Merge commit 'v2.6.37-rc5' into perf/core
[pandora-kernel.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 atomic_t perf_task_events __read_mostly;
39 static atomic_t nr_mmap_events __read_mostly;
40 static atomic_t nr_comm_events __read_mostly;
41 static atomic_t nr_task_events __read_mostly;
42
43 static LIST_HEAD(pmus);
44 static DEFINE_MUTEX(pmus_lock);
45 static struct srcu_struct pmus_srcu;
46
47 /*
48  * perf event paranoia level:
49  *  -1 - not paranoid at all
50  *   0 - disallow raw tracepoint access for unpriv
51  *   1 - disallow cpu events for unpriv
52  *   2 - disallow kernel profiling for unpriv
53  */
54 int sysctl_perf_event_paranoid __read_mostly = 1;
55
56 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57
58 /*
59  * max perf event sample rate
60  */
61 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62
63 static atomic64_t perf_event_id;
64
65 void __weak perf_event_print_debug(void)        { }
66
67 extern __weak const char *perf_pmu_name(void)
68 {
69         return "pmu";
70 }
71
72 void perf_pmu_disable(struct pmu *pmu)
73 {
74         int *count = this_cpu_ptr(pmu->pmu_disable_count);
75         if (!(*count)++)
76                 pmu->pmu_disable(pmu);
77 }
78
79 void perf_pmu_enable(struct pmu *pmu)
80 {
81         int *count = this_cpu_ptr(pmu->pmu_disable_count);
82         if (!--(*count))
83                 pmu->pmu_enable(pmu);
84 }
85
86 static DEFINE_PER_CPU(struct list_head, rotation_list);
87
88 /*
89  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
90  * because they're strictly cpu affine and rotate_start is called with IRQs
91  * disabled, while rotate_context is called from IRQ context.
92  */
93 static void perf_pmu_rotate_start(struct pmu *pmu)
94 {
95         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96         struct list_head *head = &__get_cpu_var(rotation_list);
97
98         WARN_ON(!irqs_disabled());
99
100         if (list_empty(&cpuctx->rotation_list))
101                 list_add(&cpuctx->rotation_list, head);
102 }
103
104 static void get_ctx(struct perf_event_context *ctx)
105 {
106         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111         struct perf_event_context *ctx;
112
113         ctx = container_of(head, struct perf_event_context, rcu_head);
114         kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_event_context *ctx)
118 {
119         if (atomic_dec_and_test(&ctx->refcount)) {
120                 if (ctx->parent_ctx)
121                         put_ctx(ctx->parent_ctx);
122                 if (ctx->task)
123                         put_task_struct(ctx->task);
124                 call_rcu(&ctx->rcu_head, free_ctx);
125         }
126 }
127
128 static void unclone_ctx(struct perf_event_context *ctx)
129 {
130         if (ctx->parent_ctx) {
131                 put_ctx(ctx->parent_ctx);
132                 ctx->parent_ctx = NULL;
133         }
134 }
135
136 /*
137  * If we inherit events we want to return the parent event id
138  * to userspace.
139  */
140 static u64 primary_event_id(struct perf_event *event)
141 {
142         u64 id = event->id;
143
144         if (event->parent)
145                 id = event->parent->id;
146
147         return id;
148 }
149
150 /*
151  * Get the perf_event_context for a task and lock it.
152  * This has to cope with with the fact that until it is locked,
153  * the context could get moved to another task.
154  */
155 static struct perf_event_context *
156 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
157 {
158         struct perf_event_context *ctx;
159
160         rcu_read_lock();
161 retry:
162         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
163         if (ctx) {
164                 /*
165                  * If this context is a clone of another, it might
166                  * get swapped for another underneath us by
167                  * perf_event_task_sched_out, though the
168                  * rcu_read_lock() protects us from any context
169                  * getting freed.  Lock the context and check if it
170                  * got swapped before we could get the lock, and retry
171                  * if so.  If we locked the right context, then it
172                  * can't get swapped on us any more.
173                  */
174                 raw_spin_lock_irqsave(&ctx->lock, *flags);
175                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
176                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177                         goto retry;
178                 }
179
180                 if (!atomic_inc_not_zero(&ctx->refcount)) {
181                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182                         ctx = NULL;
183                 }
184         }
185         rcu_read_unlock();
186         return ctx;
187 }
188
189 /*
190  * Get the context for a task and increment its pin_count so it
191  * can't get swapped to another task.  This also increments its
192  * reference count so that the context can't get freed.
193  */
194 static struct perf_event_context *
195 perf_pin_task_context(struct task_struct *task, int ctxn)
196 {
197         struct perf_event_context *ctx;
198         unsigned long flags;
199
200         ctx = perf_lock_task_context(task, ctxn, &flags);
201         if (ctx) {
202                 ++ctx->pin_count;
203                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
204         }
205         return ctx;
206 }
207
208 static void perf_unpin_context(struct perf_event_context *ctx)
209 {
210         unsigned long flags;
211
212         raw_spin_lock_irqsave(&ctx->lock, flags);
213         --ctx->pin_count;
214         raw_spin_unlock_irqrestore(&ctx->lock, flags);
215         put_ctx(ctx);
216 }
217
218 static inline u64 perf_clock(void)
219 {
220         return local_clock();
221 }
222
223 /*
224  * Update the record of the current time in a context.
225  */
226 static void update_context_time(struct perf_event_context *ctx)
227 {
228         u64 now = perf_clock();
229
230         ctx->time += now - ctx->timestamp;
231         ctx->timestamp = now;
232 }
233
234 /*
235  * Update the total_time_enabled and total_time_running fields for a event.
236  */
237 static void update_event_times(struct perf_event *event)
238 {
239         struct perf_event_context *ctx = event->ctx;
240         u64 run_end;
241
242         if (event->state < PERF_EVENT_STATE_INACTIVE ||
243             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
244                 return;
245
246         if (ctx->is_active)
247                 run_end = ctx->time;
248         else
249                 run_end = event->tstamp_stopped;
250
251         event->total_time_enabled = run_end - event->tstamp_enabled;
252
253         if (event->state == PERF_EVENT_STATE_INACTIVE)
254                 run_end = event->tstamp_stopped;
255         else
256                 run_end = ctx->time;
257
258         event->total_time_running = run_end - event->tstamp_running;
259 }
260
261 /*
262  * Update total_time_enabled and total_time_running for all events in a group.
263  */
264 static void update_group_times(struct perf_event *leader)
265 {
266         struct perf_event *event;
267
268         update_event_times(leader);
269         list_for_each_entry(event, &leader->sibling_list, group_entry)
270                 update_event_times(event);
271 }
272
273 static struct list_head *
274 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
275 {
276         if (event->attr.pinned)
277                 return &ctx->pinned_groups;
278         else
279                 return &ctx->flexible_groups;
280 }
281
282 /*
283  * Add a event from the lists for its context.
284  * Must be called with ctx->mutex and ctx->lock held.
285  */
286 static void
287 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
288 {
289         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
290         event->attach_state |= PERF_ATTACH_CONTEXT;
291
292         /*
293          * If we're a stand alone event or group leader, we go to the context
294          * list, group events are kept attached to the group so that
295          * perf_group_detach can, at all times, locate all siblings.
296          */
297         if (event->group_leader == event) {
298                 struct list_head *list;
299
300                 if (is_software_event(event))
301                         event->group_flags |= PERF_GROUP_SOFTWARE;
302
303                 list = ctx_group_list(event, ctx);
304                 list_add_tail(&event->group_entry, list);
305         }
306
307         list_add_rcu(&event->event_entry, &ctx->event_list);
308         if (!ctx->nr_events)
309                 perf_pmu_rotate_start(ctx->pmu);
310         ctx->nr_events++;
311         if (event->attr.inherit_stat)
312                 ctx->nr_stat++;
313 }
314
315 /*
316  * Called at perf_event creation and when events are attached/detached from a
317  * group.
318  */
319 static void perf_event__read_size(struct perf_event *event)
320 {
321         int entry = sizeof(u64); /* value */
322         int size = 0;
323         int nr = 1;
324
325         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
326                 size += sizeof(u64);
327
328         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
329                 size += sizeof(u64);
330
331         if (event->attr.read_format & PERF_FORMAT_ID)
332                 entry += sizeof(u64);
333
334         if (event->attr.read_format & PERF_FORMAT_GROUP) {
335                 nr += event->group_leader->nr_siblings;
336                 size += sizeof(u64);
337         }
338
339         size += entry * nr;
340         event->read_size = size;
341 }
342
343 static void perf_event__header_size(struct perf_event *event)
344 {
345         struct perf_sample_data *data;
346         u64 sample_type = event->attr.sample_type;
347         u16 size = 0;
348
349         perf_event__read_size(event);
350
351         if (sample_type & PERF_SAMPLE_IP)
352                 size += sizeof(data->ip);
353
354         if (sample_type & PERF_SAMPLE_TID)
355                 size += sizeof(data->tid_entry);
356
357         if (sample_type & PERF_SAMPLE_TIME)
358                 size += sizeof(data->time);
359
360         if (sample_type & PERF_SAMPLE_ADDR)
361                 size += sizeof(data->addr);
362
363         if (sample_type & PERF_SAMPLE_ID)
364                 size += sizeof(data->id);
365
366         if (sample_type & PERF_SAMPLE_STREAM_ID)
367                 size += sizeof(data->stream_id);
368
369         if (sample_type & PERF_SAMPLE_CPU)
370                 size += sizeof(data->cpu_entry);
371
372         if (sample_type & PERF_SAMPLE_PERIOD)
373                 size += sizeof(data->period);
374
375         if (sample_type & PERF_SAMPLE_READ)
376                 size += event->read_size;
377
378         event->header_size = size;
379 }
380
381 static void perf_group_attach(struct perf_event *event)
382 {
383         struct perf_event *group_leader = event->group_leader, *pos;
384
385         /*
386          * We can have double attach due to group movement in perf_event_open.
387          */
388         if (event->attach_state & PERF_ATTACH_GROUP)
389                 return;
390
391         event->attach_state |= PERF_ATTACH_GROUP;
392
393         if (group_leader == event)
394                 return;
395
396         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
397                         !is_software_event(event))
398                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
399
400         list_add_tail(&event->group_entry, &group_leader->sibling_list);
401         group_leader->nr_siblings++;
402
403         perf_event__header_size(group_leader);
404
405         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
406                 perf_event__header_size(pos);
407 }
408
409 /*
410  * Remove a event from the lists for its context.
411  * Must be called with ctx->mutex and ctx->lock held.
412  */
413 static void
414 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
415 {
416         /*
417          * We can have double detach due to exit/hot-unplug + close.
418          */
419         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
420                 return;
421
422         event->attach_state &= ~PERF_ATTACH_CONTEXT;
423
424         ctx->nr_events--;
425         if (event->attr.inherit_stat)
426                 ctx->nr_stat--;
427
428         list_del_rcu(&event->event_entry);
429
430         if (event->group_leader == event)
431                 list_del_init(&event->group_entry);
432
433         update_group_times(event);
434
435         /*
436          * If event was in error state, then keep it
437          * that way, otherwise bogus counts will be
438          * returned on read(). The only way to get out
439          * of error state is by explicit re-enabling
440          * of the event
441          */
442         if (event->state > PERF_EVENT_STATE_OFF)
443                 event->state = PERF_EVENT_STATE_OFF;
444 }
445
446 static void perf_group_detach(struct perf_event *event)
447 {
448         struct perf_event *sibling, *tmp;
449         struct list_head *list = NULL;
450
451         /*
452          * We can have double detach due to exit/hot-unplug + close.
453          */
454         if (!(event->attach_state & PERF_ATTACH_GROUP))
455                 return;
456
457         event->attach_state &= ~PERF_ATTACH_GROUP;
458
459         /*
460          * If this is a sibling, remove it from its group.
461          */
462         if (event->group_leader != event) {
463                 list_del_init(&event->group_entry);
464                 event->group_leader->nr_siblings--;
465                 goto out;
466         }
467
468         if (!list_empty(&event->group_entry))
469                 list = &event->group_entry;
470
471         /*
472          * If this was a group event with sibling events then
473          * upgrade the siblings to singleton events by adding them
474          * to whatever list we are on.
475          */
476         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
477                 if (list)
478                         list_move_tail(&sibling->group_entry, list);
479                 sibling->group_leader = sibling;
480
481                 /* Inherit group flags from the previous leader */
482                 sibling->group_flags = event->group_flags;
483         }
484
485 out:
486         perf_event__header_size(event->group_leader);
487
488         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
489                 perf_event__header_size(tmp);
490 }
491
492 static inline int
493 event_filter_match(struct perf_event *event)
494 {
495         return event->cpu == -1 || event->cpu == smp_processor_id();
496 }
497
498 static void
499 event_sched_out(struct perf_event *event,
500                   struct perf_cpu_context *cpuctx,
501                   struct perf_event_context *ctx)
502 {
503         u64 delta;
504         /*
505          * An event which could not be activated because of
506          * filter mismatch still needs to have its timings
507          * maintained, otherwise bogus information is return
508          * via read() for time_enabled, time_running:
509          */
510         if (event->state == PERF_EVENT_STATE_INACTIVE
511             && !event_filter_match(event)) {
512                 delta = ctx->time - event->tstamp_stopped;
513                 event->tstamp_running += delta;
514                 event->tstamp_stopped = ctx->time;
515         }
516
517         if (event->state != PERF_EVENT_STATE_ACTIVE)
518                 return;
519
520         event->state = PERF_EVENT_STATE_INACTIVE;
521         if (event->pending_disable) {
522                 event->pending_disable = 0;
523                 event->state = PERF_EVENT_STATE_OFF;
524         }
525         event->tstamp_stopped = ctx->time;
526         event->pmu->del(event, 0);
527         event->oncpu = -1;
528
529         if (!is_software_event(event))
530                 cpuctx->active_oncpu--;
531         ctx->nr_active--;
532         if (event->attr.exclusive || !cpuctx->active_oncpu)
533                 cpuctx->exclusive = 0;
534 }
535
536 static void
537 group_sched_out(struct perf_event *group_event,
538                 struct perf_cpu_context *cpuctx,
539                 struct perf_event_context *ctx)
540 {
541         struct perf_event *event;
542         int state = group_event->state;
543
544         event_sched_out(group_event, cpuctx, ctx);
545
546         /*
547          * Schedule out siblings (if any):
548          */
549         list_for_each_entry(event, &group_event->sibling_list, group_entry)
550                 event_sched_out(event, cpuctx, ctx);
551
552         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
553                 cpuctx->exclusive = 0;
554 }
555
556 static inline struct perf_cpu_context *
557 __get_cpu_context(struct perf_event_context *ctx)
558 {
559         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
560 }
561
562 /*
563  * Cross CPU call to remove a performance event
564  *
565  * We disable the event on the hardware level first. After that we
566  * remove it from the context list.
567  */
568 static void __perf_event_remove_from_context(void *info)
569 {
570         struct perf_event *event = info;
571         struct perf_event_context *ctx = event->ctx;
572         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
573
574         /*
575          * If this is a task context, we need to check whether it is
576          * the current task context of this cpu. If not it has been
577          * scheduled out before the smp call arrived.
578          */
579         if (ctx->task && cpuctx->task_ctx != ctx)
580                 return;
581
582         raw_spin_lock(&ctx->lock);
583
584         event_sched_out(event, cpuctx, ctx);
585
586         list_del_event(event, ctx);
587
588         raw_spin_unlock(&ctx->lock);
589 }
590
591
592 /*
593  * Remove the event from a task's (or a CPU's) list of events.
594  *
595  * Must be called with ctx->mutex held.
596  *
597  * CPU events are removed with a smp call. For task events we only
598  * call when the task is on a CPU.
599  *
600  * If event->ctx is a cloned context, callers must make sure that
601  * every task struct that event->ctx->task could possibly point to
602  * remains valid.  This is OK when called from perf_release since
603  * that only calls us on the top-level context, which can't be a clone.
604  * When called from perf_event_exit_task, it's OK because the
605  * context has been detached from its task.
606  */
607 static void perf_event_remove_from_context(struct perf_event *event)
608 {
609         struct perf_event_context *ctx = event->ctx;
610         struct task_struct *task = ctx->task;
611
612         if (!task) {
613                 /*
614                  * Per cpu events are removed via an smp call and
615                  * the removal is always successful.
616                  */
617                 smp_call_function_single(event->cpu,
618                                          __perf_event_remove_from_context,
619                                          event, 1);
620                 return;
621         }
622
623 retry:
624         task_oncpu_function_call(task, __perf_event_remove_from_context,
625                                  event);
626
627         raw_spin_lock_irq(&ctx->lock);
628         /*
629          * If the context is active we need to retry the smp call.
630          */
631         if (ctx->nr_active && !list_empty(&event->group_entry)) {
632                 raw_spin_unlock_irq(&ctx->lock);
633                 goto retry;
634         }
635
636         /*
637          * The lock prevents that this context is scheduled in so we
638          * can remove the event safely, if the call above did not
639          * succeed.
640          */
641         if (!list_empty(&event->group_entry))
642                 list_del_event(event, ctx);
643         raw_spin_unlock_irq(&ctx->lock);
644 }
645
646 /*
647  * Cross CPU call to disable a performance event
648  */
649 static void __perf_event_disable(void *info)
650 {
651         struct perf_event *event = info;
652         struct perf_event_context *ctx = event->ctx;
653         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
654
655         /*
656          * If this is a per-task event, need to check whether this
657          * event's task is the current task on this cpu.
658          */
659         if (ctx->task && cpuctx->task_ctx != ctx)
660                 return;
661
662         raw_spin_lock(&ctx->lock);
663
664         /*
665          * If the event is on, turn it off.
666          * If it is in error state, leave it in error state.
667          */
668         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
669                 update_context_time(ctx);
670                 update_group_times(event);
671                 if (event == event->group_leader)
672                         group_sched_out(event, cpuctx, ctx);
673                 else
674                         event_sched_out(event, cpuctx, ctx);
675                 event->state = PERF_EVENT_STATE_OFF;
676         }
677
678         raw_spin_unlock(&ctx->lock);
679 }
680
681 /*
682  * Disable a event.
683  *
684  * If event->ctx is a cloned context, callers must make sure that
685  * every task struct that event->ctx->task could possibly point to
686  * remains valid.  This condition is satisifed when called through
687  * perf_event_for_each_child or perf_event_for_each because they
688  * hold the top-level event's child_mutex, so any descendant that
689  * goes to exit will block in sync_child_event.
690  * When called from perf_pending_event it's OK because event->ctx
691  * is the current context on this CPU and preemption is disabled,
692  * hence we can't get into perf_event_task_sched_out for this context.
693  */
694 void perf_event_disable(struct perf_event *event)
695 {
696         struct perf_event_context *ctx = event->ctx;
697         struct task_struct *task = ctx->task;
698
699         if (!task) {
700                 /*
701                  * Disable the event on the cpu that it's on
702                  */
703                 smp_call_function_single(event->cpu, __perf_event_disable,
704                                          event, 1);
705                 return;
706         }
707
708 retry:
709         task_oncpu_function_call(task, __perf_event_disable, event);
710
711         raw_spin_lock_irq(&ctx->lock);
712         /*
713          * If the event is still active, we need to retry the cross-call.
714          */
715         if (event->state == PERF_EVENT_STATE_ACTIVE) {
716                 raw_spin_unlock_irq(&ctx->lock);
717                 goto retry;
718         }
719
720         /*
721          * Since we have the lock this context can't be scheduled
722          * in, so we can change the state safely.
723          */
724         if (event->state == PERF_EVENT_STATE_INACTIVE) {
725                 update_group_times(event);
726                 event->state = PERF_EVENT_STATE_OFF;
727         }
728
729         raw_spin_unlock_irq(&ctx->lock);
730 }
731
732 static int
733 event_sched_in(struct perf_event *event,
734                  struct perf_cpu_context *cpuctx,
735                  struct perf_event_context *ctx)
736 {
737         if (event->state <= PERF_EVENT_STATE_OFF)
738                 return 0;
739
740         event->state = PERF_EVENT_STATE_ACTIVE;
741         event->oncpu = smp_processor_id();
742         /*
743          * The new state must be visible before we turn it on in the hardware:
744          */
745         smp_wmb();
746
747         if (event->pmu->add(event, PERF_EF_START)) {
748                 event->state = PERF_EVENT_STATE_INACTIVE;
749                 event->oncpu = -1;
750                 return -EAGAIN;
751         }
752
753         event->tstamp_running += ctx->time - event->tstamp_stopped;
754
755         event->shadow_ctx_time = ctx->time - ctx->timestamp;
756
757         if (!is_software_event(event))
758                 cpuctx->active_oncpu++;
759         ctx->nr_active++;
760
761         if (event->attr.exclusive)
762                 cpuctx->exclusive = 1;
763
764         return 0;
765 }
766
767 static int
768 group_sched_in(struct perf_event *group_event,
769                struct perf_cpu_context *cpuctx,
770                struct perf_event_context *ctx)
771 {
772         struct perf_event *event, *partial_group = NULL;
773         struct pmu *pmu = group_event->pmu;
774         u64 now = ctx->time;
775         bool simulate = false;
776
777         if (group_event->state == PERF_EVENT_STATE_OFF)
778                 return 0;
779
780         pmu->start_txn(pmu);
781
782         if (event_sched_in(group_event, cpuctx, ctx)) {
783                 pmu->cancel_txn(pmu);
784                 return -EAGAIN;
785         }
786
787         /*
788          * Schedule in siblings as one group (if any):
789          */
790         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
791                 if (event_sched_in(event, cpuctx, ctx)) {
792                         partial_group = event;
793                         goto group_error;
794                 }
795         }
796
797         if (!pmu->commit_txn(pmu))
798                 return 0;
799
800 group_error:
801         /*
802          * Groups can be scheduled in as one unit only, so undo any
803          * partial group before returning:
804          * The events up to the failed event are scheduled out normally,
805          * tstamp_stopped will be updated.
806          *
807          * The failed events and the remaining siblings need to have
808          * their timings updated as if they had gone thru event_sched_in()
809          * and event_sched_out(). This is required to get consistent timings
810          * across the group. This also takes care of the case where the group
811          * could never be scheduled by ensuring tstamp_stopped is set to mark
812          * the time the event was actually stopped, such that time delta
813          * calculation in update_event_times() is correct.
814          */
815         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
816                 if (event == partial_group)
817                         simulate = true;
818
819                 if (simulate) {
820                         event->tstamp_running += now - event->tstamp_stopped;
821                         event->tstamp_stopped = now;
822                 } else {
823                         event_sched_out(event, cpuctx, ctx);
824                 }
825         }
826         event_sched_out(group_event, cpuctx, ctx);
827
828         pmu->cancel_txn(pmu);
829
830         return -EAGAIN;
831 }
832
833 /*
834  * Work out whether we can put this event group on the CPU now.
835  */
836 static int group_can_go_on(struct perf_event *event,
837                            struct perf_cpu_context *cpuctx,
838                            int can_add_hw)
839 {
840         /*
841          * Groups consisting entirely of software events can always go on.
842          */
843         if (event->group_flags & PERF_GROUP_SOFTWARE)
844                 return 1;
845         /*
846          * If an exclusive group is already on, no other hardware
847          * events can go on.
