pmu->read(sub);
3457
3458                 values[n++] = perf_event_count(sub);
3459                 if (read_format & PERF_FORMAT_ID)
3460                         values[n++] = primary_event_id(sub);
3461
3462                 perf_output_copy(handle, values, n * sizeof(u64));
3463         }
3464 }
3465
3466 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3467                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
3468
3469 static void perf_output_read(struct perf_output_handle *handle,
3470                              struct perf_event *event)
3471 {
3472         u64 enabled = 0, running = 0, now, ctx_time;
3473         u64 read_format = event->attr.read_format;
3474
3475         /*
3476          * compute total_time_enabled, total_time_running
3477          * based on snapshot values taken when the event
3478          * was last scheduled in.
3479          *
3480          * we cannot simply called update_context_time()
3481          * because of locking issue as we are called in
3482          * NMI context
3483          */
3484         if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3485                 now = perf_clock();
3486                 ctx_time = event->shadow_ctx_time + now;
3487                 enabled = ctx_time - event->tstamp_enabled;
3488                 running = ctx_time - event->tstamp_running;
3489         }
3490
3491         if (event->attr.read_format & PERF_FORMAT_GROUP)
3492                 perf_output_read_group(handle, event, enabled, running);
3493         else
3494                 perf_output_read_one(handle, event, enabled, running);
3495 }
3496
3497 void perf_output_sample(struct perf_output_handle *handle,
3498                         struct perf_event_header *header,
3499                         struct perf_sample_data *data,
3500                         struct perf_event *event)
3501 {
3502         u64 sample_type = data->type;
3503
3504         perf_output_put(handle, *header);
3505
3506         if (sample_type & PERF_SAMPLE_IP)
3507                 perf_output_put(handle, data->ip);
3508
3509         if (sample_type & PERF_SAMPLE_TID)
3510                 perf_output_put(handle, data->tid_entry);
3511
3512         if (sample_type & PERF_SAMPLE_TIME)
3513                 perf_output_put(handle, data->time);
3514
3515         if (sample_type & PERF_SAMPLE_ADDR)
3516                 perf_output_put(handle, data->addr);
3517
3518         if (sample_type & PERF_SAMPLE_ID)
3519                 perf_output_put(handle, data->id);
3520
3521         if (sample_type & PERF_SAMPLE_STREAM_ID)
3522                 perf_output_put(handle, data->stream_id);
3523
3524         if (sample_type & PERF_SAMPLE_CPU)
3525                 perf_output_put(handle, data->cpu_entry);
3526
3527         if (sample_type & PERF_SAMPLE_PERIOD)
3528                 perf_output_put(handle, data->period);
3529
3530         if (sample_type & PERF_SAMPLE_READ)
3531                 perf_output_read(handle, event);
3532
3533         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3534                 if (data->callchain) {
3535                         int size = 1;
3536
3537                         if (data->callchain)
3538                                 size += data->callchain->nr;
3539
3540                         size *= sizeof(u64);
3541
3542                         perf_output_copy(handle, data->callchain, size);
3543                 } else {
3544                         u64 nr = 0;
3545                         perf_output_put(handle, nr);
3546                 }
3547         }
3548
3549         if (sample_type & PERF_SAMPLE_RAW) {
3550                 if (data->raw) {
3551                         perf_output_put(handle, data->raw->size);
3552                         perf_output_copy(handle, data->raw->data,
3553                                          data->raw->size);
3554                 } else {
3555                         struct {
3556                                 u32     size;
3557                                 u32     data;
3558                         } raw = {
3559                                 .size = sizeof(u32),
3560                                 .data = 0,
3561                         };
3562                         perf_output_put(handle, raw);
3563                 }
3564         }
3565 }
3566
3567 void perf_prepare_sample(struct perf_event_header *header,
3568                          struct perf_sample_data *data,
3569                          struct perf_event *event,
3570                          struct pt_regs *regs)
3571 {
3572         u64 sample_type = event->attr.sample_type;
3573
3574         data->type = sample_type;
3575
3576         header->type = PERF_RECORD_SAMPLE;
3577         header->size = sizeof(*header);
3578
3579         header->misc = 0;
3580         header->misc |= perf_misc_flags(regs);
3581
3582         if (sample_type & PERF_SAMPLE_IP) {
3583                 data->ip = perf_instruction_pointer(regs);
3584
3585                 header->size += sizeof(data->ip);
3586         }
3587
3588         if (sample_type & PERF_SAMPLE_TID) {
3589                 /* namespace issues */
3590                 data->tid_entry.pid = perf_event_pid(event, current);
3591                 data->tid_entry.tid = perf_event_tid(event, current);
3592
3593                 header->size += sizeof(data->tid_entry);
3594         }
3595
3596         if (sample_type & PERF_SAMPLE_TIME) {
3597                 data->time = perf_clock();
3598
3599                 header->size += sizeof(data->time);
3600         }
3601
3602         if (sample_type & PERF_SAMPLE_ADDR)
3603                 header->size += sizeof(data->addr);
3604
3605         if (sample_type & PERF_SAMPLE_ID) {
3606                 data->id = primary_event_id(event);
3607
3608                 header->size += sizeof(data->id);
3609         }
3610
3611         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3612                 data->stream_id = event->id;
3613
3614                 header->size += sizeof(data->stream_id);
3615         }
3616
3617         if (sample_type & PERF_SAMPLE_CPU) {
3618                 data->cpu_entry.cpu             = raw_smp_processor_id();
3619                 data->cpu_entry.reserved        = 0;
3620
3621                 header->size += sizeof(data->cpu_entry);
3622         }
3623
3624         if (sample_type & PERF_SAMPLE_PERIOD)
3625                 header->size += sizeof(data->period);
3626
3627         if (sample_type & PERF_SAMPLE_READ)
3628                 header->size += perf_event_read_size(event);
3629
3630         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3631                 int size = 1;
3632
3633                 data->callchain = perf_callchain(regs);
3634
3635                 if (data->callchain)
3636                         size += data->callchain->nr;
3637
3638                 header->size += size * sizeof(u64);
3639         }
3640
3641         if (sample_type & PERF_SAMPLE_RAW) {
3642                 int size = sizeof(u32);
3643
3644                 if (data->raw)
3645                         size += data->raw->size;
3646                 else
3647                         size += sizeof(u32);
3648
3649                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3650                 header->size += size;
3651         }
3652 }
3653
3654 static void perf_event_output(struct perf_event *event, int nmi,
3655                                 struct perf_sample_data *data,
3656                                 struct pt_regs *regs)
3657 {
3658         struct perf_output_handle handle;
3659         struct perf_event_header header;
3660
3661         /* protect the callchain buffers */
3662         rcu_read_lock();
3663
3664         perf_prepare_sample(&header, data, event, regs);
3665
3666         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3667                 goto exit;
3668
3669         perf_output_sample(&handle, &header, data, event);
3670
3671         perf_output_end(&handle);
3672
3673 exit:
3674         rcu_read_unlock();
3675 }
3676
3677 /*
3678  * read event_id
3679  */
3680
3681 struct perf_read_event {
3682         struct perf_event_header        header;
3683
3684         u32                             pid;
3685         u32                             tid;
3686 };
3687
3688 static void
3689 perf_event_read_event(struct perf_event *event,
3690                         struct task_struct *task)
3691 {
3692         struct perf_output_handle handle;
3693         struct perf_read_event read_event = {
3694                 .header = {
3695                         .type = PERF_RECORD_READ,
3696                         .misc = 0,
3697                         .size = sizeof(read_event) + perf_event_read_size(event),
3698                 },
3699                 .pid = perf_event_pid(event, task),
3700                 .tid = perf_event_tid(event, task),
3701         };
3702         int ret;
3703
3704         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3705         if (ret)
3706                 return;
3707
3708         perf_output_put(&handle, read_event);
3709         perf_output_read(&handle, event);
3710
3711         perf_output_end(&handle);
3712 }
3713
3714 /*
3715  * task tracking -- fork/exit
3716  *
3717  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3718  */
3719
3720 struct perf_task_event {
3721         struct task_struct              *task;
3722         struct perf_event_context       *task_ctx;
3723
3724         struct {
3725                 struct perf_event_header        header;
3726
3727                 u32                             pid;
3728                 u32                             ppid;
3729                 u32                             tid;
3730                 u32                             ptid;
3731                 u64                             time;
3732         } event_id;
3733 };
3734
3735 static void perf_event_task_output(struct perf_event *event,
3736                                      struct perf_task_event *task_event)
3737 {
3738         struct perf_output_handle handle;
3739         struct task_struct *task = task_event->task;
3740         int size, ret;
3741
3742         size  = task_event->event_id.header.size;
3743         ret = perf_output_begin(&handle, event, size, 0, 0);
3744
3745         if (ret)
3746                 return;
3747
3748         task_event->event_id.pid = perf_event_pid(event, task);
3749         task_event->event_id.ppid = perf_event_pid(event, current);
3750
3751         task_event->event_id.tid = perf_event_tid(event, task);
3752         task_event->event_id.ptid = perf_event_tid(event, current);
3753
3754         perf_output_put(&handle, task_event->event_id);
3755
3756         perf_output_end(&handle);
3757 }
3758
3759 static int perf_event_task_match(struct perf_event *event)
3760 {
3761         if (event->state < PERF_EVENT_STATE_INACTIVE)
3762                 return 0;
3763
3764         if (event->cpu != -1 && event->cpu != smp_processor_id())
3765                 return 0;
3766
3767         if (event->attr.comm || event->attr.mmap ||
3768             event->attr.mmap_data || event->attr.task)
3769                 return 1;
3770
3771         return 0;
3772 }
3773
3774 static void perf_event_task_ctx(struct perf_event_context *ctx,
3775                                   struct perf_task_event *task_event)
3776 {
3777         struct perf_event *event;
3778
3779         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3780                 if (perf_event_task_match(event))
3781                         perf_event_task_output(event, task_event);
3782         }
3783 }
3784
3785 static void perf_event_task_event(struct perf_task_event *task_event)
3786 {
3787         struct perf_cpu_context *cpuctx;
3788         struct perf_event_context *ctx;
3789         struct pmu *pmu;
3790         int ctxn;
3791
3792         rcu_read_lock();
3793         list_for_each_entry_rcu(pmu, &pmus, entry) {
3794                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3795                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3796
3797                 ctx = task_event->task_ctx;
3798                 if (!ctx) {
3799                         ctxn = pmu->task_ctx_nr;
3800                         if (ctxn < 0)
3801                                 goto next;
3802                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3803                 }
3804                 if (ctx)
3805                         perf_event_task_ctx(ctx, task_event);
3806 next:
3807                 put_cpu_ptr(pmu->pmu_cpu_context);
3808         }
3809         rcu_read_unlock();
3810 }
3811
3812 static void perf_event_task(struct task_struct *task,
3813                               struct perf_event_context *task_ctx,
3814                               int new)
3815 {
3816         struct perf_task_event task_event;
3817
3818         if (!atomic_read(&nr_comm_events) &&
3819             !atomic_read(&nr_mmap_events) &&
3820             !atomic_read(&nr_task_events))
3821                 return;
3822
3823         task_event = (struct perf_task_event){
3824                 .task     = task,
3825                 .task_ctx = task_ctx,
3826                 .event_id    = {
3827                         .header = {
