Merge branch 'stable/swiotlb-0.9' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 atomic_t perf_task_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47  * perf event paranoia level:
48  *  -1 - not paranoid at all
49  *   0 - disallow raw tracepoint access for unpriv
50  *   1 - disallow cpu events for unpriv
51  *   2 - disallow kernel profiling for unpriv
52  */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58  * max perf event sample rate
59  */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void)        { }
65
66 extern __weak const char *perf_pmu_name(void)
67 {
68         return "pmu";
69 }
70
71 void perf_pmu_disable(struct pmu *pmu)
72 {
73         int *count = this_cpu_ptr(pmu->pmu_disable_count);
74         if (!(*count)++)
75                 pmu->pmu_disable(pmu);
76 }
77
78 void perf_pmu_enable(struct pmu *pmu)
79 {
80         int *count = this_cpu_ptr(pmu->pmu_disable_count);
81         if (!--(*count))
82                 pmu->pmu_enable(pmu);
83 }
84
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
86
87 /*
88  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89  * because they're strictly cpu affine and rotate_start is called with IRQs
90  * disabled, while rotate_context is called from IRQ context.
91  */
92 static void perf_pmu_rotate_start(struct pmu *pmu)
93 {
94         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95         struct list_head *head = &__get_cpu_var(rotation_list);
96
97         WARN_ON(!irqs_disabled());
98
99         if (list_empty(&cpuctx->rotation_list))
100                 list_add(&cpuctx->rotation_list, head);
101 }
102
103 static void get_ctx(struct perf_event_context *ctx)
104 {
105         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110         struct perf_event_context *ctx;
111
112         ctx = container_of(head, struct perf_event_context, rcu_head);
113         kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_event_context *ctx)
117 {
118         if (atomic_dec_and_test(&ctx->refcount)) {
119                 if (ctx->parent_ctx)
120                         put_ctx(ctx->parent_ctx);
121                 if (ctx->task)
122                         put_task_struct(ctx->task);
123                 call_rcu(&ctx->rcu_head, free_ctx);
124         }
125 }
126
127 static void unclone_ctx(struct perf_event_context *ctx)
128 {
129         if (ctx->parent_ctx) {
130                 put_ctx(ctx->parent_ctx);
131                 ctx->parent_ctx = NULL;
132         }
133 }
134
135 /*
136  * If we inherit events we want to return the parent event id
137  * to userspace.
138  */
139 static u64 primary_event_id(struct perf_event *event)
140 {
141         u64 id = event->id;
142
143         if (event->parent)
144                 id = event->parent->id;
145
146         return id;
147 }
148
149 /*
150  * Get the perf_event_context for a task and lock it.
151  * This has to cope with with the fact that until it is locked,
152  * the context could get moved to another task.
153  */
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156 {
157         struct perf_event_context *ctx;
158
159         rcu_read_lock();
160 retry:
161         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162         if (ctx) {
163                 /*
164                  * If this context is a clone of another, it might
165                  * get swapped for another underneath us by
166                  * perf_event_task_sched_out, though the
167                  * rcu_read_lock() protects us from any context
168                  * getting freed.  Lock the context and check if it
169                  * got swapped before we could get the lock, and retry
170                  * if so.  If we locked the right context, then it
171                  * can't get swapped on us any more.
172                  */
173                 raw_spin_lock_irqsave(&ctx->lock, *flags);
174                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176                         goto retry;
177                 }
178
179                 if (!atomic_inc_not_zero(&ctx->refcount)) {
180                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181                         ctx = NULL;
182                 }
183         }
184         rcu_read_unlock();
185         return ctx;
186 }
187
188 /*
189  * Get the context for a task and increment its pin_count so it
190  * can't get swapped to another task.  This also increments its
191  * reference count so that the context can't get freed.
192  */
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
195 {
196         struct perf_event_context *ctx;
197         unsigned long flags;
198
199         ctx = perf_lock_task_context(task, ctxn, &flags);
200         if (ctx) {
201                 ++ctx->pin_count;
202                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
203         }
204         return ctx;
205 }
206
207 static void perf_unpin_context(struct perf_event_context *ctx)
208 {
209         unsigned long flags;
210
211         raw_spin_lock_irqsave(&ctx->lock, flags);
212         --ctx->pin_count;
213         raw_spin_unlock_irqrestore(&ctx->lock, flags);
214         put_ctx(ctx);
215 }
216
217 static inline u64 perf_clock(void)
218 {
219         return local_clock();
220 }
221
222 /*
223  * Update the record of the current time in a context.
224  */
225 static void update_context_time(struct perf_event_context *ctx)
226 {
227         u64 now = perf_clock();
228
229         ctx->time += now - ctx->timestamp;
230         ctx->timestamp = now;
231 }
232
233 /*
234  * Update the total_time_enabled and total_time_running fields for a event.
235  */
236 static void update_event_times(struct perf_event *event)
237 {
238         struct perf_event_context *ctx = event->ctx;
239         u64 run_end;
240
241         if (event->state < PERF_EVENT_STATE_INACTIVE ||
242             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243                 return;
244
245         if (ctx->is_active)
246                 run_end = ctx->time;
247         else
248                 run_end = event->tstamp_stopped;
249
250         event->total_time_enabled = run_end - event->tstamp_enabled;
251
252         if (event->state == PERF_EVENT_STATE_INACTIVE)
253                 run_end = event->tstamp_stopped;
254         else
255                 run_end = ctx->time;
256
257         event->total_time_running = run_end - event->tstamp_running;
258 }
259
260 /*
261  * Update total_time_enabled and total_time_running for all events in a group.
262  */
263 static void update_group_times(struct perf_event *leader)
264 {
265         struct perf_event *event;
266
267         update_event_times(leader);
268         list_for_each_entry(event, &leader->sibling_list, group_entry)
269                 update_event_times(event);
270 }
271
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
274 {
275         if (event->attr.pinned)
276                 return &ctx->pinned_groups;
277         else
278                 return &ctx->flexible_groups;
279 }
280
281 /*
282  * Add a event from the lists for its context.
283  * Must be called with ctx->mutex and ctx->lock held.
284  */
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287 {
288         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289         event->attach_state |= PERF_ATTACH_CONTEXT;
290
291         /*
292          * If we're a stand alone event or group leader, we go to the context
293          * list, group events are kept attached to the group so that
294          * perf_group_detach can, at all times, locate all siblings.
295          */
296         if (event->group_leader == event) {
297                 struct list_head *list;
298
299                 if (is_software_event(event))
300                         event->group_flags |= PERF_GROUP_SOFTWARE;
301
302                 list = ctx_group_list(event, ctx);
303                 list_add_tail(&event->group_entry, list);
304         }
305
306         list_add_rcu(&event->event_entry, &ctx->event_list);
307         if (!ctx->nr_events)
308                 perf_pmu_rotate_start(ctx->pmu);
309         ctx->nr_events++;
310         if (event->attr.inherit_stat)
311                 ctx->nr_stat++;
312 }
313
314 static void perf_group_attach(struct perf_event *event)
315 {
316         struct perf_event *group_leader = event->group_leader;
317
318         /*
319          * We can have double attach due to group movement in perf_event_open.
320          */
321         if (event->attach_state & PERF_ATTACH_GROUP)
322                 return;
323
324         event->attach_state |= PERF_ATTACH_GROUP;
325
326         if (group_leader == event)
327                 return;
328
329         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
330                         !is_software_event(event))
331                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
332
333         list_add_tail(&event->group_entry, &group_leader->sibling_list);
334         group_leader->nr_siblings++;
335 }
336
337 /*
338  * Remove a event from the lists for its context.
339  * Must be called with ctx->mutex and ctx->lock held.
340  */
341 static void
342 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
343 {
344         /*
345          * We can have double detach due to exit/hot-unplug + close.
346          */
347         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
348                 return;
349
350         event->attach_state &= ~PERF_ATTACH_CONTEXT;
351
352         ctx->nr_events--;
353         if (event->attr.inherit_stat)
354                 ctx->nr_stat--;
355
356         list_del_rcu(&event->event_entry);
357
358         if (event->group_leader == event)
359                 list_del_init(&event->group_entry);
360
361         update_group_times(event);
362
363         /*
364          * If event was in error state, then keep it
365          * that way, otherwise bogus counts will be
366          * returned on read(). The only way to get out
367          * of error state is by explicit re-enabling
368          * of the event
369          */
370         if (event->state > PERF_EVENT_STATE_OFF)
371                 event->state = PERF_EVENT_STATE_OFF;
372 }
373
374 static void perf_group_detach(struct perf_event *event)
375 {
376         struct perf_event *sibling, *tmp;
377         struct list_head *list = NULL;
378
379         /*
380          * We can have double detach due to exit/hot-unplug + close.
381          */
382         if (!(event->attach_state & PERF_ATTACH_GROUP))
383                 return;
384
385         event->attach_state &= ~PERF_ATTACH_GROUP;
386
387         /*
388          * If this is a sibling, remove it from its group.
389          */
390         if (event->group_leader != event) {
391                 list_del_init(&event->group_entry);
392                 event->group_leader->nr_siblings--;
393                 return;
394         }
395
396         if (!list_empty(&event->group_entry))
397                 list = &event->group_entry;
398
399         /*
400          * If this was a group event with sibling events then
401          * upgrade the siblings to singleton events by adding them
402          * to whatever list we are on.
403          */
404         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
405                 if (list)
406                         list_move_tail(&sibling->group_entry, list);
407                 sibling->group_leader = sibling;
408
409                 /* Inherit group flags from the previous leader */
410                 sibling->group_flags = event->group_flags;
411         }
412 }
413
414 static inline int
415 event_filter_match(struct perf_event *event)
416 {
417         return event->cpu == -1 || event->cpu == smp_processor_id();
418 }
419
420 static int
421 __event_sched_out(struct perf_event *event,
422                   struct perf_cpu_context *cpuctx,
423                   struct perf_event_context *ctx)
424 {
425         u64 delta;
426         /*
427          * An event which could not be activated because of
428          * filter mismatch still needs to have its timings
429          * maintained, otherwise bogus information is return
430          * via read() for time_enabled, time_running:
431          */
432         if (event->state == PERF_EVENT_STATE_INACTIVE
433             && !event_filter_match(event)) {
434                 delta = ctx->time - event->tstamp_stopped;
435                 event->tstamp_running += delta;
436                 event->tstamp_stopped = ctx->time;
437         }
438
439         if (event->state != PERF_EVENT_STATE_ACTIVE)
440                 return 0;
441
442         event->state = PERF_EVENT_STATE_INACTIVE;
443         if (event->pending_disable) {
444                 event->pending_disable = 0;
445                 event->state = PERF_EVENT_STATE_OFF;
446         }
447         event->pmu->del(event, 0);
448         event->oncpu = -1;
449
450         if (!is_software_event(event))
451                 cpuctx->active_oncpu--;
452         ctx->nr_active--;
453         if (event->attr.exclusive || !cpuctx->active_oncpu)
454                 cpuctx->exclusive = 0;
455         return 1;
456 }
457
458 static void
459 event_sched_out(struct perf_event *event,
460                   struct perf_cpu_context *cpuctx,
461                   struct perf_event_context *ctx)
462 {
463         int ret;
464
465         ret = __event_sched_out(event, cpuctx, ctx);
466         if (ret)
467                 event->tstamp_stopped = ctx->time;
468 }
469
470 static void
471 group_sched_out(struct perf_event *group_event,
472                 struct perf_cpu_context *cpuctx,
473                 struct perf_event_context *ctx)
474 {
475         struct perf_event *event;
476         int state = group_event->state;
477
478         event_sched_out(group_event, cpuctx, ctx);
479
480         /*
481          * Schedule out siblings (if any):
482          */
483         list_for_each_entry(event, &group_event->sibling_list, group_entry)
484                 event_sched_out(event, cpuctx, ctx);
485
486         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
487                 cpuctx->exclusive = 0;
488 }
489
490 static inline struct perf_cpu_context *
491 __get_cpu_context(struct perf_event_context *ctx)
492 {
493         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
494 }
495
496 /*
497  * Cross CPU call to remove a performance event
498  *
499  * We disable the event on the hardware level first. After that we
500  * remove it from the context list.
501  */
502 static void __perf_event_remove_from_context(void *info)
503 {
504         struct perf_event *event = info;
505         struct perf_event_context *ctx = event->ctx;
506         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
507
508         /*
509          * If this is a task context, we need to check whether it is
510          * the current task context of this cpu. If not it has been
511          * scheduled out before the smp call arrived.
512          */
513         if (ctx->task && cpuctx->task_ctx != ctx)
514                 return;
515
516         raw_spin_lock(&ctx->lock);
517
518         event_sched_out(event, cpuctx, ctx);
519
520         list_del_event(event, ctx);
521
522         raw_spin_unlock(&ctx->lock);
523 }
524
525
526 /*
527  * Remove the event from a task's (or a CPU's) list of events.
528  *
529  * Must be called with ctx->mutex held.
530  *
531  * CPU events are removed with a smp call. For task events we only
532  * call when the task is on a CPU.
533  *
534  * If event->ctx is a cloned context, callers must make sure that
535  * every task struct that event->ctx->task could possibly point to
536  * remains valid.  This is OK when called from perf_release since
537  * that only calls us on the top-level context, which can't be a clone.
538  * When called from perf_event_exit_task, it's OK because the
539  * context has been detached from its task.
540  */
541 static void perf_event_remove_from_context(struct perf_event *event)
542 {
543         struct perf_event_context *ctx = event->ctx;
544         struct task_struct *task = ctx->task;
545
546         if (!task) {
547                 /*
548                  * Per cpu events are removed via an smp call and
549                  * the removal is always successful.
550                  */
551                 smp_call_function_single(event->cpu,
552                                          __perf_event_remove_from_context,
553                                          event, 1);
554                 return;
555         }
556
557 retry:
558         task_oncpu_function_call(task, __perf_event_remove_from_context,
559                                  event);
560
561         raw_spin_lock_irq(&ctx->lock);
562         /*
563          * If the context is active we need to retry the smp call.
564          */
565         if (ctx->nr_active && !list_empty(&event->group_entry)) {
566                 raw_spin_unlock_irq(&ctx->lock);
567                 goto retry;
568         }
569
570         /*
571          * The lock prevents that this context is scheduled in so we
572          * can remove the event safely, if the call above did not
573          * succeed.
574          */
575         if (!list_empty(&event->group_entry))
576                 list_del_event(event, ctx);
577         raw_spin_unlock_irq(&ctx->lock);
578 }
579
580 /*
581  * Cross CPU call to disable a performance event
582  */
583 static void __perf_event_disable(void *info)
584 {
585         struct perf_event *event = info;
586         struct perf_event_context *ctx = event->ctx;
587         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
588
589         /*
590          * If this is a per-task event, need to check whether this
591          * event's task is the current task on this cpu.
592          */
593         if (ctx->task && cpuctx->task_ctx != ctx)
594                 return;
595
596         raw_spin_lock(&ctx->lock);
597
598         /*
599          * If the event is on, turn it off.
600          * If it is in error state, leave it in error state.
601          */
602         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
603                 update_context_time(ctx);
604                 update_group_times(event);
605                 if (event == event->group_leader)
606                         group_sched_out(event, cpuctx, ctx);
607                 else
608                         event_sched_out(event, cpuctx, ctx);
609                 event->state = PERF_EVENT_STATE_OFF;
610         }
611
612         raw_spin_unlock(&ctx->lock);
613 }
614
615 /*
616  * Disable a event.
617  *
618  * If event->ctx is a cloned context, callers must make sure that
619  * every task struct that event->ctx->task could possibly point to
620  * remains valid.  This condition is satisifed when called through
621  * perf_event_for_each_child or perf_event_for_each because they
622  * hold the top-level event's child_mutex, so any descendant that
623  * goes to exit will block in sync_child_event.
624  * When called from perf_pending_event it's OK because event->ctx
625  * is the current context on this CPU and preemption is disabled,
626  * hence we can't get into perf_event_task_sched_out for this context.
627  */
628 void perf_event_disable(struct perf_event *event)
629 {
630         struct perf_event_context *ctx = event->ctx;
631         struct task_struct *task = ctx->task;
632
633         if (!task) {
634                 /*
635                  * Disable the event on the cpu that it's on
636                  */
637                 smp_call_function_single(event->cpu, __perf_event_disable,
638                                          event, 1);
639                 return;
640         }
641
642 retry:
643         task_oncpu_function_call(task, __perf_event_disable, event);
644
645         raw_spin_lock_irq(&ctx->lock);
646         /*
647          * If the event is still active, we need to retry the cross-call.
648          */
649         if (event->state == PERF_EVENT_STATE_ACTIVE) {
650                 raw_spin_unlock_irq(&ctx->lock);
651                 goto retry;
652         }
653
654         /*
655          * Since we have the lock this context can't be scheduled
656          * in, so we can change the state safely.