848          */
849         if (cpuctx->exclusive)
850                 return 0;
851         /*
852          * If this group is exclusive and there are already
853          * events on the CPU, it can't go on.
854          */
855         if (event->attr.exclusive && cpuctx->active_oncpu)
856                 return 0;
857         /*
858          * Otherwise, try to add it if all previous groups were able
859          * to go on.
860          */
861         return can_add_hw;
862 }
863
864 static void add_event_to_ctx(struct perf_event *event,
865                                struct perf_event_context *ctx)
866 {
867         list_add_event(event, ctx);
868         perf_group_attach(event);
869         event->tstamp_enabled = ctx->time;
870         event->tstamp_running = ctx->time;
871         event->tstamp_stopped = ctx->time;
872 }
873
874 /*
875  * Cross CPU call to install and enable a performance event
876  *
877  * Must be called with ctx->mutex held
878  */
879 static void __perf_install_in_context(void *info)
880 {
881         struct perf_event *event = info;
882         struct perf_event_context *ctx = event->ctx;
883         struct perf_event *leader = event->group_leader;
884         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
885         int err;
886
887         /*
888          * If this is a task context, we need to check whether it is
889          * the current task context of this cpu. If not it has been
890          * scheduled out before the smp call arrived.
891          * Or possibly this is the right context but it isn't
892          * on this cpu because it had no events.
893          */
894         if (ctx->task && cpuctx->task_ctx != ctx) {
895                 if (cpuctx->task_ctx || ctx->task != current)
896                         return;
897                 cpuctx->task_ctx = ctx;
898         }
899
900         raw_spin_lock(&ctx->lock);
901         ctx->is_active = 1;
902         update_context_time(ctx);
903
904         add_event_to_ctx(event, ctx);
905
906         if (event->cpu != -1 && event->cpu != smp_processor_id())
907                 goto unlock;
908
909         /*
910          * Don't put the event on if it is disabled or if
911          * it is in a group and the group isn't on.
912          */
913         if (event->state != PERF_EVENT_STATE_INACTIVE ||
914             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
915                 goto unlock;
916
917         /*
918          * An exclusive event can't go on if there are already active
919          * hardware events, and no hardware event can go on if there
920          * is already an exclusive event on.
921          */
922         if (!group_can_go_on(event, cpuctx, 1))
923                 err = -EEXIST;
924         else
925                 err = event_sched_in(event, cpuctx, ctx);
926
927         if (err) {
928                 /*
929                  * This event couldn't go on.  If it is in a group
930                  * then we have to pull the whole group off.
931                  * If the event group is pinned then put it in error state.
932                  */
933                 if (leader != event)
934                         group_sched_out(leader, cpuctx, ctx);
935                 if (leader->attr.pinned) {
936                         update_group_times(leader);
937                         leader->state = PERF_EVENT_STATE_ERROR;
938                 }
939         }
940
941 unlock:
942         raw_spin_unlock(&ctx->lock);
943 }
944
945 /*
946  * Attach a performance event to a context
947  *
948  * First we add the event to the list with the hardware enable bit
949  * in event->hw_config cleared.
950  *
951  * If the event is attached to a task which is on a CPU we use a smp
952  * call to enable it in the task context. The task might have been
953  * scheduled away, but we check this in the smp call again.
954  *
955  * Must be called with ctx->mutex held.
956  */
957 static void
958 perf_install_in_context(struct perf_event_context *ctx,
959                         struct perf_event *event,
960                         int cpu)
961 {
962         struct task_struct *task = ctx->task;
963
964         event->ctx = ctx;
965
966         if (!task) {
967                 /*
968                  * Per cpu events are installed via an smp call and
969                  * the install is always successful.
970                  */
971                 smp_call_function_single(cpu, __perf_install_in_context,
972                                          event, 1);
973                 return;
974         }
975
976 retry:
977         task_oncpu_function_call(task, __perf_install_in_context,
978                                  event);
979
980         raw_spin_lock_irq(&ctx->lock);
981         /*
982          * we need to retry the smp call.
983          */
984         if (ctx->is_active && list_empty(&event->group_entry)) {
985                 raw_spin_unlock_irq(&ctx->lock);
986                 goto retry;
987         }
988
989         /*
990          * The lock prevents that this context is scheduled in so we
991          * can add the event safely, if it the call above did not
992          * succeed.
993          */
994         if (list_empty(&event->group_entry))
995                 add_event_to_ctx(event, ctx);
996         raw_spin_unlock_irq(&ctx->lock);
997 }
998
999 /*
1000  * Put a event into inactive state and update time fields.
1001  * Enabling the leader of a group effectively enables all
1002  * the group members that aren't explicitly disabled, so we
1003  * have to update their ->tstamp_enabled also.
1004  * Note: this works for group members as well as group leaders
1005  * since the non-leader members' sibling_lists will be empty.
1006  */
1007 static void __perf_event_mark_enabled(struct perf_event *event,
1008                                         struct perf_event_context *ctx)
1009 {
1010         struct perf_event *sub;
1011
1012         event->state = PERF_EVENT_STATE_INACTIVE;
1013         event->tstamp_enabled = ctx->time - event->total_time_enabled;
1014         list_for_each_entry(sub, &event->sibling_list, group_entry) {
1015                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
1016                         sub->tstamp_enabled =
1017                                 ctx->time - sub->total_time_enabled;
1018                 }
1019         }
1020 }
1021
1022 /*
1023  * Cross CPU call to enable a performance event
1024  */
1025 static void __perf_event_enable(void *info)
1026 {
1027         struct perf_event *event = info;
1028         struct perf_event_context *ctx = event->ctx;
1029         struct perf_event *leader = event->group_leader;
1030         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1031         int err;
1032
1033         /*
1034          * If this is a per-task event, need to check whether this
1035          * event's task is the current task on this cpu.
1036          */
1037         if (ctx->task && cpuctx->task_ctx != ctx) {
1038                 if (cpuctx->task_ctx || ctx->task != current)
1039                         return;
1040                 cpuctx->task_ctx = ctx;
1041         }
1042
1043         raw_spin_lock(&ctx->lock);
1044         ctx->is_active = 1;
1045         update_context_time(ctx);
1046
1047         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1048                 goto unlock;
1049         __perf_event_mark_enabled(event, ctx);
1050
1051         if (event->cpu != -1 && event->cpu != smp_processor_id())
1052                 goto unlock;
1053
1054         /*
1055          * If the event is in a group and isn't the group leader,
1056          * then don't put it on unless the group is on.
1057          */
1058         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1059                 goto unlock;
1060
1061         if (!group_can_go_on(event, cpuctx, 1)) {
1062                 err = -EEXIST;
1063         } else {
1064                 if (event == leader)
1065                         err = group_sched_in(event, cpuctx, ctx);
1066                 else
1067                         err = event_sched_in(event, cpuctx, ctx);
1068         }
1069
1070         if (err) {
1071                 /*
1072                  * If this event can't go on and it's part of a
1073                  * group, then the whole group has to come off.
1074                  */
1075                 if (leader != event)
1076                         group_sched_out(leader, cpuctx, ctx);
1077                 if (leader->attr.pinned) {
1078                         update_group_times(leader);
1079                         leader->state = PERF_EVENT_STATE_ERROR;
1080                 }
1081         }
1082
1083 unlock:
1084         raw_spin_unlock(&ctx->lock);
1085 }
1086
1087 /*
1088  * Enable a event.
1089  *
1090  * If event->ctx is a cloned context, callers must make sure that
1091  * every task struct that event->ctx->task could possibly point to
1092  * remains valid.  This condition is satisfied when called through
1093  * perf_event_for_each_child or perf_event_for_each as described
1094  * for perf_event_disable.
1095  */
1096 void perf_event_enable(struct perf_event *event)
1097 {
1098         struct perf_event_context *ctx = event->ctx;
1099         struct task_struct *task = ctx->task;
1100
1101         if (!task) {
1102                 /*
1103                  * Enable the event on the cpu that it's on
1104                  */
1105                 smp_call_function_single(event->cpu, __perf_event_enable,
1106                                          event, 1);
1107                 return;
1108         }
1109
1110         raw_spin_lock_irq(&ctx->lock);
1111         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1112                 goto out;
1113
1114         /*
1115          * If the event is in error state, clear that first.
1116          * That way, if we see the event in error state below, we
1117          * know that it has gone back into error state, as distinct
1118          * from the task having been scheduled away before the
1119          * cross-call arrived.
1120          */
1121         if (event->state == PERF_EVENT_STATE_ERROR)
1122                 event->state = PERF_EVENT_STATE_OFF;
1123
1124 retry:
1125         raw_spin_unlock_irq(&ctx->lock);
1126         task_oncpu_function_call(task, __perf_event_enable, event);
1127
1128         raw_spin_lock_irq(&ctx->lock);
1129
1130         /*
1131          * If the context is active and the event is still off,
1132          * we need to retry the cross-call.
1133          */
1134         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1135                 goto retry;
1136
1137         /*
1138          * Since we have the lock this context can't be scheduled
1139          * in, so we can change the state safely.
1140          */
1141         if (event->state == PERF_EVENT_STATE_OFF)
1142                 __perf_event_mark_enabled(event, ctx);
1143
1144 out:
1145         raw_spin_unlock_irq(&ctx->lock);
1146 }
1147
1148 static int perf_event_refresh(struct perf_event *event, int refresh)
1149 {
1150         /*
1151          * not supported on inherited events
1152          */
1153         if (event->attr.inherit || !is_sampling_event(event))
1154                 return -EINVAL;
1155
1156         atomic_add(refresh, &event->event_limit);
1157         perf_event_enable(event);
1158
1159         return 0;
1160 }
1161
1162 enum event_type_t {
1163         EVENT_FLEXIBLE = 0x1,
1164         EVENT_PINNED = 0x2,
1165         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1166 };
1167
1168 static void ctx_sched_out(struct perf_event_context *ctx,
1169                           struct perf_cpu_context *cpuctx,
1170                           enum event_type_t event_type)
1171 {
1172         struct perf_event *event;
1173
1174         raw_spin_lock(&ctx->lock);
1175         perf_pmu_disable(ctx->pmu);
1176         ctx->is_active = 0;
1177         if (likely(!ctx->nr_events))
1178                 goto out;
1179         update_context_time(ctx);
1180
1181         if (!ctx->nr_active)
1182                 goto out;
1183
1184         if (event_type & EVENT_PINNED) {
1185                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1186                         group_sched_out(event, cpuctx, ctx);
1187         }
1188
1189         if (event_type & EVENT_FLEXIBLE) {
1190                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1191                         group_sched_out(event, cpuctx, ctx);
1192         }
1193 out:
1194         perf_pmu_enable(ctx->pmu);
1195         raw_spin_unlock(&ctx->lock);
1196 }
1197
1198 /*
1199  * Test whether two contexts are equivalent, i.e. whether they
1200  * have both been cloned from the same version of the same context
1201  * and they both have the same number of enabled events.
1202  * If the number of enabled events is the same, then the set
1203  * of enabled events should be the same, because these are both
1204  * inherited contexts, therefore we can't access individual events
1205  * in them directly with an fd; we can only enable/disable all
1206  * events via prctl, or enable/disable all events in a family
1207  * via ioctl, which will have the same effect on both contexts.
1208  */
1209 static int context_equiv(struct perf_event_context *ctx1,
1210                          struct perf_event_context *ctx2)
1211 {
1212         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1213                 && ctx1->parent_gen == ctx2->parent_gen
1214                 && !ctx1->pin_count && !ctx2->pin_count;
1215 }
1216
1217 static void __perf_event_sync_stat(struct perf_event *event,
1218                                      struct perf_event *next_event)
1219 {
1220         u64 value;
1221
1222         if (!event->attr.inherit_stat)
1223                 return;
1224
1225         /*
1226          * Update the event value, we cannot use perf_event_read()
1227          * because we're in the middle of a context switch and have IRQs
1228          * disabled, which upsets smp_call_function_single(), however
1229          * we know the event must be on the current CPU, therefore we
1230          * don't need to use it.
1231          */
1232         switch (event->state) {
1233         case PERF_EVENT_STATE_ACTIVE:
1234                 event->pmu->read(event);
1235                 /* fall-through */
1236
1237         case PERF_EVENT_STATE_INACTIVE:
1238                 update_event_times(event);
1239                 break;
1240
1241         default:
1242                 break;
1243         }
1244
1245         /*
1246          * In order to keep per-task stats reliable we need to flip the event
1247          * values when we flip the contexts.
1248          */
1249         value = local64_read(&next_event->count);
1250         value = local64_xchg(&event->count, value);
1251         local64_set(&next_event->count, value);
1252
1253         swap(event->total_time_enabled, next_event->total_time_enabled);
1254         swap(event->total_time_running, next_event->total_time_running);
1255
1256         /*
1257          * Since we swizzled the values, update the user visible data too.
1258          */
1259         perf_event_update_userpage(event);
1260         perf_event_update_userpage(next_event);
1261 }
1262
1263 #define list_next_entry(pos, member) \
1264         list_entry(pos->member.next, typeof(*pos), member)
1265
1266 static void perf_event_sync_stat(struct perf_event_context *ctx,
1267                                    struct perf_event_context *next_ctx)
1268 {
1269         struct perf_event *event, *next_event;
1270
1271         if (!ctx->nr_stat)
1272                 return;
1273
1274         update_context_time(ctx);
1275
1276         event = list_first_entry(&ctx->event_list,
1277                                    struct perf_event, event_entry);
1278
1279         next_event = list_first_entry(&next_ctx->event_list,
1280                                         struct perf_event, event_entry);
1281
1282         while (&event->event_entry != &ctx->event_list &&
1283                &next_event->event_entry != &next_ctx->event_list) {
1284
1285                 __perf_event_sync_stat(event, next_event);
1286
1287                 event = list_next_entry(event, event_entry);
1288                 next_event = list_next_entry(next_event, event_entry);
1289         }
1290 }
1291
1292 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1293                                   struct task_struct *next)
1294 {
1295         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1296         struct perf_event_context *next_ctx;
1297         struct perf_event_context *parent;
1298         struct perf_cpu_context *cpuctx;
1299         int do_switch = 1;
1300
1301         if (likely(!ctx))
1302                 return;
1303
1304         cpuctx = __get_cpu_context(ctx);
1305         if (!cpuctx->task_ctx)
1306                 return;
1307
1308         rcu_read_lock();
1309         parent = rcu_dereference(ctx->parent_ctx);
1310         next_ctx = next->perf_event_ctxp[ctxn];
1311         if (parent && next_ctx &&
1312             rcu_dereference(next_ctx->parent_ctx) == parent) {
1313                 /*
1314                  * Looks like the two contexts are clones, so we might be
1315                  * able to optimize the context switch.  We lock both
1316                  * contexts and check that they are clones under the
1317                  * lock (including re-checking that neither has been
1318                  * uncloned in the meantime).  It doesn't matter which
1319                  * order we take the locks because no other cpu could
1320                  * be trying to lock both of these tasks.
1321                  */
1322                 raw_spin_lock(&ctx->lock);
1323                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1324                 if (context_equiv(ctx, next_ctx)) {
1325                         /*
1326                          * XXX do we need a memory barrier of sorts
1327                          * wrt to rcu_dereference() of perf_event_ctxp
1328                          */
1329                         task->perf_event_ctxp[ctxn] = next_ctx;
1330                         next->perf_event_ctxp[ctxn] = ctx;
1331                         ctx->task = next;
1332                         next_ctx->task = task;
1333                         do_switch = 0;
1334
1335                         perf_event_sync_stat(ctx, next_ctx);
1336                 }
1337                 raw_spin_unlock(&next_ctx->lock);
1338                 raw_spin_unlock(&ctx->lock);
1339         }
1340         rcu_read_unlock();
1341
1342         if (do_switch) {
1343                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1344                 cpuctx->task_ctx = NULL;
1345         }
1346 }
1347
1348 #define for_each_task_context_nr(ctxn)                                  \
1349         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1350
1351 /*
1352  * Called from scheduler to remove the events of the current task,
1353  * with interrupts disabled.
1354  *
1355  * We stop each event and update the event value in event->count.
1356  *
1357  * This does not protect us against NMI, but disable()
1358  * sets the disabled bit in the control field of event _before_
1359  * accessing the event control register. If a NMI hits, then it will
1360  * not restart the event.
1361  */
1362 void __perf_event_task_sched_out(struct task_struct *task,
1363                                  struct task_struct *next)
1364 {
1365         int ctxn;
1366
1367         for_each_task_context_nr(ctxn)
1368                 perf_event_context_sched_out(task, ctxn, next);
1369 }
1370
1371 static void task_ctx_sched_out(struct perf_event_context *ctx,
1372                                enum event_type_t event_type)
1373 {
1374         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1375
1376         if (!cpuctx->task_ctx)
1377                 return;
1378
1379         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1380                 return;
1381
1382         ctx_sched_out(ctx, cpuctx, event_type);
1383         cpuctx->task_ctx = NULL;
1384 }
1385
1386 /*
1387  * Called with IRQs disabled
1388  */
1389 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1390                               enum event_type_t event_type)
1391 {
1392         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1393 }
1394
1395 static void
1396 ctx_pinned_sched_in(struct perf_event_context *ctx,
1397                     struct perf_cpu_context *cpuctx)
1398 {
1399         struct perf_event *event;
1400
1401         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1402                 if (event->state <= PERF_EVENT_STATE_OFF)
1403                         continue;
1404                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1405                         continue;
1406
1407                 if (group_can_go_on(event, cpuctx, 1))
1408                         group_sched_in(event, cpuctx, ctx);
1409
1410                 /*
1411                  * If this pinned group hasn't been scheduled,
1412                  * put it in error state.
1413                  */
1414                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1415                         update_group_times(event);
1416                         event->state = PERF_EVENT_STATE_ERROR;
1417                 }
1418         }
1419 }
1420
1421 static void
1422 ctx_flexible_sched_in(struct perf_event_context *ctx,
1423                       struct perf_cpu_context *cpuctx)
1424 {
1425         struct perf_event *event;
1426         int can_add_hw = 1;
1427
1428         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1429                 /* Ignore events in OFF or ERROR state */
1430                 if (event->state <= PERF_EVENT_STATE_OFF)
1431                         continue;
1432                 /*
1433                  * Listen to the 'cpu' scheduling filter constraint
1434                  * of events:
1435                  */
1436                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1437                         continue;
1438
1439                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1440                         if (group_sched_in(event, cpuctx, ctx))
1441                                 can_add_hw = 0;
1442                 }
1443         }
1444 }
1445
1446 static void
1447 ctx_sched_in(struct perf_event_context *ctx,
1448              struct perf_cpu_context *cpuctx,
1449              enum event_type_t event_type)
1450 {
1451         raw_spin_lock(&ctx->lock);
1452         ctx->is_active = 1;
1453         if (likely(!ctx->nr_events))
1454                 goto out;
1455
1456         ctx->timestamp = perf_clock();
1457
1458         /*
1459          * First go through the list and put on any pinned groups
1460          * in order to give them the best chance of going on.
1461          */
1462         if (event_type & EVENT_PINNED)
1463                 ctx_pinned_sched_in(ctx, cpuctx);
1464
1465         /* Then walk through the lower prio flexible groups */
1466         if (event_type & EVENT_FLEXIBLE)
1467                 ctx_flexible_sched_in(ctx, cpuctx);
1468
1469 out:
1470         raw_spin_unlock(&ctx->lock);
1471 }
1472
1473 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1474                              enum event_type_t event_type)
1475 {
1476         struct perf_event_context *ctx = &cpuctx->ctx;
1477
1478         ctx_sched_in(ctx, cpuctx, event_type);
1479 }
1480
1481 static void task_ctx_sched_in(struct perf_event_context *ctx,
1482                               enum event_type_t event_type)
1483 {
1484         struct perf_cpu_context *cpuctx;
1485
1486         cpuctx = __get_cpu_context(ctx);
1487         if (cpuctx->task_ctx == ctx)
1488                 return;
1489
1490         ctx_sched_in(ctx, cpuctx, event_type);
1491         cpuctx->task_ctx = ctx;
1492 }
1493
1494 void perf_event_context_sched_in(struct perf_event_context *ctx)
1495 {
1496         struct perf_cpu_context *cpuctx;
1497
1498         cpuctx = __get_cpu_context(ctx);
1499         if (cpuctx->task_ctx == ctx)
1500                 return;
1501
1502         perf_pmu_disable(ctx->pmu);
1503         /*
1504          * We want to keep the following priority order:
1505          * cpu pinned (that don't need to move), task pinned,
1506          * cpu flexible, task flexible.
1507          */
1508         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1509
1510         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1511         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1512         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1513
1514         cpuctx->task_ctx = ctx;
1515
1516         /*
1517          * Since these rotations are per-cpu, we need to ensure the
1518          * cpu-context we got scheduled on is actually rotating.
1519          */
1520         perf_pmu_rotate_start(ctx->pmu);
1521         perf_pmu_enable(ctx->pmu);
1522 }
1523
1524 /*
1525  * Called from scheduler to add the events of the current task
1526  * with interrupts disabled.
1527  *
1528  * We restore the event value and then enable it.
1529  *
1530  * This does not protect us against NMI, but enable()
1531  * sets the enabled bit in the control field of event _before_
1532  * accessing the event control register. If a NMI hits, then it will
1533  * keep the event running.
1534  */
1535 void __perf_event_task_sched_in(struct task_struct *task)
1536 {
1537         struct perf_event_context *ctx;
1538         int ctxn;
1539
1540         for_each_task_context_nr(ctxn) {
1541                 ctx = task->perf_event_ctxp[ctxn];
1542                 if (likely(!ctx))
1543                         continue;
1544
1545                 perf_event_context_sched_in(ctx);
1546         }
1547 }
1548
1549 #define MAX_INTERRUPTS (~0ULL)
1550
1551 static void perf_log_throttle(struct perf_event *event, int enable);
1552
1553 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1554 {
1555         u64 frequency = event->attr.sample_freq;
1556         u64 sec = NSEC_PER_SEC;
1557         u64 divisor, dividend;
1558
1559         int count_fls, nsec_fls, frequency_fls, sec_fls;
1560
1561         count_fls = fls64(count);
1562         nsec_fls = fls64(nsec);
1563         frequency_fls = fls64(frequency);
1564         sec_fls = 30;
1565
1566         /*
1567          * We got @count in @nsec, with a target of sample_freq HZ
1568          * the target period becomes:
1569          *
1570          *             @count * 10^9
1571          * period = -------------------
1572          *          @nsec * sample_freq
1573          *
1574          */
1575
1576         /*
1577          * Reduce accuracy by one bit such that @a and @b converge
1578          * to a similar magnitude.
1579          */
1580 #define REDUCE_FLS(a, b)                \
1581 do {                                    \
1582         if (a##_fls > b##_fls) {        \
1583                 a >>= 1;                \
1584                 a##_fls--;              \
1585         } else {                        \
1586                 b >>= 1;                \
1587                 b##_fls--;              \
1588         }                               \
1589 } while (0)
1590
1591         /*
1592          * Reduce accuracy until either term fits in a u64, then proceed with
1593          * the other, so that finally we can do a u64/u64 division.