3828                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3829                                 .misc = 0,
3830                                 .size = sizeof(task_event.event_id),
3831                         },
3832                         /* .pid  */
3833                         /* .ppid */
3834                         /* .tid  */
3835                         /* .ptid */
3836                         .time = perf_clock(),
3837                 },
3838         };
3839
3840         perf_event_task_event(&task_event);
3841 }
3842
3843 void perf_event_fork(struct task_struct *task)
3844 {
3845         perf_event_task(task, NULL, 1);
3846 }
3847
3848 /*
3849  * comm tracking
3850  */
3851
3852 struct perf_comm_event {
3853         struct task_struct      *task;
3854         char                    *comm;
3855         int                     comm_size;
3856
3857         struct {
3858                 struct perf_event_header        header;
3859
3860                 u32                             pid;
3861                 u32                             tid;
3862         } event_id;
3863 };
3864
3865 static void perf_event_comm_output(struct perf_event *event,
3866                                      struct perf_comm_event *comm_event)
3867 {
3868         struct perf_output_handle handle;
3869         int size = comm_event->event_id.header.size;
3870         int ret = perf_output_begin(&handle, event, size, 0, 0);
3871
3872         if (ret)
3873                 return;
3874
3875         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3876         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3877
3878         perf_output_put(&handle, comm_event->event_id);
3879         perf_output_copy(&handle, comm_event->comm,
3880                                    comm_event->comm_size);
3881         perf_output_end(&handle);
3882 }
3883
3884 static int perf_event_comm_match(struct perf_event *event)
3885 {
3886         if (event->state < PERF_EVENT_STATE_INACTIVE)
3887                 return 0;
3888
3889         if (event->cpu != -1 && event->cpu != smp_processor_id())
3890                 return 0;
3891
3892         if (event->attr.comm)
3893                 return 1;
3894
3895         return 0;
3896 }
3897
3898 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3899                                   struct perf_comm_event *comm_event)
3900 {
3901         struct perf_event *event;
3902
3903         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3904                 if (perf_event_comm_match(event))
3905                         perf_event_comm_output(event, comm_event);
3906         }
3907 }
3908
3909 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3910 {
3911         struct perf_cpu_context *cpuctx;
3912         struct perf_event_context *ctx;
3913         char comm[TASK_COMM_LEN];
3914         unsigned int size;
3915         struct pmu *pmu;
3916         int ctxn;
3917
3918         memset(comm, 0, sizeof(comm));
3919         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3920         size = ALIGN(strlen(comm)+1, sizeof(u64));
3921
3922         comm_event->comm = comm;
3923         comm_event->comm_size = size;
3924
3925         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3926
3927         rcu_read_lock();
3928         list_for_each_entry_rcu(pmu, &pmus, entry) {
3929                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3930                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3931
3932                 ctxn = pmu->task_ctx_nr;
3933                 if (ctxn < 0)
3934                         goto next;
3935
3936                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3937                 if (ctx)
3938                         perf_event_comm_ctx(ctx, comm_event);
3939 next:
3940                 put_cpu_ptr(pmu->pmu_cpu_context);
3941         }
3942         rcu_read_unlock();
3943 }
3944
3945 void perf_event_comm(struct task_struct *task)
3946 {
3947         struct perf_comm_event comm_event;
3948         struct perf_event_context *ctx;
3949         int ctxn;
3950
3951         for_each_task_context_nr(ctxn) {
3952                 ctx = task->perf_event_ctxp[ctxn];
3953                 if (!ctx)
3954                         continue;
3955
3956                 perf_event_enable_on_exec(ctx);
3957         }
3958
3959         if (!atomic_read(&nr_comm_events))
3960                 return;
3961
3962         comm_event = (struct perf_comm_event){
3963                 .task   = task,
3964                 /* .comm      */
3965                 /* .comm_size */
3966                 .event_id  = {
3967                         .header = {
3968                                 .type = PERF_RECORD_COMM,
3969                                 .misc = 0,
3970                                 /* .size */
3971                         },
3972                         /* .pid */
3973                         /* .tid */
3974                 },
3975         };
3976
3977         perf_event_comm_event(&comm_event);
3978 }
3979
3980 /*
3981  * mmap tracking
3982  */
3983
3984 struct perf_mmap_event {
3985         struct vm_area_struct   *vma;
3986
3987         const char              *file_name;
3988         int                     file_size;
3989
3990         struct {
3991                 struct perf_event_header        header;
3992
3993                 u32                             pid;
3994                 u32                             tid;
3995                 u64                             start;
3996                 u64                             len;
3997                 u64                             pgoff;
3998         } event_id;
3999 };
4000
4001 static void perf_event_mmap_output(struct perf_event *event,
4002                                      struct perf_mmap_event *mmap_event)
4003 {
4004         struct perf_output_handle handle;
4005         int size = mmap_event->event_id.header.size;
4006         int ret = perf_output_begin(&handle, event, size, 0, 0);
4007
4008         if (ret)
4009                 return;
4010
4011         mmap_event->event_id.pid = perf_event_pid(event, current);
4012         mmap_event->event_id.tid = perf_event_tid(event, current);
4013
4014         perf_output_put(&handle, mmap_event->event_id);
4015         perf_output_copy(&handle, mmap_event->file_name,
4016                                    mmap_event->file_size);
4017         perf_output_end(&handle);
4018 }
4019
4020 static int perf_event_mmap_match(struct perf_event *event,
4021                                    struct perf_mmap_event *mmap_event,
4022                                    int executable)
4023 {
4024         if (event->state < PERF_EVENT_STATE_INACTIVE)
4025                 return 0;
4026
4027         if (event->cpu != -1 && event->cpu != smp_processor_id())
4028                 return 0;
4029
4030         if ((!executable && event->attr.mmap_data) ||
4031             (executable && event->attr.mmap))
4032                 return 1;
4033
4034         return 0;
4035 }
4036
4037 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4038                                   struct perf_mmap_event *mmap_event,
4039                                   int executable)
4040 {
4041         struct perf_event *event;
4042
4043         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4044                 if (perf_event_mmap_match(event, mmap_event, executable))
4045                         perf_event_mmap_output(event, mmap_event);
4046         }
4047 }
4048
4049 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4050 {
4051         struct perf_cpu_context *cpuctx;
4052         struct perf_event_context *ctx;
4053         struct vm_area_struct *vma = mmap_event->vma;
4054         struct file *file = vma->vm_file;
4055         unsigned int size;
4056         char tmp[16];
4057         char *buf = NULL;
4058         const char *name;
4059         struct pmu *pmu;
4060         int ctxn;
4061
4062         memset(tmp, 0, sizeof(tmp));
4063
4064         if (file) {
4065                 /*
4066                  * d_path works from the end of the buffer backwards, so we
4067                  * need to add enough zero bytes after the string to handle
4068                  * the 64bit alignment we do later.
4069                  */
4070                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4071                 if (!buf) {
4072                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4073                         goto got_name;
4074                 }
4075                 name = d_path(&file->f_path, buf, PATH_MAX);
4076                 if (IS_ERR(name)) {
4077                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4078                         goto got_name;
4079                 }
4080         } else {
4081                 if (arch_vma_name(mmap_event->vma)) {
4082                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4083                                        sizeof(tmp));
4084                         goto got_name;
4085                 }
4086
4087                 if (!vma->vm_mm) {
4088                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4089                         goto got_name;
4090                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4091                                 vma->vm_end >= vma->vm_mm->brk) {
4092                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4093                         goto got_name;
4094                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4095                                 vma->vm_end >= vma->vm_mm->start_stack) {
4096                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4097                         goto got_name;
4098                 }
4099
4100                 name = strncpy(tmp, "//anon", sizeof(tmp));
4101                 goto got_name;
4102         }
4103
4104 got_name:
4105         size = ALIGN(strlen(name)+1, sizeof(u64));
4106
4107         mmap_event->file_name = name;
4108         mmap_event->file_size = size;
4109
4110         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4111
4112         rcu_read_lock();
4113         list_for_each_entry_rcu(pmu, &pmus, entry) {
4114                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4115                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4116                                         vma->vm_flags & VM_EXEC);
4117
4118                 ctxn = pmu->task_ctx_nr;
4119                 if (ctxn < 0)
4120                         goto next;
4121
4122                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4123                 if (ctx) {
4124                         perf_event_mmap_ctx(ctx, mmap_event,
4125                                         vma->vm_flags & VM_EXEC);
4126                 }
4127 next:
4128                 put_cpu_ptr(pmu->pmu_cpu_context);
4129         }
4130         rcu_read_unlock();
4131
4132         kfree(buf);
4133 }
4134
4135 void perf_event_mmap(struct vm_area_struct *vma)
4136 {
4137         struct perf_mmap_event mmap_event;
4138
4139         if (!atomic_read(&nr_mmap_events))
4140                 return;
4141
4142         mmap_event = (struct perf_mmap_event){
4143                 .vma    = vma,
4144                 /* .file_name */
4145                 /* .file_size */
4146                 .event_id  = {
4147                         .header = {
4148                                 .type = PERF_RECORD_MMAP,
4149                                 .misc = PERF_RECORD_MISC_USER,
4150                                 /* .size */
4151                         },
4152                         /* .pid */
4153                         /* .tid */
4154                         .start  = vma->vm_start,
4155                         .len    = vma->vm_end - vma->vm_start,
4156                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4157                 },
4158         };
4159
4160         perf_event_mmap_event(&mmap_event);
4161 }
4162
4163 /*
4164  * IRQ throttle logging
4165  */
4166
4167 static void perf_log_throttle(struct perf_event *event, int enable)
4168 {
4169         struct perf_output_handle handle;
4170         int ret;
4171
4172         struct {
4173                 struct perf_event_header        header;
4174                 u64                             time;
4175                 u64                             id;
4176                 u64                             stream_id;
4177         } throttle_event = {
4178                 .header = {
4179                         .type = PERF_RECORD_THROTTLE,
4180                         .misc = 0,
4181                         .size = sizeof(throttle_event),
4182                 },
4183                 .time           = perf_clock(),
4184                 .id             = primary_event_id(event),
4185                 .stream_id      = event->id,
4186         };
4187
4188         if (enable)
4189                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4190
4191         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4192         if (ret)
4193                 return;
4194
4195         perf_output_put(&handle, throttle_event);
4196         perf_output_end(&handle);
4197 }
4198
4199 /*
4200  * Generic event overflow handling, sampling.