657          */
658         if (event->state == PERF_EVENT_STATE_INACTIVE) {
659                 update_group_times(event);
660                 event->state = PERF_EVENT_STATE_OFF;
661         }
662
663         raw_spin_unlock_irq(&ctx->lock);
664 }
665
666 static int
667 __event_sched_in(struct perf_event *event,
668                  struct perf_cpu_context *cpuctx,
669                  struct perf_event_context *ctx)
670 {
671         if (event->state <= PERF_EVENT_STATE_OFF)
672                 return 0;
673
674         event->state = PERF_EVENT_STATE_ACTIVE;
675         event->oncpu = smp_processor_id();
676         /*
677          * The new state must be visible before we turn it on in the hardware:
678          */
679         smp_wmb();
680
681         if (event->pmu->add(event, PERF_EF_START)) {
682                 event->state = PERF_EVENT_STATE_INACTIVE;
683                 event->oncpu = -1;
684                 return -EAGAIN;
685         }
686
687         if (!is_software_event(event))
688                 cpuctx->active_oncpu++;
689         ctx->nr_active++;
690
691         if (event->attr.exclusive)
692                 cpuctx->exclusive = 1;
693
694         return 0;
695 }
696
697 static inline int
698 event_sched_in(struct perf_event *event,
699                  struct perf_cpu_context *cpuctx,
700                  struct perf_event_context *ctx)
701 {
702         int ret = __event_sched_in(event, cpuctx, ctx);
703         if (ret)
704                 return ret;
705         event->tstamp_running += ctx->time - event->tstamp_stopped;
706         return 0;
707 }
708
709 static void
710 group_commit_event_sched_in(struct perf_event *group_event,
711                struct perf_cpu_context *cpuctx,
712                struct perf_event_context *ctx)
713 {
714         struct perf_event *event;
715         u64 now = ctx->time;
716
717         group_event->tstamp_running += now - group_event->tstamp_stopped;
718         /*
719          * Schedule in siblings as one group (if any):
720          */
721         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
722                 event->tstamp_running += now - event->tstamp_stopped;
723         }
724 }
725
726 static int
727 group_sched_in(struct perf_event *group_event,
728                struct perf_cpu_context *cpuctx,
729                struct perf_event_context *ctx)
730 {
731         struct perf_event *event, *partial_group = NULL;
732         struct pmu *pmu = group_event->pmu;
733
734         if (group_event->state == PERF_EVENT_STATE_OFF)
735                 return 0;
736
737         pmu->start_txn(pmu);
738
739         /*
740          * use __event_sched_in() to delay updating tstamp_running
741          * until the transaction is committed. In case of failure
742          * we will keep an unmodified tstamp_running which is a
743          * requirement to get correct timing information
744          */
745         if (__event_sched_in(group_event, cpuctx, ctx)) {
746                 pmu->cancel_txn(pmu);
747                 return -EAGAIN;
748         }
749
750         /*
751          * Schedule in siblings as one group (if any):
752          */
753         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
754                 if (__event_sched_in(event, cpuctx, ctx)) {
755                         partial_group = event;
756                         goto group_error;
757                 }
758         }
759
760         if (!pmu->commit_txn(pmu)) {
761                 /* commit tstamp_running */
762                 group_commit_event_sched_in(group_event, cpuctx, ctx);
763                 return 0;
764         }
765 group_error:
766         /*
767          * Groups can be scheduled in as one unit only, so undo any
768          * partial group before returning:
769          *
770          * use __event_sched_out() to avoid updating tstamp_stopped
771          * because the event never actually ran
772          */
773         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
774                 if (event == partial_group)
775                         break;
776                 __event_sched_out(event, cpuctx, ctx);
777         }
778         __event_sched_out(group_event, cpuctx, ctx);
779
780         pmu->cancel_txn(pmu);
781
782         return -EAGAIN;
783 }
784
785 /*
786  * Work out whether we can put this event group on the CPU now.
787  */
788 static int group_can_go_on(struct perf_event *event,
789                            struct perf_cpu_context *cpuctx,
790                            int can_add_hw)
791 {
792         /*
793          * Groups consisting entirely of software events can always go on.
794          */
795         if (event->group_flags & PERF_GROUP_SOFTWARE)
796                 return 1;
797         /*
798          * If an exclusive group is already on, no other hardware
799          * events can go on.
800          */
801         if (cpuctx->exclusive)
802                 return 0;
803         /*
804          * If this group is exclusive and there are already
805          * events on the CPU, it can't go on.
806          */
807         if (event->attr.exclusive && cpuctx->active_oncpu)
808                 return 0;
809         /*
810          * Otherwise, try to add it if all previous groups were able
811          * to go on.
812          */
813         return can_add_hw;
814 }
815
816 static void add_event_to_ctx(struct perf_event *event,
817                                struct perf_event_context *ctx)
818 {
819         list_add_event(event, ctx);
820         perf_group_attach(event);
821         event->tstamp_enabled = ctx->time;
822         event->tstamp_running = ctx->time;
823         event->tstamp_stopped = ctx->time;
824 }
825
826 /*
827  * Cross CPU call to install and enable a performance event
828  *
829  * Must be called with ctx->mutex held
830  */
831 static void __perf_install_in_context(void *info)
832 {
833         struct perf_event *event = info;
834         struct perf_event_context *ctx = event->ctx;
835         struct perf_event *leader = event->group_leader;
836         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
837         int err;
838
839         /*
840          * If this is a task context, we need to check whether it is
841          * the current task context of this cpu. If not it has been
842          * scheduled out before the smp call arrived.
843          * Or possibly this is the right context but it isn't
844          * on this cpu because it had no events.
845          */
846         if (ctx->task && cpuctx->task_ctx != ctx) {
847                 if (cpuctx->task_ctx || ctx->task != current)
848                         return;
849                 cpuctx->task_ctx = ctx;
850         }
851
852         raw_spin_lock(&ctx->lock);
853         ctx->is_active = 1;
854         update_context_time(ctx);
855
856         add_event_to_ctx(event, ctx);
857
858         if (event->cpu != -1 && event->cpu != smp_processor_id())
859                 goto unlock;
860
861         /*
862          * Don't put the event on if it is disabled or if
863          * it is in a group and the group isn't on.
864          */
865         if (event->state != PERF_EVENT_STATE_INACTIVE ||
866             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
867                 goto unlock;
868
869         /*
870          * An exclusive event can't go on if there are already active
871          * hardware events, and no hardware event can go on if there
872          * is already an exclusive event on.
873          */
874         if (!group_can_go_on(event, cpuctx, 1))
875                 err = -EEXIST;
876         else
877                 err = event_sched_in(event, cpuctx, ctx);
878
879         if (err) {
880                 /*
881                  * This event couldn't go on.  If it is in a group
882                  * then we have to pull the whole group off.
883                  * If the event group is pinned then put it in error state.
884                  */
885                 if (leader != event)
886                         group_sched_out(leader, cpuctx, ctx);
887                 if (leader->attr.pinned) {
888                         update_group_times(leader);
889                         leader->state = PERF_EVENT_STATE_ERROR;
890                 }
891         }
892
893 unlock:
894         raw_spin_unlock(&ctx->lock);
895 }
896
897 /*
898  * Attach a performance event to a context
899  *
900  * First we add the event to the list with the hardware enable bit
901  * in event->hw_config cleared.
902  *
903  * If the event is attached to a task which is on a CPU we use a smp
904  * call to enable it in the task context. The task might have been
905  * scheduled away, but we check this in the smp call again.
906  *
907  * Must be called with ctx->mutex held.
908  */
909 static void
910 perf_install_in_context(struct perf_event_context *ctx,
911                         struct perf_event *event,
912                         int cpu)
913 {
914         struct task_struct *task = ctx->task;
915
916         event->ctx = ctx;
917
918         if (!task) {
919                 /*
920                  * Per cpu events are installed via an smp call and
921                  * the install is always successful.
922                  */
923                 smp_call_function_single(cpu, __perf_install_in_context,
924                                          event, 1);
925                 return;
926         }
927
928 retry:
929         task_oncpu_function_call(task, __perf_install_in_context,
930                                  event);
931
932         raw_spin_lock_irq(&ctx->lock);
933         /*
934          * we need to retry the smp call.
935          */
936         if (ctx->is_active && list_empty(&event->group_entry)) {
937                 raw_spin_unlock_irq(&ctx->lock);
938                 goto retry;
939         }
940
941         /*
942          * The lock prevents that this context is scheduled in so we
943          * can add the event safely, if it the call above did not
944          * succeed.
945          */
946         if (list_empty(&event->group_entry))
947                 add_event_to_ctx(event, ctx);
948         raw_spin_unlock_irq(&ctx->lock);
949 }
950
951 /*
952  * Put a event into inactive state and update time fields.
953  * Enabling the leader of a group effectively enables all
954  * the group members that aren't explicitly disabled, so we
955  * have to update their ->tstamp_enabled also.
956  * Note: this works for group members as well as group leaders
957  * since the non-leader members' sibling_lists will be empty.
958  */
959 static void __perf_event_mark_enabled(struct perf_event *event,
960                                         struct perf_event_context *ctx)
961 {
962         struct perf_event *sub;
963
964         event->state = PERF_EVENT_STATE_INACTIVE;
965         event->tstamp_enabled = ctx->time - event->total_time_enabled;
966         list_for_each_entry(sub, &event->sibling_list, group_entry) {
967                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
968                         sub->tstamp_enabled =
969                                 ctx->time - sub->total_time_enabled;
970                 }
971         }
972 }
973
974 /*
975  * Cross CPU call to enable a performance event
976  */
977 static void __perf_event_enable(void *info)
978 {
979         struct perf_event *event = info;
980         struct perf_event_context *ctx = event->ctx;
981         struct perf_event *leader = event->group_leader;
982         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
983         int err;
984
985         /*
986          * If this is a per-task event, need to check whether this
987          * event's task is the current task on this cpu.
988          */
989         if (ctx->task && cpuctx->task_ctx != ctx) {
990                 if (cpuctx->task_ctx || ctx->task != current)
991                         return;
992                 cpuctx->task_ctx = ctx;
993         }
994
995         raw_spin_lock(&ctx->lock);
996         ctx->is_active = 1;
997         update_context_time(ctx);
998
999         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1000                 goto unlock;
1001         __perf_event_mark_enabled(event, ctx);
1002
1003         if (event->cpu != -1 && event->cpu != smp_processor_id())
1004                 goto unlock;
1005
1006         /*
1007          * If the event is in a group and isn't the group leader,
1008          * then don't put it on unless the group is on.
1009          */
1010         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1011                 goto unlock;
1012
1013         if (!group_can_go_on(event, cpuctx, 1)) {
1014                 err = -EEXIST;
1015         } else {
1016                 if (event == leader)
1017                         err = group_sched_in(event, cpuctx, ctx);
1018                 else
1019                         err = event_sched_in(event, cpuctx, ctx);
1020         }
1021
1022         if (err) {
1023                 /*
1024                  * If this event can't go on and it's part of a
1025                  * group, then the whole group has to come off.
1026                  */
1027                 if (leader != event)
1028                         group_sched_out(leader, cpuctx, ctx);
1029                 if (leader->attr.pinned) {
1030                         update_group_times(leader);
1031                         leader->state = PERF_EVENT_STATE_ERROR;
1032                 }
1033         }
1034
1035 unlock:
1036         raw_spin_unlock(&ctx->lock);
1037 }
1038
1039 /*
1040  * Enable a event.
1041  *
1042  * If event->ctx is a cloned context, callers must make sure that
1043  * every task struct that event->ctx->task could possibly point to
1044  * remains valid.  This condition is satisfied when called through
1045  * perf_event_for_each_child or perf_event_for_each as described
1046  * for perf_event_disable.
1047  */
1048 void perf_event_enable(struct perf_event *event)
1049 {
1050         struct perf_event_context *ctx = event->ctx;
1051         struct task_struct *task = ctx->task;
1052
1053         if (!task) {
1054                 /*
1055                  * Enable the event on the cpu that it's on
1056                  */
1057                 smp_call_function_single(event->cpu, __perf_event_enable,
1058                                          event, 1);
1059                 return;
1060         }
1061
1062         raw_spin_lock_irq(&ctx->lock);
1063         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1064                 goto out;
1065
1066         /*
1067          * If the event is in error state, clear that first.
1068          * That way, if we see the event in error state below, we
1069          * know that it has gone back into error state, as distinct
1070          * from the task having been scheduled away before the
1071          * cross-call arrived.
1072          */
1073         if (event->state == PERF_EVENT_STATE_ERROR)
1074                 event->state = PERF_EVENT_STATE_OFF;
1075
1076 retry:
1077         raw_spin_unlock_irq(&ctx->lock);
1078         task_oncpu_function_call(task, __perf_event_enable, event);
1079
1080         raw_spin_lock_irq(&ctx->lock);
1081
1082         /*
1083          * If the context is active and the event is still off,
1084          * we need to retry the cross-call.
1085          */
1086         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1087                 goto retry;
1088
1089         /*
1090          * Since we have the lock this context can't be scheduled
1091          * in, so we can change the state safely.
1092          */
1093         if (event->state == PERF_EVENT_STATE_OFF)
1094                 __perf_event_mark_enabled(event, ctx);
1095
1096 out:
1097         raw_spin_unlock_irq(&ctx->lock);
1098 }
1099
1100 static int perf_event_refresh(struct perf_event *event, int refresh)
1101 {
1102         /*
1103          * not supported on inherited events
1104          */
1105         if (event->attr.inherit)
1106                 return -EINVAL;
1107
1108         atomic_add(refresh, &event->event_limit);
1109         perf_event_enable(event);
1110
1111         return 0;
1112 }
1113
1114 enum event_type_t {
1115         EVENT_FLEXIBLE = 0x1,
1116         EVENT_PINNED = 0x2,
1117         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1118 };
1119
1120 static void ctx_sched_out(struct perf_event_context *ctx,
1121                           struct perf_cpu_context *cpuctx,
1122                           enum event_type_t event_type)
1123 {
1124         struct perf_event *event;
1125
1126         raw_spin_lock(&ctx->lock);
1127         perf_pmu_disable(ctx->pmu);
1128         ctx->is_active = 0;
1129         if (likely(!ctx->nr_events))
1130                 goto out;
1131         update_context_time(ctx);
1132
1133         if (!ctx->nr_active)
1134                 goto out;
1135
1136         if (event_type & EVENT_PINNED) {
1137                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1138                         group_sched_out(event, cpuctx, ctx);
1139         }
1140
1141         if (event_type & EVENT_FLEXIBLE) {
1142                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1143                         group_sched_out(event, cpuctx, ctx);
1144         }
1145 out:
1146         perf_pmu_enable(ctx->pmu);
1147         raw_spin_unlock(&ctx->lock);
1148 }
1149
1150 /*
1151  * Test whether two contexts are equivalent, i.e. whether they
1152  * have both been cloned from the same version of the same context
1153  * and they both have the same number of enabled events.
1154  * If the number of enabled events is the same, then the set
1155  * of enabled events should be the same, because these are both
1156  * inherited contexts, therefore we can't access individual events
1157  * in them directly with an fd; we can only enable/disable all
1158  * events via prctl, or enable/disable all events in a family
1159  * via ioctl, which will have the same effect on both contexts.
1160  */
1161 static int context_equiv(struct perf_event_context *ctx1,
1162                          struct perf_event_context *ctx2)
1163 {
1164         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1165                 && ctx1->parent_gen == ctx2->parent_gen
1166                 && !ctx1->pin_count && !ctx2->pin_count;
1167 }
1168
1169 static void __perf_event_sync_stat(struct perf_event *event,
1170                                      struct perf_event *next_event)
1171 {
1172         u64 value;
1173
1174         if (!event->attr.inherit_stat)
1175                 return;
1176
1177         /*
1178          * Update the event value, we cannot use perf_event_read()
1179          * because we're in the middle of a context switch and have IRQs
1180          * disabled, which upsets smp_call_function_single(), however
1181          * we know the event must be on the current CPU, therefore we
1182          * don't need to use it.
1183          */
1184         switch (event->state) {
1185         case PERF_EVENT_STATE_ACTIVE:
1186                 event->pmu->read(event);
1187                 /* fall-through */
1188
1189         case PERF_EVENT_STATE_INACTIVE:
1190                 update_event_times(event);
1191                 break;
1192
1193         default:
1194                 break;
1195         }
1196
1197         /*
1198          * In order to keep per-task stats reliable we need to flip the event
1199          * values when we flip the contexts.
1200          */
1201         value = local64_read(&next_event->count);
1202         value = local64_xchg(&event->count, value);
1203         local64_set(&next_event->count, value);
1204
1205         swap(event->total_time_enabled, next_event->total_time_enabled);
1206         swap(event->total_time_running, next_event->total_time_running);
1207
1208         /*
1209          * Since we swizzled the values, update the user visible data too.
1210          */
1211         perf_event_update_userpage(event);
1212         perf_event_update_userpage(next_event);
1213 }
1214
1215 #define list_next_entry(pos, member) \
1216         list_entry(pos->member.next, typeof(*pos), member)
1217
1218 static void perf_event_sync_stat(struct perf_event_context *ctx,
1219                                    struct perf_event_context *next_ctx)
1220 {
1221         struct perf_event *event, *next_event;
1222
1223         if (!ctx->nr_stat)
1224                 return;
1225
1226         update_context_time(ctx);
1227
1228         event = list_first_entry(&ctx->event_list,
1229                                    struct perf_event, event_entry);
1230
1231         next_event = list_first_entry(&next_ctx->event_list,
1232                                         struct perf_event, event_entry);
1233
1234         while (&event->event_entry != &ctx->event_list &&
1235                &next_event->event_entry != &next_ctx->event_list) {
1236
1237                 __perf_event_sync_stat(event, next_event);
1238
1239                 event = list_next_entry(event, event_entry);
1240                 next_event = list_next_entry(next_event, event_entry);
1241         }
1242 }
1243
1244 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1245                                   struct task_struct *next)
1246 {
1247         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1248         struct perf_event_context *next_ctx;
1249         struct perf_event_context *parent;
1250         struct perf_cpu_context *cpuctx;
1251         int do_switch = 1;
1252
1253         if (likely(!ctx))
1254                 return;
1255
1256         cpuctx = __get_cpu_context(ctx);
1257         if (!cpuctx->task_ctx)
1258                 return;
1259
1260         rcu_read_lock();
1261         parent = rcu_dereference(ctx->parent_ctx);
1262         next_ctx = next->perf_event_ctxp[ctxn];
1263         if (parent && next_ctx &&
1264             rcu_dereference(next_ctx->parent_ctx) == parent) {
1265                 /*
1266                  * Looks like the two contexts are clones, so we might be
1267                  * able to optimize the context switch.  We lock both
1268                  * contexts and check that they are clones under the
1269                  * lock (including re-checking that neither has been
1270                  * uncloned in the meantime).  It doesn't matter which
1271                  * order we take the locks because no other cpu could
1272                  * be trying to lock both of these tasks.