1594          */
1595         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1596                 REDUCE_FLS(nsec, frequency);
1597                 REDUCE_FLS(sec, count);
1598         }
1599
1600         if (count_fls + sec_fls > 64) {
1601                 divisor = nsec * frequency;
1602
1603                 while (count_fls + sec_fls > 64) {
1604                         REDUCE_FLS(count, sec);
1605                         divisor >>= 1;
1606                 }
1607
1608                 dividend = count * sec;
1609         } else {
1610                 dividend = count * sec;
1611
1612                 while (nsec_fls + frequency_fls > 64) {
1613                         REDUCE_FLS(nsec, frequency);
1614                         dividend >>= 1;
1615                 }
1616
1617                 divisor = nsec * frequency;
1618         }
1619
1620         if (!divisor)
1621                 return dividend;
1622
1623         return div64_u64(dividend, divisor);
1624 }
1625
1626 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1627 {
1628         struct hw_perf_event *hwc = &event->hw;
1629         s64 period, sample_period;
1630         s64 delta;
1631
1632         period = perf_calculate_period(event, nsec, count);
1633
1634         delta = (s64)(period - hwc->sample_period);
1635         delta = (delta + 7) / 8; /* low pass filter */
1636
1637         sample_period = hwc->sample_period + delta;
1638
1639         if (!sample_period)
1640                 sample_period = 1;
1641
1642         hwc->sample_period = sample_period;
1643
1644         if (local64_read(&hwc->period_left) > 8*sample_period) {
1645                 event->pmu->stop(event, PERF_EF_UPDATE);
1646                 local64_set(&hwc->period_left, 0);
1647                 event->pmu->start(event, PERF_EF_RELOAD);
1648         }
1649 }
1650
1651 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1652 {
1653         struct perf_event *event;
1654         struct hw_perf_event *hwc;
1655         u64 interrupts, now;
1656         s64 delta;
1657
1658         raw_spin_lock(&ctx->lock);
1659         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1660                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1661                         continue;
1662
1663                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1664                         continue;
1665
1666                 hwc = &event->hw;
1667
1668                 interrupts = hwc->interrupts;
1669                 hwc->interrupts = 0;
1670
1671                 /*
1672                  * unthrottle events on the tick
1673                  */
1674                 if (interrupts == MAX_INTERRUPTS) {
1675                         perf_log_throttle(event, 1);
1676                         event->pmu->start(event, 0);
1677                 }
1678
1679                 if (!event->attr.freq || !event->attr.sample_freq)
1680                         continue;
1681
1682                 event->pmu->read(event);
1683                 now = local64_read(&event->count);
1684                 delta = now - hwc->freq_count_stamp;
1685                 hwc->freq_count_stamp = now;
1686
1687                 if (delta > 0)
1688                         perf_adjust_period(event, period, delta);
1689         }
1690         raw_spin_unlock(&ctx->lock);
1691 }
1692
1693 /*
1694  * Round-robin a context's events:
1695  */
1696 static void rotate_ctx(struct perf_event_context *ctx)
1697 {
1698         raw_spin_lock(&ctx->lock);
1699
1700         /*
1701          * Rotate the first entry last of non-pinned groups. Rotation might be
1702          * disabled by the inheritance code.
1703          */
1704         if (!ctx->rotate_disable)
1705                 list_rotate_left(&ctx->flexible_groups);
1706
1707         raw_spin_unlock(&ctx->lock);
1708 }
1709
1710 /*
1711  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1712  * because they're strictly cpu affine and rotate_start is called with IRQs
1713  * disabled, while rotate_context is called from IRQ context.
1714  */
1715 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1716 {
1717         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1718         struct perf_event_context *ctx = NULL;
1719         int rotate = 0, remove = 1;
1720
1721         if (cpuctx->ctx.nr_events) {
1722                 remove = 0;
1723                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1724                         rotate = 1;
1725         }
1726
1727         ctx = cpuctx->task_ctx;
1728         if (ctx && ctx->nr_events) {
1729                 remove = 0;
1730                 if (ctx->nr_events != ctx->nr_active)
1731                         rotate = 1;
1732         }
1733
1734         perf_pmu_disable(cpuctx->ctx.pmu);
1735         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1736         if (ctx)
1737                 perf_ctx_adjust_freq(ctx, interval);
1738
1739         if (!rotate)
1740                 goto done;
1741
1742         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1743         if (ctx)
1744                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1745
1746         rotate_ctx(&cpuctx->ctx);
1747         if (ctx)
1748                 rotate_ctx(ctx);
1749
1750         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1751         if (ctx)
1752                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1753
1754 done:
1755         if (remove)
1756                 list_del_init(&cpuctx->rotation_list);
1757
1758         perf_pmu_enable(cpuctx->ctx.pmu);
1759 }
1760
1761 void perf_event_task_tick(void)
1762 {
1763         struct list_head *head = &__get_cpu_var(rotation_list);
1764         struct perf_cpu_context *cpuctx, *tmp;
1765
1766         WARN_ON(!irqs_disabled());
1767
1768         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1769                 if (cpuctx->jiffies_interval == 1 ||
1770                                 !(jiffies % cpuctx->jiffies_interval))
1771                         perf_rotate_context(cpuctx);
1772         }
1773 }
1774
1775 static int event_enable_on_exec(struct perf_event *event,
1776                                 struct perf_event_context *ctx)
1777 {
1778         if (!event->attr.enable_on_exec)
1779                 return 0;
1780
1781         event->attr.enable_on_exec = 0;
1782         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1783                 return 0;
1784
1785         __perf_event_mark_enabled(event, ctx);
1786
1787         return 1;
1788 }
1789
1790 /*
1791  * Enable all of a task's events that have been marked enable-on-exec.
1792  * This expects task == current.
1793  */
1794 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1795 {
1796         struct perf_event *event;
1797         unsigned long flags;
1798         int enabled = 0;
1799         int ret;
1800
1801         local_irq_save(flags);
1802         if (!ctx || !ctx->nr_events)
1803                 goto out;
1804
1805         task_ctx_sched_out(ctx, EVENT_ALL);
1806
1807         raw_spin_lock(&ctx->lock);
1808
1809         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1810                 ret = event_enable_on_exec(event, ctx);
1811                 if (ret)
1812                         enabled = 1;
1813         }
1814
1815         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1816                 ret = event_enable_on_exec(event, ctx);
1817                 if (ret)
1818                         enabled = 1;
1819         }
1820
1821         /*
1822          * Unclone this context if we enabled any event.
1823          */
1824         if (enabled)
1825                 unclone_ctx(ctx);
1826
1827         raw_spin_unlock(&ctx->lock);
1828
1829         perf_event_context_sched_in(ctx);
1830 out:
1831         local_irq_restore(flags);
1832 }
1833
1834 /*
1835  * Cross CPU call to read the hardware event
1836  */
1837 static void __perf_event_read(void *info)
1838 {
1839         struct perf_event *event = info;
1840         struct perf_event_context *ctx = event->ctx;
1841         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1842
1843         /*
1844          * If this is a task context, we need to check whether it is
1845          * the current task context of this cpu.  If not it has been
1846          * scheduled out before the smp call arrived.  In that case
1847          * event->count would have been updated to a recent sample
1848          * when the event was scheduled out.
1849          */
1850         if (ctx->task && cpuctx->task_ctx != ctx)
1851                 return;
1852
1853         raw_spin_lock(&ctx->lock);
1854         update_context_time(ctx);
1855         update_event_times(event);
1856         raw_spin_unlock(&ctx->lock);
1857
1858         event->pmu->read(event);
1859 }
1860
1861 static inline u64 perf_event_count(struct perf_event *event)
1862 {
1863         return local64_read(&event->count) + atomic64_read(&event->child_count);
1864 }
1865
1866 static u64 perf_event_read(struct perf_event *event)
1867 {
1868         /*
1869          * If event is enabled and currently active on a CPU, update the
1870          * value in the event structure:
1871          */
1872         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1873                 smp_call_function_single(event->oncpu,
1874                                          __perf_event_read, event, 1);
1875         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1876                 struct perf_event_context *ctx = event->ctx;
1877                 unsigned long flags;
1878
1879                 raw_spin_lock_irqsave(&ctx->lock, flags);
1880                 /*
1881                  * may read while context is not active
1882                  * (e.g., thread is blocked), in that case
1883                  * we cannot update context time
1884                  */
1885                 if (ctx->is_active)
1886                         update_context_time(ctx);
1887                 update_event_times(event);
1888                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1889         }
1890
1891         return perf_event_count(event);
1892 }
1893
1894 /*
1895  * Callchain support
1896  */
1897
1898 struct callchain_cpus_entries {
1899         struct rcu_head                 rcu_head;
1900         struct perf_callchain_entry     *cpu_entries[0];
1901 };
1902
1903 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1904 static atomic_t nr_callchain_events;
1905 static DEFINE_MUTEX(callchain_mutex);
1906 struct callchain_cpus_entries *callchain_cpus_entries;
1907
1908
1909 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1910                                   struct pt_regs *regs)
1911 {
1912 }
1913
1914 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1915                                 struct pt_regs *regs)
1916 {
1917 }
1918
1919 static void release_callchain_buffers_rcu(struct rcu_head *head)
1920 {
1921         struct callchain_cpus_entries *entries;
1922         int cpu;
1923
1924         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1925
1926         for_each_possible_cpu(cpu)
1927                 kfree(entries->cpu_entries[cpu]);
1928
1929         kfree(entries);
1930 }
1931
1932 static void release_callchain_buffers(void)
1933 {
1934         struct callchain_cpus_entries *entries;
1935
1936         entries = callchain_cpus_entries;
1937         rcu_assign_pointer(callchain_cpus_entries, NULL);
1938         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1939 }
1940
1941 static int alloc_callchain_buffers(void)
1942 {
1943         int cpu;
1944         int size;
1945         struct callchain_cpus_entries *entries;
1946
1947         /*
1948          * We can't use the percpu allocation API for data that can be
1949          * accessed from NMI. Use a temporary manual per cpu allocation
1950          * until that gets sorted out.
1951          */
1952         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1953                 num_possible_cpus();
1954
1955         entries = kzalloc(size, GFP_KERNEL);
1956         if (!entries)
1957                 return -ENOMEM;
1958
1959         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1960
1961         for_each_possible_cpu(cpu) {
1962                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1963                                                          cpu_to_node(cpu));
1964                 if (!entries->cpu_entries[cpu])
1965                         goto fail;
1966         }
1967
1968         rcu_assign_pointer(callchain_cpus_entries, entries);
1969
1970         return 0;
1971
1972 fail:
1973         for_each_possible_cpu(cpu)
1974                 kfree(entries->cpu_entries[cpu]);
1975         kfree(entries);
1976
1977         return -ENOMEM;
1978 }
1979
1980 static int get_callchain_buffers(void)
1981 {
1982         int err = 0;
1983         int count;
1984
1985         mutex_lock(&callchain_mutex);
1986
1987         count = atomic_inc_return(&nr_callchain_events);
1988         if (WARN_ON_ONCE(count < 1)) {
1989                 err = -EINVAL;
1990                 goto exit;
1991         }
1992
1993         if (count > 1) {
1994                 /* If the allocation failed, give up */
1995                 if (!callchain_cpus_entries)
1996                         err = -ENOMEM;
1997                 goto exit;
1998         }
1999
2000         err = alloc_callchain_buffers();
2001         if (err)
2002                 release_callchain_buffers();
2003 exit:
2004         mutex_unlock(&callchain_mutex);
2005
2006         return err;
2007 }
2008
2009 static void put_callchain_buffers(void)
2010 {
2011         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2012                 release_callchain_buffers();
2013                 mutex_unlock(&callchain_mutex);
2014         }
2015 }
2016
2017 static int get_recursion_context(int *recursion)
2018 {
2019         int rctx;
2020
2021         if (in_nmi())
2022                 rctx = 3;
2023         else if (in_irq())
2024                 rctx = 2;
2025         else if (in_softirq())
2026                 rctx = 1;
2027         else
2028                 rctx = 0;
2029
2030         if (recursion[rctx])
2031                 return -1;
2032
2033         recursion[rctx]++;
2034         barrier();
2035
2036         return rctx;
2037 }
2038
2039 static inline void put_recursion_context(int *recursion, int rctx)
2040 {
2041         barrier();
2042         recursion[rctx]--;
2043 }
2044
2045 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2046 {
2047         int cpu;
2048         struct callchain_cpus_entries *entries;
2049
2050         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2051         if (*rctx == -1)
2052                 return NULL;
2053
2054         entries = rcu_dereference(callchain_cpus_entries);
2055         if (!entries)
2056                 return NULL;
2057
2058         cpu = smp_processor_id();
2059
2060         return &entries->cpu_entries[cpu][*rctx];
2061 }
2062
2063 static void
2064 put_callchain_entry(int rctx)
2065 {
2066         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2067 }
2068
2069 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2070 {
2071         int rctx;
2072         struct perf_callchain_entry *entry;
2073
2074
2075         entry = get_callchain_entry(&rctx);
2076         if (rctx == -1)
2077                 return NULL;
2078
2079         if (!entry)
2080                 goto exit_put;
2081
2082         entry->nr = 0;
2083
2084         if (!user_mode(regs)) {
2085                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2086                 perf_callchain_kernel(entry, regs);
2087                 if (current->mm)
2088                         regs = task_pt_regs(current);
2089                 else
2090                         regs = NULL;
2091         }
2092
2093         if (regs) {
2094                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2095                 perf_callchain_user(entry, regs);
2096         }
2097
2098 exit_put:
2099         put_callchain_entry(rctx);
2100
2101         return entry;
2102 }
2103
2104 /*
2105  * Initialize the perf_event context in a task_struct:
2106  */
2107 static void __perf_event_init_context(struct perf_event_context *ctx)
2108 {
2109         raw_spin_lock_init(&ctx->lock);
2110         mutex_init(&ctx->mutex);
2111         INIT_LIST_HEAD(&ctx->pinned_groups);
2112         INIT_LIST_HEAD(&ctx->flexible_groups);
2113         INIT_LIST_HEAD(&ctx->event_list);
2114         atomic_set(&ctx->refcount, 1);
2115 }
2116
2117 static struct perf_event_context *
2118 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2119 {
2120         struct perf_event_context *ctx;
2121
2122         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2123         if (!ctx)
2124                 return NULL;
2125
2126         __perf_event_init_context(ctx);
2127         if (task) {
2128                 ctx->task = task;
2129                 get_task_struct(task);
2130         }
2131         ctx->pmu = pmu;
2132
2133         return ctx;
2134 }
2135
2136 static struct task_struct *
2137 find_lively_task_by_vpid(pid_t vpid)
2138 {
2139         struct task_struct *task;
2140         int err;
2141
2142         rcu_read_lock();
2143         if (!vpid)
2144                 task = current;
2145         else
2146                 task = find_task_by_vpid(vpid);
2147         if (task)
2148                 get_task_struct(task);
2149         rcu_read_unlock();
2150
2151         if (!task)
2152                 return ERR_PTR(-ESRCH);
2153
2154         /*
2155          * Can't attach events to a dying task.
2156          */
2157         err = -ESRCH;
2158         if (task->flags & PF_EXITING)
2159                 goto errout;
2160
2161         /* Reuse ptrace permission checks for now. */
2162         err = -EACCES;
2163         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2164                 goto errout;
2165
2166         return task;
2167 errout:
2168         put_task_struct(task);
2169         return ERR_PTR(err);
2170
2171 }
2172
2173 static struct perf_event_context *
2174 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2175 {
2176         struct perf_event_context *ctx;
2177         struct perf_cpu_context *cpuctx;
2178         unsigned long flags;
2179         int ctxn, err;
2180
2181         if (!task && cpu != -1) {
2182                 /* Must be root to operate on a CPU event: */
2183                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2184                         return ERR_PTR(-EACCES);
2185
2186                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2187                         return ERR_PTR(-EINVAL);
2188
2189                 /*
2190                  * We could be clever and allow to attach a event to an
2191                  * offline CPU and activate it when the CPU comes up, but
2192                  * that's for later.
2193                  */
2194                 if (!cpu_online(cpu))
2195                         return ERR_PTR(-ENODEV);
2196
2197                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2198                 ctx = &cpuctx->ctx;
2199                 get_ctx(ctx);
2200
2201                 return ctx;
2202         }
2203
2204         err = -EINVAL;
2205         ctxn = pmu->task_ctx_nr;
2206         if (ctxn < 0)
2207                 goto errout;
2208
2209 retry:
2210         ctx = perf_lock_task_context(task, ctxn, &flags);
2211         if (ctx) {
2212                 unclone_ctx(ctx);
2213                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2214         }
2215
2216         if (!ctx) {
2217                 ctx = alloc_perf_context(pmu, task);
2218                 err = -ENOMEM;
2219                 if (!ctx)
2220                         goto errout;
2221
2222                 get_ctx(ctx);
2223
2224                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2225                         /*
2226                          * We raced with some other task; use
2227                          * the context they set.
2228                          */
2229                         put_task_struct(task);
2230                         kfree(ctx);
2231                         goto retry;
2232                 }
2233         }
2234
2235         return ctx;
2236
2237 errout:
2238         return ERR_PTR(err);
2239 }
2240
2241 static void perf_event_free_filter(struct perf_event *event);
2242
2243 static void free_event_rcu(struct rcu_head *head)
2244 {
2245         struct perf_event *event;
2246
2247         event = container_of(head, struct perf_event, rcu_head);
2248         if (event->ns)
2249                 put_pid_ns(event->ns);
2250         perf_event_free_filter(event);
2251         kfree(event);
2252 }
2253
2254 static void perf_buffer_put(struct perf_buffer *buffer);
2255
2256 static void free_event(struct perf_event *event)
2257 {
2258         irq_work_sync(&event->pending);
2259
2260         if (!event->parent) {
2261                 if (event->attach_state & PERF_ATTACH_TASK)
2262                         jump_label_dec(&perf_task_events);
2263                 if (event->attr.mmap || event->attr.mmap_data)
2264                         atomic_dec(&nr_mmap_events);
2265                 if (event->attr.comm)
2266                         atomic_dec(&nr_comm_events);
2267                 if (event->attr.task)
2268                         atomic_dec(&nr_task_events);
2269                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2270                         put_callchain_buffers();
2271         }
2272
2273         if (event->buffer) {
2274                 perf_buffer_put(event->buffer);
2275                 event->buffer = NULL;
2276         }
2277
2278         if (event->destroy)
2279                 event->destroy(event);
2280
2281         if (event->ctx)
2282                 put_ctx(event->ctx);
2283
2284         call_rcu(&event->rcu_head, free_event_rcu);
2285 }
2286
2287 int perf_event_release_kernel(struct perf_event *event)
2288 {
2289         struct perf_event_context *ctx = event->ctx;
2290
2291         /*
2292          * Remove from the PMU, can't get re-enabled since we got
2293          * here because the last ref went.
2294          */
2295         perf_event_disable(event);
2296
2297         WARN_ON_ONCE(ctx->parent_ctx);
2298         /*
2299          * There are two ways this annotation is useful:
2300          *
2301          *  1) there is a lock recursion from perf_event_exit_task
2302          *     see the comment there.
2303          *
2304          *  2) there is a lock-inversion with mmap_sem through
2305          *     perf_event_read_group(), which takes faults while
2306          *     holding ctx->mutex, however this is called after
2307          *     the last filedesc died, so there is no possibility
2308          *     to trigger the AB-BA case.
2309          */
2310         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2311         raw_spin_lock_irq(&ctx->lock);
2312         perf_group_detach(event);
2313         list_del_event(event, ctx);
2314         raw_spin_unlock_irq(&ctx->lock);
2315         mutex_unlock(&ctx->mutex);
2316
2317         free_event(event);
2318
2319         return 0;
2320 }
2321 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2322
2323 /*
2324  * Called when the last reference to the file is gone.
2325  */
2326 static int perf_release(struct inode *inode, struct file *file)
2327 {
2328         struct perf_event *event = file->private_data;
2329         struct task_struct *owner;
2330
2331         file->private_data = NULL;
2332
2333         rcu_read_lock();
2334         owner = ACCESS_ONCE(event->owner);
2335         /*
2336          * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2337          * !owner it means the list deletion is complete and we can indeed
2338          * free this event, otherwise we need to serialize on
2339          * owner->perf_event_mutex.
2340          */
2341         smp_read_barrier_depends();
2342         if (owner) {
2343                 /*
2344                  * Since delayed_put_task_struct() also drops the last
2345                  * task reference we can safely take a new reference
2346                  * while holding the rcu_read_lock().
2347                  */
2348                 get_task_struct(owner);
2349         }
2350         rcu_read_unlock();
2351
2352         if (owner) {
2353                 mutex_lock(&owner->perf_event_mutex);
2354                 /*
2355                  * We have to re-check the event->owner field, if it is cleared
2356                  * we raced with perf_event_exit_task(), acquiring the mutex
2357                  * ensured they're done, and we can proceed with freeing the
2358                  * event.
2359                  */
2360                 if (event->owner)
2361                         list_del_init(&event->owner_entry);
2362                 mutex_unlock(&owner->perf_event_mutex);
2363                 put_task_struct(owner);
2364         }
2365
2366         return perf_event_release_kernel(event);
2367 }
2368
2369 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2370 {
2371         struct perf_event *child;
2372         u64 total = 0;
2373
2374         *enabled = 0;
2375         *running = 0;
2376
2377         mutex_lock(&event->child_mutex);
2378         total += perf_event_read(event);
2379         *enabled += event->total_time_enabled +
2380                         atomic64_read(&event->child_total_time_enabled);
2381         *running += event->total_time_running +
2382                         atomic64_read(&event->child_total_time_running);
2383
2384         list_for_each_entry(child, &event->child_list, child_list) {
2385                 total += perf_event_read(child);
2386                 *enabled += child->total_time_enabled;
2387                 *running += child->total_time_running;
2388         }
2389         mutex_unlock(&event->child_mutex);
2390
2391         return total;
2392 }
2393 EXPORT_SYMBOL_GPL(perf_event_read_value);
2394
2395 static int perf_event_read_group(struct perf_event *event,
2396                                    u64 read_format, char __user *buf)
2397 {
2398         struct perf_event *leader = event->group_leader, *sub;
2399         int n = 0, size = 0, ret = -EFAULT;
2400         struct perf_event_context *ctx = leader->ctx;
2401         u64 values[5];
2402         u64 count, enabled, running;
2403
2404         mutex_lock(&ctx->mutex);
2405         count = perf_event_read_value(leader, &enabled, &running);
2406
2407         values[n++] = 1 + leader->nr_siblings;
2408         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2409                 values[n++] = enabled;
2410         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2411                 values[n++] = running;
2412         values[n++] = count;
2413         if (read_format & PERF_FORMAT_ID)
2414                 values[n++] = primary_event_id(leader);
2415
2416         size = n * sizeof(u64);
2417
2418         if (copy_to_user(buf, values, size))
2419                 goto unlock;
2420
2421         ret = size;
2422
2423         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2424                 n = 0;
2425
2426                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2427                 if (read_format & PERF_FORMAT_ID)
2428                         values[n++] = primary_event_id(sub);
2429
2430                 size = n * sizeof(u64);
2431
2432                 if (copy_to_user(buf + ret, values, size)) {
2433                         ret = -EFAULT;
2434                         goto unlock;
2435                 }
2436
2437                 ret += size;
2438         }
2439 unlock:
2440         mutex_unlock(&ctx->mutex);
2441
2442         return ret;
2443 }
2444
2445 static int perf_event_read_one(struct perf_event *event,
2446                                  u64 read_format, char __user *buf)
2447 {
2448         u64 enabled, running;
2449         u64 values[4];
2450         int n = 0;
2451
2452         values[n++] = perf_event_read_value(event, &enabled, &running);
2453         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2454                 values[n++] = enabled;
2455         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2456                 values[n++] = running;
2457         if (read_format & PERF_FORMAT_ID)
2458                 values[n++] = primary_event_id(event);
2459
2460         if (copy_to_user(buf, values, n * sizeof(u64)))
2461                 return -EFAULT;
2462
2463         return n * sizeof(u64);
2464 }
2465
2466 /*
2467  * Read the performance event - simple non blocking version for now
2468  */
2469 static ssize_t
2470 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2471 {
2472         u64 read_format = event->attr.read_format;
2473         int ret;
2474
2475         /*
2476          * Return end-of-file for a read on a event that is in
2477          * error state (i.e. because it was pinned but it couldn't be
2478          * scheduled on to the CPU at some point).