4201  */
4202
4203 static int __perf_event_overflow(struct perf_event *event, int nmi,
4204                                    int throttle, struct perf_sample_data *data,
4205                                    struct pt_regs *regs)
4206 {
4207         int events = atomic_read(&event->event_limit);
4208         struct hw_perf_event *hwc = &event->hw;
4209         int ret = 0;
4210
4211         if (!throttle) {
4212                 hwc->interrupts++;
4213         } else {
4214                 if (hwc->interrupts != MAX_INTERRUPTS) {
4215                         hwc->interrupts++;
4216                         if (HZ * hwc->interrupts >
4217                                         (u64)sysctl_perf_event_sample_rate) {
4218                                 hwc->interrupts = MAX_INTERRUPTS;
4219                                 perf_log_throttle(event, 0);
4220                                 ret = 1;
4221                         }
4222                 } else {
4223                         /*
4224                          * Keep re-disabling events even though on the previous
4225                          * pass we disabled it - just in case we raced with a
4226                          * sched-in and the event got enabled again:
4227                          */
4228                         ret = 1;
4229                 }
4230         }
4231
4232         if (event->attr.freq) {
4233                 u64 now = perf_clock();
4234                 s64 delta = now - hwc->freq_time_stamp;
4235
4236                 hwc->freq_time_stamp = now;
4237
4238                 if (delta > 0 && delta < 2*TICK_NSEC)
4239                         perf_adjust_period(event, delta, hwc->last_period);
4240         }
4241
4242         /*
4243          * XXX event_limit might not quite work as expected on inherited
4244          * events
4245          */
4246
4247         event->pending_kill = POLL_IN;
4248         if (events && atomic_dec_and_test(&event->event_limit)) {
4249                 ret = 1;
4250                 event->pending_kill = POLL_HUP;
4251                 if (nmi) {
4252                         event->pending_disable = 1;
4253                         irq_work_queue(&event->pending);
4254                 } else
4255                         perf_event_disable(event);
4256         }
4257
4258         if (event->overflow_handler)
4259                 event->overflow_handler(event, nmi, data, regs);
4260         else
4261                 perf_event_output(event, nmi, data, regs);
4262
4263         return ret;
4264 }
4265
4266 int perf_event_overflow(struct perf_event *event, int nmi,
4267                           struct perf_sample_data *data,
4268                           struct pt_regs *regs)
4269 {
4270         return __perf_event_overflow(event, nmi, 1, data, regs);
4271 }
4272
4273 /*
4274  * Generic software event infrastructure
4275  */
4276
4277 struct swevent_htable {
4278         struct swevent_hlist            *swevent_hlist;
4279         struct mutex                    hlist_mutex;
4280         int                             hlist_refcount;
4281
4282         /* Recursion avoidance in each contexts */
4283         int                             recursion[PERF_NR_CONTEXTS];
4284 };
4285
4286 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4287
4288 /*
4289  * We directly increment event->count and keep a second value in
4290  * event->hw.period_left to count intervals. This period event
4291  * is kept in the range [-sample_period, 0] so that we can use the
4292  * sign as trigger.
4293  */
4294
4295 static u64 perf_swevent_set_period(struct perf_event *event)
4296 {
4297         struct hw_perf_event *hwc = &event->hw;
4298         u64 period = hwc->last_period;
4299         u64 nr, offset;
4300         s64 old, val;
4301
4302         hwc->last_period = hwc->sample_period;
4303
4304 again:
4305         old = val = local64_read(&hwc->period_left);
4306         if (val < 0)
4307                 return 0;
4308
4309         nr = div64_u64(period + val, period);
4310         offset = nr * period;
4311         val -= offset;
4312         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4313                 goto again;
4314
4315         return nr;
4316 }
4317
4318 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4319                                     int nmi, struct perf_sample_data *data,
4320                                     struct pt_regs *regs)
4321 {
4322         struct hw_perf_event *hwc = &event->hw;
4323         int throttle = 0;
4324
4325         data->period = event->hw.last_period;
4326         if (!overflow)
4327                 overflow = perf_swevent_set_period(event);
4328
4329         if (hwc->interrupts == MAX_INTERRUPTS)
4330                 return;
4331
4332         for (; overflow; overflow--) {
4333                 if (__perf_event_overflow(event, nmi, throttle,
4334                                             data, regs)) {
4335                         /*
4336                          * We inhibit the overflow from happening when
4337                          * hwc->interrupts == MAX_INTERRUPTS.
4338                          */
4339                         break;
4340                 }
4341                 throttle = 1;
4342         }
4343 }
4344
4345 static void perf_swevent_event(struct perf_event *event, u64 nr,
4346                                int nmi, struct perf_sample_data *data,
4347                                struct pt_regs *regs)
4348 {
4349         struct hw_perf_event *hwc = &event->hw;
4350
4351         local64_add(nr, &event->count);
4352
4353         if (!regs)
4354                 return;
4355
4356         if (!hwc->sample_period)
4357                 return;
4358
4359         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4360                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4361
4362         if (local64_add_negative(nr, &hwc->period_left))
4363                 return;
4364
4365         perf_swevent_overflow(event, 0, nmi, data, regs);
4366 }
4367
4368 static int perf_exclude_event(struct perf_event *event,
4369                               struct pt_regs *regs)
4370 {
4371         if (event->hw.state & PERF_HES_STOPPED)
4372                 return 0;
4373
4374         if (regs) {
4375                 if (event->attr.exclude_user && user_mode(regs))
4376                         return 1;
4377
4378                 if (event->attr.exclude_kernel && !user_mode(regs))
4379                         return 1;
4380         }
4381
4382         return 0;
4383 }
4384
4385 static int perf_swevent_match(struct perf_event *event,
4386                                 enum perf_type_id type,
4387                                 u32 event_id,
4388                                 struct perf_sample_data *data,
4389                                 struct pt_regs *regs)
4390 {
4391         if (event->attr.type != type)
4392                 return 0;
4393
4394         if (event->attr.config != event_id)
4395                 return 0;
4396
4397         if (perf_exclude_event(event, regs))
4398                 return 0;
4399
4400         return 1;
4401 }
4402
4403 static inline u64 swevent_hash(u64 type, u32 event_id)
4404 {
4405         u64 val = event_id | (type << 32);
4406
4407         return hash_64(val, SWEVENT_HLIST_BITS);
4408 }
4409
4410 static inline struct hlist_head *
4411 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4412 {
4413         u64 hash = swevent_hash(type, event_id);
4414
4415         return &hlist->heads[hash];
4416 }
4417
4418 /* For the read side: events when they trigger */
4419 static inline struct hlist_head *
4420 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4421 {
4422         struct swevent_hlist *hlist;
4423
4424         hlist = rcu_dereference(swhash->swevent_hlist);
4425         if (!hlist)
4426                 return NULL;
4427
4428         return __find_swevent_head(hlist, type, event_id);
4429 }
4430
4431 /* For the event head insertion and removal in the hlist */
4432 static inline struct hlist_head *
4433 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4434 {
4435         struct swevent_hlist *hlist;
4436         u32 event_id = event->attr.config;
4437         u64 type = event->attr.type;
4438
4439         /*
4440          * Event scheduling is always serialized against hlist allocation
4441          * and release. Which makes the protected version suitable here.
4442          * The context lock guarantees that.