1273                  */
1274                 raw_spin_lock(&ctx->lock);
1275                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1276                 if (context_equiv(ctx, next_ctx)) {
1277                         /*
1278                          * XXX do we need a memory barrier of sorts
1279                          * wrt to rcu_dereference() of perf_event_ctxp
1280                          */
1281                         task->perf_event_ctxp[ctxn] = next_ctx;
1282                         next->perf_event_ctxp[ctxn] = ctx;
1283                         ctx->task = next;
1284                         next_ctx->task = task;
1285                         do_switch = 0;
1286
1287                         perf_event_sync_stat(ctx, next_ctx);
1288                 }
1289                 raw_spin_unlock(&next_ctx->lock);
1290                 raw_spin_unlock(&ctx->lock);
1291         }
1292         rcu_read_unlock();
1293
1294         if (do_switch) {
1295                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1296                 cpuctx->task_ctx = NULL;
1297         }
1298 }
1299
1300 #define for_each_task_context_nr(ctxn)                                  \
1301         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1302
1303 /*
1304  * Called from scheduler to remove the events of the current task,
1305  * with interrupts disabled.
1306  *
1307  * We stop each event and update the event value in event->count.
1308  *
1309  * This does not protect us against NMI, but disable()
1310  * sets the disabled bit in the control field of event _before_
1311  * accessing the event control register. If a NMI hits, then it will
1312  * not restart the event.
1313  */
1314 void __perf_event_task_sched_out(struct task_struct *task,
1315                                  struct task_struct *next)
1316 {
1317         int ctxn;
1318
1319         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1320
1321         for_each_task_context_nr(ctxn)
1322                 perf_event_context_sched_out(task, ctxn, next);
1323 }
1324
1325 static void task_ctx_sched_out(struct perf_event_context *ctx,
1326                                enum event_type_t event_type)
1327 {
1328         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1329
1330         if (!cpuctx->task_ctx)
1331                 return;
1332
1333         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1334                 return;
1335
1336         ctx_sched_out(ctx, cpuctx, event_type);
1337         cpuctx->task_ctx = NULL;
1338 }
1339
1340 /*
1341  * Called with IRQs disabled
1342  */
1343 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1344                               enum event_type_t event_type)
1345 {
1346         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1347 }
1348
1349 static void
1350 ctx_pinned_sched_in(struct perf_event_context *ctx,
1351                     struct perf_cpu_context *cpuctx)
1352 {
1353         struct perf_event *event;
1354
1355         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1356                 if (event->state <= PERF_EVENT_STATE_OFF)
1357                         continue;
1358                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1359                         continue;
1360
1361                 if (group_can_go_on(event, cpuctx, 1))
1362                         group_sched_in(event, cpuctx, ctx);
1363
1364                 /*
1365                  * If this pinned group hasn't been scheduled,
1366                  * put it in error state.
1367                  */
1368                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1369                         update_group_times(event);
1370                         event->state = PERF_EVENT_STATE_ERROR;
1371                 }
1372         }
1373 }
1374
1375 static void
1376 ctx_flexible_sched_in(struct perf_event_context *ctx,
1377                       struct perf_cpu_context *cpuctx)
1378 {
1379         struct perf_event *event;
1380         int can_add_hw = 1;
1381
1382         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1383                 /* Ignore events in OFF or ERROR state */
1384                 if (event->state <= PERF_EVENT_STATE_OFF)
1385                         continue;
1386                 /*
1387                  * Listen to the 'cpu' scheduling filter constraint
1388                  * of events:
1389                  */
1390                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1391                         continue;
1392
1393                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1394                         if (group_sched_in(event, cpuctx, ctx))
1395                                 can_add_hw = 0;
1396                 }
1397         }
1398 }
1399
1400 static void
1401 ctx_sched_in(struct perf_event_context *ctx,
1402              struct perf_cpu_context *cpuctx,
1403              enum event_type_t event_type)
1404 {
1405         raw_spin_lock(&ctx->lock);
1406         ctx->is_active = 1;
1407         if (likely(!ctx->nr_events))
1408                 goto out;
1409
1410         ctx->timestamp = perf_clock();
1411
1412         /*
1413          * First go through the list and put on any pinned groups
1414          * in order to give them the best chance of going on.
1415          */
1416         if (event_type & EVENT_PINNED)
1417                 ctx_pinned_sched_in(ctx, cpuctx);
1418
1419         /* Then walk through the lower prio flexible groups */
1420         if (event_type & EVENT_FLEXIBLE)
1421                 ctx_flexible_sched_in(ctx, cpuctx);
1422
1423 out:
1424         raw_spin_unlock(&ctx->lock);
1425 }
1426
1427 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1428                              enum event_type_t event_type)
1429 {
1430         struct perf_event_context *ctx = &cpuctx->ctx;
1431
1432         ctx_sched_in(ctx, cpuctx, event_type);
1433 }
1434
1435 static void task_ctx_sched_in(struct perf_event_context *ctx,
1436                               enum event_type_t event_type)
1437 {
1438         struct perf_cpu_context *cpuctx;
1439
1440         cpuctx = __get_cpu_context(ctx);
1441         if (cpuctx->task_ctx == ctx)
1442                 return;
1443
1444         ctx_sched_in(ctx, cpuctx, event_type);
1445         cpuctx->task_ctx = ctx;
1446 }
1447
1448 void perf_event_context_sched_in(struct perf_event_context *ctx)
1449 {
1450         struct perf_cpu_context *cpuctx;
1451
1452         cpuctx = __get_cpu_context(ctx);
1453         if (cpuctx->task_ctx == ctx)
1454                 return;
1455
1456         perf_pmu_disable(ctx->pmu);
1457         /*
1458          * We want to keep the following priority order:
1459          * cpu pinned (that don't need to move), task pinned,
1460          * cpu flexible, task flexible.
1461          */
1462         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1463
1464         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1465         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1466         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1467
1468         cpuctx->task_ctx = ctx;
1469
1470         /*
1471          * Since these rotations are per-cpu, we need to ensure the
1472          * cpu-context we got scheduled on is actually rotating.
1473          */
1474         perf_pmu_rotate_start(ctx->pmu);
1475         perf_pmu_enable(ctx->pmu);
1476 }
1477
1478 /*
1479  * Called from scheduler to add the events of the current task
1480  * with interrupts disabled.
1481  *
1482  * We restore the event value and then enable it.
1483  *
1484  * This does not protect us against NMI, but enable()
1485  * sets the enabled bit in the control field of event _before_
1486  * accessing the event control register. If a NMI hits, then it will
1487  * keep the event running.
1488  */
1489 void __perf_event_task_sched_in(struct task_struct *task)
1490 {
1491         struct perf_event_context *ctx;
1492         int ctxn;
1493
1494         for_each_task_context_nr(ctxn) {
1495                 ctx = task->perf_event_ctxp[ctxn];
1496                 if (likely(!ctx))
1497                         continue;
1498
1499                 perf_event_context_sched_in(ctx);
1500         }
1501 }
1502
1503 #define MAX_INTERRUPTS (~0ULL)
1504
1505 static void perf_log_throttle(struct perf_event *event, int enable);
1506
1507 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1508 {
1509         u64 frequency = event->attr.sample_freq;
1510         u64 sec = NSEC_PER_SEC;
1511         u64 divisor, dividend;
1512
1513         int count_fls, nsec_fls, frequency_fls, sec_fls;
1514
1515         count_fls = fls64(count);
1516         nsec_fls = fls64(nsec);
1517         frequency_fls = fls64(frequency);
1518         sec_fls = 30;
1519
1520         /*
1521          * We got @count in @nsec, with a target of sample_freq HZ
1522          * the target period becomes:
1523          *
1524          *             @count * 10^9
1525          * period = -------------------
1526          *          @nsec * sample_freq
1527          *
1528          */
1529
1530         /*
1531          * Reduce accuracy by one bit such that @a and @b converge
1532          * to a similar magnitude.
1533          */
1534 #define REDUCE_FLS(a, b)                \
1535 do {                                    \
1536         if (a##_fls > b##_fls) {        \
1537                 a >>= 1;                \
1538                 a##_fls--;              \
1539         } else {                        \
1540                 b >>= 1;                \
1541                 b##_fls--;              \
1542         }                               \
1543 } while (0)
1544
1545         /*
1546          * Reduce accuracy until either term fits in a u64, then proceed with
1547          * the other, so that finally we can do a u64/u64 division.
1548          */
1549         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1550                 REDUCE_FLS(nsec, frequency);
1551                 REDUCE_FLS(sec, count);
1552         }
1553
1554         if (count_fls + sec_fls > 64) {
1555                 divisor = nsec * frequency;
1556
1557                 while (count_fls + sec_fls > 64) {
1558                         REDUCE_FLS(count, sec);
1559                         divisor >>= 1;
1560                 }
1561
1562                 dividend = count * sec;
1563         } else {
1564                 dividend = count * sec;
1565
1566                 while (nsec_fls + frequency_fls > 64) {
1567                         REDUCE_FLS(nsec, frequency);
1568                         dividend >>= 1;
1569                 }
1570
1571                 divisor = nsec * frequency;
1572         }
1573
1574         if (!divisor)
1575                 return dividend;
1576
1577         return div64_u64(dividend, divisor);
1578 }
1579
1580 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1581 {
1582         struct hw_perf_event *hwc = &event->hw;
1583         s64 period, sample_period;
1584         s64 delta;
1585
1586         period = perf_calculate_period(event, nsec, count);
1587
1588         delta = (s64)(period - hwc->sample_period);
1589         delta = (delta + 7) / 8; /* low pass filter */
1590
1591         sample_period = hwc->sample_period + delta;
1592
1593         if (!sample_period)
1594                 sample_period = 1;
1595
1596         hwc->sample_period = sample_period;
1597
1598         if (local64_read(&hwc->period_left) > 8*sample_period) {
1599                 event->pmu->stop(event, PERF_EF_UPDATE);
1600                 local64_set(&hwc->period_left, 0);
1601                 event->pmu->start(event, PERF_EF_RELOAD);
1602         }
1603 }
1604
1605 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1606 {
1607         struct perf_event *event;
1608         struct hw_perf_event *hwc;
1609         u64 interrupts, now;
1610         s64 delta;
1611
1612         raw_spin_lock(&ctx->lock);
1613         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1614                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1615                         continue;
1616
1617                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1618                         continue;
1619
1620                 hwc = &event->hw;
1621
1622                 interrupts = hwc->interrupts;
1623                 hwc->interrupts = 0;
1624
1625                 /*
1626                  * unthrottle events on the tick
1627                  */
1628                 if (interrupts == MAX_INTERRUPTS) {
1629                         perf_log_throttle(event, 1);
1630                         event->pmu->start(event, 0);
1631                 }
1632
1633                 if (!event->attr.freq || !event->attr.sample_freq)
1634                         continue;
1635
1636                 event->pmu->read(event);
1637                 now = local64_read(&event->count);
1638                 delta = now - hwc->freq_count_stamp;
1639                 hwc->freq_count_stamp = now;
1640
1641                 if (delta > 0)
1642                         perf_adjust_period(event, period, delta);
1643         }
1644         raw_spin_unlock(&ctx->lock);
1645 }
1646
1647 /*
1648  * Round-robin a context's events:
1649  */
1650 static void rotate_ctx(struct perf_event_context *ctx)
1651 {
1652         raw_spin_lock(&ctx->lock);
1653
1654         /* Rotate the first entry last of non-pinned groups */
1655         list_rotate_left(&ctx->flexible_groups);
1656
1657         raw_spin_unlock(&ctx->lock);
1658 }
1659
1660 /*
1661  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1662  * because they're strictly cpu affine and rotate_start is called with IRQs
1663  * disabled, while rotate_context is called from IRQ context.
1664  */
1665 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1666 {
1667         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1668         struct perf_event_context *ctx = NULL;
1669         int rotate = 0, remove = 1;
1670
1671         if (cpuctx->ctx.nr_events) {
1672                 remove = 0;
1673                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1674                         rotate = 1;
1675         }
1676
1677         ctx = cpuctx->task_ctx;
1678         if (ctx && ctx->nr_events) {
1679                 remove = 0;
1680                 if (ctx->nr_events != ctx->nr_active)
1681                         rotate = 1;
1682         }
1683
1684         perf_pmu_disable(cpuctx->ctx.pmu);
1685         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1686         if (ctx)
1687                 perf_ctx_adjust_freq(ctx, interval);
1688
1689         if (!rotate)
1690                 goto done;
1691
1692         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1693         if (ctx)
1694                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1695
1696         rotate_ctx(&cpuctx->ctx);
1697         if (ctx)
1698                 rotate_ctx(ctx);
1699
1700         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1701         if (ctx)
1702                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1703
1704 done:
1705         if (remove)
1706                 list_del_init(&cpuctx->rotation_list);
1707
1708         perf_pmu_enable(cpuctx->ctx.pmu);
1709 }
1710
1711 void perf_event_task_tick(void)
1712 {
1713         struct list_head *head = &__get_cpu_var(rotation_list);
1714         struct perf_cpu_context *cpuctx, *tmp;
1715
1716         WARN_ON(!irqs_disabled());
1717
1718         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1719                 if (cpuctx->jiffies_interval == 1 ||
1720                                 !(jiffies % cpuctx->jiffies_interval))
1721                         perf_rotate_context(cpuctx);
1722         }
1723 }
1724
1725 static int event_enable_on_exec(struct perf_event *event,
1726                                 struct perf_event_context *ctx)
1727 {
1728         if (!event->attr.enable_on_exec)
1729                 return 0;
1730
1731         event->attr.enable_on_exec = 0;
1732         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1733                 return 0;
1734
1735         __perf_event_mark_enabled(event, ctx);
1736
1737         return 1;
1738 }
1739
1740 /*
1741  * Enable all of a task's events that have been marked enable-on-exec.
1742  * This expects task == current.
1743  */
1744 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1745 {
1746         struct perf_event *event;
1747         unsigned long flags;
1748         int enabled = 0;
1749         int ret;
1750
1751         local_irq_save(flags);
1752         if (!ctx || !ctx->nr_events)
1753                 goto out;
1754
1755         task_ctx_sched_out(ctx, EVENT_ALL);
1756
1757         raw_spin_lock(&ctx->lock);
1758
1759         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1760                 ret = event_enable_on_exec(event, ctx);
1761                 if (ret)
1762                         enabled = 1;
1763         }
1764
1765         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1766                 ret = event_enable_on_exec(event, ctx);
1767                 if (ret)
1768                         enabled = 1;
1769         }
1770
1771         /*
1772          * Unclone this context if we enabled any event.
1773          */
1774         if (enabled)
1775                 unclone_ctx(ctx);
1776
1777         raw_spin_unlock(&ctx->lock);
1778
1779         perf_event_context_sched_in(ctx);
1780 out:
1781         local_irq_restore(flags);
1782 }
1783
1784 /*
1785  * Cross CPU call to read the hardware event
1786  */
1787 static void __perf_event_read(void *info)
1788 {
1789         struct perf_event *event = info;
1790         struct perf_event_context *ctx = event->ctx;
1791         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1792
1793         /*
1794          * If this is a task context, we need to check whether it is
1795          * the current task context of this cpu.  If not it has been
1796          * scheduled out before the smp call arrived.  In that case
1797          * event->count would have been updated to a recent sample
1798          * when the event was scheduled out.
1799          */
1800         if (ctx->task && cpuctx->task_ctx != ctx)
1801                 return;
1802
1803         raw_spin_lock(&ctx->lock);
1804         update_context_time(ctx);
1805         update_event_times(event);
1806         raw_spin_unlock(&ctx->lock);
1807
1808         event->pmu->read(event);
1809 }
1810
1811 static inline u64 perf_event_count(struct perf_event *event)
1812 {
1813         return local64_read(&event->count) + atomic64_read(&event->child_count);
1814 }
1815
1816 static u64 perf_event_read(struct perf_event *event)
1817 {
1818         /*
1819          * If event is enabled and currently active on a CPU, update the
1820          * value in the event structure:
1821          */
1822         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1823                 smp_call_function_single(event->oncpu,
1824                                          __perf_event_read, event, 1);
1825         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1826                 struct perf_event_context *ctx = event->ctx;
1827                 unsigned long flags;
1828
1829                 raw_spin_lock_irqsave(&ctx->lock, flags);
1830                 /*
1831                  * may read while context is not active
1832                  * (e.g., thread is blocked), in that case
1833                  * we cannot update context time
1834                  */
1835                 if (ctx->is_active)
1836                         update_context_time(ctx);
1837                 update_event_times(event);
1838                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1839         }
1840
1841         return perf_event_count(event);
1842 }
1843
1844 /*
1845  * Callchain support
1846  */
1847
1848 struct callchain_cpus_entries {
1849         struct rcu_head                 rcu_head;
1850         struct perf_callchain_entry     *cpu_entries[0];
1851 };
1852
1853 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1854 static atomic_t nr_callchain_events;
1855 static DEFINE_MUTEX(callchain_mutex);
1856 struct callchain_cpus_entries *callchain_cpus_entries;
1857
1858
1859 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1860                                   struct pt_regs *regs)
1861 {
1862 }
1863
1864 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1865                                 struct pt_regs *regs)
1866 {
1867 }
1868
1869 static void release_callchain_buffers_rcu(struct rcu_head *head)
1870 {
1871         struct callchain_cpus_entries *entries;
1872         int cpu;
1873
1874         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1875
1876         for_each_possible_cpu(cpu)
1877                 kfree(entries->cpu_entries[cpu]);
1878
1879         kfree(entries);
1880 }
1881
1882 static void release_callchain_buffers(void)
1883 {
1884         struct callchain_cpus_entries *entries;
1885
1886         entries = callchain_cpus_entries;
1887         rcu_assign_pointer(callchain_cpus_entries, NULL);
1888         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1889 }
1890
1891 static int alloc_callchain_buffers(void)
1892 {
1893         int cpu;
1894         int size;
1895         struct callchain_cpus_entries *entries;
1896
1897         /*
1898          * We can't use the percpu allocation API for data that can be
1899          * accessed from NMI. Use a temporary manual per cpu allocation
1900          * until that gets sorted out.