2479          */
2480         if (event->state == PERF_EVENT_STATE_ERROR)
2481                 return 0;
2482
2483         if (count < event->read_size)
2484                 return -ENOSPC;
2485
2486         WARN_ON_ONCE(event->ctx->parent_ctx);
2487         if (read_format & PERF_FORMAT_GROUP)
2488                 ret = perf_event_read_group(event, read_format, buf);
2489         else
2490                 ret = perf_event_read_one(event, read_format, buf);
2491
2492         return ret;
2493 }
2494
2495 static ssize_t
2496 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2497 {
2498         struct perf_event *event = file->private_data;
2499
2500         return perf_read_hw(event, buf, count);
2501 }
2502
2503 static unsigned int perf_poll(struct file *file, poll_table *wait)
2504 {
2505         struct perf_event *event = file->private_data;
2506         struct perf_buffer *buffer;
2507         unsigned int events = POLL_HUP;
2508
2509         rcu_read_lock();
2510         buffer = rcu_dereference(event->buffer);
2511         if (buffer)
2512                 events = atomic_xchg(&buffer->poll, 0);
2513         rcu_read_unlock();
2514
2515         poll_wait(file, &event->waitq, wait);
2516
2517         return events;
2518 }
2519
2520 static void perf_event_reset(struct perf_event *event)
2521 {
2522         (void)perf_event_read(event);
2523         local64_set(&event->count, 0);
2524         perf_event_update_userpage(event);
2525 }
2526
2527 /*
2528  * Holding the top-level event's child_mutex means that any
2529  * descendant process that has inherited this event will block
2530  * in sync_child_event if it goes to exit, thus satisfying the
2531  * task existence requirements of perf_event_enable/disable.
2532  */
2533 static void perf_event_for_each_child(struct perf_event *event,
2534                                         void (*func)(struct perf_event *))
2535 {
2536         struct perf_event *child;
2537
2538         WARN_ON_ONCE(event->ctx->parent_ctx);
2539         mutex_lock(&event->child_mutex);
2540         func(event);
2541         list_for_each_entry(child, &event->child_list, child_list)
2542                 func(child);
2543         mutex_unlock(&event->child_mutex);
2544 }
2545
2546 static void perf_event_for_each(struct perf_event *event,
2547                                   void (*func)(struct perf_event *))
2548 {
2549         struct perf_event_context *ctx = event->ctx;
2550         struct perf_event *sibling;
2551
2552         WARN_ON_ONCE(ctx->parent_ctx);
2553         mutex_lock(&ctx->mutex);
2554         event = event->group_leader;
2555
2556         perf_event_for_each_child(event, func);
2557         func(event);
2558         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2559                 perf_event_for_each_child(event, func);
2560         mutex_unlock(&ctx->mutex);
2561 }
2562
2563 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2564 {
2565         struct perf_event_context *ctx = event->ctx;
2566         int ret = 0;
2567         u64 value;
2568
2569         if (!is_sampling_event(event))
2570                 return -EINVAL;
2571
2572         if (copy_from_user(&value, arg, sizeof(value)))
2573                 return -EFAULT;
2574
2575         if (!value)
2576                 return -EINVAL;
2577
2578         raw_spin_lock_irq(&ctx->lock);
2579         if (event->attr.freq) {
2580                 if (value > sysctl_perf_event_sample_rate) {
2581                         ret = -EINVAL;
2582                         goto unlock;
2583                 }
2584
2585                 event->attr.sample_freq = value;
2586         } else {
2587                 event->attr.sample_period = value;
2588                 event->hw.sample_period = value;
2589         }
2590 unlock:
2591         raw_spin_unlock_irq(&ctx->lock);
2592
2593         return ret;
2594 }
2595
2596 static const struct file_operations perf_fops;
2597
2598 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2599 {
2600         struct file *file;
2601
2602         file = fget_light(fd, fput_needed);
2603         if (!file)
2604                 return ERR_PTR(-EBADF);
2605
2606         if (file->f_op != &perf_fops) {
2607                 fput_light(file, *fput_needed);
2608                 *fput_needed = 0;
2609                 return ERR_PTR(-EBADF);
2610         }
2611
2612         return file->private_data;
2613 }
2614
2615 static int perf_event_set_output(struct perf_event *event,
2616                                  struct perf_event *output_event);
2617 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2618
2619 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2620 {
2621         struct perf_event *event = file->private_data;
2622         void (*func)(struct perf_event *);
2623         u32 flags = arg;
2624
2625         switch (cmd) {
2626         case PERF_EVENT_IOC_ENABLE:
2627                 func = perf_event_enable;
2628                 break;
2629         case PERF_EVENT_IOC_DISABLE:
2630                 func = perf_event_disable;
2631                 break;
2632         case PERF_EVENT_IOC_RESET:
2633                 func = perf_event_reset;
2634                 break;
2635
2636         case PERF_EVENT_IOC_REFRESH:
2637                 return perf_event_refresh(event, arg);
2638
2639         case PERF_EVENT_IOC_PERIOD:
2640                 return perf_event_period(event, (u64 __user *)arg);
2641
2642         case PERF_EVENT_IOC_SET_OUTPUT:
2643         {
2644                 struct perf_event *output_event = NULL;
2645                 int fput_needed = 0;
2646                 int ret;
2647
2648                 if (arg != -1) {
2649                         output_event = perf_fget_light(arg, &fput_needed);
2650                         if (IS_ERR(output_event))
2651                                 return PTR_ERR(output_event);
2652                 }
2653
2654                 ret = perf_event_set_output(event, output_event);
2655                 if (output_event)
2656                         fput_light(output_event->filp, fput_needed);
2657
2658                 return ret;
2659         }
2660
2661         case PERF_EVENT_IOC_SET_FILTER:
2662                 return perf_event_set_filter(event, (void __user *)arg);
2663
2664         default:
2665                 return -ENOTTY;
2666         }
2667
2668         if (flags & PERF_IOC_FLAG_GROUP)
2669                 perf_event_for_each(event, func);
2670         else
2671                 perf_event_for_each_child(event, func);
2672
2673         return 0;
2674 }
2675
2676 int perf_event_task_enable(void)
2677 {
2678         struct perf_event *event;
2679
2680         mutex_lock(&current->perf_event_mutex);
2681         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2682                 perf_event_for_each_child(event, perf_event_enable);
2683         mutex_unlock(&current->perf_event_mutex);
2684
2685         return 0;
2686 }
2687
2688 int perf_event_task_disable(void)
2689 {
2690         struct perf_event *event;
2691
2692         mutex_lock(&current->perf_event_mutex);
2693         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2694                 perf_event_for_each_child(event, perf_event_disable);
2695         mutex_unlock(&current->perf_event_mutex);
2696
2697         return 0;
2698 }
2699
2700 #ifndef PERF_EVENT_INDEX_OFFSET
2701 # define PERF_EVENT_INDEX_OFFSET 0
2702 #endif
2703
2704 static int perf_event_index(struct perf_event *event)
2705 {
2706         if (event->hw.state & PERF_HES_STOPPED)
2707                 return 0;
2708
2709         if (event->state != PERF_EVENT_STATE_ACTIVE)
2710                 return 0;
2711
2712         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2713 }
2714
2715 /*
2716  * Callers need to ensure there can be no nesting of this function, otherwise
2717  * the seqlock logic goes bad. We can not serialize this because the arch
2718  * code calls this from NMI context.
2719  */
2720 void perf_event_update_userpage(struct perf_event *event)
2721 {
2722         struct perf_event_mmap_page *userpg;
2723         struct perf_buffer *buffer;
2724
2725         rcu_read_lock();
2726         buffer = rcu_dereference(event->buffer);
2727         if (!buffer)
2728                 goto unlock;
2729
2730         userpg = buffer->user_page;
2731
2732         /*
2733          * Disable preemption so as to not let the corresponding user-space
2734          * spin too long if we get preempted.
2735          */
2736         preempt_disable();
2737         ++userpg->lock;
2738         barrier();
2739         userpg->index = perf_event_index(event);
2740         userpg->offset = perf_event_count(event);
2741         if (event->state == PERF_EVENT_STATE_ACTIVE)
2742                 userpg->offset -= local64_read(&event->hw.prev_count);
2743
2744         userpg->time_enabled = event->total_time_enabled +
2745                         atomic64_read(&event->child_total_time_enabled);
2746
2747         userpg->time_running = event->total_time_running +
2748                         atomic64_read(&event->child_total_time_running);
2749
2750         barrier();
2751         ++userpg->lock;
2752         preempt_enable();
2753 unlock:
2754         rcu_read_unlock();
2755 }
2756
2757 static unsigned long perf_data_size(struct perf_buffer *buffer);
2758
2759 static void
2760 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2761 {
2762         long max_size = perf_data_size(buffer);
2763
2764         if (watermark)
2765                 buffer->watermark = min(max_size, watermark);
2766
2767         if (!buffer->watermark)
2768                 buffer->watermark = max_size / 2;
2769
2770         if (flags & PERF_BUFFER_WRITABLE)
2771                 buffer->writable = 1;
2772
2773         atomic_set(&buffer->refcount, 1);
2774 }
2775
2776 #ifndef CONFIG_PERF_USE_VMALLOC
2777
2778 /*
2779  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2780  */
2781
2782 static struct page *
2783 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2784 {
2785         if (pgoff > buffer->nr_pages)
2786                 return NULL;
2787
2788         if (pgoff == 0)
2789                 return virt_to_page(buffer->user_page);
2790
2791         return virt_to_page(buffer->data_pages[pgoff - 1]);
2792 }
2793
2794 static void *perf_mmap_alloc_page(int cpu)
2795 {
2796         struct page *page;
2797         int node;
2798
2799         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2800         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2801         if (!page)
2802                 return NULL;
2803
2804         return page_address(page);
2805 }
2806
2807 static struct perf_buffer *
2808 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2809 {
2810         struct perf_buffer *buffer;
2811         unsigned long size;
2812         int i;
2813
2814         size = sizeof(struct perf_buffer);
2815         size += nr_pages * sizeof(void *);
2816
2817         buffer = kzalloc(size, GFP_KERNEL);
2818         if (!buffer)
2819                 goto fail;
2820
2821         buffer->user_page = perf_mmap_alloc_page(cpu);
2822         if (!buffer->user_page)
2823                 goto fail_user_page;
2824
2825         for (i = 0; i < nr_pages; i++) {
2826                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2827                 if (!buffer->data_pages[i])
2828                         goto fail_data_pages;
2829         }
2830
2831         buffer->nr_pages = nr_pages;
2832
2833         perf_buffer_init(buffer, watermark, flags);
2834
2835         return buffer;
2836
2837 fail_data_pages:
2838         for (i--; i >= 0; i--)
2839                 free_page((unsigned long)buffer->data_pages[i]);
2840
2841         free_page((unsigned long)buffer->user_page);
2842
2843 fail_user_page:
2844         kfree(buffer);
2845
2846 fail:
2847         return NULL;
2848 }
2849
2850 static void perf_mmap_free_page(unsigned long addr)
2851 {
2852         struct page *page = virt_to_page((void *)addr);
2853
2854         page->mapping = NULL;
2855         __free_page(page);
2856 }
2857
2858 static void perf_buffer_free(struct perf_buffer *buffer)
2859 {
2860         int i;
2861
2862         perf_mmap_free_page((unsigned long)buffer->user_page);
2863         for (i = 0; i < buffer->nr_pages; i++)
2864                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2865         kfree(buffer);
2866 }
2867
2868 static inline int page_order(struct perf_buffer *buffer)
2869 {
2870         return 0;
2871 }
2872
2873 #else
2874
2875 /*
2876  * Back perf_mmap() with vmalloc memory.
2877  *
2878  * Required for architectures that have d-cache aliasing issues.
2879  */
2880
2881 static inline int page_order(struct perf_buffer *buffer)
2882 {
2883         return buffer->page_order;
2884 }
2885
2886 static struct page *
2887 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2888 {
2889         if (pgoff > (1UL << page_order(buffer)))
2890                 return NULL;
2891
2892         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2893 }
2894
2895 static void perf_mmap_unmark_page(void *addr)
2896 {
2897         struct page *page = vmalloc_to_page(addr);
2898
2899         page->mapping = NULL;
2900 }
2901
2902 static void perf_buffer_free_work(struct work_struct *work)
2903 {
2904         struct perf_buffer *buffer;
2905         void *base;
2906         int i, nr;
2907
2908         buffer = container_of(work, struct perf_buffer, work);
2909         nr = 1 << page_order(buffer);
2910
2911         base = buffer->user_page;
2912         for (i = 0; i < nr + 1; i++)
2913                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2914
2915         vfree(base);
2916         kfree(buffer);
2917 }
2918
2919 static void perf_buffer_free(struct perf_buffer *buffer)
2920 {
2921         schedule_work(&buffer->work);
2922 }
2923
2924 static struct perf_buffer *
2925 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2926 {
2927         struct perf_buffer *buffer;
2928         unsigned long size;
2929         void *all_buf;
2930
2931         size = sizeof(struct perf_buffer);
2932         size += sizeof(void *);
2933
2934         buffer = kzalloc(size, GFP_KERNEL);
2935         if (!buffer)
2936                 goto fail;
2937
2938         INIT_WORK(&buffer->work, perf_buffer_free_work);
2939
2940         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2941         if (!all_buf)
2942                 goto fail_all_buf;
2943
2944         buffer->user_page = all_buf;
2945         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2946         buffer->page_order = ilog2(nr_pages);
2947         buffer->nr_pages = 1;
2948
2949         perf_buffer_init(buffer, watermark, flags);
2950
2951         return buffer;
2952
2953 fail_all_buf:
2954         kfree(buffer);
2955
2956 fail:
2957         return NULL;
2958 }
2959
2960 #endif
2961
2962 static unsigned long perf_data_size(struct perf_buffer *buffer)
2963 {
2964         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2965 }
2966
2967 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2968 {
2969         struct perf_event *event = vma->vm_file->private_data;
2970         struct perf_buffer *buffer;
2971         int ret = VM_FAULT_SIGBUS;
2972
2973         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2974                 if (vmf->pgoff == 0)
2975                         ret = 0;
2976                 return ret;
2977         }
2978
2979         rcu_read_lock();
2980         buffer = rcu_dereference(event->buffer);
2981         if (!buffer)
2982                 goto unlock;
2983
2984         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2985                 goto unlock;
2986
2987         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2988         if (!vmf->page)
2989                 goto unlock;
2990
2991         get_page(vmf->page);
2992         vmf->page->mapping = vma->vm_file->f_mapping;
2993         vmf->page->index   = vmf->pgoff;
2994
2995         ret = 0;
2996 unlock:
2997         rcu_read_unlock();
2998
2999         return ret;
3000 }
3001
3002 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3003 {
3004         struct perf_buffer *buffer;
3005
3006         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3007         perf_buffer_free(buffer);
3008 }
3009
3010 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3011 {
3012         struct perf_buffer *buffer;
3013
3014         rcu_read_lock();
3015         buffer = rcu_dereference(event->buffer);
3016         if (buffer) {
3017                 if (!atomic_inc_not_zero(&buffer->refcount))
3018                         buffer = NULL;
3019         }
3020         rcu_read_unlock();
3021
3022         return buffer;
3023 }
3024
3025 static void perf_buffer_put(struct perf_buffer *buffer)
3026 {
3027         if (!atomic_dec_and_test(&buffer->refcount))
3028                 return;
3029
3030         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3031 }
3032
3033 static void perf_mmap_open(struct vm_area_struct *vma)
3034 {
3035         struct perf_event *event = vma->vm_file->private_data;
3036
3037         atomic_inc(&event->mmap_count);
3038 }
3039
3040 static void perf_mmap_close(struct vm_area_struct *vma)
3041 {
3042         struct perf_event *event = vma->vm_file->private_data;
3043
3044         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3045                 unsigned long size = perf_data_size(event->buffer);
3046                 struct user_struct *user = event->mmap_user;
3047                 struct perf_buffer *buffer = event->buffer;
3048
3049                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3050                 vma->vm_mm->locked_vm -= event->mmap_locked;
3051                 rcu_assign_pointer(event->buffer, NULL);
3052                 mutex_unlock(&event->mmap_mutex);
3053
3054                 perf_buffer_put(buffer);
3055                 free_uid(user);
3056         }
3057 }
3058
3059 static const struct vm_operations_struct perf_mmap_vmops = {
3060         .open           = perf_mmap_open,
3061         .close          = perf_mmap_close,
3062         .fault          = perf_mmap_fault,
3063         .page_mkwrite   = perf_mmap_fault,
3064 };
3065
3066 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3067 {
3068         struct perf_event *event = file->private_data;
3069         unsigned long user_locked, user_lock_limit;
3070         struct user_struct *user = current_user();
3071         unsigned long locked, lock_limit;
3072         struct perf_buffer *buffer;
3073         unsigned long vma_size;
3074         unsigned long nr_pages;
3075         long user_extra, extra;
3076         int ret = 0, flags = 0;
3077
3078         /*
3079          * Don't allow mmap() of inherited per-task counters. This would
3080          * create a performance issue due to all children writing to the
3081          * same buffer.
3082          */
3083         if (event->cpu == -1 && event->attr.inherit)
3084                 return -EINVAL;
3085
3086         if (!(vma->vm_flags & VM_SHARED))
3087                 return -EINVAL;
3088
3089         vma_size = vma->vm_end - vma->vm_start;
3090         nr_pages = (vma_size / PAGE_SIZE) - 1;
3091
3092         /*
3093          * If we have buffer pages ensure they're a power-of-two number, so we
3094          * can do bitmasks instead of modulo.
3095          */
3096         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3097                 return -EINVAL;
3098
3099         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3100                 return -EINVAL;
3101
3102         if (vma->vm_pgoff != 0)
3103                 return -EINVAL;
3104
3105         WARN_ON_ONCE(event->ctx->parent_ctx);
3106         mutex_lock(&event->mmap_mutex);
3107         if (event->buffer) {
3108                 if (event->buffer->nr_pages == nr_pages)
3109                         atomic_inc(&event->buffer->refcount);
3110                 else
3111                         ret = -EINVAL;
3112                 goto unlock;
3113         }
3114
3115         user_extra = nr_pages + 1;
3116         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3117
3118         /*
3119          * Increase the limit linearly with more CPUs:
3120          */
3121         user_lock_limit *= num_online_cpus();
3122
3123         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3124
3125         extra = 0;
3126         if (user_locked > user_lock_limit)
3127                 extra = user_locked - user_lock_limit;
3128
3129         lock_limit = rlimit(RLIMIT_MEMLOCK);
3130         lock_limit >>= PAGE_SHIFT;
3131         locked = vma->vm_mm->locked_vm + extra;
3132
3133         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3134                 !capable(CAP_IPC_LOCK)) {
3135                 ret = -EPERM;
3136                 goto unlock;
3137         }
3138
3139         WARN_ON(event->buffer);
3140
3141         if (vma->vm_flags & VM_WRITE)
3142                 flags |= PERF_BUFFER_WRITABLE;
3143
3144         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3145                                    event->cpu, flags);
3146         if (!buffer) {
3147                 ret = -ENOMEM;
3148                 goto unlock;
3149         }
3150         rcu_assign_pointer(event->buffer, buffer);
3151
3152         atomic_long_add(user_extra, &user->locked_vm);
3153         event->mmap_locked = extra;
3154         event->mmap_user = get_current_user();
3155         vma->vm_mm->locked_vm += event->mmap_locked;
3156
3157 unlock:
3158         if (!ret)
3159                 atomic_inc(&event->mmap_count);
3160         mutex_unlock(&event->mmap_mutex);
3161
3162         vma->vm_flags |= VM_RESERVED;
3163         vma->vm_ops = &perf_mmap_vmops;
3164
3165         return ret;
3166 }
3167
3168 static int perf_fasync(int fd, struct file *filp, int on)
3169 {
3170         struct inode *inode = filp->f_path.dentry->d_inode;
3171         struct perf_event *event = filp->private_data;
3172         int retval;
3173
3174         mutex_lock(&inode->i_mutex);
3175         retval = fasync_helper(fd, filp, on, &event->fasync);
3176         mutex_unlock(&inode->i_mutex);
3177
3178         if (retval < 0)
3179                 return retval;
3180
3181         return 0;
3182 }
3183
3184 static const struct file_operations perf_fops = {
3185         .llseek                 = no_llseek,
3186         .release                = perf_release,
3187         .read                   = perf_read,
3188         .poll                   = perf_poll,
3189         .unlocked_ioctl         = perf_ioctl,
3190         .compat_ioctl           = perf_ioctl,
3191         .mmap                   = perf_mmap,
3192         .fasync                 = perf_fasync,
3193 };
3194
3195 /*
3196  * Perf event wakeup
3197  *
3198  * If there's data, ensure we set the poll() state and publish everything
3199  * to user-space before waking everybody up.
3200  */
3201
3202 void perf_event_wakeup(struct perf_event *event)
3203 {
3204         wake_up_all(&event->waitq);
3205
3206         if (event->pending_kill) {
3207                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3208                 event->pending_kill = 0;
3209         }
3210 }
3211
3212 static void perf_pending_event(struct irq_work *entry)
3213 {
3214         struct perf_event *event = container_of(entry,
3215                         struct perf_event, pending);
3216
3217         if (event->pending_disable) {
3218                 event->pending_disable = 0;
3219                 __perf_event_disable(event);
3220         }
3221
3222         if (event->pending_wakeup) {
3223                 event->pending_wakeup = 0;
3224                 perf_event_wakeup(event);
3225         }
3226 }
3227
3228 /*
3229  * We assume there is only KVM supporting the callbacks.
3230  * Later on, we might change it to a list if there is
3231  * another virtualization implementation supporting the callbacks.