4443          */
4444         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4445                                           lockdep_is_held(&event->ctx->lock));
4446         if (!hlist)
4447                 return NULL;
4448
4449         return __find_swevent_head(hlist, type, event_id);
4450 }
4451
4452 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4453                                     u64 nr, int nmi,
4454                                     struct perf_sample_data *data,
4455                                     struct pt_regs *regs)
4456 {
4457         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4458         struct perf_event *event;
4459         struct hlist_node *node;
4460         struct hlist_head *head;
4461
4462         rcu_read_lock();
4463         head = find_swevent_head_rcu(swhash, type, event_id);
4464         if (!head)
4465                 goto end;
4466
4467         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4468                 if (perf_swevent_match(event, type, event_id, data, regs))
4469                         perf_swevent_event(event, nr, nmi, data, regs);
4470         }
4471 end:
4472         rcu_read_unlock();
4473 }
4474
4475 int perf_swevent_get_recursion_context(void)
4476 {
4477         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4478
4479         return get_recursion_context(swhash->recursion);
4480 }
4481 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4482
4483 void inline perf_swevent_put_recursion_context(int rctx)
4484 {
4485         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4486
4487         put_recursion_context(swhash->recursion, rctx);
4488 }
4489
4490 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4491                             struct pt_regs *regs, u64 addr)
4492 {
4493         struct perf_sample_data data;
4494         int rctx;
4495
4496         preempt_disable_notrace();
4497         rctx = perf_swevent_get_recursion_context();
4498         if (rctx < 0)
4499                 return;
4500
4501         perf_sample_data_init(&data, addr);
4502
4503         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4504
4505         perf_swevent_put_recursion_context(rctx);
4506         preempt_enable_notrace();
4507 }
4508
4509 static void perf_swevent_read(struct perf_event *event)
4510 {
4511 }
4512
4513 static int perf_swevent_add(struct perf_event *event, int flags)
4514 {
4515         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4516         struct hw_perf_event *hwc = &event->hw;
4517         struct hlist_head *head;
4518
4519         if (hwc->sample_period) {
4520                 hwc->last_period = hwc->sample_period;
4521                 perf_swevent_set_period(event);
4522         }
4523
4524         hwc->state = !(flags & PERF_EF_START);
4525
4526         head = find_swevent_head(swhash, event);
4527         if (WARN_ON_ONCE(!head))
4528                 return -EINVAL;
4529
4530         hlist_add_head_rcu(&event->hlist_entry, head);
4531
4532         return 0;
4533 }
4534
4535 static void perf_swevent_del(struct perf_event *event, int flags)
4536 {
4537         hlist_del_rcu(&event->hlist_entry);
4538 }
4539
4540 static void perf_swevent_start(struct perf_event *event, int flags)
4541 {
4542         event->hw.state = 0;
4543 }
4544
4545 static void perf_swevent_stop(struct perf_event *event, int flags)
4546 {
4547         event->hw.state = PERF_HES_STOPPED;
4548 }
4549
4550 /* Deref the hlist from the update side */
4551 static inline struct swevent_hlist *
4552 swevent_hlist_deref(struct swevent_htable *swhash)
4553 {
4554         return rcu_dereference_protected(swhash->swevent_hlist,
4555                                          lockdep_is_held(&swhash->hlist_mutex));
4556 }
4557
4558 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4559 {
4560         struct swevent_hlist *hlist;
4561
4562         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4563         kfree(hlist);
4564 }
4565
4566 static void swevent_hlist_release(struct swevent_htable *swhash)
4567 {
4568         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4569
4570         if (!hlist)
4571                 return;
4572
4573         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4574         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4575 }
4576
4577 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4578 {
4579         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4580
4581         mutex_lock(&swhash->hlist_mutex);
4582
4583         if (!--swhash->hlist_refcount)
4584                 swevent_hlist_release(swhash);
4585
4586         mutex_unlock(&swhash->hlist_mutex);
4587 }
4588
4589 static void swevent_hlist_put(struct perf_event *event)
4590 {
4591         int cpu;
4592
4593         if (event->cpu != -1) {
4594                 swevent_hlist_put_cpu(event, event->cpu);
4595                 return;
4596         }
4597
4598         for_each_possible_cpu(cpu)
4599                 swevent_hlist_put_cpu(event, cpu);
4600 }
4601
4602 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4603 {
4604         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4605         int err = 0;
4606
4607         mutex_lock(&swhash->hlist_mutex);
4608
4609         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4610                 struct swevent_hlist *hlist;
4611
4612                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4613                 if (!hlist) {
4614                         err = -ENOMEM;
4615                         goto exit;
4616                 }
4617                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4618         }
4619         swhash->hlist_refcount++;
4620 exit:
4621         mutex_unlock(&swhash->hlist_mutex);
4622
4623         return err;
4624 }
4625
4626 static int swevent_hlist_get(struct perf_event *event)
4627 {
4628         int err;
4629         int cpu, failed_cpu;
4630
4631         if (event->cpu != -1)
4632                 return swevent_hlist_get_cpu(event, event->cpu);
4633
4634         get_online_cpus();
4635         for_each_possible_cpu(cpu) {
4636                 err = swevent_hlist_get_cpu(event, cpu);
4637                 if (err) {
4638                         failed_cpu = cpu;
4639                         goto fail;
4640                 }
4641         }
4642         put_online_cpus();
4643
4644         return 0;
4645 fail:
4646         for_each_possible_cpu(cpu) {
4647                 if (cpu == failed_cpu)
4648                         break;
4649                 swevent_hlist_put_cpu(event, cpu);
4650         }
4651
4652         put_online_cpus();
4653         return err;
4654 }
4655
4656 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4657
4658 static void sw_perf_event_destroy(struct perf_event *event)
4659 {
4660         u64 event_id = event->attr.config;
4661
4662         WARN_ON(event->parent);
4663
4664         jump_label_dec(&perf_swevent_enabled[event_id]);
4665         swevent_hlist_put(event);
4666 }
4667
4668 static int perf_swevent_init(struct perf_event *event)
4669 {
4670         int event_id = event->attr.config;
4671
4672         if (event->attr.type != PERF_TYPE_SOFTWARE)
4673                 return -ENOENT;
4674
4675         switch (event_id) {
4676         case PERF_COUNT_SW_CPU_CLOCK:
4677         case PERF_COUNT_SW_TASK_CLOCK:
4678                 return -ENOENT;
4679
4680         default:
4681                 break;
4682         }
4683
4684         if (event_id > PERF_COUNT_SW_MAX)
4685                 return -ENOENT;
4686
4687         if (!event->parent) {
4688                 int err;
4689
4690                 err = swevent_hlist_get(event);
4691                 if (err)
4692                         return err;
4693
4694                 jump_label_inc(&perf_swevent_enabled[event_id]);
4695                 event->destroy = sw_perf_event_destroy;
4696         }
4697
4698         return 0;
4699 }
4700
4701 static struct pmu perf_swevent = {
4702         .task_ctx_nr    = perf_sw_context,
4703
4704         .event_init     = perf_swevent_init,
4705         .add            = perf_swevent_add,
4706         .del            = perf_swevent_del,
4707         .start          = perf_swevent_start,
4708         .stop           = perf_swevent_stop,
4709         .read           = perf_swevent_read,
4710 };
4711
4712 #ifdef CONFIG_EVENT_TRACING
4713
4714 static int perf_tp_filter_match(struct perf_event *event,
4715                                 struct perf_sample_data *data)
4716 {
4717         void *record = data->raw->data;
4718
4719         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4720                 return 1;
4721         return 0;
4722 }
4723
4724 static int perf_tp_event_match(struct perf_event *event,
4725                                 struct perf_sample_data *data,
4726                                 struct pt_regs *regs)
4727 {
4728         /*
4729          * All tracepoints are from kernel-space.
4730          */
4731         if (event->attr.exclude_kernel)
4732                 return 0;
4733
4734         if (!perf_tp_filter_match(event, data))
4735                 return 0;
4736
4737         return 1;
4738 }
4739
4740 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4741                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4742 {
4743         struct perf_sample_data data;
4744         struct perf_event *event;
4745         struct hlist_node *node;
4746
4747         struct perf_raw_record raw = {
4748                 .size = entry_size,
4749                 .data = record,
4750         };
4751
4752         perf_sample_data_init(&data, addr);
4753         data.raw = &raw;
4754
4755         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4756                 if (perf_tp_event_match(event, &data, regs))
4757                         perf_swevent_event(event, count, 1, &data, regs);
4758         }
4759
4760         perf_swevent_put_recursion_context(rctx);
4761 }
4762 EXPORT_SYMBOL_GPL(perf_tp_event);
4763
4764 static void tp_perf_event_destroy(struct perf_event *event)
4765 {
4766         perf_trace_destroy(event);
4767 }
4768
4769 static int perf_tp_event_init(struct perf_event *event)
4770 {
4771         int err;
4772
4773         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4774                 return -ENOENT;
4775
4776         /*
4777          * Raw tracepoint data is a severe data leak, only allow root to
4778          * have these.
4779          */
4780         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4781                         perf_paranoid_tracepoint_raw() &&
4782                         !capable(CAP_SYS_ADMIN))
4783                 return -EPERM;
4784
4785         err = perf_trace_init(event);
4786         if (err)
4787                 return err;
4788
4789         event->destroy = tp_perf_event_destroy;
4790
4791         return 0;
4792 }
4793
4794 static struct pmu perf_tracepoint = {
4795         .task_ctx_nr    = perf_sw_context,
4796
4797         .event_init     = perf_tp_event_init,
4798         .add            = perf_trace_add,
4799         .del            = perf_trace_del,
4800         .start          = perf_swevent_start,
4801         .stop           = perf_swevent_stop,
4802         .read           = perf_swevent_read,
4803 };
4804
4805 static inline void perf_tp_register(void)
4806 {
4807         perf_pmu_register(&perf_tracepoint);
4808 }
4809
4810 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4811 {
4812         char *filter_str;
4813         int ret;
4814
4815         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4816                 return -EINVAL;
4817
4818         filter_str = strndup_user(arg, PAGE_SIZE);
4819         if (IS_ERR(filter_str))
4820                 return PTR_ERR(filter_str);
4821
4822         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4823
4824         kfree(filter_str);
4825         return ret;
4826 }
4827
4828 static void perf_event_free_filter(struct perf_event *event)
4829 {
4830         ftrace_profile_free_filter(event);
4831 }
4832
4833 #else
4834
4835 static inline void perf_tp_register(void)
4836 {
4837 }
4838
4839 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4840 {
4841         return -ENOENT;
4842 }
4843
4844 static void perf_event_free_filter(struct perf_event *event)
4845 {
4846 }
4847
4848 #endif /* CONFIG_EVENT_TRACING */
4849
4850 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4851 void perf_bp_event(struct perf_event *bp, void *data)
4852 {
4853         struct perf_sample_data sample;
4854         struct pt_regs *regs = data;
4855
4856         perf_sample_data_init(&sample, bp->attr.bp_addr);
4857
4858         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4859                 perf_swevent_event(bp, 1, 1, &sample, regs);
4860 }
4861 #endif
4862
4863 /*
4864  * hrtimer based swevent callback
4865  */
4866
4867 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4868 {
4869         enum hrtimer_restart ret = HRTIMER_RESTART;
4870         struct perf_sample_data data;
4871         struct pt_regs *regs;
4872         struct perf_event *event;
4873         u64 period;
4874
4875         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4876         event->pmu->read(event);
4877
4878         perf_sample_data_init(&data, 0);