1901          */
1902         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1903                 num_possible_cpus();
1904
1905         entries = kzalloc(size, GFP_KERNEL);
1906         if (!entries)
1907                 return -ENOMEM;
1908
1909         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1910
1911         for_each_possible_cpu(cpu) {
1912                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1913                                                          cpu_to_node(cpu));
1914                 if (!entries->cpu_entries[cpu])
1915                         goto fail;
1916         }
1917
1918         rcu_assign_pointer(callchain_cpus_entries, entries);
1919
1920         return 0;
1921
1922 fail:
1923         for_each_possible_cpu(cpu)
1924                 kfree(entries->cpu_entries[cpu]);
1925         kfree(entries);
1926
1927         return -ENOMEM;
1928 }
1929
1930 static int get_callchain_buffers(void)
1931 {
1932         int err = 0;
1933         int count;
1934
1935         mutex_lock(&callchain_mutex);
1936
1937         count = atomic_inc_return(&nr_callchain_events);
1938         if (WARN_ON_ONCE(count < 1)) {
1939                 err = -EINVAL;
1940                 goto exit;
1941         }
1942
1943         if (count > 1) {
1944                 /* If the allocation failed, give up */
1945                 if (!callchain_cpus_entries)
1946                         err = -ENOMEM;
1947                 goto exit;
1948         }
1949
1950         err = alloc_callchain_buffers();
1951         if (err)
1952                 release_callchain_buffers();
1953 exit:
1954         mutex_unlock(&callchain_mutex);
1955
1956         return err;
1957 }
1958
1959 static void put_callchain_buffers(void)
1960 {
1961         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1962                 release_callchain_buffers();
1963                 mutex_unlock(&callchain_mutex);
1964         }
1965 }
1966
1967 static int get_recursion_context(int *recursion)
1968 {
1969         int rctx;
1970
1971         if (in_nmi())
1972                 rctx = 3;
1973         else if (in_irq())
1974                 rctx = 2;
1975         else if (in_softirq())
1976                 rctx = 1;
1977         else
1978                 rctx = 0;
1979
1980         if (recursion[rctx])
1981                 return -1;
1982
1983         recursion[rctx]++;
1984         barrier();
1985
1986         return rctx;
1987 }
1988
1989 static inline void put_recursion_context(int *recursion, int rctx)
1990 {
1991         barrier();
1992         recursion[rctx]--;
1993 }
1994
1995 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1996 {
1997         int cpu;
1998         struct callchain_cpus_entries *entries;
1999
2000         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2001         if (*rctx == -1)
2002                 return NULL;
2003
2004         entries = rcu_dereference(callchain_cpus_entries);
2005         if (!entries)
2006                 return NULL;
2007
2008         cpu = smp_processor_id();
2009
2010         return &entries->cpu_entries[cpu][*rctx];
2011 }
2012
2013 static void
2014 put_callchain_entry(int rctx)
2015 {
2016         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2017 }
2018
2019 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2020 {
2021         int rctx;
2022         struct perf_callchain_entry *entry;
2023
2024
2025         entry = get_callchain_entry(&rctx);
2026         if (rctx == -1)
2027                 return NULL;
2028
2029         if (!entry)
2030                 goto exit_put;
2031
2032         entry->nr = 0;
2033
2034         if (!user_mode(regs)) {
2035                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2036                 perf_callchain_kernel(entry, regs);
2037                 if (current->mm)
2038                         regs = task_pt_regs(current);
2039                 else
2040                         regs = NULL;
2041         }
2042
2043         if (regs) {
2044                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2045                 perf_callchain_user(entry, regs);
2046         }
2047
2048 exit_put:
2049         put_callchain_entry(rctx);
2050
2051         return entry;
2052 }
2053
2054 /*
2055  * Initialize the perf_event context in a task_struct:
2056  */
2057 static void __perf_event_init_context(struct perf_event_context *ctx)
2058 {
2059         raw_spin_lock_init(&ctx->lock);
2060         mutex_init(&ctx->mutex);
2061         INIT_LIST_HEAD(&ctx->pinned_groups);
2062         INIT_LIST_HEAD(&ctx->flexible_groups);
2063         INIT_LIST_HEAD(&ctx->event_list);
2064         atomic_set(&ctx->refcount, 1);
2065 }
2066
2067 static struct perf_event_context *
2068 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2069 {
2070         struct perf_event_context *ctx;
2071
2072         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2073         if (!ctx)
2074                 return NULL;
2075
2076         __perf_event_init_context(ctx);
2077         if (task) {
2078                 ctx->task = task;
2079                 get_task_struct(task);
2080         }
2081         ctx->pmu = pmu;
2082
2083         return ctx;
2084 }
2085
2086 static struct task_struct *
2087 find_lively_task_by_vpid(pid_t vpid)
2088 {
2089         struct task_struct *task;
2090         int err;
2091
2092         rcu_read_lock();
2093         if (!vpid)
2094                 task = current;
2095         else
2096                 task = find_task_by_vpid(vpid);
2097         if (task)
2098                 get_task_struct(task);
2099         rcu_read_unlock();
2100
2101         if (!task)
2102                 return ERR_PTR(-ESRCH);
2103
2104         /*
2105          * Can't attach events to a dying task.
2106          */
2107         err = -ESRCH;
2108         if (task->flags & PF_EXITING)
2109                 goto errout;
2110
2111         /* Reuse ptrace permission checks for now. */
2112         err = -EACCES;
2113         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2114                 goto errout;
2115
2116         return task;
2117 errout:
2118         put_task_struct(task);
2119         return ERR_PTR(err);
2120
2121 }
2122
2123 static struct perf_event_context *
2124 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2125 {
2126         struct perf_event_context *ctx;
2127         struct perf_cpu_context *cpuctx;
2128         unsigned long flags;
2129         int ctxn, err;
2130
2131         if (!task && cpu != -1) {
2132                 /* Must be root to operate on a CPU event: */
2133                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2134                         return ERR_PTR(-EACCES);
2135
2136                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2137                         return ERR_PTR(-EINVAL);
2138
2139                 /*
2140                  * We could be clever and allow to attach a event to an
2141                  * offline CPU and activate it when the CPU comes up, but
2142                  * that's for later.
2143                  */
2144                 if (!cpu_online(cpu))
2145                         return ERR_PTR(-ENODEV);
2146
2147                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2148                 ctx = &cpuctx->ctx;
2149                 get_ctx(ctx);
2150
2151                 return ctx;
2152         }
2153
2154         err = -EINVAL;
2155         ctxn = pmu->task_ctx_nr;
2156         if (ctxn < 0)
2157                 goto errout;
2158
2159 retry:
2160         ctx = perf_lock_task_context(task, ctxn, &flags);
2161         if (ctx) {
2162                 unclone_ctx(ctx);
2163                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2164         }
2165
2166         if (!ctx) {
2167                 ctx = alloc_perf_context(pmu, task);
2168                 err = -ENOMEM;
2169                 if (!ctx)
2170                         goto errout;
2171
2172                 get_ctx(ctx);
2173
2174                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2175                         /*
2176                          * We raced with some other task; use
2177                          * the context they set.
2178                          */
2179                         put_task_struct(task);
2180                         kfree(ctx);
2181                         goto retry;
2182                 }
2183         }
2184
2185         return ctx;
2186
2187 errout:
2188         return ERR_PTR(err);
2189 }
2190
2191 static void perf_event_free_filter(struct perf_event *event);
2192
2193 static void free_event_rcu(struct rcu_head *head)
2194 {
2195         struct perf_event *event;
2196
2197         event = container_of(head, struct perf_event, rcu_head);
2198         if (event->ns)
2199                 put_pid_ns(event->ns);
2200         perf_event_free_filter(event);
2201         kfree(event);
2202 }
2203
2204 static void perf_buffer_put(struct perf_buffer *buffer);
2205
2206 static void free_event(struct perf_event *event)
2207 {
2208         irq_work_sync(&event->pending);
2209
2210         if (!event->parent) {
2211                 if (event->attach_state & PERF_ATTACH_TASK)
2212                         jump_label_dec(&perf_task_events);
2213                 if (event->attr.mmap || event->attr.mmap_data)
2214                         atomic_dec(&nr_mmap_events);
2215                 if (event->attr.comm)
2216                         atomic_dec(&nr_comm_events);
2217                 if (event->attr.task)
2218                         atomic_dec(&nr_task_events);
2219                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2220                         put_callchain_buffers();
2221         }
2222
2223         if (event->buffer) {
2224                 perf_buffer_put(event->buffer);
2225                 event->buffer = NULL;
2226         }
2227
2228         if (event->destroy)
2229                 event->destroy(event);
2230
2231         if (event->ctx)
2232                 put_ctx(event->ctx);
2233
2234         call_rcu(&event->rcu_head, free_event_rcu);
2235 }
2236
2237 int perf_event_release_kernel(struct perf_event *event)
2238 {
2239         struct perf_event_context *ctx = event->ctx;
2240
2241         /*
2242          * Remove from the PMU, can't get re-enabled since we got
2243          * here because the last ref went.
2244          */
2245         perf_event_disable(event);
2246
2247         WARN_ON_ONCE(ctx->parent_ctx);
2248         /*
2249          * There are two ways this annotation is useful:
2250          *
2251          *  1) there is a lock recursion from perf_event_exit_task
2252          *     see the comment there.
2253          *
2254          *  2) there is a lock-inversion with mmap_sem through
2255          *     perf_event_read_group(), which takes faults while
2256          *     holding ctx->mutex, however this is called after
2257          *     the last filedesc died, so there is no possibility
2258          *     to trigger the AB-BA case.
2259          */
2260         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2261         raw_spin_lock_irq(&ctx->lock);
2262         perf_group_detach(event);
2263         list_del_event(event, ctx);
2264         raw_spin_unlock_irq(&ctx->lock);
2265         mutex_unlock(&ctx->mutex);
2266
2267         mutex_lock(&event->owner->perf_event_mutex);
2268         list_del_init(&event->owner_entry);
2269         mutex_unlock(&event->owner->perf_event_mutex);
2270         put_task_struct(event->owner);
2271
2272         free_event(event);
2273
2274         return 0;
2275 }
2276 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2277
2278 /*
2279  * Called when the last reference to the file is gone.
2280  */
2281 static int perf_release(struct inode *inode, struct file *file)
2282 {
2283         struct perf_event *event = file->private_data;
2284
2285         file->private_data = NULL;
2286
2287         return perf_event_release_kernel(event);
2288 }
2289
2290 static int perf_event_read_size(struct perf_event *event)
2291 {
2292         int entry = sizeof(u64); /* value */
2293         int size = 0;
2294         int nr = 1;
2295
2296         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2297                 size += sizeof(u64);
2298
2299         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2300                 size += sizeof(u64);
2301
2302         if (event->attr.read_format & PERF_FORMAT_ID)
2303                 entry += sizeof(u64);
2304
2305         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2306                 nr += event->group_leader->nr_siblings;
2307                 size += sizeof(u64);
2308         }
2309
2310         size += entry * nr;
2311
2312         return size;
2313 }
2314
2315 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2316 {
2317         struct perf_event *child;
2318         u64 total = 0;
2319
2320         *enabled = 0;
2321         *running = 0;
2322
2323         mutex_lock(&event->child_mutex);
2324         total += perf_event_read(event);
2325         *enabled += event->total_time_enabled +
2326                         atomic64_read(&event->child_total_time_enabled);
2327         *running += event->total_time_running +
2328                         atomic64_read(&event->child_total_time_running);
2329
2330         list_for_each_entry(child, &event->child_list, child_list) {
2331                 total += perf_event_read(child);
2332                 *enabled += child->total_time_enabled;
2333                 *running += child->total_time_running;
2334         }
2335         mutex_unlock(&event->child_mutex);
2336
2337         return total;
2338 }
2339 EXPORT_SYMBOL_GPL(perf_event_read_value);
2340
2341 static int perf_event_read_group(struct perf_event *event,
2342                                    u64 read_format, char __user *buf)
2343 {
2344         struct perf_event *leader = event->group_leader, *sub;
2345         int n = 0, size = 0, ret = -EFAULT;
2346         struct perf_event_context *ctx = leader->ctx;
2347         u64 values[5];
2348         u64 count, enabled, running;
2349
2350         mutex_lock(&ctx->mutex);
2351         count = perf_event_read_value(leader, &enabled, &running);
2352
2353         values[n++] = 1 + leader->nr_siblings;
2354         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2355                 values[n++] = enabled;
2356         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2357                 values[n++] = running;
2358         values[n++] = count;
2359         if (read_format & PERF_FORMAT_ID)
2360                 values[n++] = primary_event_id(leader);
2361
2362         size = n * sizeof(u64);
2363
2364         if (copy_to_user(buf, values, size))
2365                 goto unlock;
2366
2367         ret = size;
2368
2369         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2370                 n = 0;
2371
2372                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2373                 if (read_format & PERF_FORMAT_ID)
2374                         values[n++] = primary_event_id(sub);
2375
2376                 size = n * sizeof(u64);
2377
2378                 if (copy_to_user(buf + ret, values, size)) {
2379                         ret = -EFAULT;
2380                         goto unlock;
2381                 }
2382
2383                 ret += size;
2384         }
2385 unlock:
2386         mutex_unlock(&ctx->mutex);
2387
2388         return ret;
2389 }
2390
2391 static int perf_event_read_one(struct perf_event *event,
2392                                  u64 read_format, char __user *buf)
2393 {
2394         u64 enabled, running;
2395         u64 values[4];
2396         int n = 0;
2397
2398         values[n++] = perf_event_read_value(event, &enabled, &running);
2399         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2400                 values[n++] = enabled;
2401         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2402                 values[n++] = running;
2403         if (read_format & PERF_FORMAT_ID)
2404                 values[n++] = primary_event_id(event);
2405
2406         if (copy_to_user(buf, values, n * sizeof(u64)))
2407                 return -EFAULT;
2408
2409         return n * sizeof(u64);
2410 }
2411
2412 /*
2413  * Read the performance event - simple non blocking version for now
2414  */
2415 static ssize_t
2416 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2417 {
2418         u64 read_format = event->attr.read_format;
2419         int ret;
2420
2421         /*
2422          * Return end-of-file for a read on a event that is in
2423          * error state (i.e. because it was pinned but it couldn't be
2424          * scheduled on to the CPU at some point).
2425          */
2426         if (event->state == PERF_EVENT_STATE_ERROR)
2427                 return 0;
2428
2429         if (count < perf_event_read_size(event))
2430                 return -ENOSPC;
2431
2432         WARN_ON_ONCE(event->ctx->parent_ctx);
2433         if (read_format & PERF_FORMAT_GROUP)
2434                 ret = perf_event_read_group(event, read_format, buf);
2435         else
2436                 ret = perf_event_read_one(event, read_format, buf);
2437
2438         return ret;
2439 }
2440
2441 static ssize_t
2442 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2443 {
2444         struct perf_event *event = file->private_data;
2445
2446         return perf_read_hw(event, buf, count);
2447 }
2448
2449 static unsigned int perf_poll(struct file *file, poll_table *wait)
2450 {
2451         struct perf_event *event = file->private_data;
2452         struct perf_buffer *buffer;
2453         unsigned int events = POLL_HUP;
2454
2455         rcu_read_lock();
2456         buffer = rcu_dereference(event->buffer);
2457         if (buffer)
2458                 events = atomic_xchg(&buffer->poll, 0);
2459         rcu_read_unlock();
2460
2461         poll_wait(file, &event->waitq, wait);
2462
2463         return events;
2464 }
2465
2466 static void perf_event_reset(struct perf_event *event)
2467 {
2468         (void)perf_event_read(event);
2469         local64_set(&event->count, 0);
2470         perf_event_update_userpage(event);
2471 }
2472
2473 /*
2474  * Holding the top-level event's child_mutex means that any
2475  * descendant process that has inherited this event will block
2476  * in sync_child_event if it goes to exit, thus satisfying the
2477  * task existence requirements of perf_event_enable/disable.