3232  */
3233 struct perf_guest_info_callbacks *perf_guest_cbs;
3234
3235 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3236 {
3237         perf_guest_cbs = cbs;
3238         return 0;
3239 }
3240 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3241
3242 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3243 {
3244         perf_guest_cbs = NULL;
3245         return 0;
3246 }
3247 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3248
3249 /*
3250  * Output
3251  */
3252 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3253                               unsigned long offset, unsigned long head)
3254 {
3255         unsigned long mask;
3256
3257         if (!buffer->writable)
3258                 return true;
3259
3260         mask = perf_data_size(buffer) - 1;
3261
3262         offset = (offset - tail) & mask;
3263         head   = (head   - tail) & mask;
3264
3265         if ((int)(head - offset) < 0)
3266                 return false;
3267
3268         return true;
3269 }
3270
3271 static void perf_output_wakeup(struct perf_output_handle *handle)
3272 {
3273         atomic_set(&handle->buffer->poll, POLL_IN);
3274
3275         if (handle->nmi) {
3276                 handle->event->pending_wakeup = 1;
3277                 irq_work_queue(&handle->event->pending);
3278         } else
3279                 perf_event_wakeup(handle->event);
3280 }
3281
3282 /*
3283  * We need to ensure a later event_id doesn't publish a head when a former
3284  * event isn't done writing. However since we need to deal with NMIs we
3285  * cannot fully serialize things.
3286  *
3287  * We only publish the head (and generate a wakeup) when the outer-most
3288  * event completes.
3289  */
3290 static void perf_output_get_handle(struct perf_output_handle *handle)
3291 {
3292         struct perf_buffer *buffer = handle->buffer;
3293
3294         preempt_disable();
3295         local_inc(&buffer->nest);
3296         handle->wakeup = local_read(&buffer->wakeup);
3297 }
3298
3299 static void perf_output_put_handle(struct perf_output_handle *handle)
3300 {
3301         struct perf_buffer *buffer = handle->buffer;
3302         unsigned long head;
3303
3304 again:
3305         head = local_read(&buffer->head);
3306
3307         /*
3308          * IRQ/NMI can happen here, which means we can miss a head update.
3309          */
3310
3311         if (!local_dec_and_test(&buffer->nest))
3312                 goto out;
3313
3314         /*
3315          * Publish the known good head. Rely on the full barrier implied
3316          * by atomic_dec_and_test() order the buffer->head read and this
3317          * write.
3318          */
3319         buffer->user_page->data_head = head;
3320
3321         /*
3322          * Now check if we missed an update, rely on the (compiler)
3323          * barrier in atomic_dec_and_test() to re-read buffer->head.
3324          */
3325         if (unlikely(head != local_read(&buffer->head))) {
3326                 local_inc(&buffer->nest);
3327                 goto again;
3328         }
3329
3330         if (handle->wakeup != local_read(&buffer->wakeup))
3331                 perf_output_wakeup(handle);
3332
3333 out:
3334         preempt_enable();
3335 }
3336
3337 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3338                       const void *buf, unsigned int len)
3339 {
3340         do {
3341                 unsigned long size = min_t(unsigned long, handle->size, len);
3342
3343                 memcpy(handle->addr, buf, size);
3344
3345                 len -= size;
3346                 handle->addr += size;
3347                 buf += size;
3348                 handle->size -= size;
3349                 if (!handle->size) {
3350                         struct perf_buffer *buffer = handle->buffer;
3351
3352                         handle->page++;
3353                         handle->page &= buffer->nr_pages - 1;
3354                         handle->addr = buffer->data_pages[handle->page];
3355                         handle->size = PAGE_SIZE << page_order(buffer);
3356                 }
3357         } while (len);
3358 }
3359
3360 int perf_output_begin(struct perf_output_handle *handle,
3361                       struct perf_event *event, unsigned int size,
3362                       int nmi, int sample)
3363 {
3364         struct perf_buffer *buffer;
3365         unsigned long tail, offset, head;
3366         int have_lost;
3367         struct {
3368                 struct perf_event_header header;
3369                 u64                      id;
3370                 u64                      lost;
3371         } lost_event;
3372
3373         rcu_read_lock();
3374         /*
3375          * For inherited events we send all the output towards the parent.
3376          */
3377         if (event->parent)
3378                 event = event->parent;
3379
3380         buffer = rcu_dereference(event->buffer);
3381         if (!buffer)
3382                 goto out;
3383
3384         handle->buffer  = buffer;
3385         handle->event   = event;
3386         handle->nmi     = nmi;
3387         handle->sample  = sample;
3388
3389         if (!buffer->nr_pages)
3390                 goto out;
3391
3392         have_lost = local_read(&buffer->lost);
3393         if (have_lost)
3394                 size += sizeof(lost_event);
3395
3396         perf_output_get_handle(handle);
3397
3398         do {
3399                 /*
3400                  * Userspace could choose to issue a mb() before updating the
3401                  * tail pointer. So that all reads will be completed before the
3402                  * write is issued.
3403                  */
3404                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3405                 smp_rmb();
3406                 offset = head = local_read(&buffer->head);
3407                 head += size;
3408                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3409                         goto fail;
3410         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3411
3412         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3413                 local_add(buffer->watermark, &buffer->wakeup);
3414
3415         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3416         handle->page &= buffer->nr_pages - 1;
3417         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3418         handle->addr = buffer->data_pages[handle->page];
3419         handle->addr += handle->size;
3420         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3421
3422         if (have_lost) {
3423                 lost_event.header.type = PERF_RECORD_LOST;
3424                 lost_event.header.misc = 0;
3425                 lost_event.header.size = sizeof(lost_event);
3426                 lost_event.id          = event->id;
3427                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3428
3429                 perf_output_put(handle, lost_event);
3430         }
3431
3432         return 0;
3433
3434 fail:
3435         local_inc(&buffer->lost);
3436         perf_output_put_handle(handle);
3437 out:
3438         rcu_read_unlock();
3439
3440         return -ENOSPC;
3441 }
3442
3443 void perf_output_end(struct perf_output_handle *handle)
3444 {
3445         struct perf_event *event = handle->event;
3446         struct perf_buffer *buffer = handle->buffer;
3447
3448         int wakeup_events = event->attr.wakeup_events;
3449
3450         if (handle->sample && wakeup_events) {
3451                 int events = local_inc_return(&buffer->events);
3452                 if (events >= wakeup_events) {
3453                         local_sub(wakeup_events, &buffer->events);
3454                         local_inc(&buffer->wakeup);
3455                 }
3456         }
3457
3458         perf_output_put_handle(handle);
3459         rcu_read_unlock();
3460 }
3461
3462 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3463 {
3464         /*
3465          * only top level events have the pid namespace they were created in
3466          */
3467         if (event->parent)
3468                 event = event->parent;
3469
3470         return task_tgid_nr_ns(p, event->ns);
3471 }
3472
3473 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3474 {
3475         /*
3476          * only top level events have the pid namespace they were created in
3477          */
3478         if (event->parent)
3479                 event = event->parent;
3480
3481         return task_pid_nr_ns(p, event->ns);
3482 }
3483
3484 static void perf_output_read_one(struct perf_output_handle *handle,
3485                                  struct perf_event *event,
3486                                  u64 enabled, u64 running)
3487 {
3488         u64 read_format = event->attr.read_format;
3489         u64 values[4];
3490         int n = 0;
3491
3492         values[n++] = perf_event_count(event);
3493         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3494                 values[n++] = enabled +
3495                         atomic64_read(&event->child_total_time_enabled);
3496         }
3497         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3498                 values[n++] = running +
3499                         atomic64_read(&event->child_total_time_running);
3500         }
3501         if (read_format & PERF_FORMAT_ID)
3502                 values[n++] = primary_event_id(event);
3503
3504         perf_output_copy(handle, values, n * sizeof(u64));
3505 }
3506
3507 /*
3508  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3509  */
3510 static void perf_output_read_group(struct perf_output_handle *handle,
3511                             struct perf_event *event,
3512                             u64 enabled, u64 running)
3513 {
3514         struct perf_event *leader = event->group_leader, *sub;
3515         u64 read_format = event->attr.read_format;
3516         u64 values[5];
3517         int n = 0;
3518
3519         values[n++] = 1 + leader->nr_siblings;
3520
3521         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3522                 values[n++] = enabled;
3523
3524         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3525                 values[n++] = running;
3526
3527         if (leader != event)
3528                 leader->pmu->read(leader);
3529
3530         values[n++] = perf_event_count(leader);
3531         if (read_format & PERF_FORMAT_ID)
3532                 values[n++] = primary_event_id(leader);
3533
3534         perf_output_copy(handle, values, n * sizeof(u64));
3535
3536         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3537                 n = 0;
3538
3539                 if (sub != event)
3540                         sub->pmu->read(sub);
3541
3542                 values[n++] = perf_event_count(sub);
3543                 if (read_format & PERF_FORMAT_ID)
3544                         values[n++] = primary_event_id(sub);
3545
3546                 perf_output_copy(handle, values, n * sizeof(u64));
3547         }
3548 }
3549
3550 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3551                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
3552
3553 static void perf_output_read(struct perf_output_handle *handle,
3554                              struct perf_event *event)
3555 {
3556         u64 enabled = 0, running = 0, now, ctx_time;
3557         u64 read_format = event->attr.read_format;
3558
3559         /*
3560          * compute total_time_enabled, total_time_running
3561          * based on snapshot values taken when the event
3562          * was last scheduled in.
3563          *
3564          * we cannot simply called update_context_time()
3565          * because of locking issue as we are called in
3566          * NMI context
3567          */
3568         if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3569                 now = perf_clock();
3570                 ctx_time = event->shadow_ctx_time + now;
3571                 enabled = ctx_time - event->tstamp_enabled;
3572                 running = ctx_time - event->tstamp_running;
3573         }
3574
3575         if (event->attr.read_format & PERF_FORMAT_GROUP)
3576                 perf_output_read_group(handle, event, enabled, running);
3577         else
3578                 perf_output_read_one(handle, event, enabled, running);
3579 }
3580
3581 void perf_output_sample(struct perf_output_handle *handle,
3582                         struct perf_event_header *header,
3583                         struct perf_sample_data *data,
3584                         struct perf_event *event)
3585 {
3586         u64 sample_type = data->type;
3587
3588         perf_output_put(handle, *header);
3589
3590         if (sample_type & PERF_SAMPLE_IP)
3591                 perf_output_put(handle, data->ip);
3592
3593         if (sample_type & PERF_SAMPLE_TID)
3594                 perf_output_put(handle, data->tid_entry);
3595
3596         if (sample_type & PERF_SAMPLE_TIME)
3597                 perf_output_put(handle, data->time);
3598
3599         if (sample_type & PERF_SAMPLE_ADDR)
3600                 perf_output_put(handle, data->addr);
3601
3602         if (sample_type & PERF_SAMPLE_ID)
3603                 perf_output_put(handle, data->id);
3604
3605         if (sample_type & PERF_SAMPLE_STREAM_ID)
3606                 perf_output_put(handle, data->stream_id);
3607
3608         if (sample_type & PERF_SAMPLE_CPU)
3609                 perf_output_put(handle, data->cpu_entry);
3610
3611         if (sample_type & PERF_SAMPLE_PERIOD)
3612                 perf_output_put(handle, data->period);
3613
3614         if (sample_type & PERF_SAMPLE_READ)
3615                 perf_output_read(handle, event);
3616
3617         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3618                 if (data->callchain) {
3619                         int size = 1;
3620
3621                         if (data->callchain)
3622                                 size += data->callchain->nr;
3623
3624                         size *= sizeof(u64);
3625
3626                         perf_output_copy(handle, data->callchain, size);
3627                 } else {
3628                         u64 nr = 0;
3629                         perf_output_put(handle, nr);
3630                 }
3631         }
3632
3633         if (sample_type & PERF_SAMPLE_RAW) {
3634                 if (data->raw) {
3635                         perf_output_put(handle, data->raw->size);
3636                         perf_output_copy(handle, data->raw->data,
3637                                          data->raw->size);
3638                 } else {
3639                         struct {
3640                                 u32     size;
3641                                 u32     data;
3642                         } raw = {
3643                                 .size = sizeof(u32),
3644                                 .data = 0,
3645                         };
3646                         perf_output_put(handle, raw);
3647                 }
3648         }
3649 }
3650
3651 void perf_prepare_sample(struct perf_event_header *header,
3652                          struct perf_sample_data *data,
3653                          struct perf_event *event,
3654                          struct pt_regs *regs)
3655 {
3656         u64 sample_type = event->attr.sample_type;
3657
3658         data->type = sample_type;
3659
3660         header->type = PERF_RECORD_SAMPLE;
3661         header->size = sizeof(*header) + event->header_size;
3662
3663         header->misc = 0;
3664         header->misc |= perf_misc_flags(regs);
3665
3666         if (sample_type & PERF_SAMPLE_IP)
3667                 data->ip = perf_instruction_pointer(regs);
3668
3669         if (sample_type & PERF_SAMPLE_TID) {
3670                 /* namespace issues */
3671                 data->tid_entry.pid = perf_event_pid(event, current);
3672                 data->tid_entry.tid = perf_event_tid(event, current);
3673         }
3674
3675         if (sample_type & PERF_SAMPLE_TIME)
3676                 data->time = perf_clock();
3677
3678         if (sample_type & PERF_SAMPLE_ID)
3679                 data->id = primary_event_id(event);
3680
3681         if (sample_type & PERF_SAMPLE_STREAM_ID)
3682                 data->stream_id = event->id;
3683
3684         if (sample_type & PERF_SAMPLE_CPU) {
3685                 data->cpu_entry.cpu             = raw_smp_processor_id();
3686                 data->cpu_entry.reserved        = 0;
3687         }
3688
3689         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3690                 int size = 1;
3691
3692                 data->callchain = perf_callchain(regs);
3693
3694                 if (data->callchain)
3695                         size += data->callchain->nr;
3696
3697                 header->size += size * sizeof(u64);
3698         }
3699
3700         if (sample_type & PERF_SAMPLE_RAW) {
3701                 int size = sizeof(u32);
3702
3703                 if (data->raw)
3704                         size += data->raw->size;
3705                 else
3706                         size += sizeof(u32);
3707
3708                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3709                 header->size += size;
3710         }
3711 }
3712
3713 static void perf_event_output(struct perf_event *event, int nmi,
3714                                 struct perf_sample_data *data,
3715                                 struct pt_regs *regs)
3716 {
3717         struct perf_output_handle handle;
3718         struct perf_event_header header;
3719
3720         /* protect the callchain buffers */
3721         rcu_read_lock();
3722
3723         perf_prepare_sample(&header, data, event, regs);
3724
3725         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3726                 goto exit;
3727
3728         perf_output_sample(&handle, &header, data, event);
3729
3730         perf_output_end(&handle);
3731
3732 exit:
3733         rcu_read_unlock();
3734 }
3735
3736 /*
3737  * read event_id
3738  */
3739
3740 struct perf_read_event {
3741         struct perf_event_header        header;
3742
3743         u32                             pid;
3744         u32                             tid;
3745 };
3746
3747 static void
3748 perf_event_read_event(struct perf_event *event,
3749                         struct task_struct *task)
3750 {
3751         struct perf_output_handle handle;
3752         struct perf_read_event read_event = {
3753                 .header = {
3754                         .type = PERF_RECORD_READ,
3755                         .misc = 0,
3756                         .size = sizeof(read_event) + event->read_size,
3757                 },
3758                 .pid = perf_event_pid(event, task),
3759                 .tid = perf_event_tid(event, task),
3760         };
3761         int ret;
3762
3763         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3764         if (ret)
3765                 return;
3766
3767         perf_output_put(&handle, read_event);
3768         perf_output_read(&handle, event);
3769
3770         perf_output_end(&handle);
3771 }
3772
3773 /*
3774  * task tracking -- fork/exit
3775  *
3776  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3777  */
3778
3779 struct perf_task_event {
3780         struct task_struct              *task;
3781         struct perf_event_context       *task_ctx;
3782
3783         struct {
3784                 struct perf_event_header        header;
3785
3786                 u32                             pid;
3787                 u32                             ppid;
3788                 u32                             tid;
3789                 u32                             ptid;
3790                 u64                             time;
3791         } event_id;
3792 };
3793
3794 static void perf_event_task_output(struct perf_event *event,
3795                                      struct perf_task_event *task_event)
3796 {
3797         struct perf_output_handle handle;
3798         struct task_struct *task = task_event->task;
3799         int size, ret;
3800
3801         size  = task_event->event_id.header.size;
3802         ret = perf_output_begin(&handle, event, size, 0, 0);
3803
3804         if (ret)
3805                 return;
3806
3807         task_event->event_id.pid = perf_event_pid(event, task);
3808         task_event->event_id.ppid = perf_event_pid(event, current);
3809
3810         task_event->event_id.tid = perf_event_tid(event, task);
3811         task_event->event_id.ptid = perf_event_tid(event, current);
3812
3813         perf_output_put(&handle, task_event->event_id);
3814
3815         perf_output_end(&handle);
3816 }
3817
3818 static int perf_event_task_match(struct perf_event *event)
3819 {
3820         if (event->state < PERF_EVENT_STATE_INACTIVE)
3821                 return 0;
3822
3823         if (event->cpu != -1 && event->cpu != smp_processor_id())
3824                 return 0;
3825
3826         if (event->attr.comm || event->attr.mmap ||
3827             event->attr.mmap_data || event->attr.task)
3828                 return 1;
3829
3830         return 0;
3831 }
3832
3833 static void perf_event_task_ctx(struct perf_event_context *ctx,
3834                                   struct perf_task_event *task_event)
3835 {
3836         struct perf_event *event;
3837
3838         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3839                 if (perf_event_task_match(event))
3840                         perf_event_task_output(event, task_event);
3841         }
3842 }
3843
3844 static void perf_event_task_event(struct perf_task_event *task_event)
3845 {
3846         struct perf_cpu_context *cpuctx;
3847         struct perf_event_context *ctx;
3848         struct pmu *pmu;
3849         int ctxn;
3850
3851         rcu_read_lock();
3852         list_for_each_entry_rcu(pmu, &pmus, entry) {
3853                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3854                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3855
3856                 ctx = task_event->task_ctx;
3857                 if (!ctx) {
3858                         ctxn = pmu->task_ctx_nr;
3859                         if (ctxn < 0)
3860                                 goto next;
3861                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3862                 }
3863                 if (ctx)
3864                         perf_event_task_ctx(ctx, task_event);
3865 next:
3866                 put_cpu_ptr(pmu->pmu_cpu_context);
3867         }
3868         rcu_read_unlock();
3869 }
3870
3871 static void perf_event_task(struct task_struct *task,
3872                               struct perf_event_context *task_ctx,
3873                               int new)
3874 {
3875         struct perf_task_event task_event;
3876
3877         if (!atomic_read(&nr_comm_events) &&
3878             !atomic_read(&nr_mmap_events) &&
3879             !atomic_read(&nr_task_events))
3880                 return;
3881
3882         task_event = (struct perf_task_event){
3883                 .task     = task,
3884                 .task_ctx = task_ctx,
3885                 .event_id    = {
3886                         .header = {
3887                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3888                                 .misc = 0,
3889                                 .size = sizeof(task_event.event_id),
3890                         },
3891                         /* .pid  */
3892                         /* .ppid */
3893                         /* .tid  */
3894                         /* .ptid */
3895                         .time = perf_clock(),
3896                 },
3897         };
3898
3899         perf_event_task_event(&task_event);
3900 }
3901
3902 void perf_event_fork(struct task_struct *task)
3903 {
3904         perf_event_task(task, NULL, 1);
3905 }
3906
3907 /*
3908  * comm tracking
3909  */
3910
3911 struct perf_comm_event {
3912         struct task_struct      *task;
3913         char                    *comm;
3914         int                     comm_size;
3915
3916         struct {
3917                 struct perf_event_header        header;
3918
3919                 u32                             pid;
3920                 u32                             tid;
3921         } event_id;
3922 };
3923
3924 static void perf_event_comm_output(struct perf_event *event,
3925                                      struct perf_comm_event *comm_event)
3926 {
3927         struct perf_output_handle handle;
3928         int size = comm_event->event_id.header.size;
3929         int ret = perf_output_begin(&handle, event, size, 0, 0);
3930
3931         if (ret)
3932                 return;
3933
3934         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3935         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3936
3937         perf_output_put(&handle, comm_event->event_id);
3938         perf_output_copy(&handle, comm_event->comm,
3939                                    comm_event->comm_size);
3940         perf_output_end(&handle);
3941 }
3942
3943 static int perf_event_comm_match(struct perf_event *event)
3944 {
3945         if (event->state < PERF_EVENT_STATE_INACTIVE)
3946                 return 0;
3947
3948         if (event->cpu != -1 && event->cpu != smp_processor_id())
3949                 return 0;
3950
3951         if (event->attr.comm)
3952                 return 1;
3953
3954         return 0;
3955 }
3956
3957 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3958                                   struct perf_comm_event *comm_event)
3959 {
3960         struct perf_event *event;
3961
3962         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3963                 if (perf_event_comm_match(event))
3964                         perf_event_comm_output(event, comm_event);
3965         }
3966 }
3967
3968 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3969 {
3970         struct perf_cpu_context *cpuctx;
3971         struct perf_event_context *ctx;
3972         char comm[TASK_COMM_LEN];
3973         unsigned int size;
3974         struct pmu *pmu;
3975         int ctxn;
3976
3977         memset(comm, 0, sizeof(comm));
3978         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3979         size = ALIGN(strlen(comm)+1, sizeof(u64));
3980
3981         comm_event->comm = comm;
3982         comm_event->comm_size = size;
3983
3984         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3985
3986         rcu_read_lock();
3987         list_for_each_entry_rcu(pmu, &pmus, entry) {
3988                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3989                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3990
3991                 ctxn = pmu->task_ctx_nr;
3992                 if (ctxn < 0)
3993                         goto next;
3994
3995                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3996                 if (ctx)
3997                         perf_event_comm_ctx(ctx, comm_event);
3998 next:
3999                 put_cpu_ptr(pmu->pmu_cpu_context);
4000         }
4001         rcu_read_unlock();
4002 }
4003
4004 void perf_event_comm(struct task_struct *task)
4005 {
4006         struct perf_comm_event comm_event;
4007         struct perf_event_context *ctx;
4008         int ctxn;
4009
4010         for_each_task_context_nr(ctxn) {
4011                 ctx = task->perf_event_ctxp[ctxn];
4012                 if (!ctx)
4013                         continue;
4014
4015                 perf_event_enable_on_exec(ctx);
4016         }
4017
4018         if (!atomic_read(&nr_comm_events))
4019                 return;
4020
4021         comm_event = (struct perf_comm_event){
4022                 .task   = task,
4023                 /* .comm      */
4024                 /* .comm_size */
4025                 .event_id  = {
4026                         .header = {
4027                                 .type = PERF_RECORD_COMM,
4028                                 .misc = 0,
4029                                 /* .size */
4030                         },
4031                         /* .pid */
4032                         /* .tid */
4033                 },
4034         };
4035
4036         perf_event_comm_event(&comm_event);
4037 }
4038
4039 /*
4040  * mmap tracking
4041  */
4042
4043 struct perf_mmap_event {
4044         struct vm_area_struct   *vma;
4045
4046         const char              *file_name;
4047         int                     file_size;
4048
4049         struct {
4050                 struct perf_event_header        header;
4051
4052                 u32                             pid;
4053                 u32                             tid;
4054                 u64                             start;
4055                 u64                             len;
4056                 u64                             pgoff;
4057         } event_id;
4058 };
4059
4060 static void perf_event_mmap_output(struct perf_event *event,
4061                                      struct perf_mmap_event *mmap_event)
4062 {
4063         struct perf_output_handle handle;
4064         int size = mmap_event->event_id.header.size;
4065         int ret = perf_output_begin(&handle, event, size, 0, 0);
4066
4067         if (ret)
4068                 return;
4069
4070         mmap_event->event_id.pid = perf_event_pid(event, current);
4071         mmap_event->event_id.tid = perf_event_tid(event, current);
4072
4073         perf_output_put(&handle, mmap_event->event_id);
4074         perf_output_copy(&handle, mmap_event->file_name,
4075                                    mmap_event->file_size);
4076         perf_output_end(&handle);
4077 }
4078
4079 static int perf_event_mmap_match(struct perf_event *event,
4080                                    struct perf_mmap_event *mmap_event,
4081                                    int executable)
4082 {
4083         if (event->state < PERF_EVENT_STATE_INACTIVE)
4084                 return 0;
4085
4086         if (event->cpu != -1 && event->cpu != smp_processor_id())
4087                 return 0;
4088
4089         if ((!executable && event->attr.mmap_data) ||
4090             (executable && event->attr.mmap))
4091                 return 1;
4092
4093         return 0;
4094 }
4095
4096 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4097                                   struct perf_mmap_event *mmap_event,
4098                                   int executable)
4099 {
4100         struct perf_event *event;
4101
4102         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4103                 if (perf_event_mmap_match(event, mmap_event, executable))
4104                         perf_event_mmap_output(event, mmap_event);
4105         }
4106 }
4107
4108 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4109 {
4110         struct perf_cpu_context *cpuctx;
4111         struct perf_event_context *ctx;
4112         struct vm_area_struct *vma = mmap_event->vma;
4113         struct file *file = vma->vm_file;
4114         unsigned int size;
4115         char tmp[16];
4116         char *buf = NULL;
4117         const char *name;
4118         struct pmu *pmu;
4119         int ctxn;
4120
4121         memset(tmp, 0, sizeof(tmp));
4122
4123         if (file) {
4124                 /*
4125                  * d_path works from the end of the buffer backwards, so we
4126                  * need to add enough zero bytes after the string to handle
4127                  * the 64bit alignment we do later.