4879         data.period = event->hw.last_period;
4880         regs = get_irq_regs();
4881
4882         if (regs && !perf_exclude_event(event, regs)) {
4883                 if (!(event->attr.exclude_idle && current->pid == 0))
4884                         if (perf_event_overflow(event, 0, &data, regs))
4885                                 ret = HRTIMER_NORESTART;
4886         }
4887
4888         period = max_t(u64, 10000, event->hw.sample_period);
4889         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4890
4891         return ret;
4892 }
4893
4894 static void perf_swevent_start_hrtimer(struct perf_event *event)
4895 {
4896         struct hw_perf_event *hwc = &event->hw;
4897
4898         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4899         hwc->hrtimer.function = perf_swevent_hrtimer;
4900         if (hwc->sample_period) {
4901                 s64 period = local64_read(&hwc->period_left);
4902
4903                 if (period) {
4904                         if (period < 0)
4905                                 period = 10000;
4906
4907                         local64_set(&hwc->period_left, 0);
4908                 } else {
4909                         period = max_t(u64, 10000, hwc->sample_period);
4910                 }
4911                 __hrtimer_start_range_ns(&hwc->hrtimer,
4912                                 ns_to_ktime(period), 0,
4913                                 HRTIMER_MODE_REL_PINNED, 0);
4914         }
4915 }
4916
4917 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4918 {
4919         struct hw_perf_event *hwc = &event->hw;
4920
4921         if (hwc->sample_period) {
4922                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4923                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4924
4925                 hrtimer_cancel(&hwc->hrtimer);
4926         }
4927 }
4928
4929 /*
4930  * Software event: cpu wall time clock
4931  */
4932
4933 static void cpu_clock_event_update(struct perf_event *event)
4934 {
4935         s64 prev;
4936         u64 now;
4937
4938         now = local_clock();
4939         prev = local64_xchg(&event->hw.prev_count, now);
4940         local64_add(now - prev, &event->count);
4941 }
4942
4943 static void cpu_clock_event_start(struct perf_event *event, int flags)
4944 {
4945         local64_set(&event->hw.prev_count, local_clock());
4946         perf_swevent_start_hrtimer(event);
4947 }
4948
4949 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4950 {
4951         perf_swevent_cancel_hrtimer(event);
4952         cpu_clock_event_update(event);
4953 }
4954
4955 static int cpu_clock_event_add(struct perf_event *event, int flags)
4956 {
4957         if (flags & PERF_EF_START)
4958                 cpu_clock_event_start(event, flags);
4959
4960         return 0;
4961 }
4962
4963 static void cpu_clock_event_del(struct perf_event *event, int flags)
4964 {
4965         cpu_clock_event_stop(event, flags);
4966 }
4967
4968 static void cpu_clock_event_read(struct perf_event *event)
4969 {
4970         cpu_clock_event_update(event);
4971 }
4972
4973 static int cpu_clock_event_init(struct perf_event *event)
4974 {
4975         if (event->attr.type != PERF_TYPE_SOFTWARE)
4976                 return -ENOENT;
4977
4978         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4979                 return -ENOENT;
4980
4981         return 0;
4982 }
4983
4984 static struct pmu perf_cpu_clock = {
4985         .task_ctx_nr    = perf_sw_context,
4986
4987         .event_init     = cpu_clock_event_init,
4988         .add            = cpu_clock_event_add,
4989         .del            = cpu_clock_event_del,
4990         .start          = cpu_clock_event_start,
4991         .stop           = cpu_clock_event_stop,
4992         .read           = cpu_clock_event_read,
4993 };
4994
4995 /*
4996  * Software event: task time clock
4997  */
4998
4999 static void task_clock_event_update(struct perf_event *event, u64 now)
5000 {
5001         u64 prev;
5002         s64 delta;
5003
5004         prev = local64_xchg(&event->hw.prev_count, now);
5005         delta = now - prev;
5006         local64_add(delta, &event->count);
5007 }
5008
5009 static void task_clock_event_start(struct perf_event *event, int flags)
5010 {
5011         local64_set(&event->hw.prev_count, event->ctx->time);
5012         perf_swevent_start_hrtimer(event);
5013 }
5014
5015 static void task_clock_event_stop(struct perf_event *event, int flags)
5016 {
5017         perf_swevent_cancel_hrtimer(event);
5018         task_clock_event_update(event, event->ctx->time);
5019 }
5020
5021 static int task_clock_event_add(struct perf_event *event, int flags)
5022 {
5023         if (flags & PERF_EF_START)
5024                 task_clock_event_start(event, flags);
5025
5026         return 0;
5027 }
5028
5029 static void task_clock_event_del(struct perf_event *event, int flags)
5030 {
5031         task_clock_event_stop(event, PERF_EF_UPDATE);
5032 }
5033
5034 static void task_clock_event_read(struct perf_event *event)
5035 {
5036         u64 time;
5037
5038         if (!in_nmi()) {
5039                 update_context_time(event->ctx);
5040                 time = event->ctx->time;
5041         } else {
5042                 u64 now = perf_clock();
5043                 u64 delta = now - event->ctx->timestamp;
5044                 time = event->ctx->time + delta;
5045         }
5046
5047         task_clock_event_update(event, time);
5048 }
5049
5050 static int task_clock_event_init(struct perf_event *event)
5051 {
5052         if (event->attr.type != PERF_TYPE_SOFTWARE)
5053                 return -ENOENT;
5054
5055         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5056                 return -ENOENT;
5057
5058         return 0;
5059 }
5060
5061 static struct pmu perf_task_clock = {
5062         .task_ctx_nr    = perf_sw_context,
5063
5064         .event_init     = task_clock_event_init,
5065         .add            = task_clock_event_add,
5066         .del            = task_clock_event_del,
5067         .start          = task_clock_event_start,
5068         .stop           = task_clock_event_stop,
5069         .read           = task_clock_event_read,
5070 };
5071
5072 static void perf_pmu_nop_void(struct pmu *pmu)
5073 {
5074 }
5075
5076 static int perf_pmu_nop_int(struct pmu *pmu)
5077 {
5078         return 0;
5079 }
5080
5081 static void perf_pmu_start_txn(struct pmu *pmu)
5082 {
5083         perf_pmu_disable(pmu);
5084 }
5085
5086 static int perf_pmu_commit_txn(struct pmu *pmu)
5087 {
5088         perf_pmu_enable(pmu);
5089         return 0;
5090 }
5091
5092 static void perf_pmu_cancel_txn(struct pmu *pmu)
5093 {
5094         perf_pmu_enable(pmu);
5095 }
5096
5097 /*
5098  * Ensures all contexts with the same task_ctx_nr have the same
5099  * pmu_cpu_context too.
5100  */
5101 static void *find_pmu_context(int ctxn)
5102 {
5103         struct pmu *pmu;
5104
5105         if (ctxn < 0)
5106                 return NULL;
5107
5108         list_for_each_entry(pmu, &pmus, entry) {
5109                 if (pmu->task_ctx_nr == ctxn)
5110                         return pmu->pmu_cpu_context;
5111         }
5112
5113         return NULL;
5114 }
5115
5116 static void free_pmu_context(void * __percpu cpu_context)
5117 {
5118         struct pmu *pmu;
5119
5120         mutex_lock(&pmus_lock);
5121         /*
5122          * Like a real lame refcount.
5123          */
5124         list_for_each_entry(pmu, &pmus, entry) {
5125                 if (pmu->pmu_cpu_context == cpu_context)
5126                         goto out;
5127         }
5128
5129         free_percpu(cpu_context);
5130 out:
5131         mutex_unlock(&pmus_lock);
5132 }
5133
5134 int perf_pmu_register(struct pmu *pmu)
5135 {
5136         int cpu, ret;
5137
5138         mutex_lock(&pmus_lock);
5139         ret = -ENOMEM;
5140         pmu->pmu_disable_count = alloc_percpu(int);
5141         if (!pmu->pmu_disable_count)
5142                 goto unlock;
5143
5144         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5145         if (pmu->pmu_cpu_context)
5146                 goto got_cpu_context;
5147
5148         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5149         if (!pmu->pmu_cpu_context)
5150                 goto free_pdc;
5151
5152         for_each_possible_cpu(cpu) {
5153                 struct perf_cpu_context *cpuctx;
5154
5155                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5156                 __perf_event_init_context(&cpuctx->ctx);
5157                 cpuctx->ctx.type = cpu_context;
5158                 cpuctx->ctx.pmu = pmu;
5159                 cpuctx->jiffies_interval = 1;
5160                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5161         }
5162
5163 got_cpu_context:
5164         if (!pmu->start_txn) {
5165                 if (pmu->pmu_enable) {
5166                         /*
5167                          * If we have pmu_enable/pmu_disable calls, install
5168                          * transaction stubs that use that to try and batch
5169                          * hardware accesses.
5170                          */
5171                         pmu->start_txn  = perf_pmu_start_txn;
5172                         pmu->commit_txn = perf_pmu_commit_txn;
5173                         pmu->cancel_txn = perf_pmu_cancel_txn;
5174                 } else {
5175                         pmu->start_txn  = perf_pmu_nop_void;
5176                         pmu->commit_txn = perf_pmu_nop_int;
5177                         pmu->cancel_txn = perf_pmu_nop_void;
5178                 }
5179         }
5180
5181         if (!pmu->pmu_enable) {
5182                 pmu->pmu_enable  = perf_pmu_nop_void;
5183                 pmu->pmu_disable = perf_pmu_nop_void;
5184         }
5185
5186         list_add_rcu(&pmu->entry, &pmus);
5187         ret = 0;
5188 unlock:
5189         mutex_unlock(&pmus_lock);
5190
5191         return ret;
5192
5193 free_pdc:
5194         free_percpu(pmu->pmu_disable_count);
5195         goto unlock;
5196 }
5197
5198 void perf_pmu_unregister(struct pmu *pmu)
5199 {
5200         mutex_lock(&pmus_lock);
5201         list_del_rcu(&pmu->entry);
5202         mutex_unlock(&pmus_lock);
5203
5204         /*
5205          * We dereference the pmu list under both SRCU and regular RCU, so
5206          * synchronize against both of those.
5207          */
5208         synchronize_srcu(&pmus_srcu);
5209         synchronize_rcu();
5210
5211         free_percpu(pmu->pmu_disable_count);
5212         free_pmu_context(pmu->pmu_cpu_context);
5213 }
5214
5215 struct pmu *perf_init_event(struct perf_event *event)
5216 {
5217         struct pmu *pmu = NULL;
5218         int idx;
5219
5220         idx = srcu_read_lock(&pmus_srcu);
5221         list_for_each_entry_rcu(pmu, &pmus, entry) {
5222                 int ret = pmu->event_init(event);
5223                 if (!ret)
5224                         goto unlock;
5225
5226                 if (ret != -ENOENT) {
5227                         pmu = ERR_PTR(ret);
5228                         goto unlock;
5229                 }
5230         }
5231         pmu = ERR_PTR(-ENOENT);
5232 unlock:
5233         srcu_read_unlock(&pmus_srcu, idx);
5234
5235         return pmu;
5236 }
5237
5238 /*
5239  * Allocate and initialize a event structure
5240  */
5241 static struct perf_event *
5242 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5243                  struct task_struct *task,
5244                  struct perf_event *group_leader,
5245                  struct perf_event *parent_event,
5246                  perf_overflow_handler_t overflow_handler)
5247 {
5248         struct pmu *pmu;
5249         struct perf_event *event;
5250         struct hw_perf_event *hwc;
5251         long err;
5252
5253         event = kzalloc(sizeof(*event), GFP_KERNEL);
5254         if (!event)
5255                 return ERR_PTR(-ENOMEM);
5256
5257         /*
5258          * Single events are their own group leaders, with an
5259          * empty sibling list:
5260          */
5261         if (!group_leader)
5262                 group_leader = event;
5263
5264         mutex_init(&event->child_mutex);
5265         INIT_LIST_HEAD(&event->child_list);
5266
5267         INIT_LIST_HEAD(&event->group_entry);
5268         INIT_LIST_HEAD(&event->event_entry);
5269         INIT_LIST_HEAD(&event->sibling_list);
5270         init_waitqueue_head(&event->waitq);
5271         init_irq_work(&event->pending, perf_pending_event);
5272
5273         mutex_init(&event->mmap_mutex);
5274
5275         event->cpu              = cpu;
5276         event->attr             = *attr;
5277         event->group_leader     = group_leader;
5278         event->pmu              = NULL;
5279         event->oncpu            = -1;
5280
5281         event->parent           = parent_event;
5282
5283         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5284         event->id               = atomic64_inc_return(&perf_event_id);
5285
5286         event->state            = PERF_EVENT_STATE_INACTIVE;
5287
5288         if (task) {
5289                 event->attach_state = PERF_ATTACH_TASK;
5290 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5291                 /*
5292                  * hw_breakpoint is a bit difficult here..