2478  */
2479 static void perf_event_for_each_child(struct perf_event *event,
2480                                         void (*func)(struct perf_event *))
2481 {
2482         struct perf_event *child;
2483
2484         WARN_ON_ONCE(event->ctx->parent_ctx);
2485         mutex_lock(&event->child_mutex);
2486         func(event);
2487         list_for_each_entry(child, &event->child_list, child_list)
2488                 func(child);
2489         mutex_unlock(&event->child_mutex);
2490 }
2491
2492 static void perf_event_for_each(struct perf_event *event,
2493                                   void (*func)(struct perf_event *))
2494 {
2495         struct perf_event_context *ctx = event->ctx;
2496         struct perf_event *sibling;
2497
2498         WARN_ON_ONCE(ctx->parent_ctx);
2499         mutex_lock(&ctx->mutex);
2500         event = event->group_leader;
2501
2502         perf_event_for_each_child(event, func);
2503         func(event);
2504         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2505                 perf_event_for_each_child(event, func);
2506         mutex_unlock(&ctx->mutex);
2507 }
2508
2509 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2510 {
2511         struct perf_event_context *ctx = event->ctx;
2512         int ret = 0;
2513         u64 value;
2514
2515         if (!event->attr.sample_period)
2516                 return -EINVAL;
2517
2518         if (copy_from_user(&value, arg, sizeof(value)))
2519                 return -EFAULT;
2520
2521         if (!value)
2522                 return -EINVAL;
2523
2524         raw_spin_lock_irq(&ctx->lock);
2525         if (event->attr.freq) {
2526                 if (value > sysctl_perf_event_sample_rate) {
2527                         ret = -EINVAL;
2528                         goto unlock;
2529                 }
2530
2531                 event->attr.sample_freq = value;
2532         } else {
2533                 event->attr.sample_period = value;
2534                 event->hw.sample_period = value;
2535         }
2536 unlock:
2537         raw_spin_unlock_irq(&ctx->lock);
2538
2539         return ret;
2540 }
2541
2542 static const struct file_operations perf_fops;
2543
2544 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2545 {
2546         struct file *file;
2547
2548         file = fget_light(fd, fput_needed);
2549         if (!file)
2550                 return ERR_PTR(-EBADF);
2551
2552         if (file->f_op != &perf_fops) {
2553                 fput_light(file, *fput_needed);
2554                 *fput_needed = 0;
2555                 return ERR_PTR(-EBADF);
2556         }
2557
2558         return file->private_data;
2559 }
2560
2561 static int perf_event_set_output(struct perf_event *event,
2562                                  struct perf_event *output_event);
2563 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2564
2565 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2566 {
2567         struct perf_event *event = file->private_data;
2568         void (*func)(struct perf_event *);
2569         u32 flags = arg;
2570
2571         switch (cmd) {
2572         case PERF_EVENT_IOC_ENABLE:
2573                 func = perf_event_enable;
2574                 break;
2575         case PERF_EVENT_IOC_DISABLE:
2576                 func = perf_event_disable;
2577                 break;
2578         case PERF_EVENT_IOC_RESET:
2579                 func = perf_event_reset;
2580                 break;
2581
2582         case PERF_EVENT_IOC_REFRESH:
2583                 return perf_event_refresh(event, arg);
2584
2585         case PERF_EVENT_IOC_PERIOD:
2586                 return perf_event_period(event, (u64 __user *)arg);
2587
2588         case PERF_EVENT_IOC_SET_OUTPUT:
2589         {
2590                 struct perf_event *output_event = NULL;
2591                 int fput_needed = 0;
2592                 int ret;
2593
2594                 if (arg != -1) {
2595                         output_event = perf_fget_light(arg, &fput_needed);
2596                         if (IS_ERR(output_event))
2597                                 return PTR_ERR(output_event);
2598                 }
2599
2600                 ret = perf_event_set_output(event, output_event);
2601                 if (output_event)
2602                         fput_light(output_event->filp, fput_needed);
2603
2604                 return ret;
2605         }
2606
2607         case PERF_EVENT_IOC_SET_FILTER:
2608                 return perf_event_set_filter(event, (void __user *)arg);
2609
2610         default:
2611                 return -ENOTTY;
2612         }
2613
2614         if (flags & PERF_IOC_FLAG_GROUP)
2615                 perf_event_for_each(event, func);
2616         else
2617                 perf_event_for_each_child(event, func);
2618
2619         return 0;
2620 }
2621
2622 int perf_event_task_enable(void)
2623 {
2624         struct perf_event *event;
2625
2626         mutex_lock(&current->perf_event_mutex);
2627         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2628                 perf_event_for_each_child(event, perf_event_enable);
2629         mutex_unlock(&current->perf_event_mutex);
2630
2631         return 0;
2632 }
2633
2634 int perf_event_task_disable(void)
2635 {
2636         struct perf_event *event;
2637
2638         mutex_lock(&current->perf_event_mutex);
2639         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2640                 perf_event_for_each_child(event, perf_event_disable);
2641         mutex_unlock(&current->perf_event_mutex);
2642
2643         return 0;
2644 }
2645
2646 #ifndef PERF_EVENT_INDEX_OFFSET
2647 # define PERF_EVENT_INDEX_OFFSET 0
2648 #endif
2649
2650 static int perf_event_index(struct perf_event *event)
2651 {
2652         if (event->hw.state & PERF_HES_STOPPED)
2653                 return 0;
2654
2655         if (event->state != PERF_EVENT_STATE_ACTIVE)
2656                 return 0;
2657
2658         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2659 }
2660
2661 /*
2662  * Callers need to ensure there can be no nesting of this function, otherwise
2663  * the seqlock logic goes bad. We can not serialize this because the arch
2664  * code calls this from NMI context.
2665  */
2666 void perf_event_update_userpage(struct perf_event *event)
2667 {
2668         struct perf_event_mmap_page *userpg;
2669         struct perf_buffer *buffer;
2670
2671         rcu_read_lock();
2672         buffer = rcu_dereference(event->buffer);
2673         if (!buffer)
2674                 goto unlock;
2675
2676         userpg = buffer->user_page;
2677
2678         /*
2679          * Disable preemption so as to not let the corresponding user-space
2680          * spin too long if we get preempted.
2681          */
2682         preempt_disable();
2683         ++userpg->lock;
2684         barrier();
2685         userpg->index = perf_event_index(event);
2686         userpg->offset = perf_event_count(event);
2687         if (event->state == PERF_EVENT_STATE_ACTIVE)
2688                 userpg->offset -= local64_read(&event->hw.prev_count);
2689
2690         userpg->time_enabled = event->total_time_enabled +
2691                         atomic64_read(&event->child_total_time_enabled);
2692
2693         userpg->time_running = event->total_time_running +
2694                         atomic64_read(&event->child_total_time_running);
2695
2696         barrier();
2697         ++userpg->lock;
2698         preempt_enable();
2699 unlock:
2700         rcu_read_unlock();
2701 }
2702
2703 static unsigned long perf_data_size(struct perf_buffer *buffer);
2704
2705 static void
2706 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2707 {
2708         long max_size = perf_data_size(buffer);
2709
2710         if (watermark)
2711                 buffer->watermark = min(max_size, watermark);
2712
2713         if (!buffer->watermark)
2714                 buffer->watermark = max_size / 2;
2715
2716         if (flags & PERF_BUFFER_WRITABLE)
2717                 buffer->writable = 1;
2718
2719         atomic_set(&buffer->refcount, 1);
2720 }
2721
2722 #ifndef CONFIG_PERF_USE_VMALLOC
2723
2724 /*
2725  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2726  */
2727
2728 static struct page *
2729 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2730 {
2731         if (pgoff > buffer->nr_pages)
2732                 return NULL;
2733
2734         if (pgoff == 0)
2735                 return virt_to_page(buffer->user_page);
2736
2737         return virt_to_page(buffer->data_pages[pgoff - 1]);
2738 }
2739
2740 static void *perf_mmap_alloc_page(int cpu)
2741 {
2742         struct page *page;
2743         int node;
2744
2745         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2746         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2747         if (!page)
2748                 return NULL;
2749
2750         return page_address(page);
2751 }
2752
2753 static struct perf_buffer *
2754 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2755 {
2756         struct perf_buffer *buffer;
2757         unsigned long size;
2758         int i;
2759
2760         size = sizeof(struct perf_buffer);
2761         size += nr_pages * sizeof(void *);
2762
2763         buffer = kzalloc(size, GFP_KERNEL);
2764         if (!buffer)
2765                 goto fail;
2766
2767         buffer->user_page = perf_mmap_alloc_page(cpu);
2768         if (!buffer->user_page)
2769                 goto fail_user_page;
2770
2771         for (i = 0; i < nr_pages; i++) {
2772                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2773                 if (!buffer->data_pages[i])
2774                         goto fail_data_pages;
2775         }
2776
2777         buffer->nr_pages = nr_pages;
2778
2779         perf_buffer_init(buffer, watermark, flags);
2780
2781         return buffer;
2782
2783 fail_data_pages:
2784         for (i--; i >= 0; i--)
2785                 free_page((unsigned long)buffer->data_pages[i]);
2786
2787         free_page((unsigned long)buffer->user_page);
2788
2789 fail_user_page:
2790         kfree(buffer);
2791
2792 fail:
2793         return NULL;
2794 }
2795
2796 static void perf_mmap_free_page(unsigned long addr)
2797 {
2798         struct page *page = virt_to_page((void *)addr);
2799
2800         page->mapping = NULL;
2801         __free_page(page);
2802 }
2803
2804 static void perf_buffer_free(struct perf_buffer *buffer)
2805 {
2806         int i;
2807
2808         perf_mmap_free_page((unsigned long)buffer->user_page);
2809         for (i = 0; i < buffer->nr_pages; i++)
2810                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2811         kfree(buffer);
2812 }
2813
2814 static inline int page_order(struct perf_buffer *buffer)
2815 {
2816         return 0;
2817 }
2818
2819 #else
2820
2821 /*
2822  * Back perf_mmap() with vmalloc memory.
2823  *
2824  * Required for architectures that have d-cache aliasing issues.
2825  */
2826
2827 static inline int page_order(struct perf_buffer *buffer)
2828 {
2829         return buffer->page_order;
2830 }
2831
2832 static struct page *
2833 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2834 {
2835         if (pgoff > (1UL << page_order(buffer)))
2836                 return NULL;
2837
2838         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2839 }
2840
2841 static void perf_mmap_unmark_page(void *addr)
2842 {
2843         struct page *page = vmalloc_to_page(addr);
2844
2845         page->mapping = NULL;
2846 }
2847
2848 static void perf_buffer_free_work(struct work_struct *work)
2849 {
2850         struct perf_buffer *buffer;
2851         void *base;
2852         int i, nr;
2853
2854         buffer = container_of(work, struct perf_buffer, work);
2855         nr = 1 << page_order(buffer);
2856
2857         base = buffer->user_page;
2858         for (i = 0; i < nr + 1; i++)
2859                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2860
2861         vfree(base);
2862         kfree(buffer);
2863 }
2864
2865 static void perf_buffer_free(struct perf_buffer *buffer)
2866 {
2867         schedule_work(&buffer->work);
2868 }
2869
2870 static struct perf_buffer *
2871 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2872 {
2873         struct perf_buffer *buffer;
2874         unsigned long size;
2875         void *all_buf;
2876
2877         size = sizeof(struct perf_buffer);
2878         size += sizeof(void *);
2879
2880         buffer = kzalloc(size, GFP_KERNEL);
2881         if (!buffer)
2882                 goto fail;
2883
2884         INIT_WORK(&buffer->work, perf_buffer_free_work);
2885
2886         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2887         if (!all_buf)
2888                 goto fail_all_buf;
2889
2890         buffer->user_page = all_buf;
2891         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2892         buffer->page_order = ilog2(nr_pages);
2893         buffer->nr_pages = 1;
2894
2895         perf_buffer_init(buffer, watermark, flags);
2896
2897         return buffer;
2898
2899 fail_all_buf:
2900         kfree(buffer);
2901
2902 fail:
2903         return NULL;
2904 }
2905
2906 #endif
2907
2908 static unsigned long perf_data_size(struct perf_buffer *buffer)
2909 {
2910         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2911 }
2912
2913 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2914 {
2915         struct perf_event *event = vma->vm_file->private_data;
2916         struct perf_buffer *buffer;
2917         int ret = VM_FAULT_SIGBUS;
2918
2919         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2920                 if (vmf->pgoff == 0)
2921                         ret = 0;
2922                 return ret;
2923         }
2924
2925         rcu_read_lock();
2926         buffer = rcu_dereference(event->buffer);
2927         if (!buffer)
2928                 goto unlock;
2929
2930         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2931                 goto unlock;
2932
2933         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2934         if (!vmf->page)
2935                 goto unlock;
2936
2937         get_page(vmf->page);
2938         vmf->page->mapping = vma->vm_file->f_mapping;
2939         vmf->page->index   = vmf->pgoff;
2940
2941         ret = 0;
2942 unlock:
2943         rcu_read_unlock();
2944
2945         return ret;
2946 }
2947
2948 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2949 {
2950         struct perf_buffer *buffer;
2951
2952         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2953         perf_buffer_free(buffer);
2954 }
2955
2956 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2957 {
2958         struct perf_buffer *buffer;
2959
2960         rcu_read_lock();
2961         buffer = rcu_dereference(event->buffer);
2962         if (buffer) {
2963                 if (!atomic_inc_not_zero(&buffer->refcount))
2964                         buffer = NULL;
2965         }
2966         rcu_read_unlock();
2967
2968         return buffer;
2969 }
2970
2971 static void perf_buffer_put(struct perf_buffer *buffer)
2972 {
2973         if (!atomic_dec_and_test(&buffer->refcount))
2974                 return;
2975
2976         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2977 }
2978
2979 static void perf_mmap_open(struct vm_area_struct *vma)
2980 {
2981         struct perf_event *event = vma->vm_file->private_data;
2982
2983         atomic_inc(&event->mmap_count);
2984 }
2985
2986 static void perf_mmap_close(struct vm_area_struct *vma)
2987 {
2988         struct perf_event *event = vma->vm_file->private_data;
2989
2990         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2991                 unsigned long size = perf_data_size(event->buffer);
2992                 struct user_struct *user = event->mmap_user;
2993                 struct perf_buffer *buffer = event->buffer;
2994
2995                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2996                 vma->vm_mm->locked_vm -= event->mmap_locked;
2997                 rcu_assign_pointer(event->buffer, NULL);
2998                 mutex_unlock(&event->mmap_mutex);
2999
3000                 perf_buffer_put(buffer);
3001                 free_uid(user);
3002         }
3003 }
3004
3005 static const struct vm_operations_struct perf_mmap_vmops = {
3006         .open           = perf_mmap_open,
3007         .close          = perf_mmap_close,
3008         .fault          = perf_mmap_fault,
3009         .page_mkwrite   = perf_mmap_fault,
3010 };
3011
3012 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3013 {
3014         struct perf_event *event = file->private_data;
3015         unsigned long user_locked, user_lock_limit;
3016         struct user_struct *user = current_user();
3017         unsigned long locked, lock_limit;
3018         struct perf_buffer *buffer;
3019         unsigned long vma_size;
3020         unsigned long nr_pages;
3021         long user_extra, extra;
3022         int ret = 0, flags = 0;
3023
3024         /*
3025          * Don't allow mmap() of inherited per-task counters. This would
3026          * create a performance issue due to all children writing to the
3027          * same buffer.
3028          */
3029         if (event->cpu == -1 && event->attr.inherit)
3030                 return -EINVAL;
3031
3032         if (!(vma->vm_flags & VM_SHARED))
3033                 return -EINVAL;
3034
3035         vma_size = vma->vm_end - vma->vm_start;
3036         nr_pages = (vma_size / PAGE_SIZE) - 1;
3037
3038         /*
3039          * If we have buffer pages ensure they're a power-of-two number, so we
3040          * can do bitmasks instead of modulo.
3041          */
3042         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3043                 return -EINVAL;
3044
3045         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3046                 return -EINVAL;
3047
3048         if (vma->vm_pgoff != 0)
3049                 return -EINVAL;
3050
3051         WARN_ON_ONCE(event->ctx->parent_ctx);
3052         mutex_lock(&event->mmap_mutex);
3053         if (event->buffer) {
3054                 if (event->buffer->nr_pages == nr_pages)
3055                         atomic_inc(&event->buffer->refcount);
3056                 else
3057                         ret = -EINVAL;
3058                 goto unlock;
3059         }
3060
3061         user_extra = nr_pages + 1;
3062         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3063
3064         /*
3065          * Increase the limit linearly with more CPUs:
3066          */
3067         user_lock_limit *= num_online_cpus();
3068
3069         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3070
3071         extra = 0;
3072         if (user_locked > user_lock_limit)
3073                 extra = user_locked - user_lock_limit;
3074
3075         lock_limit = rlimit(RLIMIT_MEMLOCK);
3076         lock_limit >>= PAGE_SHIFT;
3077         locked = vma->vm_mm->locked_vm + extra;
3078
3079         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3080                 !capable(CAP_IPC_LOCK)) {
3081                 ret = -EPERM;
3082                 goto unlock;
3083         }
3084
3085         WARN_ON(event->buffer);
3086
3087         if (vma->vm_flags & VM_WRITE)
3088                 flags |= PERF_BUFFER_WRITABLE;
3089
3090         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3091                                    event->cpu, flags);
3092         if (!buffer) {
3093                 ret = -ENOMEM;
3094                 goto unlock;
3095         }
3096         rcu_assign_pointer(event->buffer, buffer);
3097
3098         atomic_long_add(user_extra, &user->locked_vm);
3099         event->mmap_locked = extra;
3100         event->mmap_user = get_current_user();
3101         vma->vm_mm->locked_vm += event->mmap_locked;
3102
3103 unlock:
3104         if (!ret)
3105                 atomic_inc(&event->mmap_count);
3106         mutex_unlock(&event->mmap_mutex);
3107
3108         vma->vm_flags |= VM_RESERVED;
3109         vma->vm_ops = &perf_mmap_vmops;
3110
3111         return ret;
3112 }
3113
3114 static int perf_fasync(int fd, struct file *filp, int on)
3115 {
3116         struct inode *inode = filp->f_path.dentry->d_inode;
3117         struct perf_event *event = filp->private_data;
3118         int retval;
3119
3120         mutex_lock(&inode->i_mutex);
3121         retval = fasync_helper(fd, filp, on, &event->fasync);
3122         mutex_unlock(&inode->i_mutex);
3123
3124         if (retval < 0)
3125                 return retval;
3126
3127         return 0;
3128 }
3129
3130 static const struct file_operations perf_fops = {
3131         .llseek                 = no_llseek,
3132         .release                = perf_release,
3133         .read                   = perf_read,
3134         .poll                   = perf_poll,
3135         .unlocked_ioctl         = perf_ioctl,
3136         .compat_ioctl           = perf_ioctl,
3137         .mmap                   = perf_mmap,
3138         .fasync                 = perf_fasync,
3139 };
3140
3141 /*
3142  * Perf event wakeup
3143  *
3144  * If there's data, ensure we set the poll() state and publish everything
3145  * to user-space before waking everybody up.
3146  */
3147
3148 void perf_event_wakeup(struct perf_event *event)
3149 {
3150         wake_up_all(&event->waitq);
3151
3152         if (event->pending_kill) {
3153                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3154                 event->pending_kill = 0;
3155         }
3156 }
3157
3158 static void perf_pending_event(struct irq_work *entry)
3159 {
3160         struct perf_event *event = container_of(entry,
3161                         struct perf_event, pending);
3162
3163         if (event->pending_disable) {
3164                 event->pending_disable = 0;
3165                 __perf_event_disable(event);
3166         }
3167
3168         if (event->pending_wakeup) {
3169                 event->pending_wakeup = 0;
3170                 perf_event_wakeup(event);
3171         }
3172 }
3173
3174 /*
3175  * We assume there is only KVM supporting the callbacks.