4128                  */
4129                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4130                 if (!buf) {
4131                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4132                         goto got_name;
4133                 }
4134                 name = d_path(&file->f_path, buf, PATH_MAX);
4135                 if (IS_ERR(name)) {
4136                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4137                         goto got_name;
4138                 }
4139         } else {
4140                 if (arch_vma_name(mmap_event->vma)) {
4141                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4142                                        sizeof(tmp));
4143                         goto got_name;
4144                 }
4145
4146                 if (!vma->vm_mm) {
4147                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4148                         goto got_name;
4149                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4150                                 vma->vm_end >= vma->vm_mm->brk) {
4151                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4152                         goto got_name;
4153                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4154                                 vma->vm_end >= vma->vm_mm->start_stack) {
4155                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4156                         goto got_name;
4157                 }
4158
4159                 name = strncpy(tmp, "//anon", sizeof(tmp));
4160                 goto got_name;
4161         }
4162
4163 got_name:
4164         size = ALIGN(strlen(name)+1, sizeof(u64));
4165
4166         mmap_event->file_name = name;
4167         mmap_event->file_size = size;
4168
4169         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4170
4171         rcu_read_lock();
4172         list_for_each_entry_rcu(pmu, &pmus, entry) {
4173                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4174                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4175                                         vma->vm_flags & VM_EXEC);
4176
4177                 ctxn = pmu->task_ctx_nr;
4178                 if (ctxn < 0)
4179                         goto next;
4180
4181                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4182                 if (ctx) {
4183                         perf_event_mmap_ctx(ctx, mmap_event,
4184                                         vma->vm_flags & VM_EXEC);
4185                 }
4186 next:
4187                 put_cpu_ptr(pmu->pmu_cpu_context);
4188         }
4189         rcu_read_unlock();
4190
4191         kfree(buf);
4192 }
4193
4194 void perf_event_mmap(struct vm_area_struct *vma)
4195 {
4196         struct perf_mmap_event mmap_event;
4197
4198         if (!atomic_read(&nr_mmap_events))
4199                 return;
4200
4201         mmap_event = (struct perf_mmap_event){
4202                 .vma    = vma,
4203                 /* .file_name */
4204                 /* .file_size */
4205                 .event_id  = {
4206                         .header = {
4207                                 .type = PERF_RECORD_MMAP,
4208                                 .misc = PERF_RECORD_MISC_USER,
4209                                 /* .size */
4210                         },
4211                         /* .pid */
4212                         /* .tid */
4213                         .start  = vma->vm_start,
4214                         .len    = vma->vm_end - vma->vm_start,
4215                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4216                 },
4217         };
4218
4219         perf_event_mmap_event(&mmap_event);
4220 }
4221
4222 /*
4223  * IRQ throttle logging
4224  */
4225
4226 static void perf_log_throttle(struct perf_event *event, int enable)
4227 {
4228         struct perf_output_handle handle;
4229         int ret;
4230
4231         struct {
4232                 struct perf_event_header        header;
4233                 u64                             time;
4234                 u64                             id;
4235                 u64                             stream_id;
4236         } throttle_event = {
4237                 .header = {
4238                         .type = PERF_RECORD_THROTTLE,
4239                         .misc = 0,
4240                         .size = sizeof(throttle_event),
4241                 },
4242                 .time           = perf_clock(),
4243                 .id             = primary_event_id(event),
4244                 .stream_id      = event->id,
4245         };
4246
4247         if (enable)
4248                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4249
4250         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4251         if (ret)
4252                 return;
4253
4254         perf_output_put(&handle, throttle_event);
4255         perf_output_end(&handle);
4256 }
4257
4258 /*
4259  * Generic event overflow handling, sampling.
4260  */
4261
4262 static int __perf_event_overflow(struct perf_event *event, int nmi,
4263                                    int throttle, struct perf_sample_data *data,
4264                                    struct pt_regs *regs)
4265 {
4266         int events = atomic_read(&event->event_limit);
4267         struct hw_perf_event *hwc = &event->hw;
4268         int ret = 0;
4269
4270         /*
4271          * Non-sampling counters might still use the PMI to fold short
4272          * hardware counters, ignore those.
4273          */
4274         if (unlikely(!is_sampling_event(event)))
4275                 return 0;
4276
4277         if (!throttle) {
4278                 hwc->interrupts++;
4279         } else {
4280                 if (hwc->interrupts != MAX_INTERRUPTS) {
4281                         hwc->interrupts++;
4282                         if (HZ * hwc->interrupts >
4283                                         (u64)sysctl_perf_event_sample_rate) {
4284                                 hwc->interrupts = MAX_INTERRUPTS;
4285                                 perf_log_throttle(event, 0);
4286                                 ret = 1;
4287                         }
4288                 } else {
4289                         /*
4290                          * Keep re-disabling events even though on the previous
4291                          * pass we disabled it - just in case we raced with a
4292                          * sched-in and the event got enabled again:
4293                          */
4294                         ret = 1;
4295                 }
4296         }
4297
4298         if (event->attr.freq) {
4299                 u64 now = perf_clock();
4300                 s64 delta = now - hwc->freq_time_stamp;
4301
4302                 hwc->freq_time_stamp = now;
4303
4304                 if (delta > 0 && delta < 2*TICK_NSEC)
4305                         perf_adjust_period(event, delta, hwc->last_period);
4306         }
4307
4308         /*
4309          * XXX event_limit might not quite work as expected on inherited
4310          * events
4311          */
4312
4313         event->pending_kill = POLL_IN;
4314         if (events && atomic_dec_and_test(&event->event_limit)) {
4315                 ret = 1;
4316                 event->pending_kill = POLL_HUP;
4317                 if (nmi) {
4318                         event->pending_disable = 1;
4319                         irq_work_queue(&event->pending);
4320                 } else
4321                         perf_event_disable(event);
4322         }
4323
4324         if (event->overflow_handler)
4325                 event->overflow_handler(event, nmi, data, regs);
4326         else
4327                 perf_event_output(event, nmi, data, regs);
4328
4329         return ret;
4330 }
4331
4332 int perf_event_overflow(struct perf_event *event, int nmi,
4333                           struct perf_sample_data *data,
4334                           struct pt_regs *regs)
4335 {
4336         return __perf_event_overflow(event, nmi, 1, data, regs);
4337 }
4338
4339 /*
4340  * Generic software event infrastructure
4341  */
4342
4343 struct swevent_htable {
4344         struct swevent_hlist            *swevent_hlist;
4345         struct mutex                    hlist_mutex;
4346         int                             hlist_refcount;
4347
4348         /* Recursion avoidance in each contexts */
4349         int                             recursion[PERF_NR_CONTEXTS];
4350 };
4351
4352 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4353
4354 /*
4355  * We directly increment event->count and keep a second value in
4356  * event->hw.period_left to count intervals. This period event
4357  * is kept in the range [-sample_period, 0] so that we can use the
4358  * sign as trigger.
4359  */
4360
4361 static u64 perf_swevent_set_period(struct perf_event *event)
4362 {
4363         struct hw_perf_event *hwc = &event->hw;
4364         u64 period = hwc->last_period;
4365         u64 nr, offset;
4366         s64 old, val;
4367
4368         hwc->last_period = hwc->sample_period;
4369
4370 again:
4371         old = val = local64_read(&hwc->period_left);
4372         if (val < 0)
4373                 return 0;
4374
4375         nr = div64_u64(period + val, period);
4376         offset = nr * period;
4377         val -= offset;
4378         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4379                 goto again;
4380
4381         return nr;
4382 }
4383
4384 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4385                                     int nmi, struct perf_sample_data *data,
4386                                     struct pt_regs *regs)
4387 {
4388         struct hw_perf_event *hwc = &event->hw;
4389         int throttle = 0;
4390
4391         data->period = event->hw.last_period;
4392         if (!overflow)
4393                 overflow = perf_swevent_set_period(event);
4394
4395         if (hwc->interrupts == MAX_INTERRUPTS)
4396                 return;
4397
4398         for (; overflow; overflow--) {
4399                 if (__perf_event_overflow(event, nmi, throttle,
4400                                             data, regs)) {
4401                         /*
4402                          * We inhibit the overflow from happening when
4403                          * hwc->interrupts == MAX_INTERRUPTS.
4404                          */
4405                         break;
4406                 }
4407                 throttle = 1;
4408         }
4409 }
4410
4411 static void perf_swevent_event(struct perf_event *event, u64 nr,
4412                                int nmi, struct perf_sample_data *data,
4413                                struct pt_regs *regs)
4414 {
4415         struct hw_perf_event *hwc = &event->hw;
4416
4417         local64_add(nr, &event->count);
4418
4419         if (!regs)
4420                 return;
4421
4422         if (!is_sampling_event(event))
4423                 return;
4424
4425         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4426                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4427
4428         if (local64_add_negative(nr, &hwc->period_left))
4429                 return;
4430
4431         perf_swevent_overflow(event, 0, nmi, data, regs);
4432 }
4433
4434 static int perf_exclude_event(struct perf_event *event,
4435                               struct pt_regs *regs)
4436 {
4437         if (event->hw.state & PERF_HES_STOPPED)
4438                 return 0;
4439
4440         if (regs) {
4441                 if (event->attr.exclude_user && user_mode(regs))
4442                         return 1;
4443
4444                 if (event->attr.exclude_kernel && !user_mode(regs))
4445                         return 1;
4446         }
4447
4448         return 0;
4449 }
4450
4451 static int perf_swevent_match(struct perf_event *event,
4452                                 enum perf_type_id type,
4453                                 u32 event_id,
4454                                 struct perf_sample_data *data,
4455                                 struct pt_regs *regs)
4456 {
4457         if (event->attr.type != type)
4458                 return 0;
4459
4460         if (event->attr.config != event_id)
4461                 return 0;
4462
4463         if (perf_exclude_event(event, regs))
4464                 return 0;
4465
4466         return 1;
4467 }
4468
4469 static inline u64 swevent_hash(u64 type, u32 event_id)
4470 {
4471         u64 val = event_id | (type << 32);
4472
4473         return hash_64(val, SWEVENT_HLIST_BITS);
4474 }
4475
4476 static inline struct hlist_head *
4477 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4478 {
4479         u64 hash = swevent_hash(type, event_id);
4480
4481         return &hlist->heads[hash];
4482 }
4483
4484 /* For the read side: events when they trigger */
4485 static inline struct hlist_head *
4486 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4487 {
4488         struct swevent_hlist *hlist;
4489
4490         hlist = rcu_dereference(swhash->swevent_hlist);
4491         if (!hlist)
4492                 return NULL;
4493
4494         return __find_swevent_head(hlist, type, event_id);
4495 }
4496
4497 /* For the event head insertion and removal in the hlist */
4498 static inline struct hlist_head *
4499 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4500 {
4501         struct swevent_hlist *hlist;
4502         u32 event_id = event->attr.config;
4503         u64 type = event->attr.type;
4504
4505         /*
4506          * Event scheduling is always serialized against hlist allocation
4507          * and release. Which makes the protected version suitable here.
4508          * The context lock guarantees that.
4509          */
4510         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4511                                           lockdep_is_held(&event->ctx->lock));
4512         if (!hlist)
4513                 return NULL;
4514
4515         return __find_swevent_head(hlist, type, event_id);
4516 }
4517
4518 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4519                                     u64 nr, int nmi,
4520                                     struct perf_sample_data *data,
4521                                     struct pt_regs *regs)
4522 {
4523         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4524         struct perf_event *event;
4525         struct hlist_node *node;
4526         struct hlist_head *head;
4527
4528         rcu_read_lock();
4529         head = find_swevent_head_rcu(swhash, type, event_id);
4530         if (!head)
4531                 goto end;
4532
4533         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4534                 if (perf_swevent_match(event, type, event_id, data, regs))
4535                         perf_swevent_event(event, nr, nmi, data, regs);
4536         }
4537 end:
4538         rcu_read_unlock();
4539 }
4540
4541 int perf_swevent_get_recursion_context(void)
4542 {
4543         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4544
4545         return get_recursion_context(swhash->recursion);
4546 }
4547 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4548
4549 void inline perf_swevent_put_recursion_context(int rctx)
4550 {
4551         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4552
4553         put_recursion_context(swhash->recursion, rctx);
4554 }
4555
4556 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4557                             struct pt_regs *regs, u64 addr)
4558 {
4559         struct perf_sample_data data;
4560         int rctx;
4561
4562         preempt_disable_notrace();
4563         rctx = perf_swevent_get_recursion_context();
4564         if (rctx < 0)
4565                 return;
4566
4567         perf_sample_data_init(&data, addr);
4568
4569         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4570
4571         perf_swevent_put_recursion_context(rctx);
4572         preempt_enable_notrace();
4573 }
4574
4575 static void perf_swevent_read(struct perf_event *event)
4576 {
4577 }
4578
4579 static int perf_swevent_add(struct perf_event *event, int flags)
4580 {
4581         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4582         struct hw_perf_event *hwc = &event->hw;
4583         struct hlist_head *head;
4584
4585         if (is_sampling_event(event)) {
4586                 hwc->last_period = hwc->sample_period;
4587                 perf_swevent_set_period(event);
4588         }
4589
4590         hwc->state = !(flags & PERF_EF_START);
4591
4592         head = find_swevent_head(swhash, event);
4593         if (WARN_ON_ONCE(!head))
4594                 return -EINVAL;
4595
4596         hlist_add_head_rcu(&event->hlist_entry, head);
4597
4598         return 0;
4599 }
4600
4601 static void perf_swevent_del(struct perf_event *event, int flags)
4602 {
4603         hlist_del_rcu(&event->hlist_entry);
4604 }
4605
4606 static void perf_swevent_start(struct perf_event *event, int flags)
4607 {
4608         event->hw.state = 0;
4609 }
4610
4611 static void perf_swevent_stop(struct perf_event *event, int flags)
4612 {
4613         event->hw.state = PERF_HES_STOPPED;
4614 }
4615
4616 /* Deref the hlist from the update side */
4617 static inline struct swevent_hlist *
4618 swevent_hlist_deref(struct swevent_htable *swhash)
4619 {
4620         return rcu_dereference_protected(swhash->swevent_hlist,
4621                                          lockdep_is_held(&swhash->hlist_mutex));
4622 }
4623
4624 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4625 {
4626         struct swevent_hlist *hlist;
4627
4628         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4629         kfree(hlist);
4630 }
4631
4632 static void swevent_hlist_release(struct swevent_htable *swhash)
4633 {
4634         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4635
4636         if (!hlist)
4637                 return;
4638
4639         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4640         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4641 }
4642
4643 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4644 {
4645         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4646
4647         mutex_lock(&swhash->hlist_mutex);
4648
4649         if (!--swhash->hlist_refcount)
4650                 swevent_hlist_release(swhash);
4651
4652         mutex_unlock(&swhash->hlist_mutex);
4653 }
4654
4655 static void swevent_hlist_put(struct perf_event *event)
4656 {
4657         int cpu;
4658
4659         if (event->cpu != -1) {
4660                 swevent_hlist_put_cpu(event, event->cpu);
4661                 return;
4662         }
4663
4664         for_each_possible_cpu(cpu)
4665                 swevent_hlist_put_cpu(event, cpu);
4666 }
4667
4668 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4669 {
4670         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4671         int err = 0;
4672
4673         mutex_lock(&swhash->hlist_mutex);
4674
4675         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4676                 struct swevent_hlist *hlist;
4677
4678                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4679                 if (!hlist) {
4680                         err = -ENOMEM;
4681                         goto exit;
4682                 }
4683                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4684         }
4685         swhash->hlist_refcount++;
4686 exit:
4687         mutex_unlock(&swhash->hlist_mutex);
4688
4689         return err;
4690 }
4691
4692 static int swevent_hlist_get(struct perf_event *event)
4693 {
4694         int err;
4695         int cpu, failed_cpu;
4696
4697         if (event->cpu != -1)
4698                 return swevent_hlist_get_cpu(event, event->cpu);
4699
4700         get_online_cpus();
4701         for_each_possible_cpu(cpu) {
4702                 err = swevent_hlist_get_cpu(event, cpu);
4703                 if (err) {
4704                         failed_cpu = cpu;
4705                         goto fail;
4706                 }
4707         }
4708         put_online_cpus();
4709
4710         return 0;
4711 fail:
4712         for_each_possible_cpu(cpu) {
4713                 if (cpu == failed_cpu)
4714                         break;
4715                 swevent_hlist_put_cpu(event, cpu);
4716         }
4717
4718         put_online_cpus();
4719         return err;
4720 }
4721
4722 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4723
4724 static void sw_perf_event_destroy(struct perf_event *event)
4725 {
4726         u64 event_id = event->attr.config;
4727
4728         WARN_ON(event->parent);
4729
4730         jump_label_dec(&perf_swevent_enabled[event_id]);
4731         swevent_hlist_put(event);
4732 }
4733
4734 static int perf_swevent_init(struct perf_event *event)
4735 {
4736         int event_id = event->attr.config;
4737
4738         if (event->attr.type != PERF_TYPE_SOFTWARE)
4739                 return -ENOENT;
4740
4741         switch (event_id) {
4742         case PERF_COUNT_SW_CPU_CLOCK:
4743         case PERF_COUNT_SW_TASK_CLOCK:
4744                 return -ENOENT;
4745
4746         default:
4747                 break;
4748         }
4749
4750         if (event_id > PERF_COUNT_SW_MAX)
4751                 return -ENOENT;
4752
4753         if (!event->parent) {
4754                 int err;
4755
4756                 err = swevent_hlist_get(event);
4757                 if (err)
4758                         return err;
4759
4760                 jump_label_inc(&perf_swevent_enabled[event_id]);
4761                 event->destroy = sw_perf_event_destroy;
4762         }
4763
4764         return 0;
4765 }
4766
4767 static struct pmu perf_swevent = {
4768         .task_ctx_nr    = perf_sw_context,
4769
4770         .event_init     = perf_swevent_init,
4771         .add            = perf_swevent_add,
4772         .del            = perf_swevent_del,
4773         .start          = perf_swevent_start,
4774         .stop           = perf_swevent_stop,
4775         .read           = perf_swevent_read,
4776 };
4777
4778 #ifdef CONFIG_EVENT_TRACING
4779
4780 static int perf_tp_filter_match(struct perf_event *event,
4781                                 struct perf_sample_data *data)
4782 {
4783         void *record = data->raw->data;
4784
4785         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4786                 return 1;
4787         return 0;
4788 }
4789
4790 static int perf_tp_event_match(struct perf_event *event,
4791                                 struct perf_sample_data *data,
4792                                 struct pt_regs *regs)
4793 {
4794         /*
4795          * All tracepoints are from kernel-space.