5293                  */
5294                 if (attr->type == PERF_TYPE_BREAKPOINT)
5295                         event->hw.bp_target = task;
5296 #endif
5297         }
5298
5299         if (!overflow_handler && parent_event)
5300                 overflow_handler = parent_event->overflow_handler;
5301         
5302         event->overflow_handler = overflow_handler;
5303
5304         if (attr->disabled)
5305                 event->state = PERF_EVENT_STATE_OFF;
5306
5307         pmu = NULL;
5308
5309         hwc = &event->hw;
5310         hwc->sample_period = attr->sample_period;
5311         if (attr->freq && attr->sample_freq)
5312                 hwc->sample_period = 1;
5313         hwc->last_period = hwc->sample_period;
5314
5315         local64_set(&hwc->period_left, hwc->sample_period);
5316
5317         /*
5318          * we currently do not support PERF_FORMAT_GROUP on inherited events
5319          */
5320         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5321                 goto done;
5322
5323         pmu = perf_init_event(event);
5324
5325 done:
5326         err = 0;
5327         if (!pmu)
5328                 err = -EINVAL;
5329         else if (IS_ERR(pmu))
5330                 err = PTR_ERR(pmu);
5331
5332         if (err) {
5333                 if (event->ns)
5334                         put_pid_ns(event->ns);
5335                 kfree(event);
5336                 return ERR_PTR(err);
5337         }
5338
5339         event->pmu = pmu;
5340
5341         if (!event->parent) {
5342                 if (event->attach_state & PERF_ATTACH_TASK)
5343                         jump_label_inc(&perf_task_events);
5344                 if (event->attr.mmap || event->attr.mmap_data)
5345                         atomic_inc(&nr_mmap_events);
5346                 if (event->attr.comm)
5347                         atomic_inc(&nr_comm_events);
5348                 if (event->attr.task)
5349                         atomic_inc(&nr_task_events);
5350                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5351                         err = get_callchain_buffers();
5352                         if (err) {
5353                                 free_event(event);
5354                                 return ERR_PTR(err);
5355                         }
5356                 }
5357         }
5358
5359         return event;
5360 }
5361
5362 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5363                           struct perf_event_attr *attr)
5364 {
5365         u32 size;
5366         int ret;
5367
5368         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5369                 return -EFAULT;
5370
5371         /*
5372          * zero the full structure, so that a short copy will be nice.
5373          */
5374         memset(attr, 0, sizeof(*attr));
5375
5376         ret = get_user(size, &uattr->size);
5377         if (ret)
5378                 return ret;
5379
5380         if (size > PAGE_SIZE)   /* silly large */
5381                 goto err_size;
5382
5383         if (!size)              /* abi compat */
5384                 size = PERF_ATTR_SIZE_VER0;
5385
5386         if (size < PERF_ATTR_SIZE_VER0)
5387                 goto err_size;
5388
5389         /*
5390          * If we're handed a bigger struct than we know of,
5391          * ensure all the unknown bits are 0 - i.e. new
5392          * user-space does not rely on any kernel feature
5393          * extensions we dont know about yet.
5394          */
5395         if (size > sizeof(*attr)) {
5396                 unsigned char __user *addr;
5397                 unsigned char __user *end;
5398                 unsigned char val;
5399
5400                 addr = (void __user *)uattr + sizeof(*attr);
5401                 end  = (void __user *)uattr + size;
5402
5403                 for (; addr < end; addr++) {
5404                         ret = get_user(val, addr);
5405                         if (ret)
5406                                 return ret;
5407                         if (val)
5408                                 goto err_size;
5409                 }
5410                 size = sizeof(*attr);
5411         }
5412
5413         ret = copy_from_user(attr, uattr, size);
5414         if (ret)
5415                 return -EFAULT;
5416
5417         /*
5418          * If the type exists, the corresponding creation will verify
5419          * the attr->config.
5420          */
5421         if (attr->type >= PERF_TYPE_MAX)
5422                 return -EINVAL;
5423
5424         if (attr->__reserved_1)
5425                 return -EINVAL;
5426
5427         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5428                 return -EINVAL;
5429
5430         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5431                 return -EINVAL;
5432
5433 out:
5434         return ret;
5435
5436 err_size:
5437         put_user(sizeof(*attr), &uattr->size);
5438         ret = -E2BIG;
5439         goto out;
5440 }
5441
5442 static int
5443 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5444 {
5445         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5446         int ret = -EINVAL;
5447
5448         if (!output_event)
5449                 goto set;
5450
5451         /* don't allow circular references */
5452         if (event == output_event)
5453                 goto out;
5454
5455         /*
5456          * Don't allow cross-cpu buffers
5457          */
5458         if (output_event->cpu != event->cpu)
5459                 goto out;
5460
5461         /*
5462          * If its not a per-cpu buffer, it must be the same task.
5463          */
5464         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5465                 goto out;
5466
5467 set:
5468         mutex_lock(&event->mmap_mutex);
5469         /* Can't redirect output if we've got an active mmap() */
5470         if (atomic_read(&event->mmap_count))
5471                 goto unlock;
5472
5473         if (output_event) {
5474                 /* get the buffer we want to redirect to */
5475                 buffer = perf_buffer_get(output_event);
5476                 if (!buffer)
5477                         goto unlock;
5478         }
5479
5480         old_buffer = event->buffer;
5481         rcu_assign_pointer(event->buffer, buffer);
5482         ret = 0;
5483 unlock:
5484         mutex_unlock(&event->mmap_mutex);
5485
5486         if (old_buffer)
5487                 perf_buffer_put(old_buffer);
5488 out:
5489         return ret;
5490 }
5491
5492 /**
5493  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5494  *
5495  * @attr_uptr:  event_id type attributes for monitoring/sampling
5496  * @pid:                target pid
5497  * @cpu:                target cpu
5498  * @group_fd:           group leader event fd
5499  */
5500 SYSCALL_DEFINE5(perf_event_open,
5501                 struct perf_event_attr __user *, attr_uptr,
5502                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5503 {
5504         struct perf_event *group_leader = NULL, *output_event = NULL;
5505         struct perf_event *event, *sibling;
5506         struct perf_event_attr attr;
5507         struct perf_event_context *ctx;
5508         struct file *event_file = NULL;
5509         struct file *group_file = NULL;
5510         struct task_struct *task = NULL;
5511         struct pmu *pmu;
5512         int event_fd;
5513         int move_group = 0;
5514         int fput_needed = 0;
5515         int err;
5516
5517         /* for future expandability... */
5518         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5519                 return -EINVAL;
5520
5521         err = perf_copy_attr(attr_uptr, &attr);
5522         if (err)
5523                 return err;
5524
5525         if (!attr.exclude_kernel) {
5526                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5527                         return -EACCES;
5528         }
5529
5530         if (attr.freq) {
5531                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5532                         return -EINVAL;
5533         }
5534
5535         event_fd = get_unused_fd_flags(O_RDWR);
5536         if (event_fd < 0)
5537                 return event_fd;
5538
5539         if (group_fd != -1) {
5540                 group_leader = perf_fget_light(group_fd, &fput_needed);
5541                 if (IS_ERR(group_leader)) {
5542                         err = PTR_ERR(group_leader);
5543                         goto err_fd;
5544                 }
5545                 group_file = group_leader->filp;
5546                 if (flags & PERF_FLAG_FD_OUTPUT)
5547                         output_event = group_leader;
5548                 if (flags & PERF_FLAG_FD_NO_GROUP)
5549                         group_leader = NULL;
5550         }
5551
5552         if (pid != -1) {
5553                 task = find_lively_task_by_vpid(pid);
5554                 if (IS_ERR(task)) {
5555                         err = PTR_ERR(task);
5556                         goto err_group_fd;
5557                 }
5558         }
5559
5560         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5561         if (IS_ERR(event)) {
5562                 err = PTR_ERR(event);
5563                 goto err_task;
5564         }
5565
5566         /*
5567          * Special case software events and allow them to be part of
5568          * any hardware group.
5569          */
5570         pmu = event->pmu;
5571
5572         if (group_leader &&
5573             (is_software_event(event) != is_software_event(group_leader))) {
5574                 if (is_software_event(event)) {
5575                         /*
5576                          * If event and group_leader are not both a software
5577                          * event, and event is, then group leader is not.
5578                          *
5579                          * Allow the addition of software events to !software
5580                          * groups, this is safe because software events never
5581                          * fail to schedule.
5582                          */
5583                         pmu = group_leader->pmu;
5584                 } else if (is_software_event(group_leader) &&
5585                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5586                         /*
5587                          * In case the group is a pure software group, and we
5588                          * try to add a hardware event, move the whole group to
5589                          * the hardware context.
5590                          */
5591                         move_group = 1;
5592                 }
5593         }
5594
5595         /*
5596          * Get the target context (task or percpu):
5597          */
5598         ctx = find_get_context(pmu, task, cpu);
5599         if (IS_ERR(ctx)) {
5600                 err = PTR_ERR(ctx);
5601                 goto err_alloc;
5602         }
5603
5604         /*
5605          * Look up the group leader (we will attach this event to it):
5606          */
5607         if (group_leader) {
5608                 err = -EINVAL;
5609
5610                 /*
5611                  * Do not allow a recursive hierarchy (this new sibling
5612                  * becoming part of another group-sibling):
5613                  */
5614                 if (group_leader->group_leader != group_leader)
5615                         goto err_context;
5616                 /*
5617                  * Do not allow to attach to a group in a different
5618                  * task or CPU context:
5619                  */
5620                 if (move_group) {
5621                         if (group_leader->ctx->type != ctx->type)
5622                                 goto err_context;
5623                 } else {
5624                         if (group_leader->ctx != ctx)
5625                                 goto err_context;
5626                 }
5627
5628                 /*
5629                  * Only a group leader can be exclusive or pinned
5630                  */
5631                 if (attr.exclusive || attr.pinned)
5632                         goto err_context;
5633         }
5634
5635         if (output_event) {
5636                 err = perf_event_set_output(event, output_event);
5637                 if (err)
5638                         goto err_context;
5639         }
5640
5641         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5642         if (IS_ERR(event_file)) {
5643                 err = PTR_ERR(event_file);
5644                 goto err_context;
5645         }
5646
5647         if (move_group) {
5648                 struct perf_event_context *gctx = group_leader->ctx;
5649
5650                 mutex_lock(&gctx->mutex);
5651                 perf_event_remove_from_context(group_leader);
5652                 list_for_each_entry(sibling, &group_leader->sibling_list,
5653                                     group_entry) {
5654                         perf_event_remove_from_context(sibling);
5655                         put_ctx(gctx);
5656                 }
5657                 mutex_unlock(&gctx->mutex);
5658                 put_ctx(gctx);
5659         }
5660
5661         event->filp = event_file;
5662         WARN_ON_ONCE(ctx->parent_ctx);
5663         mutex_lock(&ctx->mutex);
5664
5665         if (move_group) {
5666                 perf_install_in_context(ctx, group_leader, cpu);
5667                 get_ctx(ctx);
5668                 list_for_each_entry(sibling, &group_leader->sibling_list,
5669                                     group_entry) {
5670                         perf_install_in_context(ctx, sibling, cpu);
5671                         get_ctx(ctx);
5672                 }
5673         }
5674
5675         perf_install_in_context(ctx, event, cpu);
5676         ++ctx->generation;
5677         mutex_unlock(&ctx->mutex);
5678
5679         event->owner = current;
5680         get_task_struct(current);
5681         mutex_lock(&current->perf_event_mutex);
5682         list_add_tail(&event->owner_entry, &current->perf_event_list);
5683         mutex_unlock(&current->perf_event_mutex);
5684
5685         /*
5686          * Drop the reference on the group_event after placing the
5687          * new event on the sibling_list. This ensures destruction
5688          * of the group leader will find the pointer to itself in
5689          * perf_group_detach().