3176  * Later on, we might change it to a list if there is
3177  * another virtualization implementation supporting the callbacks.
3178  */
3179 struct perf_guest_info_callbacks *perf_guest_cbs;
3180
3181 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3182 {
3183         perf_guest_cbs = cbs;
3184         return 0;
3185 }
3186 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3187
3188 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3189 {
3190         perf_guest_cbs = NULL;
3191         return 0;
3192 }
3193 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3194
3195 /*
3196  * Output
3197  */
3198 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3199                               unsigned long offset, unsigned long head)
3200 {
3201         unsigned long mask;
3202
3203         if (!buffer->writable)
3204                 return true;
3205
3206         mask = perf_data_size(buffer) - 1;
3207
3208         offset = (offset - tail) & mask;
3209         head   = (head   - tail) & mask;
3210
3211         if ((int)(head - offset) < 0)
3212                 return false;
3213
3214         return true;
3215 }
3216
3217 static void perf_output_wakeup(struct perf_output_handle *handle)
3218 {
3219         atomic_set(&handle->buffer->poll, POLL_IN);
3220
3221         if (handle->nmi) {
3222                 handle->event->pending_wakeup = 1;
3223                 irq_work_queue(&handle->event->pending);
3224         } else
3225                 perf_event_wakeup(handle->event);
3226 }
3227
3228 /*
3229  * We need to ensure a later event_id doesn't publish a head when a former
3230  * event isn't done writing. However since we need to deal with NMIs we
3231  * cannot fully serialize things.
3232  *
3233  * We only publish the head (and generate a wakeup) when the outer-most
3234  * event completes.
3235  */
3236 static void perf_output_get_handle(struct perf_output_handle *handle)
3237 {
3238         struct perf_buffer *buffer = handle->buffer;
3239
3240         preempt_disable();
3241         local_inc(&buffer->nest);
3242         handle->wakeup = local_read(&buffer->wakeup);
3243 }
3244
3245 static void perf_output_put_handle(struct perf_output_handle *handle)
3246 {
3247         struct perf_buffer *buffer = handle->buffer;
3248         unsigned long head;
3249
3250 again:
3251         head = local_read(&buffer->head);
3252
3253         /*
3254          * IRQ/NMI can happen here, which means we can miss a head update.
3255          */
3256
3257         if (!local_dec_and_test(&buffer->nest))
3258                 goto out;
3259
3260         /*
3261          * Publish the known good head. Rely on the full barrier implied
3262          * by atomic_dec_and_test() order the buffer->head read and this
3263          * write.
3264          */
3265         buffer->user_page->data_head = head;
3266
3267         /*
3268          * Now check if we missed an update, rely on the (compiler)
3269          * barrier in atomic_dec_and_test() to re-read buffer->head.
3270          */
3271         if (unlikely(head != local_read(&buffer->head))) {
3272                 local_inc(&buffer->nest);
3273                 goto again;
3274         }
3275
3276         if (handle->wakeup != local_read(&buffer->wakeup))
3277                 perf_output_wakeup(handle);
3278
3279 out:
3280         preempt_enable();
3281 }
3282
3283 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3284                       const void *buf, unsigned int len)
3285 {
3286         do {
3287                 unsigned long size = min_t(unsigned long, handle->size, len);
3288
3289                 memcpy(handle->addr, buf, size);
3290
3291                 len -= size;
3292                 handle->addr += size;
3293                 buf += size;
3294                 handle->size -= size;
3295                 if (!handle->size) {
3296                         struct perf_buffer *buffer = handle->buffer;
3297
3298                         handle->page++;
3299                         handle->page &= buffer->nr_pages - 1;
3300                         handle->addr = buffer->data_pages[handle->page];
3301                         handle->size = PAGE_SIZE << page_order(buffer);
3302                 }
3303         } while (len);
3304 }
3305
3306 int perf_output_begin(struct perf_output_handle *handle,
3307                       struct perf_event *event, unsigned int size,
3308                       int nmi, int sample)
3309 {
3310         struct perf_buffer *buffer;
3311         unsigned long tail, offset, head;
3312         int have_lost;
3313         struct {
3314                 struct perf_event_header header;
3315                 u64                      id;
3316                 u64                      lost;
3317         } lost_event;
3318
3319         rcu_read_lock();
3320         /*
3321          * For inherited events we send all the output towards the parent.
3322          */
3323         if (event->parent)
3324                 event = event->parent;
3325
3326         buffer = rcu_dereference(event->buffer);
3327         if (!buffer)
3328                 goto out;
3329
3330         handle->buffer  = buffer;
3331         handle->event   = event;
3332         handle->nmi     = nmi;
3333         handle->sample  = sample;
3334
3335         if (!buffer->nr_pages)
3336                 goto out;
3337
3338         have_lost = local_read(&buffer->lost);
3339         if (have_lost)
3340                 size += sizeof(lost_event);
3341
3342         perf_output_get_handle(handle);
3343
3344         do {
3345                 /*
3346                  * Userspace could choose to issue a mb() before updating the
3347                  * tail pointer. So that all reads will be completed before the
3348                  * write is issued.
3349                  */
3350                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3351                 smp_rmb();
3352                 offset = head = local_read(&buffer->head);
3353                 head += size;
3354                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3355                         goto fail;
3356         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3357
3358         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3359                 local_add(buffer->watermark, &buffer->wakeup);
3360
3361         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3362         handle->page &= buffer->nr_pages - 1;
3363         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3364         handle->addr = buffer->data_pages[handle->page];
3365         handle->addr += handle->size;
3366         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3367
3368         if (have_lost) {
3369                 lost_event.header.type = PERF_RECORD_LOST;
3370                 lost_event.header.misc = 0;
3371                 lost_event.header.size = sizeof(lost_event);
3372                 lost_event.id          = event->id;
3373                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3374
3375                 perf_output_put(handle, lost_event);
3376         }
3377
3378         return 0;
3379
3380 fail:
3381         local_inc(&buffer->lost);
3382         perf_output_put_handle(handle);
3383 out:
3384         rcu_read_unlock();
3385
3386         return -ENOSPC;
3387 }
3388
3389 void perf_output_end(struct perf_output_handle *handle)
3390 {
3391         struct perf_event *event = handle->event;
3392         struct perf_buffer *buffer = handle->buffer;
3393
3394         int wakeup_events = event->attr.wakeup_events;
3395
3396         if (handle->sample && wakeup_events) {
3397                 int events = local_inc_return(&buffer->events);
3398                 if (events >= wakeup_events) {
3399                         local_sub(wakeup_events, &buffer->events);
3400                         local_inc(&buffer->wakeup);
3401                 }
3402         }
3403
3404         perf_output_put_handle(handle);
3405         rcu_read_unlock();
3406 }
3407
3408 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3409 {
3410         /*
3411          * only top level events have the pid namespace they were created in
3412          */
3413         if (event->parent)
3414                 event = event->parent;
3415
3416         return task_tgid_nr_ns(p, event->ns);
3417 }
3418
3419 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3420 {
3421         /*
3422          * only top level events have the pid namespace they were created in
3423          */
3424         if (event->parent)
3425                 event = event->parent;
3426
3427         return task_pid_nr_ns(p, event->ns);
3428 }
3429
3430 static void perf_output_read_one(struct perf_output_handle *handle,
3431                                  struct perf_event *event)
3432 {
3433         u64 read_format = event->attr.read_format;
3434         u64 values[4];
3435         int n = 0;
3436
3437         values[n++] = perf_event_count(event);
3438         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3439                 values[n++] = event->total_time_enabled +
3440                         atomic64_read(&event->child_total_time_enabled);
3441         }
3442         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3443                 values[n++] = event->total_time_running +
3444                         atomic64_read(&event->child_total_time_running);
3445         }
3446         if (read_format & PERF_FORMAT_ID)
3447                 values[n++] = primary_event_id(event);
3448
3449         perf_output_copy(handle, values, n * sizeof(u64));
3450 }
3451
3452 /*
3453  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3454  */
3455 static void perf_output_read_group(struct perf_output_handle *handle,
3456                             struct perf_event *event)
3457 {
3458         struct perf_event *leader = event->group_leader, *sub;
3459         u64 read_format = event->attr.read_format;
3460         u64 values[5];
3461         int n = 0;
3462
3463         values[n++] = 1 + leader->nr_siblings;
3464
3465         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3466                 values[n++] = leader->total_time_enabled;
3467
3468         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3469                 values[n++] = leader->total_time_running;
3470
3471         if (leader != event)
3472                 leader->pmu->read(leader);
3473
3474         values[n++] = perf_event_count(leader);
3475         if (read_format & PERF_FORMAT_ID)
3476                 values[n++] = primary_event_id(leader);
3477
3478         perf_output_copy(handle, values, n * sizeof(u64));
3479
3480         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3481                 n = 0;
3482
3483                 if (sub != event)
3484                         sub->pmu->read(sub);
3485
3486                 values[n++] = perf_event_count(sub);
3487                 if (read_format & PERF_FORMAT_ID)
3488                         values[n++] = primary_event_id(sub);
3489
3490                 perf_output_copy(handle, values, n * sizeof(u64));
3491         }
3492 }
3493
3494 static void perf_output_read(struct perf_output_handle *handle,
3495                              struct perf_event *event)
3496 {
3497         if (event->attr.read_format & PERF_FORMAT_GROUP)
3498                 perf_output_read_group(handle, event);
3499         else
3500                 perf_output_read_one(handle, event);
3501 }
3502
3503 void perf_output_sample(struct perf_output_handle *handle,
3504                         struct perf_event_header *header,
3505                         struct perf_sample_data *data,
3506                         struct perf_event *event)
3507 {
3508         u64 sample_type = data->type;
3509
3510         perf_output_put(handle, *header);
3511
3512         if (sample_type & PERF_SAMPLE_IP)
3513                 perf_output_put(handle, data->ip);
3514
3515         if (sample_type & PERF_SAMPLE_TID)
3516                 perf_output_put(handle, data->tid_entry);
3517
3518         if (sample_type & PERF_SAMPLE_TIME)
3519                 perf_output_put(handle, data->time);
3520
3521         if (sample_type & PERF_SAMPLE_ADDR)
3522                 perf_output_put(handle, data->addr);
3523
3524         if (sample_type & PERF_SAMPLE_ID)
3525                 perf_output_put(handle, data->id);
3526
3527         if (sample_type & PERF_SAMPLE_STREAM_ID)
3528                 perf_output_put(handle, data->stream_id);
3529
3530         if (sample_type & PERF_SAMPLE_CPU)
3531                 perf_output_put(handle, data->cpu_entry);
3532
3533         if (sample_type & PERF_SAMPLE_PERIOD)
3534                 perf_output_put(handle, data->period);
3535
3536         if (sample_type & PERF_SAMPLE_READ)
3537                 perf_output_read(handle, event);
3538
3539         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3540                 if (data->callchain) {
3541                         int size = 1;
3542
3543                         if (data->callchain)
3544                                 size += data->callchain->nr;
3545
3546                         size *= sizeof(u64);
3547
3548                         perf_output_copy(handle, data->callchain, size);
3549                 } else {
3550                         u64 nr = 0;
3551                         perf_output_put(handle, nr);
3552                 }
3553         }
3554
3555         if (sample_type & PERF_SAMPLE_RAW) {
3556                 if (data->raw) {
3557                         perf_output_put(handle, data->raw->size);
3558                         perf_output_copy(handle, data->raw->data,
3559                                          data->raw->size);
3560                 } else {
3561                         struct {
3562                                 u32     size;
3563                                 u32     data;
3564                         } raw = {
3565                                 .size = sizeof(u32),
3566                                 .data = 0,
3567                         };
3568                         perf_output_put(handle, raw);
3569                 }
3570         }
3571 }
3572
3573 void perf_prepare_sample(struct perf_event_header *header,
3574                          struct perf_sample_data *data,
3575                          struct perf_event *event,
3576                          struct pt_regs *regs)
3577 {
3578         u64 sample_type = event->attr.sample_type;
3579
3580         data->type = sample_type;
3581
3582         header->type = PERF_RECORD_SAMPLE;
3583         header->size = sizeof(*header);
3584
3585         header->misc = 0;
3586         header->misc |= perf_misc_flags(regs);
3587
3588         if (sample_type & PERF_SAMPLE_IP) {
3589                 data->ip = perf_instruction_pointer(regs);
3590
3591                 header->size += sizeof(data->ip);
3592         }
3593
3594         if (sample_type & PERF_SAMPLE_TID) {
3595                 /* namespace issues */
3596                 data->tid_entry.pid = perf_event_pid(event, current);
3597                 data->tid_entry.tid = perf_event_tid(event, current);
3598
3599                 header->size += sizeof(data->tid_entry);
3600         }
3601
3602         if (sample_type & PERF_SAMPLE_TIME) {
3603                 data->time = perf_clock();
3604
3605                 header->size += sizeof(data->time);
3606         }
3607
3608         if (sample_type & PERF_SAMPLE_ADDR)
3609                 header->size += sizeof(data->addr);
3610
3611         if (sample_type & PERF_SAMPLE_ID) {
3612                 data->id = primary_event_id(event);
3613
3614                 header->size += sizeof(data->id);
3615         }
3616
3617         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3618                 data->stream_id = event->id;
3619
3620                 header->size += sizeof(data->stream_id);
3621         }
3622
3623         if (sample_type & PERF_SAMPLE_CPU) {
3624                 data->cpu_entry.cpu             = raw_smp_processor_id();
3625                 data->cpu_entry.reserved        = 0;
3626
3627                 header->size += sizeof(data->cpu_entry);
3628         }
3629
3630         if (sample_type & PERF_SAMPLE_PERIOD)
3631                 header->size += sizeof(data->period);
3632
3633         if (sample_type & PERF_SAMPLE_READ)
3634                 header->size += perf_event_read_size(event);
3635
3636         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3637                 int size = 1;
3638
3639                 data->callchain = perf_callchain(regs);
3640
3641                 if (data->callchain)
3642                         size += data->callchain->nr;
3643
3644                 header->size += size * sizeof(u64);
3645         }
3646
3647         if (sample_type & PERF_SAMPLE_RAW) {
3648                 int size = sizeof(u32);
3649
3650                 if (data->raw)
3651                         size += data->raw->size;
3652                 else
3653                         size += sizeof(u32);
3654
3655                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3656                 header->size += size;
3657         }
3658 }
3659
3660 static void perf_event_output(struct perf_event *event, int nmi,
3661                                 struct perf_sample_data *data,
3662                                 struct pt_regs *regs)
3663 {
3664         struct perf_output_handle handle;
3665         struct perf_event_header header;
3666
3667         /* protect the callchain buffers */
3668         rcu_read_lock();
3669
3670         perf_prepare_sample(&header, data, event, regs);
3671
3672         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3673                 goto exit;
3674
3675         perf_output_sample(&handle, &header, data, event);
3676
3677         perf_output_end(&handle);
3678
3679 exit:
3680         rcu_read_unlock();
3681 }
3682
3683 /*
3684  * read event_id
3685  */
3686
3687 struct perf_read_event {
3688         struct perf_event_header        header;
3689
3690         u32                             pid;
3691         u32                             tid;
3692 };
3693
3694 static void
3695 perf_event_read_event(struct perf_event *event,
3696                         struct task_struct *task)
3697 {
3698         struct perf_output_handle handle;
3699         struct perf_read_event read_event = {
3700                 .header = {
3701                         .type = PERF_RECORD_READ,
3702                         .misc = 0,
3703                         .size = sizeof(read_event) + perf_event_read_size(event),
3704                 },
3705                 .pid = perf_event_pid(event, task),
3706                 .tid = perf_event_tid(event, task),
3707         };
3708         int ret;
3709
3710         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3711         if (ret)
3712                 return;
3713
3714         perf_output_put(&handle, read_event);
3715         perf_output_read(&handle, event);
3716
3717         perf_output_end(&handle);
3718 }
3719
3720 /*
3721  * task tracking -- fork/exit
3722  *
3723  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3724  */
3725
3726 struct perf_task_event {
3727         struct task_struct              *task;
3728         struct perf_event_context       *task_ctx;
3729
3730         struct {
3731                 struct perf_event_header        header;
3732
3733                 u32                             pid;
3734                 u32                             ppid;
3735                 u32                             tid;
3736                 u32                             ptid;
3737                 u64                             time;
3738         } event_id;
3739 };
3740
3741 static void perf_event_task_output(struct perf_event *event,
3742                                      struct perf_task_event *task_event)
3743 {
3744         struct perf_output_handle handle;
3745         struct task_struct *task = task_event->task;
3746         int size, ret;
3747
3748         size  = task_event->event_id.header.size;
3749         ret = perf_output_begin(&handle, event, size, 0, 0);
3750
3751         if (ret)
3752                 return;
3753
3754         task_event->event_id.pid = perf_event_pid(event, task);
3755         task_event->event_id.ppid = perf_event_pid(event, current);
3756
3757         task_event->event_id.tid = perf_event_tid(event, task);
3758         task_event->event_id.ptid = perf_event_tid(event, current);
3759
3760         perf_output_put(&handle, task_event->event_id);
3761
3762         perf_output_end(&handle);
3763 }
3764
3765 static int perf_event_task_match(struct perf_event *event)
3766 {
3767         if (event->state < PERF_EVENT_STATE_INACTIVE)
3768                 return 0;
3769
3770         if (event->cpu != -1 && event->cpu != smp_processor_id())
3771                 return 0;
3772
3773         if (event->attr.comm || event->attr.mmap ||
3774             event->attr.mmap_data || event->attr.task)
3775                 return 1;
3776
3777         return 0;
3778 }
3779
3780 static void perf_event_task_ctx(struct perf_event_context *ctx,
3781                                   struct perf_task_event *task_event)
3782 {
3783         struct perf_event *event;
3784
3785         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3786                 if (perf_event_task_match(event))
3787                         perf_event_task_output(event, task_event);
3788         }
3789 }
3790
3791 static void perf_event_task_event(struct perf_task_event *task_event)
3792 {
3793         struct perf_cpu_context *cpuctx;
3794         struct perf_event_context *ctx;
3795         struct pmu *pmu;
3796         int ctxn;
3797
3798         rcu_read_lock();
3799         list_for_each_entry_rcu(pmu, &pmus, entry) {
3800                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3801                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3802
3803                 ctx = task_event->task_ctx;
3804                 if (!ctx) {
3805                         ctxn = pmu->task_ctx_nr;
3806                         if (ctxn < 0)
3807                                 goto next;
3808                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3809                 }
3810                 if (ctx)
3811                         perf_event_task_ctx(ctx, task_event);
3812 next:
3813                 put_cpu_ptr(pmu->pmu_cpu_context);
3814         }