4796          */
4797         if (event->attr.exclude_kernel)
4798                 return 0;
4799
4800         if (!perf_tp_filter_match(event, data))
4801                 return 0;
4802
4803         return 1;
4804 }
4805
4806 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4807                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4808 {
4809         struct perf_sample_data data;
4810         struct perf_event *event;
4811         struct hlist_node *node;
4812
4813         struct perf_raw_record raw = {
4814                 .size = entry_size,
4815                 .data = record,
4816         };
4817
4818         perf_sample_data_init(&data, addr);
4819         data.raw = &raw;
4820
4821         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4822                 if (perf_tp_event_match(event, &data, regs))
4823                         perf_swevent_event(event, count, 1, &data, regs);
4824         }
4825
4826         perf_swevent_put_recursion_context(rctx);
4827 }
4828 EXPORT_SYMBOL_GPL(perf_tp_event);
4829
4830 static void tp_perf_event_destroy(struct perf_event *event)
4831 {
4832         perf_trace_destroy(event);
4833 }
4834
4835 static int perf_tp_event_init(struct perf_event *event)
4836 {
4837         int err;
4838
4839         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4840                 return -ENOENT;
4841
4842         err = perf_trace_init(event);
4843         if (err)
4844                 return err;
4845
4846         event->destroy = tp_perf_event_destroy;
4847
4848         return 0;
4849 }
4850
4851 static struct pmu perf_tracepoint = {
4852         .task_ctx_nr    = perf_sw_context,
4853
4854         .event_init     = perf_tp_event_init,
4855         .add            = perf_trace_add,
4856         .del            = perf_trace_del,
4857         .start          = perf_swevent_start,
4858         .stop           = perf_swevent_stop,
4859         .read           = perf_swevent_read,
4860 };
4861
4862 static inline void perf_tp_register(void)
4863 {
4864         perf_pmu_register(&perf_tracepoint);
4865 }
4866
4867 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4868 {
4869         char *filter_str;
4870         int ret;
4871
4872         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4873                 return -EINVAL;
4874
4875         filter_str = strndup_user(arg, PAGE_SIZE);
4876         if (IS_ERR(filter_str))
4877                 return PTR_ERR(filter_str);
4878
4879         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4880
4881         kfree(filter_str);
4882         return ret;
4883 }
4884
4885 static void perf_event_free_filter(struct perf_event *event)
4886 {
4887         ftrace_profile_free_filter(event);
4888 }
4889
4890 #else
4891
4892 static inline void perf_tp_register(void)
4893 {
4894 }
4895
4896 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4897 {
4898         return -ENOENT;
4899 }
4900
4901 static void perf_event_free_filter(struct perf_event *event)
4902 {
4903 }
4904
4905 #endif /* CONFIG_EVENT_TRACING */
4906
4907 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4908 void perf_bp_event(struct perf_event *bp, void *data)
4909 {
4910         struct perf_sample_data sample;
4911         struct pt_regs *regs = data;
4912
4913         perf_sample_data_init(&sample, bp->attr.bp_addr);
4914
4915         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4916                 perf_swevent_event(bp, 1, 1, &sample, regs);
4917 }
4918 #endif
4919
4920 /*
4921  * hrtimer based swevent callback
4922  */
4923
4924 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4925 {
4926         enum hrtimer_restart ret = HRTIMER_RESTART;
4927         struct perf_sample_data data;
4928         struct pt_regs *regs;
4929         struct perf_event *event;
4930         u64 period;
4931
4932         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4933         event->pmu->read(event);
4934
4935         perf_sample_data_init(&data, 0);
4936         data.period = event->hw.last_period;
4937         regs = get_irq_regs();
4938
4939         if (regs && !perf_exclude_event(event, regs)) {
4940                 if (!(event->attr.exclude_idle && current->pid == 0))
4941                         if (perf_event_overflow(event, 0, &data, regs))
4942                                 ret = HRTIMER_NORESTART;
4943         }
4944
4945         period = max_t(u64, 10000, event->hw.sample_period);
4946         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4947
4948         return ret;
4949 }
4950
4951 static void perf_swevent_start_hrtimer(struct perf_event *event)
4952 {
4953         struct hw_perf_event *hwc = &event->hw;
4954         s64 period;
4955
4956         if (!is_sampling_event(event))
4957                 return;
4958
4959         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4960         hwc->hrtimer.function = perf_swevent_hrtimer;
4961
4962         period = local64_read(&hwc->period_left);
4963         if (period) {
4964                 if (period < 0)
4965                         period = 10000;
4966
4967                 local64_set(&hwc->period_left, 0);
4968         } else {
4969                 period = max_t(u64, 10000, hwc->sample_period);
4970         }
4971         __hrtimer_start_range_ns(&hwc->hrtimer,
4972                                 ns_to_ktime(period), 0,
4973                                 HRTIMER_MODE_REL_PINNED, 0);
4974 }
4975
4976 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4977 {
4978         struct hw_perf_event *hwc = &event->hw;
4979
4980         if (is_sampling_event(event)) {
4981                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4982                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4983
4984                 hrtimer_cancel(&hwc->hrtimer);
4985         }
4986 }
4987
4988 /*
4989  * Software event: cpu wall time clock
4990  */
4991
4992 static void cpu_clock_event_update(struct perf_event *event)
4993 {
4994         s64 prev;
4995         u64 now;
4996
4997         now = local_clock();
4998         prev = local64_xchg(&event->hw.prev_count, now);
4999         local64_add(now - prev, &event->count);
5000 }
5001
5002 static void cpu_clock_event_start(struct perf_event *event, int flags)
5003 {
5004         local64_set(&event->hw.prev_count, local_clock());
5005         perf_swevent_start_hrtimer(event);
5006 }
5007
5008 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5009 {
5010         perf_swevent_cancel_hrtimer(event);
5011         cpu_clock_event_update(event);
5012 }
5013
5014 static int cpu_clock_event_add(struct perf_event *event, int flags)
5015 {
5016         if (flags & PERF_EF_START)
5017                 cpu_clock_event_start(event, flags);
5018
5019         return 0;
5020 }
5021
5022 static void cpu_clock_event_del(struct perf_event *event, int flags)
5023 {
5024         cpu_clock_event_stop(event, flags);
5025 }
5026
5027 static void cpu_clock_event_read(struct perf_event *event)
5028 {
5029         cpu_clock_event_update(event);
5030 }
5031
5032 static int cpu_clock_event_init(struct perf_event *event)
5033 {
5034         if (event->attr.type != PERF_TYPE_SOFTWARE)
5035                 return -ENOENT;
5036
5037         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5038                 return -ENOENT;
5039
5040         return 0;
5041 }
5042
5043 static struct pmu perf_cpu_clock = {
5044         .task_ctx_nr    = perf_sw_context,
5045
5046         .event_init     = cpu_clock_event_init,
5047         .add            = cpu_clock_event_add,
5048         .del            = cpu_clock_event_del,
5049         .start          = cpu_clock_event_start,
5050         .stop           = cpu_clock_event_stop,
5051         .read           = cpu_clock_event_read,
5052 };
5053
5054 /*
5055  * Software event: task time clock
5056  */
5057
5058 static void task_clock_event_update(struct perf_event *event, u64 now)
5059 {
5060         u64 prev;
5061         s64 delta;
5062
5063         prev = local64_xchg(&event->hw.prev_count, now);
5064         delta = now - prev;
5065         local64_add(delta, &event->count);
5066 }
5067
5068 static void task_clock_event_start(struct perf_event *event, int flags)
5069 {
5070         local64_set(&event->hw.prev_count, event->ctx->time);
5071         perf_swevent_start_hrtimer(event);
5072 }
5073
5074 static void task_clock_event_stop(struct perf_event *event, int flags)
5075 {
5076         perf_swevent_cancel_hrtimer(event);
5077         task_clock_event_update(event, event->ctx->time);
5078 }
5079
5080 static int task_clock_event_add(struct perf_event *event, int flags)
5081 {
5082         if (flags & PERF_EF_START)
5083                 task_clock_event_start(event, flags);
5084
5085         return 0;
5086 }
5087
5088 static void task_clock_event_del(struct perf_event *event, int flags)
5089 {
5090         task_clock_event_stop(event, PERF_EF_UPDATE);
5091 }
5092
5093 static void task_clock_event_read(struct perf_event *event)
5094 {
5095         u64 time;
5096
5097         if (!in_nmi()) {
5098                 update_context_time(event->ctx);
5099                 time = event->ctx->time;
5100         } else {
5101                 u64 now = perf_clock();
5102                 u64 delta = now - event->ctx->timestamp;
5103                 time = event->ctx->time + delta;
5104         }
5105
5106         task_clock_event_update(event, time);
5107 }
5108
5109 static int task_clock_event_init(struct perf_event *event)
5110 {
5111         if (event->attr.type != PERF_TYPE_SOFTWARE)
5112                 return -ENOENT;
5113
5114         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5115                 return -ENOENT;
5116
5117         return 0;
5118 }
5119
5120 static struct pmu perf_task_clock = {
5121         .task_ctx_nr    = perf_sw_context,
5122
5123         .event_init     = task_clock_event_init,
5124         .add            = task_clock_event_add,
5125         .del            = task_clock_event_del,
5126         .start          = task_clock_event_start,
5127         .stop           = task_clock_event_stop,
5128         .read           = task_clock_event_read,
5129 };
5130
5131 static void perf_pmu_nop_void(struct pmu *pmu)
5132 {
5133 }
5134
5135 static int perf_pmu_nop_int(struct pmu *pmu)
5136 {
5137         return 0;
5138 }
5139
5140 static void perf_pmu_start_txn(struct pmu *pmu)
5141 {
5142         perf_pmu_disable(pmu);
5143 }
5144
5145 static int perf_pmu_commit_txn(struct pmu *pmu)
5146 {
5147         perf_pmu_enable(pmu);
5148         return 0;
5149 }
5150
5151 static void perf_pmu_cancel_txn(struct pmu *pmu)
5152 {
5153         perf_pmu_enable(pmu);
5154 }
5155
5156 /*
5157  * Ensures all contexts with the same task_ctx_nr have the same
5158  * pmu_cpu_context too.
5159  */
5160 static void *find_pmu_context(int ctxn)
5161 {
5162         struct pmu *pmu;
5163
5164         if (ctxn < 0)
5165                 return NULL;
5166
5167         list_for_each_entry(pmu, &pmus, entry) {
5168                 if (pmu->task_ctx_nr == ctxn)
5169                         return pmu->pmu_cpu_context;
5170         }
5171
5172         return NULL;
5173 }
5174
5175 static void free_pmu_context(void * __percpu cpu_context)
5176 {
5177         struct pmu *pmu;
5178
5179         mutex_lock(&pmus_lock);
5180         /*
5181          * Like a real lame refcount.
5182          */
5183         list_for_each_entry(pmu, &pmus, entry) {
5184                 if (pmu->pmu_cpu_context == cpu_context)
5185                         goto out;
5186         }
5187
5188         free_percpu(cpu_context);
5189 out:
5190         mutex_unlock(&pmus_lock);
5191 }
5192
5193 int perf_pmu_register(struct pmu *pmu)
5194 {
5195         int cpu, ret;
5196
5197         mutex_lock(&pmus_lock);
5198         ret = -ENOMEM;
5199         pmu->pmu_disable_count = alloc_percpu(int);
5200         if (!pmu->pmu_disable_count)
5201                 goto unlock;
5202
5203         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5204         if (pmu->pmu_cpu_context)
5205                 goto got_cpu_context;
5206
5207         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5208         if (!pmu->pmu_cpu_context)
5209                 goto free_pdc;
5210
5211         for_each_possible_cpu(cpu) {
5212                 struct perf_cpu_context *cpuctx;
5213
5214                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5215                 __perf_event_init_context(&cpuctx->ctx);
5216                 cpuctx->ctx.type = cpu_context;
5217                 cpuctx->ctx.pmu = pmu;
5218                 cpuctx->jiffies_interval = 1;
5219                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5220         }
5221
5222 got_cpu_context:
5223         if (!pmu->start_txn) {
5224                 if (pmu->pmu_enable) {
5225                         /*
5226                          * If we have pmu_enable/pmu_disable calls, install
5227                          * transaction stubs that use that to try and batch
5228                          * hardware accesses.
5229                          */
5230                         pmu->start_txn  = perf_pmu_start_txn;
5231                         pmu->commit_txn = perf_pmu_commit_txn;
5232                         pmu->cancel_txn = perf_pmu_cancel_txn;
5233                 } else {
5234                         pmu->start_txn  = perf_pmu_nop_void;
5235                         pmu->commit_txn = perf_pmu_nop_int;
5236                         pmu->cancel_txn = perf_pmu_nop_void;
5237                 }
5238         }
5239
5240         if (!pmu->pmu_enable) {
5241                 pmu->pmu_enable  = perf_pmu_nop_void;
5242                 pmu->pmu_disable = perf_pmu_nop_void;
5243         }
5244
5245         list_add_rcu(&pmu->entry, &pmus);
5246         ret = 0;
5247 unlock:
5248         mutex_unlock(&pmus_lock);
5249
5250         return ret;
5251
5252 free_pdc:
5253         free_percpu(pmu->pmu_disable_count);
5254         goto unlock;
5255 }
5256
5257 void perf_pmu_unregister(struct pmu *pmu)
5258 {
5259         mutex_lock(&pmus_lock);
5260         list_del_rcu(&pmu->entry);
5261         mutex_unlock(&pmus_lock);
5262
5263         /*
5264          * We dereference the pmu list under both SRCU and regular RCU, so
5265          * synchronize against both of those.
5266          */
5267         synchronize_srcu(&pmus_srcu);
5268         synchronize_rcu();
5269
5270         free_percpu(pmu->pmu_disable_count);
5271         free_pmu_context(pmu->pmu_cpu_context);
5272 }
5273
5274 struct pmu *perf_init_event(struct perf_event *event)
5275 {
5276         struct pmu *pmu = NULL;
5277         int idx;
5278
5279         idx = srcu_read_lock(&pmus_srcu);
5280         list_for_each_entry_rcu(pmu, &pmus, entry) {
5281                 int ret = pmu->event_init(event);
5282                 if (!ret)
5283                         goto unlock;
5284
5285                 if (ret != -ENOENT) {
5286                         pmu = ERR_PTR(ret);
5287                         goto unlock;
5288                 }
5289         }
5290         pmu = ERR_PTR(-ENOENT);
5291 unlock:
5292         srcu_read_unlock(&pmus_srcu, idx);
5293
5294         return pmu;
5295 }
5296
5297 /*
5298  * Allocate and initialize a event structure
5299  */
5300 static struct perf_event *
5301 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5302                  struct task_struct *task,
5303                  struct perf_event *group_leader,
5304                  struct perf_event *parent_event,
5305                  perf_overflow_handler_t overflow_handler)
5306 {
5307         struct pmu *pmu;
5308         struct perf_event *event;
5309         struct hw_perf_event *hwc;
5310         long err;
5311
5312         event = kzalloc(sizeof(*event), GFP_KERNEL);
5313         if (!event)
5314                 return ERR_PTR(-ENOMEM);
5315
5316         /*
5317          * Single events are their own group leaders, with an
5318          * empty sibling list:
5319          */
5320         if (!group_leader)
5321                 group_leader = event;
5322
5323         mutex_init(&event->child_mutex);
5324         INIT_LIST_HEAD(&event->child_list);
5325
5326         INIT_LIST_HEAD(&event->group_entry);
5327         INIT_LIST_HEAD(&event->event_entry);
5328         INIT_LIST_HEAD(&event->sibling_list);
5329         init_waitqueue_head(&event->waitq);
5330         init_irq_work(&event->pending, perf_pending_event);
5331
5332         mutex_init(&event->mmap_mutex);
5333
5334         event->cpu              = cpu;
5335         event->attr             = *attr;
5336         event->group_leader     = group_leader;
5337         event->pmu              = NULL;
5338         event->oncpu            = -1;
5339
5340         event->parent           = parent_event;
5341
5342         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5343         event->id               = atomic64_inc_return(&perf_event_id);
5344
5345         event->state            = PERF_EVENT_STATE_INACTIVE;
5346
5347         if (task) {
5348                 event->attach_state = PERF_ATTACH_TASK;
5349 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5350                 /*
5351                  * hw_breakpoint is a bit difficult here..
5352                  */
5353                 if (attr->type == PERF_TYPE_BREAKPOINT)
5354                         event->hw.bp_target = task;
5355 #endif
5356         }
5357
5358         if (!overflow_handler && parent_event)
5359                 overflow_handler = parent_event->overflow_handler;
5360         
5361         event->overflow_handler = overflow_handler;
5362
5363         if (attr->disabled)
5364                 event->state = PERF_EVENT_STATE_OFF;
5365
5366         pmu = NULL;
5367
5368         hwc = &event->hw;
5369         hwc->sample_period = attr->sample_period;
5370         if (attr->freq && attr->sample_freq)
5371                 hwc->sample_period = 1;
5372         hwc->last_period = hwc->sample_period;
5373
5374         local64_set(&hwc->period_left, hwc->sample_period);
5375
5376         /*
5377          * we currently do not support PERF_FORMAT_GROUP on inherited events
5378          */
5379         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5380                 goto done;
5381
5382         pmu = perf_init_event(event);
5383
5384 done:
5385         err = 0;
5386         if (!pmu)
5387                 err = -EINVAL;
5388         else if (IS_ERR(pmu))
5389                 err = PTR_ERR(pmu);
5390
5391         if (err) {
5392                 if (event->ns)
5393                         put_pid_ns(event->ns);
5394                 kfree(event);
5395                 return ERR_PTR(err);
5396         }
5397
5398         event->pmu = pmu;
5399
5400         if (!event->parent) {
5401                 if (event->attach_state & PERF_ATTACH_TASK)
5402                         jump_label_inc(&perf_task_events);
5403                 if (event->attr.mmap || event->attr.mmap_data)
5404                         atomic_inc(&nr_mmap_events);
5405                 if (event->attr.comm)
5406                         atomic_inc(&nr_comm_events);
5407                 if (event->attr.task)
5408                         atomic_inc(&nr_task_events);
5409                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5410                         err = get_callchain_buffers();
5411                         if (err) {
5412                                 free_event(event);
5413                                 return ERR_PTR(err);
5414                         }
5415                 }
5416         }
5417
5418         return event;
5419 }
5420
5421 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5422                           struct perf_event_attr *attr)
5423 {
5424         u32 size;
5425         int ret;
5426
5427         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5428                 return -EFAULT;
5429
5430         /*
5431          * zero the full structure, so that a short copy will be nice.
5432          */
5433         memset(attr, 0, sizeof(*attr));
5434
5435         ret = get_user(size, &uattr->size);
5436         if (ret)
5437                 return ret;
5438
5439         if (size > PAGE_SIZE)   /* silly large */
5440                 goto err_size;
5441
5442         if (!size)              /* abi compat */
5443                 size = PERF_ATTR_SIZE_VER0;
5444
5445         if (size < PERF_ATTR_SIZE_VER0)
5446                 goto err_size;
5447
5448         /*
5449          * If we're handed a bigger struct than we know of,
5450          * ensure all the unknown bits are 0 - i.e. new
5451          * user-space does not rely on any kernel feature
5452          * extensions we dont know about yet.
5453          */
5454         if (size > sizeof(*attr)) {
5455                 unsigned char __user *addr;
5456                 unsigned char __user *end;
5457                 unsigned char val;
5458
5459                 addr = (void __user *)uattr + sizeof(*attr);
5460                 end  = (void __user *)uattr + size;
5461
5462                 for (; addr < end; addr++) {
5463                         ret = get_user(val, addr);
5464                         if (ret)
5465                                 return ret;
5466                         if (val)
5467                                 goto err_size;
5468                 }
5469                 size = sizeof(*attr);
5470         }
5471
5472         ret = copy_from_user(attr, uattr, size);
5473         if (ret)
5474                 return -EFAULT;
5475
5476         /*
5477          * If the type exists, the corresponding creation will verify
5478          * the attr->config.
5479          */
5480         if (attr->type >= PERF_TYPE_MAX)
5481                 return -EINVAL;
5482
5483         if (attr->__reserved_1)
5484                 return -EINVAL;
5485
5486         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5487                 return -EINVAL;
5488
5489         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5490                 return -EINVAL;
5491
5492 out:
5493         return ret;
5494
5495 err_size:
5496         put_user(sizeof(*attr), &uattr->size);
5497         ret = -E2BIG;
5498         goto out;
5499 }
5500
5501 static int
5502 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5503 {
5504         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5505         int ret = -EINVAL;
5506
5507         if (!output_event)
5508                 goto set;
5509
5510         /* don't allow circular references */
5511         if (event == output_event)
5512                 goto out;
5513
5514         /*
5515          * Don't allow cross-cpu buffers
5516          */
5517         if (output_event->cpu != event->cpu)
5518                 goto out;
5519
5520         /*
5521          * If its not a per-cpu buffer, it must be the same task.
5522          */
5523         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5524                 goto out;
5525
5526 set:
5527         mutex_lock(&event->mmap_mutex);
5528         /* Can't redirect output if we've got an active mmap() */
5529         if (atomic_read(&event->mmap_count))
5530                 goto unlock;
5531
5532         if (output_event) {
5533                 /* get the buffer we want to redirect to */
5534                 buffer = perf_buffer_get(output_event);
5535                 if (!buffer)
5536                         goto unlock;
5537         }
5538
5539         old_buffer = event->buffer;
5540         rcu_assign_pointer(event->buffer, buffer);
5541         ret = 0;
5542 unlock:
5543         mutex_unlock(&event->mmap_mutex);
5544
5545         if (old_buffer)
5546                 perf_buffer_put(old_buffer);
5547 out:
5548         return ret;
5549 }
5550
5551 /**
5552  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5553  *
5554  * @attr_uptr:  event_id type attributes for monitoring/sampling
5555  * @pid:                target pid
5556  * @cpu:                target cpu
5557  * @group_fd:           group leader event fd
5558  */
5559 SYSCALL_DEFINE5(perf_event_open,
5560                 struct perf_event_attr __user *, attr_uptr,
5561                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5562 {
5563         struct perf_event *group_leader = NULL, *output_event = NULL;
5564         struct perf_event *event, *sibling;
5565         struct perf_event_attr attr;
5566         struct perf_event_context *ctx;
5567         struct file *event_file = NULL;
5568         struct file *group_file = NULL;
5569         struct task_struct *task = NULL;
5570         struct pmu *pmu;
5571         int event_fd;
5572         int move_group = 0;
5573         int fput_needed = 0;
5574         int err;
5575
5576         /* for future expandability... */
5577         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5578                 return -EINVAL;
5579
5580         err = perf_copy_attr(attr_uptr, &attr);
5581         if (err)
5582                 return err;
5583
5584         if (!attr.exclude_kernel) {
5585                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5586                         return -EACCES;
5587         }
5588
5589         if (attr.freq) {
5590                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5591                         return -EINVAL;
5592         }
5593
5594         event_fd = get_unused_fd_flags(O_RDWR);
5595         if (event_fd < 0)
5596                 return event_fd;
5597
5598         if (group_fd != -1) {
5599                 group_leader = perf_fget_light(group_fd, &fput_needed);
5600                 if (IS_ERR(group_leader)) {
5601                         err = PTR_ERR(group_leader);
5602                         goto err_fd;
5603                 }
5604                 group_file = group_leader->filp;
5605                 if (flags & PERF_FLAG_FD_OUTPUT)
5606                         output_event = group_leader;
5607                 if (flags & PERF_FLAG_FD_NO_GROUP)
5608                         group_leader = NULL;
5609         }
5610
5611         if (pid != -1) {
5612                 task = find_lively_task_by_vpid(pid);
5613                 if (IS_ERR(task)) {
5614                         err = PTR_ERR(task);
5615                         goto err_group_fd;
5616                 }
5617         }
5618
5619         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5620         if (IS_ERR(event)) {
5621                 err = PTR_ERR(event);
5622                 goto err_task;
5623         }
5624
5625         /*
5626          * Special case software events and allow them to be part of
5627          * any hardware group.
5628          */
5629         pmu = event->pmu;
5630
5631         if (group_leader &&
5632             (is_software_event(event) != is_software_event(group_leader))) {
5633                 if (is_software_event(event)) {
5634                         /*
5635                          * If event and group_leader are not both a software
5636                          * event, and event is, then group leader is not.
5637                          *
5638                          * Allow the addition of software events to !software
5639                          * groups, this is safe because software events never
5640                          * fail to schedule.
5641                          */
5642                         pmu = group_leader->pmu;
5643                 } else if (is_software_event(group_leader) &&
5644                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5645                         /*
5646                          * In case the group is a pure software group, and we
5647                          * try to add a hardware event, move the whole group to
5648                          * the hardware context.