5690          */
5691         fput_light(group_file, fput_needed);
5692         fd_install(event_fd, event_file);
5693         return event_fd;
5694
5695 err_context:
5696         put_ctx(ctx);
5697 err_alloc:
5698         free_event(event);
5699 err_task:
5700         if (task)
5701                 put_task_struct(task);
5702 err_group_fd:
5703         fput_light(group_file, fput_needed);
5704 err_fd:
5705         put_unused_fd(event_fd);
5706         return err;
5707 }
5708
5709 /**
5710  * perf_event_create_kernel_counter
5711  *
5712  * @attr: attributes of the counter to create
5713  * @cpu: cpu in which the counter is bound
5714  * @task: task to profile (NULL for percpu)
5715  */
5716 struct perf_event *
5717 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5718                                  struct task_struct *task,
5719                                  perf_overflow_handler_t overflow_handler)
5720 {
5721         struct perf_event_context *ctx;
5722         struct perf_event *event;
5723         int err;
5724
5725         /*
5726          * Get the target context (task or percpu):
5727          */
5728
5729         event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5730         if (IS_ERR(event)) {
5731                 err = PTR_ERR(event);
5732                 goto err;
5733         }
5734
5735         ctx = find_get_context(event->pmu, task, cpu);
5736         if (IS_ERR(ctx)) {
5737                 err = PTR_ERR(ctx);
5738                 goto err_free;
5739         }
5740
5741         event->filp = NULL;
5742         WARN_ON_ONCE(ctx->parent_ctx);
5743         mutex_lock(&ctx->mutex);
5744         perf_install_in_context(ctx, event, cpu);
5745         ++ctx->generation;
5746         mutex_unlock(&ctx->mutex);
5747
5748         event->owner = current;
5749         get_task_struct(current);
5750         mutex_lock(&current->perf_event_mutex);
5751         list_add_tail(&event->owner_entry, &current->perf_event_list);
5752         mutex_unlock(&current->perf_event_mutex);
5753
5754         return event;
5755
5756 err_free:
5757         free_event(event);
5758 err:
5759         return ERR_PTR(err);
5760 }
5761 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5762
5763 static void sync_child_event(struct perf_event *child_event,
5764                                struct task_struct *child)
5765 {
5766         struct perf_event *parent_event = child_event->parent;
5767         u64 child_val;
5768
5769         if (child_event->attr.inherit_stat)
5770                 perf_event_read_event(child_event, child);
5771
5772         child_val = perf_event_count(child_event);
5773
5774         /*
5775          * Add back the child's count to the parent's count:
5776          */
5777         atomic64_add(child_val, &parent_event->child_count);
5778         atomic64_add(child_event->total_time_enabled,
5779                      &parent_event->child_total_time_enabled);
5780         atomic64_add(child_event->total_time_running,
5781                      &parent_event->child_total_time_running);
5782
5783         /*
5784          * Remove this event from the parent's list
5785          */
5786         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5787         mutex_lock(&parent_event->child_mutex);
5788         list_del_init(&child_event->child_list);
5789         mutex_unlock(&parent_event->child_mutex);
5790
5791         /*
5792          * Release the parent event, if this was the last
5793          * reference to it.
5794          */
5795         fput(parent_event->filp);
5796 }
5797
5798 static void
5799 __perf_event_exit_task(struct perf_event *child_event,
5800                          struct perf_event_context *child_ctx,
5801                          struct task_struct *child)
5802 {
5803         struct perf_event *parent_event;
5804
5805         perf_event_remove_from_context(child_event);
5806
5807         parent_event = child_event->parent;
5808         /*
5809          * It can happen that parent exits first, and has events
5810          * that are still around due to the child reference. These
5811          * events need to be zapped - but otherwise linger.
5812          */
5813         if (parent_event) {
5814                 sync_child_event(child_event, child);
5815                 free_event(child_event);
5816         }
5817 }
5818
5819 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5820 {
5821         struct perf_event *child_event, *tmp;
5822         struct perf_event_context *child_ctx;
5823         unsigned long flags;
5824
5825         if (likely(!child->perf_event_ctxp[ctxn])) {
5826                 perf_event_task(child, NULL, 0);
5827                 return;
5828         }
5829
5830         local_irq_save(flags);
5831         /*
5832          * We can't reschedule here because interrupts are disabled,
5833          * and either child is current or it is a task that can't be
5834          * scheduled, so we are now safe from rescheduling changing
5835          * our context.
5836          */
5837         child_ctx = child->perf_event_ctxp[ctxn];
5838         task_ctx_sched_out(child_ctx, EVENT_ALL);
5839
5840         /*
5841          * Take the context lock here so that if find_get_context is
5842          * reading child->perf_event_ctxp, we wait until it has
5843          * incremented the context's refcount before we do put_ctx below.
5844          */
5845         raw_spin_lock(&child_ctx->lock);
5846         child->perf_event_ctxp[ctxn] = NULL;
5847         /*
5848          * If this context is a clone; unclone it so it can't get
5849          * swapped to another process while we're removing all
5850          * the events from it.
5851          */
5852         unclone_ctx(child_ctx);
5853         update_context_time(child_ctx);
5854         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5855
5856         /*
5857          * Report the task dead after unscheduling the events so that we
5858          * won't get any samples after PERF_RECORD_EXIT. We can however still
5859          * get a few PERF_RECORD_READ events.
5860          */
5861         perf_event_task(child, child_ctx, 0);
5862
5863         /*
5864          * We can recurse on the same lock type through:
5865          *
5866          *   __perf_event_exit_task()
5867          *     sync_child_event()
5868          *       fput(parent_event->filp)
5869          *         perf_release()
5870          *           mutex_lock(&ctx->mutex)
5871          *
5872          * But since its the parent context it won't be the same instance.
5873          */
5874         mutex_lock(&child_ctx->mutex);
5875
5876 again:
5877         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5878                                  group_entry)
5879                 __perf_event_exit_task(child_event, child_ctx, child);
5880
5881         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5882                                  group_entry)
5883                 __perf_event_exit_task(child_event, child_ctx, child);
5884
5885         /*
5886          * If the last event was a group event, it will have appended all
5887          * its siblings to the list, but we obtained 'tmp' before that which
5888          * will still point to the list head terminating the iteration.
5889          */
5890         if (!list_empty(&child_ctx->pinned_groups) ||
5891             !list_empty(&child_ctx->flexible_groups))
5892                 goto again;
5893
5894         mutex_unlock(&child_ctx->mutex);
5895
5896         put_ctx(child_ctx);
5897 }
5898
5899 /*
5900  * When a child task exits, feed back event values to parent events.
5901  */
5902 void perf_event_exit_task(struct task_struct *child)
5903 {
5904         int ctxn;
5905
5906         for_each_task_context_nr(ctxn)
5907                 perf_event_exit_task_context(child, ctxn);
5908 }
5909
5910 static void perf_free_event(struct perf_event *event,
5911                             struct perf_event_context *ctx)
5912 {
5913         struct perf_event *parent = event->parent;
5914
5915         if (WARN_ON_ONCE(!parent))
5916                 return;
5917
5918         mutex_lock(&parent->child_mutex);
5919         list_del_init(&event->child_list);
5920         mutex_unlock(&parent->child_mutex);
5921
5922         fput(parent->filp);
5923
5924         perf_group_detach(event);
5925         list_del_event(event, ctx);
5926         free_event(event);
5927 }
5928
5929 /*
5930  * free an unexposed, unused context as created by inheritance by
5931  * perf_event_init_task below, used by fork() in case of fail.
5932  */
5933 void perf_event_free_task(struct task_struct *task)
5934 {
5935         struct perf_event_context *ctx;
5936         struct perf_event *event, *tmp;
5937         int ctxn;
5938
5939         for_each_task_context_nr(ctxn) {
5940                 ctx = task->perf_event_ctxp[ctxn];
5941                 if (!ctx)
5942                         continue;
5943
5944                 mutex_lock(&ctx->mutex);
5945 again:
5946                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5947                                 group_entry)
5948                         perf_free_event(event, ctx);
5949
5950                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5951                                 group_entry)
5952                         perf_free_event(event, ctx);
5953
5954                 if (!list_empty(&ctx->pinned_groups) ||
5955                                 !list_empty(&ctx->flexible_groups))
5956                         goto again;
5957
5958                 mutex_unlock(&ctx->mutex);
5959
5960                 put_ctx(ctx);
5961         }
5962 }
5963
5964 void perf_event_delayed_put(struct task_struct *task)
5965 {
5966         int ctxn;
5967
5968         for_each_task_context_nr(ctxn)
5969                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5970 }
5971
5972 /*
5973  * inherit a event from parent task to child task:
5974  */
5975 static struct perf_event *
5976 inherit_event(struct perf_event *parent_event,
5977               struct task_struct *parent,
5978               struct perf_event_context *parent_ctx,
5979               struct task_struct *child,
5980               struct perf_event *group_leader,
5981               struct perf_event_context *child_ctx)
5982 {
5983         struct perf_event *child_event;
5984         unsigned long flags;
5985
5986         /*
5987          * Instead of creating recursive hierarchies of events,
5988          * we link inherited events back to the original parent,
5989          * which has a filp for sure, which we use as the reference
5990          * count:
5991          */
5992         if (parent_event->parent)
5993                 parent_event = parent_event->parent;
5994
5995         child_event = perf_event_alloc(&parent_event->attr,
5996                                            parent_event->cpu,
5997                                            child,
5998                                            group_leader, parent_event,
5999                                            NULL);
6000         if (IS_ERR(child_event))
6001                 return child_event;
6002         get_ctx(child_ctx);
6003
6004         /*
6005          * Make the child state follow the state of the parent event,
6006          * not its attr.disabled bit.  We hold the parent's mutex,
6007          * so we won't race with perf_event_{en, dis}able_family.