3815         rcu_read_unlock();
3816 }
3817
3818 static void perf_event_task(struct task_struct *task,
3819                               struct perf_event_context *task_ctx,
3820                               int new)
3821 {
3822         struct perf_task_event task_event;
3823
3824         if (!atomic_read(&nr_comm_events) &&
3825             !atomic_read(&nr_mmap_events) &&
3826             !atomic_read(&nr_task_events))
3827                 return;
3828
3829         task_event = (struct perf_task_event){
3830                 .task     = task,
3831                 .task_ctx = task_ctx,
3832                 .event_id    = {
3833                         .header = {
3834                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3835                                 .misc = 0,
3836                                 .size = sizeof(task_event.event_id),
3837                         },
3838                         /* .pid  */
3839                         /* .ppid */
3840                         /* .tid  */
3841                         /* .ptid */
3842                         .time = perf_clock(),
3843                 },
3844         };
3845
3846         perf_event_task_event(&task_event);
3847 }
3848
3849 void perf_event_fork(struct task_struct *task)
3850 {
3851         perf_event_task(task, NULL, 1);
3852 }
3853
3854 /*
3855  * comm tracking
3856  */
3857
3858 struct perf_comm_event {
3859         struct task_struct      *task;
3860         char                    *comm;
3861         int                     comm_size;
3862
3863         struct {
3864                 struct perf_event_header        header;
3865
3866                 u32                             pid;
3867                 u32                             tid;
3868         } event_id;
3869 };
3870
3871 static void perf_event_comm_output(struct perf_event *event,
3872                                      struct perf_comm_event *comm_event)
3873 {
3874         struct perf_output_handle handle;
3875         int size = comm_event->event_id.header.size;
3876         int ret = perf_output_begin(&handle, event, size, 0, 0);
3877
3878         if (ret)
3879                 return;
3880
3881         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3882         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3883
3884         perf_output_put(&handle, comm_event->event_id);
3885         perf_output_copy(&handle, comm_event->comm,
3886                                    comm_event->comm_size);
3887         perf_output_end(&handle);
3888 }
3889
3890 static int perf_event_comm_match(struct perf_event *event)
3891 {
3892         if (event->state < PERF_EVENT_STATE_INACTIVE)
3893                 return 0;
3894
3895         if (event->cpu != -1 && event->cpu != smp_processor_id())
3896                 return 0;
3897
3898         if (event->attr.comm)
3899                 return 1;
3900
3901         return 0;
3902 }
3903
3904 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3905                                   struct perf_comm_event *comm_event)
3906 {
3907         struct perf_event *event;
3908
3909         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3910                 if (perf_event_comm_match(event))
3911                         perf_event_comm_output(event, comm_event);
3912         }
3913 }
3914
3915 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3916 {
3917         struct perf_cpu_context *cpuctx;
3918         struct perf_event_context *ctx;
3919         char comm[TASK_COMM_LEN];
3920         unsigned int size;
3921         struct pmu *pmu;
3922         int ctxn;
3923
3924         memset(comm, 0, sizeof(comm));
3925         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3926         size = ALIGN(strlen(comm)+1, sizeof(u64));
3927
3928         comm_event->comm = comm;
3929         comm_event->comm_size = size;
3930
3931         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3932
3933         rcu_read_lock();
3934         list_for_each_entry_rcu(pmu, &pmus, entry) {
3935                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3936                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3937
3938                 ctxn = pmu->task_ctx_nr;
3939                 if (ctxn < 0)
3940                         goto next;
3941
3942                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3943                 if (ctx)
3944                         perf_event_comm_ctx(ctx, comm_event);
3945 next:
3946                 put_cpu_ptr(pmu->pmu_cpu_context);
3947         }
3948         rcu_read_unlock();
3949 }
3950
3951 void perf_event_comm(struct task_struct *task)
3952 {
3953         struct perf_comm_event comm_event;
3954         struct perf_event_context *ctx;
3955         int ctxn;
3956
3957         for_each_task_context_nr(ctxn) {
3958                 ctx = task->perf_event_ctxp[ctxn];
3959                 if (!ctx)
3960                         continue;
3961
3962                 perf_event_enable_on_exec(ctx);
3963         }
3964
3965         if (!atomic_read(&nr_comm_events))
3966                 return;
3967
3968         comm_event = (struct perf_comm_event){
3969                 .task   = task,
3970                 /* .comm      */
3971                 /* .comm_size */
3972                 .event_id  = {
3973                         .header = {
3974                                 .type = PERF_RECORD_COMM,
3975                                 .misc = 0,
3976                                 /* .size */
3977                         },
3978                         /* .pid */
3979                         /* .tid */
3980                 },
3981         };
3982
3983         perf_event_comm_event(&comm_event);
3984 }
3985
3986 /*
3987  * mmap tracking
3988  */
3989
3990 struct perf_mmap_event {
3991         struct vm_area_struct   *vma;
3992
3993         const char              *file_name;
3994         int                     file_size;
3995
3996         struct {
3997                 struct perf_event_header        header;
3998
3999                 u32                             pid;
4000                 u32                             tid;
4001                 u64                             start;
4002                 u64                             len;
4003                 u64                             pgoff;
4004         } event_id;
4005 };
4006
4007 static void perf_event_mmap_output(struct perf_event *event,
4008                                      struct perf_mmap_event *mmap_event)
4009 {
4010         struct perf_output_handle handle;
4011         int size = mmap_event->event_id.header.size;
4012         int ret = perf_output_begin(&handle, event, size, 0, 0);
4013
4014         if (ret)
4015                 return;
4016
4017         mmap_event->event_id.pid = perf_event_pid(event, current);
4018         mmap_event->event_id.tid = perf_event_tid(event, current);
4019
4020         perf_output_put(&handle, mmap_event->event_id);
4021         perf_output_copy(&handle, mmap_event->file_name,
4022                                    mmap_event->file_size);
4023         perf_output_end(&handle);
4024 }
4025
4026 static int perf_event_mmap_match(struct perf_event *event,
4027                                    struct perf_mmap_event *mmap_event,
4028                                    int executable)
4029 {
4030         if (event->state < PERF_EVENT_STATE_INACTIVE)
4031                 return 0;
4032
4033         if (event->cpu != -1 && event->cpu != smp_processor_id())
4034                 return 0;
4035
4036         if ((!executable && event->attr.mmap_data) ||
4037             (executable && event->attr.mmap))
4038                 return 1;
4039
4040         return 0;
4041 }
4042
4043 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4044                                   struct perf_mmap_event *mmap_event,
4045                                   int executable)
4046 {
4047         struct perf_event *event;
4048
4049         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4050                 if (perf_event_mmap_match(event, mmap_event, executable))
4051                         perf_event_mmap_output(event, mmap_event);
4052         }
4053 }
4054
4055 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4056 {
4057         struct perf_cpu_context *cpuctx;
4058         struct perf_event_context *ctx;
4059         struct vm_area_struct *vma = mmap_event->vma;
4060         struct file *file = vma->vm_file;
4061         unsigned int size;
4062         char tmp[16];
4063         char *buf = NULL;
4064         const char *name;
4065         struct pmu *pmu;
4066         int ctxn;
4067
4068         memset(tmp, 0, sizeof(tmp));
4069
4070         if (file) {
4071                 /*
4072                  * d_path works from the end of the buffer backwards, so we
4073                  * need to add enough zero bytes after the string to handle
4074                  * the 64bit alignment we do later.
4075                  */
4076                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4077                 if (!buf) {
4078                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4079                         goto got_name;
4080                 }
4081                 name = d_path(&file->f_path, buf, PATH_MAX);
4082                 if (IS_ERR(name)) {
4083                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4084                         goto got_name;
4085                 }
4086         } else {
4087                 if (arch_vma_name(mmap_event->vma)) {
4088                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4089                                        sizeof(tmp));
4090                         goto got_name;
4091                 }
4092
4093                 if (!vma->vm_mm) {
4094                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4095                         goto got_name;
4096                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4097                                 vma->vm_end >= vma->vm_mm->brk) {
4098                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4099                         goto got_name;
4100                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4101                                 vma->vm_end >= vma->vm_mm->start_stack) {
4102                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4103                         goto got_name;
4104                 }
4105
4106                 name = strncpy(tmp, "//anon", sizeof(tmp));
4107                 goto got_name;
4108         }
4109
4110 got_name:
4111         size = ALIGN(strlen(name)+1, sizeof(u64));
4112
4113         mmap_event->file_name = name;
4114         mmap_event->file_size = size;
4115
4116         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4117
4118         rcu_read_lock();
4119         list_for_each_entry_rcu(pmu, &pmus, entry) {
4120                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4121                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4122                                         vma->vm_flags & VM_EXEC);
4123
4124                 ctxn = pmu->task_ctx_nr;
4125                 if (ctxn < 0)
4126                         goto next;
4127
4128                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4129                 if (ctx) {
4130                         perf_event_mmap_ctx(ctx, mmap_event,
4131                                         vma->vm_flags & VM_EXEC);
4132                 }
4133 next:
4134                 put_cpu_ptr(pmu->pmu_cpu_context);
4135         }
4136         rcu_read_unlock();
4137
4138         kfree(buf);
4139 }
4140
4141 void perf_event_mmap(struct vm_area_struct *vma)
4142 {
4143         struct perf_mmap_event mmap_event;
4144
4145         if (!atomic_read(&nr_mmap_events))
4146                 return;
4147
4148         mmap_event = (struct perf_mmap_event){
4149                 .vma    = vma,
4150                 /* .file_name */
4151                 /* .file_size */
4152                 .event_id  = {
4153                         .header = {
4154                                 .type = PERF_RECORD_MMAP,
4155                                 .misc = PERF_RECORD_MISC_USER,
4156                                 /* .size */
4157                         },
4158                         /* .pid */
4159                         /* .tid */
4160                         .start  = vma->vm_start,
4161                         .len    = vma->vm_end - vma->vm_start,
4162                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4163                 },
4164         };
4165
4166         perf_event_mmap_event(&mmap_event);
4167 }
4168
4169 /*
4170  * IRQ throttle logging
4171  */
4172
4173 static void perf_log_throttle(struct perf_event *event, int enable)
4174 {
4175         struct perf_output_handle handle;
4176         int ret;
4177
4178         struct {
4179                 struct perf_event_header        header;
4180                 u64                             time;
4181                 u64                             id;
4182                 u64                             stream_id;
4183         } throttle_event = {
4184                 .header = {
4185                         .type = PERF_RECORD_THROTTLE,
4186                         .misc = 0,
4187                         .size = sizeof(throttle_event),
4188                 },
4189                 .time           = perf_clock(),
4190                 .id             = primary_event_id(event),
4191                 .stream_id      = event->id,
4192         };
4193
4194         if (enable)
4195                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4196
4197         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4198         if (ret)
4199                 return;
4200
4201         perf_output_put(&handle, throttle_event);
4202         perf_output_end(&handle);
4203 }
4204
4205 /*
4206  * Generic event overflow handling, sampling.
4207  */
4208
4209 static int __perf_event_overflow(struct perf_event *event, int nmi,
4210                                    int throttle, struct perf_sample_data *data,
4211                                    struct pt_regs *regs)
4212 {
4213         int events = atomic_read(&event->event_limit);
4214         struct hw_perf_event *hwc = &event->hw;
4215         int ret = 0;
4216
4217         if (!throttle) {
4218                 hwc->interrupts++;
4219         } else {
4220                 if (hwc->interrupts != MAX_INTERRUPTS) {
4221                         hwc->interrupts++;
4222                         if (HZ * hwc->interrupts >
4223                                         (u64)sysctl_perf_event_sample_rate) {
4224                                 hwc->interrupts = MAX_INTERRUPTS;
4225                                 perf_log_throttle(event, 0);
4226                                 ret = 1;
4227                         }
4228                 } else {
4229                         /*
4230                          * Keep re-disabling events even though on the previous
4231                          * pass we disabled it - just in case we raced with a
4232                          * sched-in and the event got enabled again:
4233                          */
4234                         ret = 1;
4235                 }
4236         }
4237
4238         if (event->attr.freq) {
4239                 u64 now = perf_clock();
4240                 s64 delta = now - hwc->freq_time_stamp;
4241
4242                 hwc->freq_time_stamp = now;
4243
4244                 if (delta > 0 && delta < 2*TICK_NSEC)
4245                         perf_adjust_period(event, delta, hwc->last_period);
4246         }
4247
4248         /*
4249          * XXX event_limit might not quite work as expected on inherited
4250          * events
4251          */
4252
4253         event->pending_kill = POLL_IN;
4254         if (events && atomic_dec_and_test(&event->event_limit)) {
4255                 ret = 1;
4256                 event->pending_kill = POLL_HUP;
4257                 if (nmi) {
4258                         event->pending_disable = 1;
4259                         irq_work_queue(&event->pending);
4260                 } else
4261                         perf_event_disable(event);
4262         }
4263
4264         if (event->overflow_handler)
4265                 event->overflow_handler(event, nmi, data, regs);
4266         else
4267                 perf_event_output(event, nmi, data, regs);
4268
4269         return ret;
4270 }
4271
4272 int perf_event_overflow(struct perf_event *event, int nmi,
4273                           struct perf_sample_data *data,
4274                           struct pt_regs *regs)
4275 {
4276         return __perf_event_overflow(event, nmi, 1, data, regs);
4277 }
4278
4279 /*
4280  * Generic software event infrastructure
4281  */
4282
4283 struct swevent_htable {
4284         struct swevent_hlist            *swevent_hlist;
4285         struct mutex                    hlist_mutex;
4286         int                             hlist_refcount;
4287
4288         /* Recursion avoidance in each contexts */
4289         int                             recursion[PERF_NR_CONTEXTS];
4290 };
4291
4292 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4293
4294 /*
4295  * We directly increment event->count and keep a second value in
4296  * event->hw.period_left to count intervals. This period event
4297  * is kept in the range [-sample_period, 0] so that we can use the
4298  * sign as trigger.
4299  */
4300
4301 static u64 perf_swevent_set_period(struct perf_event *event)
4302 {
4303         struct hw_perf_event *hwc = &event->hw;
4304         u64 period = hwc->last_period;
4305         u64 nr, offset;
4306         s64 old, val;
4307
4308         hwc->last_period = hwc->sample_period;
4309
4310 again:
4311         old = val = local64_read(&hwc->period_left);
4312         if (val < 0)
4313                 return 0;
4314
4315         nr = div64_u64(period + val, period);
4316         offset = nr * period;
4317         val -= offset;
4318         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4319                 goto again;
4320
4321         return nr;
4322 }
4323
4324 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4325                                     int nmi, struct perf_sample_data *data,
4326                                     struct pt_regs *regs)
4327 {
4328         struct hw_perf_event *hwc = &event->hw;
4329         int throttle = 0;
4330
4331         data->period = event->hw.last_period;
4332         if (!overflow)
4333                 overflow = perf_swevent_set_period(event);
4334
4335         if (hwc->interrupts == MAX_INTERRUPTS)
4336                 return;
4337
4338         for (; overflow; overflow--) {
4339                 if (__perf_event_overflow(event, nmi, throttle,
4340                                             data, regs)) {
4341                         /*
4342                          * We inhibit the overflow from happening when
4343                          * hwc->interrupts == MAX_INTERRUPTS.
4344                          */
4345                         break;
4346                 }
4347                 throttle = 1;
4348         }
4349 }
4350
4351 static void perf_swevent_event(struct perf_event *event, u64 nr,
4352                                int nmi, struct perf_sample_data *data,
4353                                struct pt_regs *regs)
4354 {
4355         struct hw_perf_event *hwc = &event->hw;
4356
4357         local64_add(nr, &event->count);
4358
4359         if (!regs)
4360                 return;
4361
4362         if (!hwc->sample_period)
4363                 return;
4364
4365         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4366                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4367
4368         if (local64_add_negative(nr, &hwc->period_left))
4369                 return;
4370
4371         perf_swevent_overflow(event, 0, nmi, data, regs);
4372 }
4373
4374 static int perf_exclude_event(struct perf_event *event,
4375                               struct pt_regs *regs)
4376 {
4377         if (event->hw.state & PERF_HES_STOPPED)
4378                 return 0;
4379
4380         if (regs) {
4381                 if (event->attr.exclude_user && user_mode(regs))
4382                         return 1;
4383
4384                 if (event->attr.exclude_kernel && !user_mode(regs))
4385                         return 1;
4386         }
4387
4388         return 0;
4389 }
4390
4391 static int perf_swevent_match(struct perf_event *event,
4392                                 enum perf_type_id type,
4393                                 u32 event_id,
4394                                 struct perf_sample_data *data,
4395                                 struct pt_regs *regs)
4396 {
4397         if (event->attr.type != type)
4398                 return 0;
4399
4400         if (event->attr.config != event_id)
4401                 return 0;
4402
4403         if (perf_exclude_event(event, regs))
4404                 return 0;
4405
4406         return 1;
4407 }
4408
4409 static inline u64 swevent_hash(u64 type, u32 event_id)
4410 {
4411         u64 val = event_id | (type << 32);
4412
4413         return hash_64(val, SWEVENT_HLIST_BITS);
4414 }
4415
4416 static inline struct hlist_head *
4417 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4418 {
4419         u64 hash = swevent_hash(type, event_id);
4420
4421         return &hlist->heads[hash];
4422 }
4423
4424 /* For the read side: events when they trigger */
4425 static inline struct hlist_head *
4426 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4427 {
4428         struct swevent_hlist *hlist;
4429
4430         hlist = rcu_dereference(swhash->swevent_hlist);
4431         if (!hlist)
4432                 return NULL;
4433
4434         return __find_swevent_head(hlist, type, event_id);
4435 }
4436
4437 /* For the event head insertion and removal in the hlist */
4438 static inline struct hlist_head *
4439 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4440 {
4441         struct swevent_hlist *hlist;
4442         u32 event_id = event->attr.config;
4443         u64 type = event->attr.type;
4444
4445         /*
4446          * Event scheduling is always serialized against hlist allocation
4447          * and release. Which makes the protected version suitable here.