5649                          */
5650                         move_group = 1;
5651                 }
5652         }
5653
5654         /*
5655          * Get the target context (task or percpu):
5656          */
5657         ctx = find_get_context(pmu, task, cpu);
5658         if (IS_ERR(ctx)) {
5659                 err = PTR_ERR(ctx);
5660                 goto err_alloc;
5661         }
5662
5663         /*
5664          * Look up the group leader (we will attach this event to it):
5665          */
5666         if (group_leader) {
5667                 err = -EINVAL;
5668
5669                 /*
5670                  * Do not allow a recursive hierarchy (this new sibling
5671                  * becoming part of another group-sibling):
5672                  */
5673                 if (group_leader->group_leader != group_leader)
5674                         goto err_context;
5675                 /*
5676                  * Do not allow to attach to a group in a different
5677                  * task or CPU context:
5678                  */
5679                 if (move_group) {
5680                         if (group_leader->ctx->type != ctx->type)
5681                                 goto err_context;
5682                 } else {
5683                         if (group_leader->ctx != ctx)
5684                                 goto err_context;
5685                 }
5686
5687                 /*
5688                  * Only a group leader can be exclusive or pinned
5689                  */
5690                 if (attr.exclusive || attr.pinned)
5691                         goto err_context;
5692         }
5693
5694         if (output_event) {
5695                 err = perf_event_set_output(event, output_event);
5696                 if (err)
5697                         goto err_context;
5698         }
5699
5700         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5701         if (IS_ERR(event_file)) {
5702                 err = PTR_ERR(event_file);
5703                 goto err_context;
5704         }
5705
5706         if (move_group) {
5707                 struct perf_event_context *gctx = group_leader->ctx;
5708
5709                 mutex_lock(&gctx->mutex);
5710                 perf_event_remove_from_context(group_leader);
5711                 list_for_each_entry(sibling, &group_leader->sibling_list,
5712                                     group_entry) {
5713                         perf_event_remove_from_context(sibling);
5714                         put_ctx(gctx);
5715                 }
5716                 mutex_unlock(&gctx->mutex);
5717                 put_ctx(gctx);
5718         }
5719
5720         event->filp = event_file;
5721         WARN_ON_ONCE(ctx->parent_ctx);
5722         mutex_lock(&ctx->mutex);
5723
5724         if (move_group) {
5725                 perf_install_in_context(ctx, group_leader, cpu);
5726                 get_ctx(ctx);
5727                 list_for_each_entry(sibling, &group_leader->sibling_list,
5728                                     group_entry) {
5729                         perf_install_in_context(ctx, sibling, cpu);
5730                         get_ctx(ctx);
5731                 }
5732         }
5733
5734         perf_install_in_context(ctx, event, cpu);
5735         ++ctx->generation;
5736         mutex_unlock(&ctx->mutex);
5737
5738         event->owner = current;
5739
5740         mutex_lock(&current->perf_event_mutex);
5741         list_add_tail(&event->owner_entry, &current->perf_event_list);
5742         mutex_unlock(&current->perf_event_mutex);
5743
5744         /*
5745          * Precalculate sample_data sizes
5746          */
5747         perf_event__header_size(event);
5748
5749         /*
5750          * Drop the reference on the group_event after placing the
5751          * new event on the sibling_list. This ensures destruction
5752          * of the group leader will find the pointer to itself in
5753          * perf_group_detach().
5754          */
5755         fput_light(group_file, fput_needed);
5756         fd_install(event_fd, event_file);
5757         return event_fd;
5758
5759 err_context:
5760         put_ctx(ctx);
5761 err_alloc:
5762         free_event(event);
5763 err_task:
5764         if (task)
5765                 put_task_struct(task);
5766 err_group_fd:
5767         fput_light(group_file, fput_needed);
5768 err_fd:
5769         put_unused_fd(event_fd);
5770         return err;
5771 }
5772
5773 /**
5774  * perf_event_create_kernel_counter
5775  *
5776  * @attr: attributes of the counter to create
5777  * @cpu: cpu in which the counter is bound
5778  * @task: task to profile (NULL for percpu)
5779  */
5780 struct perf_event *
5781 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5782                                  struct task_struct *task,
5783                                  perf_overflow_handler_t overflow_handler)
5784 {
5785         struct perf_event_context *ctx;
5786         struct perf_event *event;
5787         int err;
5788
5789         /*
5790          * Get the target context (task or percpu):
5791          */
5792
5793         event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5794         if (IS_ERR(event)) {
5795                 err = PTR_ERR(event);
5796                 goto err;
5797         }
5798
5799         ctx = find_get_context(event->pmu, task, cpu);
5800         if (IS_ERR(ctx)) {
5801                 err = PTR_ERR(ctx);
5802                 goto err_free;
5803         }
5804
5805         event->filp = NULL;
5806         WARN_ON_ONCE(ctx->parent_ctx);
5807         mutex_lock(&ctx->mutex);
5808         perf_install_in_context(ctx, event, cpu);
5809         ++ctx->generation;
5810         mutex_unlock(&ctx->mutex);
5811
5812         return event;
5813
5814 err_free:
5815         free_event(event);
5816 err:
5817         return ERR_PTR(err);
5818 }
5819 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5820
5821 static void sync_child_event(struct perf_event *child_event,
5822                                struct task_struct *child)
5823 {
5824         struct perf_event *parent_event = child_event->parent;
5825         u64 child_val;
5826
5827         if (child_event->attr.inherit_stat)
5828                 perf_event_read_event(child_event, child);
5829
5830         child_val = perf_event_count(child_event);
5831
5832         /*
5833          * Add back the child's count to the parent's count:
5834          */
5835         atomic64_add(child_val, &parent_event->child_count);
5836         atomic64_add(child_event->total_time_enabled,
5837                      &parent_event->child_total_time_enabled);
5838         atomic64_add(child_event->total_time_running,
5839                      &parent_event->child_total_time_running);
5840
5841         /*
5842          * Remove this event from the parent's list
5843          */
5844         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5845         mutex_lock(&parent_event->child_mutex);
5846         list_del_init(&child_event->child_list);
5847         mutex_unlock(&parent_event->child_mutex);
5848
5849         /*
5850          * Release the parent event, if this was the last
5851          * reference to it.
5852          */
5853         fput(parent_event->filp);
5854 }
5855
5856 static void
5857 __perf_event_exit_task(struct perf_event *child_event,
5858                          struct perf_event_context *child_ctx,
5859                          struct task_struct *child)
5860 {
5861         struct perf_event *parent_event;
5862
5863         perf_event_remove_from_context(child_event);
5864
5865         parent_event = child_event->parent;
5866         /*
5867          * It can happen that parent exits first, and has events
5868          * that are still around due to the child reference. These
5869          * events need to be zapped - but otherwise linger.
5870          */
5871         if (parent_event) {
5872                 sync_child_event(child_event, child);
5873                 free_event(child_event);
5874         }
5875 }
5876
5877 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5878 {
5879         struct perf_event *child_event, *tmp;
5880         struct perf_event_context *child_ctx;
5881         unsigned long flags;
5882
5883         if (likely(!child->perf_event_ctxp[ctxn])) {
5884                 perf_event_task(child, NULL, 0);
5885                 return;
5886         }
5887
5888         local_irq_save(flags);
5889         /*
5890          * We can't reschedule here because interrupts are disabled,
5891          * and either child is current or it is a task that can't be
5892          * scheduled, so we are now safe from rescheduling changing
5893          * our context.
5894          */
5895         child_ctx = child->perf_event_ctxp[ctxn];
5896         task_ctx_sched_out(child_ctx, EVENT_ALL);
5897
5898         /*
5899          * Take the context lock here so that if find_get_context is
5900          * reading child->perf_event_ctxp, we wait until it has
5901          * incremented the context's refcount before we do put_ctx below.
5902          */
5903         raw_spin_lock(&child_ctx->lock);
5904         child->perf_event_ctxp[ctxn] = NULL;
5905         /*
5906          * If this context is a clone; unclone it so it can't get
5907          * swapped to another process while we're removing all
5908          * the events from it.
5909          */
5910         unclone_ctx(child_ctx);
5911         update_context_time(child_ctx);
5912         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5913
5914         /*
5915          * Report the task dead after unscheduling the events so that we
5916          * won't get any samples after PERF_RECORD_EXIT. We can however still
5917          * get a few PERF_RECORD_READ events.
5918          */
5919         perf_event_task(child, child_ctx, 0);
5920
5921         /*
5922          * We can recurse on the same lock type through:
5923          *
5924          *   __perf_event_exit_task()
5925          *     sync_child_event()
5926          *       fput(parent_event->filp)
5927          *         perf_release()
5928          *           mutex_lock(&ctx->mutex)
5929          *
5930          * But since its the parent context it won't be the same instance.
5931          */
5932         mutex_lock(&child_ctx->mutex);
5933
5934 again:
5935         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5936                                  group_entry)
5937                 __perf_event_exit_task(child_event, child_ctx, child);
5938
5939         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5940                                  group_entry)
5941                 __perf_event_exit_task(child_event, child_ctx, child);
5942
5943         /*
5944          * If the last event was a group event, it will have appended all
5945          * its siblings to the list, but we obtained 'tmp' before that which
5946          * will still point to the list head terminating the iteration.
5947          */
5948         if (!list_empty(&child_ctx->pinned_groups) ||
5949             !list_empty(&child_ctx->flexible_groups))
5950                 goto again;
5951
5952         mutex_unlock(&child_ctx->mutex);
5953
5954         put_ctx(child_ctx);
5955 }
5956
5957 /*
5958  * When a child task exits, feed back event values to parent events.
5959  */
5960 void perf_event_exit_task(struct task_struct *child)
5961 {
5962         struct perf_event *event, *tmp;
5963         int ctxn;
5964
5965         mutex_lock(&child->perf_event_mutex);
5966         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
5967                                  owner_entry) {
5968                 list_del_init(&event->owner_entry);
5969
5970                 /*
5971                  * Ensure the list deletion is visible before we clear
5972                  * the owner, closes a race against perf_release() where
5973                  * we need to serialize on the owner->perf_event_mutex.
5974                  */
5975                 smp_wmb();
5976                 event->owner = NULL;
5977         }
5978         mutex_unlock(&child->perf_event_mutex);
5979
5980         for_each_task_context_nr(ctxn)
5981                 perf_event_exit_task_context(child, ctxn);
5982 }
5983
5984 static void perf_free_event(struct perf_event *event,
5985                             struct perf_event_context *ctx)
5986 {
5987         struct perf_event *parent = event->parent;
5988
5989         if (WARN_ON_ONCE(!parent))
5990                 return;
5991
5992         mutex_lock(&parent->child_mutex);
5993         list_del_init(&event->child_list);
5994         mutex_unlock(&parent->child_mutex);
5995
5996         fput(parent->filp);
5997
5998         perf_group_detach(event);
5999         list_del_event(event, ctx);
6000         free_event(event);
6001 }
6002
6003 /*
6004  * free an unexposed, unused context as created by inheritance by
6005  * perf_event_init_task below, used by fork() in case of fail.
6006  */
6007 void perf_event_free_task(struct task_struct *task)
6008 {
6009         struct perf_event_context *ctx;
6010         struct perf_event *event, *tmp;
6011         int ctxn;
6012
6013         for_each_task_context_nr(ctxn) {
6014                 ctx = task->perf_event_ctxp[ctxn];
6015                 if (!ctx)
6016                         continue;
6017
6018                 mutex_lock(&ctx->mutex);
6019 again:
6020                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6021                                 group_entry)
6022                         perf_free_event(event, ctx);
6023
6024                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6025                                 group_entry)
6026                         perf_free_event(event, ctx);
6027
6028                 if (!list_empty(&ctx->pinned_groups) ||
6029                                 !list_empty(&ctx->flexible_groups))
6030                         goto again;
6031
6032                 mutex_unlock(&ctx->mutex);
6033
6034                 put_ctx(ctx);
6035         }
6036 }
6037
6038 void perf_event_delayed_put(struct task_struct *task)
6039 {
6040         int ctxn;
6041
6042         for_each_task_context_nr(ctxn)
6043                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6044 }
6045
6046 /*
6047  * inherit a event from parent task to child task:
6048  */
6049 static struct perf_event *
6050 inherit_event(struct perf_event *parent_event,
6051               struct task_struct *parent,
6052               struct perf_event_context *parent_ctx,
6053               struct task_struct *child,
6054               struct perf_event *group_leader,
6055               struct perf_event_context *child_ctx)
6056 {
6057         struct perf_event *child_event;
6058         unsigned long flags;
6059
6060         /*
6061          * Instead of creating recursive hierarchies of events,
6062          * we link inherited events back to the original parent,
6063          * which has a filp for sure, which we use as the reference
6064          * count:
6065          */
6066         if (parent_event->parent)
6067                 parent_event = parent_event->parent;
6068
6069         child_event = perf_event_alloc(&parent_event->attr,
6070                                            parent_event->cpu,
6071                                            child,
6072                                            group_leader, parent_event,
6073                                            NULL);
6074         if (IS_ERR(child_event))
6075                 return child_event;
6076         get_ctx(child_ctx);
6077
6078         /*
6079          * Make the child state follow the state of the parent event,
6080          * not its attr.disabled bit.  We hold the parent's mutex,
6081          * so we won't race with perf_event_{en, dis}able_family.
6082          */
6083         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6084                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6085         else
6086                 child_event->state = PERF_EVENT_STATE_OFF;
6087
6088         if (parent_event->attr.freq) {
6089                 u64 sample_period = parent_event->hw.sample_period;
6090                 struct hw_perf_event *hwc = &child_event->hw;
6091
6092                 hwc->sample_period = sample_period;
6093                 hwc->last_period   = sample_period;
6094
6095                 local64_set(&hwc->period_left, sample_period);
6096         }
6097
6098         child_event->ctx = child_ctx;
6099         child_event->overflow_handler = parent_event->overflow_handler;
6100
6101         /*
6102          * Link it up in the child's context:
6103          */
6104         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6105         add_event_to_ctx(child_event, child_ctx);
6106         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6107
6108         /*
6109          * Get a reference to the parent filp - we will fput it
6110          * when the child event exits. This is safe to do because
6111          * we are in the parent and we know that the filp still
6112          * exists and has a nonzero count:
6113          */
6114         atomic_long_inc(&parent_event->filp->f_count);
6115
6116         /*
6117          * Link this into the parent event's child list
6118          */
6119         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6120         mutex_lock(&parent_event->child_mutex);
6121         list_add_tail(&child_event->child_list, &parent_event->child_list);
6122         mutex_unlock(&parent_event->child_mutex);
6123
6124         return child_event;
6125 }
6126
6127 static int inherit_group(struct perf_event *parent_event,
6128               struct task_struct *parent,
6129               struct perf_event_context *parent_ctx,
6130               struct task_struct *child,
6131               struct perf_event_context *child_ctx)
6132 {
6133         struct perf_event *leader;
6134         struct perf_event *sub;
6135         struct perf_event *child_ctr;
6136
6137         leader = inherit_event(parent_event, parent, parent_ctx,
6138                                  child, NULL, child_ctx);
6139         if (IS_ERR(leader))
6140                 return PTR_ERR(leader);
6141         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6142                 child_ctr = inherit_event(sub, parent, parent_ctx,
6143                                             child, leader, child_ctx);
6144                 if (IS_ERR(child_ctr))
6145                         return PTR_ERR(child_ctr);
6146         }
6147         return 0;
6148 }
6149
6150 static int
6151 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6152                    struct perf_event_context *parent_ctx,
6153                    struct task_struct *child, int ctxn,
6154                    int *inherited_all)
6155 {
6156         int ret;
6157         struct perf_event_context *child_ctx;
6158
6159         if (!event->attr.inherit) {
6160                 *inherited_all = 0;
6161                 return 0;
6162         }
6163
6164         child_ctx = child->perf_event_ctxp[ctxn];
6165         if (!child_ctx) {
6166                 /*
6167                  * This is executed from the parent task context, so
6168                  * inherit events that have been marked for cloning.
6169                  * First allocate and initialize a context for the
6170                  * child.
6171                  */
6172
6173                 child_ctx = alloc_perf_context(event->pmu, child);
6174                 if (!child_ctx)
6175                         return -ENOMEM;
6176
6177                 child->perf_event_ctxp[ctxn] = child_ctx;
6178         }
6179
6180         ret = inherit_group(event, parent, parent_ctx,
6181                             child, child_ctx);
6182
6183         if (ret)
6184                 *inherited_all = 0;
6185
6186         return ret;
6187 }
6188
6189 /*
6190  * Initialize the perf_event context in task_struct
6191  */
6192 int perf_event_init_context(struct task_struct *child, int ctxn)
6193 {
6194         struct perf_event_context *child_ctx, *parent_ctx;
6195         struct perf_event_context *cloned_ctx;
6196         struct perf_event *event;
6197         struct task_struct *parent = current;
6198         int inherited_all = 1;
6199         unsigned long flags;
6200         int ret = 0;
6201
6202         child->perf_event_ctxp[ctxn] = NULL;
6203
6204         mutex_init(&child->perf_event_mutex);
6205         INIT_LIST_HEAD(&child->perf_event_list);
6206
6207         if (likely(!parent->perf_event_ctxp[ctxn]))
6208                 return 0;
6209
6210         /*
6211          * If the parent's context is a clone, pin it so it won't get
6212          * swapped under us.
6213          */
6214         parent_ctx = perf_pin_task_context(parent, ctxn);
6215
6216         /*
6217          * No need to check if parent_ctx != NULL here; since we saw
6218          * it non-NULL earlier, the only reason for it to become NULL
6219          * is if we exit, and since we're currently in the middle of
6220          * a fork we can't be exiting at the same time.
6221          */
6222
6223         /*
6224          * Lock the parent list. No need to lock the child - not PID
6225          * hashed yet and not running, so nobody can access it.
6226          */
6227         mutex_lock(&parent_ctx->mutex);
6228
6229         /*
6230          * We dont have to disable NMIs - we are only looking at
6231          * the list, not manipulating it:
6232          */
6233         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6234                 ret = inherit_task_group(event, parent, parent_ctx,
6235                                          child, ctxn, &inherited_all);
6236                 if (ret)
6237                         break;
6238         }
6239
6240         /*
6241          * We can't hold ctx->lock when iterating the ->flexible_group list due
6242          * to allocations, but we need to prevent rotation because
6243          * rotate_ctx() will change the list from interrupt context.
6244          */
6245         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6246         parent_ctx->rotate_disable = 1;
6247         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6248
6249         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6250                 ret = inherit_task_group(event, parent, parent_ctx,
6251                                          child, ctxn, &inherited_all);
6252                 if (ret)
6253                         break;
6254         }
6255
6256         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6257         parent_ctx->rotate_disable = 0;
6258         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6259
6260         child_ctx = child->perf_event_ctxp[ctxn];
6261
6262         if (child_ctx && inherited_all) {
6263                 /*
6264                  * Mark the child context as a clone of the parent
6265                  * context, or of whatever the parent is a clone of.
6266                  * Note that if the parent is a clone, it could get
6267                  * uncloned at any point, but that doesn't matter
6268                  * because the list of events and the generation
6269                  * count can't have changed since we took the mutex.
6270                  */
6271                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6272                 if (cloned_ctx) {
6273                         child_ctx->parent_ctx = cloned_ctx;
6274                         child_ctx->parent_gen = parent_ctx->parent_gen;
6275                 } else {
6276                         child_ctx->parent_ctx = parent_ctx;
6277                         child_ctx->parent_gen = parent_ctx->generation;
6278                 }
6279                 get_ctx(child_ctx->parent_ctx);
6280         }
6281
6282         mutex_unlock(&parent_ctx->mutex);
6283
6284         perf_unpin_context(parent_ctx);
6285
6286         return ret;
6287 }
6288
6289 /*
6290  * Initialize the perf_event context in task_struct
6291  */
6292 int perf_event_init_task(struct task_struct *child)
6293 {
6294         int ctxn, ret;
6295
6296         for_each_task_context_nr(ctxn) {
6297                 ret = perf_event_init_context(child, ctxn);
6298                 if (ret)
6299                         return ret;
6300         }
6301
6302         return 0;
6303 }
6304
6305 static void __init perf_event_init_all_cpus(void)
6306 {
6307         struct swevent_htable *swhash;
6308         int cpu;
6309
6310         for_each_possible_cpu(cpu) {
6311                 swhash = &per_cpu(swevent_htable, cpu);
6312                 mutex_init(&swhash->hlist_mutex);
6313                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6314         }
6315 }
6316
6317 static void __cpuinit perf_event_init_cpu(int cpu)
6318 {
6319         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6320
6321         mutex_lock(&swhash->hlist_mutex);
6322         if (swhash->hlist_refcount > 0) {
6323                 struct swevent_hlist *hlist;
6324
6325                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6326                 WARN_ON(!hlist);
6327                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6328         }
6329         mutex_unlock(&swhash->hlist_mutex);
6330 }
6331
6332 #ifdef CONFIG_HOTPLUG_CPU
6333 static void perf_pmu_rotate_stop(struct pmu *pmu)
6334 {
6335         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6336
6337         WARN_ON(!irqs_disabled());
6338
6339         list_del_init(&cpuctx->rotation_list);
6340 }
6341
6342 static void __perf_event_exit_context(void *__info)
6343 {
6344         struct perf_event_context *ctx = __info;
6345         struct perf_event *event, *tmp;
6346
6347         perf_pmu_rotate_stop(ctx->pmu);
6348
6349         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6350                 __perf_event_remove_from_context(event);
6351         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6352                 __perf_event_remove_from_context(event);
6353 }
6354
6355 static void perf_event_exit_cpu_context(int cpu)
6356 {
6357         struct perf_event_context *ctx;
6358         struct pmu *pmu;
6359         int idx;
6360
6361         idx = srcu_read_lock(&pmus_srcu);
6362         list_for_each_entry_rcu(pmu, &pmus, entry) {
6363                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6364
6365                 mutex_lock(&ctx->mutex);
6366                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6367                 mutex_unlock(&ctx->mutex);
6368         }
6369         srcu_read_unlock(&pmus_srcu, idx);
6370 }
6371
6372 static void perf_event_exit_cpu(int cpu)
6373 {
6374         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6375
6376         mutex_lock(&swhash->hlist_mutex);
6377         swevent_hlist_release(swhash);
6378         mutex_unlock(&swhash->hlist_mutex);
6379
6380         perf_event_exit_cpu_context(cpu);
6381 }
6382 #else
6383 static inline void perf_event_exit_cpu(int cpu) { }
6384 #endif
6385
6386 static int __cpuinit
6387 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6388 {
6389         unsigned int cpu = (long)hcpu;
6390
6391         switch (action & ~CPU_TASKS_FROZEN) {
6392
6393         case CPU_UP_PREPARE:
6394         case CPU_DOWN_FAILED:
6395                 perf_event_init_cpu(cpu);
6396                 break;
6397
6398         case CPU_UP_CANCELED:
6399         case CPU_DOWN_PREPARE:
6400                 perf_event_exit_cpu(cpu);
6401                 break;
6402
6403         default:
6404                 break;
6405         }
6406
6407         return NOTIFY_OK;
6408 }
6409
6410 void __init perf_event_init(void)
6411 {
6412         int ret;
6413
6414         perf_event_init_all_cpus();
6415         init_srcu_struct(&pmus_srcu);
6416         perf_pmu_register(&perf_swevent);
6417         perf_pmu_register(&perf_cpu_clock);
6418         perf_pmu_register(&perf_task_clock);
6419         perf_tp_register();
6420         perf_cpu_notifier(perf_cpu_notify);
6421
6422         ret = init_hw_breakpoint();
6423         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6424 }