6008          */
6009         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6010                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6011         else
6012                 child_event->state = PERF_EVENT_STATE_OFF;
6013
6014         if (parent_event->attr.freq) {
6015                 u64 sample_period = parent_event->hw.sample_period;
6016                 struct hw_perf_event *hwc = &child_event->hw;
6017
6018                 hwc->sample_period = sample_period;
6019                 hwc->last_period   = sample_period;
6020
6021                 local64_set(&hwc->period_left, sample_period);
6022         }
6023
6024         child_event->ctx = child_ctx;
6025         child_event->overflow_handler = parent_event->overflow_handler;
6026
6027         /*
6028          * Link it up in the child's context:
6029          */
6030         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6031         add_event_to_ctx(child_event, child_ctx);
6032         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6033
6034         /*
6035          * Get a reference to the parent filp - we will fput it
6036          * when the child event exits. This is safe to do because
6037          * we are in the parent and we know that the filp still
6038          * exists and has a nonzero count:
6039          */
6040         atomic_long_inc(&parent_event->filp->f_count);
6041
6042         /*
6043          * Link this into the parent event's child list
6044          */
6045         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6046         mutex_lock(&parent_event->child_mutex);
6047         list_add_tail(&child_event->child_list, &parent_event->child_list);
6048         mutex_unlock(&parent_event->child_mutex);
6049
6050         return child_event;
6051 }
6052
6053 static int inherit_group(struct perf_event *parent_event,
6054               struct task_struct *parent,
6055               struct perf_event_context *parent_ctx,
6056               struct task_struct *child,
6057               struct perf_event_context *child_ctx)
6058 {
6059         struct perf_event *leader;
6060         struct perf_event *sub;
6061         struct perf_event *child_ctr;
6062
6063         leader = inherit_event(parent_event, parent, parent_ctx,
6064                                  child, NULL, child_ctx);
6065         if (IS_ERR(leader))
6066                 return PTR_ERR(leader);
6067         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6068                 child_ctr = inherit_event(sub, parent, parent_ctx,
6069                                             child, leader, child_ctx);
6070                 if (IS_ERR(child_ctr))
6071                         return PTR_ERR(child_ctr);
6072         }
6073         return 0;
6074 }
6075
6076 static int
6077 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6078                    struct perf_event_context *parent_ctx,
6079                    struct task_struct *child, int ctxn,
6080                    int *inherited_all)
6081 {
6082         int ret;
6083         struct perf_event_context *child_ctx;
6084
6085         if (!event->attr.inherit) {
6086                 *inherited_all = 0;
6087                 return 0;
6088         }
6089
6090         child_ctx = child->perf_event_ctxp[ctxn];
6091         if (!child_ctx) {
6092                 /*
6093                  * This is executed from the parent task context, so
6094                  * inherit events that have been marked for cloning.
6095                  * First allocate and initialize a context for the
6096                  * child.
6097                  */
6098
6099                 child_ctx = alloc_perf_context(event->pmu, child);
6100                 if (!child_ctx)
6101                         return -ENOMEM;
6102
6103                 child->perf_event_ctxp[ctxn] = child_ctx;
6104         }
6105
6106         ret = inherit_group(event, parent, parent_ctx,
6107                             child, child_ctx);
6108
6109         if (ret)
6110                 *inherited_all = 0;
6111
6112         return ret;
6113 }
6114
6115 /*
6116  * Initialize the perf_event context in task_struct
6117  */
6118 int perf_event_init_context(struct task_struct *child, int ctxn)
6119 {
6120         struct perf_event_context *child_ctx, *parent_ctx;
6121         struct perf_event_context *cloned_ctx;
6122         struct perf_event *event;
6123         struct task_struct *parent = current;
6124         int inherited_all = 1;
6125         int ret = 0;
6126
6127         child->perf_event_ctxp[ctxn] = NULL;
6128
6129         mutex_init(&child->perf_event_mutex);
6130         INIT_LIST_HEAD(&child->perf_event_list);
6131
6132         if (likely(!parent->perf_event_ctxp[ctxn]))
6133                 return 0;
6134
6135         /*
6136          * If the parent's context is a clone, pin it so it won't get
6137          * swapped under us.
6138          */
6139         parent_ctx = perf_pin_task_context(parent, ctxn);
6140
6141         /*
6142          * No need to check if parent_ctx != NULL here; since we saw
6143          * it non-NULL earlier, the only reason for it to become NULL
6144          * is if we exit, and since we're currently in the middle of
6145          * a fork we can't be exiting at the same time.
6146          */
6147
6148         /*
6149          * Lock the parent list. No need to lock the child - not PID
6150          * hashed yet and not running, so nobody can access it.
6151          */
6152         mutex_lock(&parent_ctx->mutex);
6153
6154         /*
6155          * We dont have to disable NMIs - we are only looking at
6156          * the list, not manipulating it:
6157          */
6158         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6159                 ret = inherit_task_group(event, parent, parent_ctx,
6160                                          child, ctxn, &inherited_all);
6161                 if (ret)
6162                         break;
6163         }
6164
6165         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6166                 ret = inherit_task_group(event, parent, parent_ctx,
6167                                          child, ctxn, &inherited_all);
6168                 if (ret)
6169                         break;
6170         }
6171
6172         child_ctx = child->perf_event_ctxp[ctxn];
6173
6174         if (child_ctx && inherited_all) {
6175                 /*
6176                  * Mark the child context as a clone of the parent
6177                  * context, or of whatever the parent is a clone of.
6178                  * Note that if the parent is a clone, it could get
6179                  * uncloned at any point, but that doesn't matter
6180                  * because the list of events and the generation
6181                  * count can't have changed since we took the mutex.
6182                  */
6183                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6184                 if (cloned_ctx) {
6185                         child_ctx->parent_ctx = cloned_ctx;
6186                         child_ctx->parent_gen = parent_ctx->parent_gen;
6187                 } else {
6188                         child_ctx->parent_ctx = parent_ctx;
6189                         child_ctx->parent_gen = parent_ctx->generation;
6190                 }
6191                 get_ctx(child_ctx->parent_ctx);
6192         }
6193
6194         mutex_unlock(&parent_ctx->mutex);
6195
6196         perf_unpin_context(parent_ctx);
6197
6198         return ret;
6199 }
6200
6201 /*
6202  * Initialize the perf_event context in task_struct
6203  */
6204 int perf_event_init_task(struct task_struct *child)
6205 {
6206         int ctxn, ret;
6207
6208         for_each_task_context_nr(ctxn) {
6209                 ret = perf_event_init_context(child, ctxn);
6210                 if (ret)
6211                         return ret;
6212         }
6213
6214         return 0;
6215 }
6216
6217 static void __init perf_event_init_all_cpus(void)
6218 {
6219         struct swevent_htable *swhash;
6220         int cpu;
6221
6222         for_each_possible_cpu(cpu) {
6223                 swhash = &per_cpu(swevent_htable, cpu);
6224                 mutex_init(&swhash->hlist_mutex);
6225                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6226         }
6227 }
6228
6229 static void __cpuinit perf_event_init_cpu(int cpu)
6230 {
6231         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6232
6233         mutex_lock(&swhash->hlist_mutex);
6234         if (swhash->hlist_refcount > 0) {
6235                 struct swevent_hlist *hlist;
6236
6237                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6238                 WARN_ON(!hlist);
6239                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6240         }
6241         mutex_unlock(&swhash->hlist_mutex);
6242 }
6243
6244 #ifdef CONFIG_HOTPLUG_CPU
6245 static void perf_pmu_rotate_stop(struct pmu *pmu)
6246 {
6247         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6248
6249         WARN_ON(!irqs_disabled());
6250
6251         list_del_init(&cpuctx->rotation_list);
6252 }
6253
6254 static void __perf_event_exit_context(void *__info)
6255 {
6256         struct perf_event_context *ctx = __info;
6257         struct perf_event *event, *tmp;
6258
6259         perf_pmu_rotate_stop(ctx->pmu);
6260
6261         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6262                 __perf_event_remove_from_context(event);
6263         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6264                 __perf_event_remove_from_context(event);
6265 }
6266
6267 static void perf_event_exit_cpu_context(int cpu)
6268 {
6269         struct perf_event_context *ctx;
6270         struct pmu *pmu;
6271         int idx;
6272
6273         idx = srcu_read_lock(&pmus_srcu);
6274         list_for_each_entry_rcu(pmu, &pmus, entry) {
6275                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6276
6277                 mutex_lock(&ctx->mutex);
6278                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6279                 mutex_unlock(&ctx->mutex);
6280         }
6281         srcu_read_unlock(&pmus_srcu, idx);
6282 }
6283
6284 static void perf_event_exit_cpu(int cpu)
6285 {
6286         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6287
6288         mutex_lock(&swhash->hlist_mutex);
6289         swevent_hlist_release(swhash);
6290         mutex_unlock(&swhash->hlist_mutex);
6291
6292         perf_event_exit_cpu_context(cpu);
6293 }
6294 #else
6295 static inline void perf_event_exit_cpu(int cpu) { }
6296 #endif
6297
6298 static int __cpuinit
6299 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6300 {
6301         unsigned int cpu = (long)hcpu;
6302
6303         switch (action & ~CPU_TASKS_FROZEN) {
6304
6305         case CPU_UP_PREPARE:
6306         case CPU_DOWN_FAILED:
6307                 perf_event_init_cpu(cpu);
6308                 break;
6309
6310         case CPU_UP_CANCELED:
6311         case CPU_DOWN_PREPARE:
6312                 perf_event_exit_cpu(cpu);
6313                 break;
6314
6315         default:
6316                 break;
6317         }
6318
6319         return NOTIFY_OK;
6320 }
6321
6322 void __init perf_event_init(void)
6323 {
6324         perf_event_init_all_cpus();
6325         init_srcu_struct(&pmus_srcu);
6326         perf_pmu_register(&perf_swevent);
6327         perf_pmu_register(&perf_cpu_clock);
6328         perf_pmu_register(&perf_task_clock);
6329         perf_tp_register();
6330         perf_cpu_notifier(perf_cpu_notify);
6331 }