4448          * The context lock guarantees that.
4449          */
4450         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4451                                           lockdep_is_held(&event->ctx->lock));
4452         if (!hlist)
4453                 return NULL;
4454
4455         return __find_swevent_head(hlist, type, event_id);
4456 }
4457
4458 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4459                                     u64 nr, int nmi,
4460                                     struct perf_sample_data *data,
4461                                     struct pt_regs *regs)
4462 {
4463         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4464         struct perf_event *event;
4465         struct hlist_node *node;
4466         struct hlist_head *head;
4467
4468         rcu_read_lock();
4469         head = find_swevent_head_rcu(swhash, type, event_id);
4470         if (!head)
4471                 goto end;
4472
4473         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4474                 if (perf_swevent_match(event, type, event_id, data, regs))
4475                         perf_swevent_event(event, nr, nmi, data, regs);
4476         }
4477 end:
4478         rcu_read_unlock();
4479 }
4480
4481 int perf_swevent_get_recursion_context(void)
4482 {
4483         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4484
4485         return get_recursion_context(swhash->recursion);
4486 }
4487 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4488
4489 void inline perf_swevent_put_recursion_context(int rctx)
4490 {
4491         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4492
4493         put_recursion_context(swhash->recursion, rctx);
4494 }
4495
4496 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4497                             struct pt_regs *regs, u64 addr)
4498 {
4499         struct perf_sample_data data;
4500         int rctx;
4501
4502         preempt_disable_notrace();
4503         rctx = perf_swevent_get_recursion_context();
4504         if (rctx < 0)
4505                 return;
4506
4507         perf_sample_data_init(&data, addr);
4508
4509         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4510
4511         perf_swevent_put_recursion_context(rctx);
4512         preempt_enable_notrace();
4513 }
4514
4515 static void perf_swevent_read(struct perf_event *event)
4516 {
4517 }
4518
4519 static int perf_swevent_add(struct perf_event *event, int flags)
4520 {
4521         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4522         struct hw_perf_event *hwc = &event->hw;
4523         struct hlist_head *head;
4524
4525         if (hwc->sample_period) {
4526                 hwc->last_period = hwc->sample_period;
4527                 perf_swevent_set_period(event);
4528         }
4529
4530         hwc->state = !(flags & PERF_EF_START);
4531
4532         head = find_swevent_head(swhash, event);
4533         if (WARN_ON_ONCE(!head))
4534                 return -EINVAL;
4535
4536         hlist_add_head_rcu(&event->hlist_entry, head);
4537
4538         return 0;
4539 }
4540
4541 static void perf_swevent_del(struct perf_event *event, int flags)
4542 {
4543         hlist_del_rcu(&event->hlist_entry);
4544 }
4545
4546 static void perf_swevent_start(struct perf_event *event, int flags)
4547 {
4548         event->hw.state = 0;
4549 }
4550
4551 static void perf_swevent_stop(struct perf_event *event, int flags)
4552 {
4553         event->hw.state = PERF_HES_STOPPED;
4554 }
4555
4556 /* Deref the hlist from the update side */
4557 static inline struct swevent_hlist *
4558 swevent_hlist_deref(struct swevent_htable *swhash)
4559 {
4560         return rcu_dereference_protected(swhash->swevent_hlist,
4561                                          lockdep_is_held(&swhash->hlist_mutex));
4562 }
4563
4564 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4565 {
4566         struct swevent_hlist *hlist;
4567
4568         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4569         kfree(hlist);
4570 }
4571
4572 static void swevent_hlist_release(struct swevent_htable *swhash)
4573 {
4574         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4575
4576         if (!hlist)
4577                 return;
4578
4579         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4580         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4581 }
4582
4583 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4584 {
4585         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4586
4587         mutex_lock(&swhash->hlist_mutex);
4588
4589         if (!--swhash->hlist_refcount)
4590                 swevent_hlist_release(swhash);
4591
4592         mutex_unlock(&swhash->hlist_mutex);
4593 }
4594
4595 static void swevent_hlist_put(struct perf_event *event)
4596 {
4597         int cpu;
4598
4599         if (event->cpu != -1) {
4600                 swevent_hlist_put_cpu(event, event->cpu);
4601                 return;
4602         }
4603
4604         for_each_possible_cpu(cpu)
4605                 swevent_hlist_put_cpu(event, cpu);
4606 }
4607
4608 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4609 {
4610         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4611         int err = 0;
4612
4613         mutex_lock(&swhash->hlist_mutex);
4614
4615         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4616                 struct swevent_hlist *hlist;
4617
4618                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4619                 if (!hlist) {
4620                         err = -ENOMEM;
4621                         goto exit;
4622                 }
4623                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4624         }
4625         swhash->hlist_refcount++;
4626 exit:
4627         mutex_unlock(&swhash->hlist_mutex);
4628
4629         return err;
4630 }
4631
4632 static int swevent_hlist_get(struct perf_event *event)
4633 {
4634         int err;
4635         int cpu, failed_cpu;
4636
4637         if (event->cpu != -1)
4638                 return swevent_hlist_get_cpu(event, event->cpu);
4639
4640         get_online_cpus();
4641         for_each_possible_cpu(cpu) {
4642                 err = swevent_hlist_get_cpu(event, cpu);
4643                 if (err) {
4644                         failed_cpu = cpu;
4645                         goto fail;
4646                 }
4647         }
4648         put_online_cpus();
4649
4650         return 0;
4651 fail:
4652         for_each_possible_cpu(cpu) {
4653                 if (cpu == failed_cpu)
4654                         break;
4655                 swevent_hlist_put_cpu(event, cpu);
4656         }
4657
4658         put_online_cpus();
4659         return err;
4660 }
4661
4662 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4663
4664 static void sw_perf_event_destroy(struct perf_event *event)
4665 {
4666         u64 event_id = event->attr.config;
4667
4668         WARN_ON(event->parent);
4669
4670         jump_label_dec(&perf_swevent_enabled[event_id]);
4671         swevent_hlist_put(event);
4672 }
4673
4674 static int perf_swevent_init(struct perf_event *event)
4675 {
4676         int event_id = event->attr.config;
4677
4678         if (event->attr.type != PERF_TYPE_SOFTWARE)
4679                 return -ENOENT;
4680
4681         switch (event_id) {
4682         case PERF_COUNT_SW_CPU_CLOCK:
4683         case PERF_COUNT_SW_TASK_CLOCK:
4684                 return -ENOENT;
4685
4686         default:
4687                 break;
4688         }
4689
4690         if (event_id > PERF_COUNT_SW_MAX)
4691                 return -ENOENT;
4692
4693         if (!event->parent) {
4694                 int err;
4695
4696                 err = swevent_hlist_get(event);
4697                 if (err)
4698                         return err;
4699
4700                 jump_label_inc(&perf_swevent_enabled[event_id]);
4701                 event->destroy = sw_perf_event_destroy;
4702         }
4703
4704         return 0;
4705 }
4706
4707 static struct pmu perf_swevent = {
4708         .task_ctx_nr    = perf_sw_context,
4709
4710         .event_init     = perf_swevent_init,
4711         .add            = perf_swevent_add,
4712         .del            = perf_swevent_del,
4713         .start          = perf_swevent_start,
4714         .stop           = perf_swevent_stop,
4715         .read           = perf_swevent_read,
4716 };
4717
4718 #ifdef CONFIG_EVENT_TRACING
4719
4720 static int perf_tp_filter_match(struct perf_event *event,
4721                                 struct perf_sample_data *data)
4722 {
4723         void *record = data->raw->data;
4724
4725         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4726                 return 1;
4727         return 0;
4728 }
4729
4730 static int perf_tp_event_match(struct perf_event *event,
4731                                 struct perf_sample_data *data,
4732                                 struct pt_regs *regs)
4733 {
4734         /*
4735          * All tracepoints are from kernel-space.
4736          */
4737         if (event->attr.exclude_kernel)
4738                 return 0;
4739
4740         if (!perf_tp_filter_match(event, data))
4741                 return 0;
4742
4743         return 1;
4744 }
4745
4746 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4747                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4748 {
4749         struct perf_sample_data data;
4750         struct perf_event *event;
4751         struct hlist_node *node;
4752
4753         struct perf_raw_record raw = {
4754                 .size = entry_size,
4755                 .data = record,
4756         };
4757
4758         perf_sample_data_init(&data, addr);
4759         data.raw = &raw;
4760
4761         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4762                 if (perf_tp_event_match(event, &data, regs))
4763                         perf_swevent_event(event, count, 1, &data, regs);
4764         }
4765
4766         perf_swevent_put_recursion_context(rctx);
4767 }
4768 EXPORT_SYMBOL_GPL(perf_tp_event);
4769
4770 static void tp_perf_event_destroy(struct perf_event *event)
4771 {
4772         perf_trace_destroy(event);
4773 }
4774
4775 static int perf_tp_event_init(struct perf_event *event)
4776 {
4777         int err;
4778
4779         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4780                 return -ENOENT;
4781
4782         /*
4783          * Raw tracepoint data is a severe data leak, only allow root to
4784          * have these.
4785          */
4786         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4787                         perf_paranoid_tracepoint_raw() &&
4788                         !capable(CAP_SYS_ADMIN))
4789                 return -EPERM;
4790
4791         err = perf_trace_init(event);
4792         if (err)
4793                 return err;
4794
4795         event->destroy = tp_perf_event_destroy;
4796
4797         return 0;
4798 }
4799
4800 static struct pmu perf_tracepoint = {
4801         .task_ctx_nr    = perf_sw_context,
4802
4803         .event_init     = perf_tp_event_init,
4804         .add            = perf_trace_add,
4805         .del            = perf_trace_del,
4806         .start          = perf_swevent_start,
4807         .stop           = perf_swevent_stop,
4808         .read           = perf_swevent_read,
4809 };
4810
4811 static inline void perf_tp_register(void)
4812 {
4813         perf_pmu_register(&perf_tracepoint);
4814 }
4815
4816 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4817 {
4818         char *filter_str;
4819         int ret;
4820
4821         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4822                 return -EINVAL;
4823
4824         filter_str = strndup_user(arg, PAGE_SIZE);
4825         if (IS_ERR(filter_str))
4826                 return PTR_ERR(filter_str);
4827
4828         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4829
4830         kfree(filter_str);
4831         return ret;
4832 }
4833
4834 static void perf_event_free_filter(struct perf_event *event)
4835 {
4836         ftrace_profile_free_filter(event);
4837 }
4838
4839 #else
4840
4841 static inline void perf_tp_register(void)
4842 {
4843 }
4844
4845 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4846 {
4847         return -ENOENT;
4848 }
4849
4850 static void perf_event_free_filter(struct perf_event *event)
4851 {
4852 }
4853
4854 #endif /* CONFIG_EVENT_TRACING */
4855
4856 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4857 void perf_bp_event(struct perf_event *bp, void *data)
4858 {
4859         struct perf_sample_data sample;
4860         struct pt_regs *regs = data;
4861
4862         perf_sample_data_init(&sample, bp->attr.bp_addr);
4863
4864         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4865                 perf_swevent_event(bp, 1, 1, &sample, regs);
4866 }
4867 #endif
4868
4869 /*
4870  * hrtimer based swevent callback
4871  */
4872
4873 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4874 {
4875         enum hrtimer_restart ret = HRTIMER_RESTART;
4876         struct perf_sample_data data;
4877         struct pt_regs *regs;
4878         struct perf_event *event;
4879         u64 period;
4880
4881         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4882         event->pmu->read(event);
4883
4884         perf_sample_data_init(&data, 0);
4885         data.period = event->hw.last_period;
4886         regs = get_irq_regs();
4887
4888         if (regs && !perf_exclude_event(event, regs)) {
4889                 if (!(event->attr.exclude_idle && current->pid == 0))
4890                         if (perf_event_overflow(event, 0, &data, regs))
4891                                 ret = HRTIMER_NORESTART;
4892         }
4893
4894         period = max_t(u64, 10000, event->hw.sample_period);
4895         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4896
4897         return ret;
4898 }
4899
4900 static void perf_swevent_start_hrtimer(struct perf_event *event)
4901 {
4902         struct hw_perf_event *hwc = &event->hw;
4903
4904         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4905         hwc->hrtimer.function = perf_swevent_hrtimer;
4906         if (hwc->sample_period) {
4907                 s64 period = local64_read(&hwc->period_left);
4908
4909                 if (period) {
4910                         if (period < 0)
4911                                 period = 10000;
4912
4913                         local64_set(&hwc->period_left, 0);
4914                 } else {
4915                         period = max_t(u64, 10000, hwc->sample_period);
4916                 }
4917                 __hrtimer_start_range_ns(&hwc->hrtimer,
4918                                 ns_to_ktime(period), 0,
4919                                 HRTIMER_MODE_REL_PINNED, 0);
4920         }
4921 }
4922
4923 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4924 {
4925         struct hw_perf_event *hwc = &event->hw;
4926
4927         if (hwc->sample_period) {
4928                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4929                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4930
4931                 hrtimer_cancel(&hwc->hrtimer);
4932         }
4933 }
4934
4935 /*
4936  * Software event: cpu wall time clock
4937  */
4938
4939 static void cpu_clock_event_update(struct perf_event *event)
4940 {
4941         s64 prev;
4942         u64 now;
4943
4944         now = local_clock();
4945         prev = local64_xchg(&event->hw.prev_count, now);
4946         local64_add(now - prev, &event->count);
4947 }
4948
4949 static void cpu_clock_event_start(struct perf_event *event, int flags)
4950 {
4951         local64_set(&event->hw.prev_count, local_clock());
4952         perf_swevent_start_hrtimer(event);
4953 }
4954
4955 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4956 {
4957         perf_swevent_cancel_hrtimer(event);
4958         cpu_clock_event_update(event);
4959 }
4960
4961 static int cpu_clock_event_add(struct perf_event *event, int flags)
4962 {
4963         if (flags & PERF_EF_START)
4964                 cpu_clock_event_start(event, flags);
4965
4966         return 0;
4967 }
4968
4969 static void cpu_clock_event_del(struct perf_event *event, int flags)
4970 {
4971         cpu_clock_event_stop(event, flags);
4972 }
4973
4974 static void cpu_clock_event_read(struct perf_event *event)
4975 {
4976         cpu_clock_event_update(event);
4977 }
4978
4979 static int cpu_clock_event_init(struct perf_event *event)
4980 {
4981         if (event->attr.type != PERF_TYPE_SOFTWARE)
4982                 return -ENOENT;
4983
4984         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4985                 return -ENOENT;
4986
4987         return 0;
4988 }
4989
4990 static struct pmu perf_cpu_clock = {
4991         .task_ctx_nr    = perf_sw_context,
4992
4993         .event_init     = cpu_clock_event_init,
4994         .add            = cpu_clock_event_add,
4995         .del            = cpu_clock_event_del,
4996         .start          = cpu_clock_event_start,
4997         .stop           = cpu_clock_event_stop,
4998         .read           = cpu_clock_event_read,
4999 };
5000
5001 /*
5002  * Software event: task time clock
5003  */
5004
5005 static void task_clock_event_update(struct perf_event *event, u64 now)
5006 {
5007         u64 prev;
5008         s64 delta;
5009
5010         prev = local64_xchg(&event->hw.prev_count, now);
5011         delta = now - prev;
5012         local64_add(delta, &event->count);
5013 }
5014
5015 static void task_clock_event_start(struct perf_event *event, int flags)
5016 {
5017         local64_set(&event->hw.prev_count, event->ctx->time);
5018         perf_swevent_start_hrtimer(event);
5019 }
5020
5021 static void task_clock_event_stop(struct perf_event *event, int flags)
5022 {
5023         perf_swevent_cancel_hrtimer(event);
5024         task_clock_event_update(event, event->ctx->time);
5025 }
5026
5027 static int task_clock_event_add(struct perf_event *event, int flags)
5028 {
5029         if (flags & PERF_EF_START)
5030                 task_clock_event_start(event, flags);
5031
5032         return 0;
5033 }
5034
5035 static void task_clock_event_del(struct perf_event *event, int flags)
5036 {
5037         task_clock_event_stop(event, PERF_EF_UPDATE);
5038 }
5039
5040 static void task_clock_event_read(struct perf_event *event)
5041 {
5042         u64 time;
5043
5044         if (!in_nmi()) {
5045                 update_context_time(event->ctx);
5046                 time = event->ctx->time;
5047         } else {
5048                 u64 now = perf_clock();
5049                 u64 delta = now - event->ctx->timestamp;
5050                 time = event->ctx->time + delta;
5051         }
5052
5053         task_clock_event_update(event, time);
5054 }
5055
5056 static int task_clock_event_init(struct perf_event *event)
5057 {
5058         if (event->attr.type != PERF_TYPE_SOFTWARE)
5059                 return -ENOENT;
5060
5061         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5062                 return -ENOENT;
5063
5064         return 0;
5065 }
5066
5067 static struct pmu perf_task_clock = {
5068         .task_ctx_nr    = perf_sw_context,
5069
5070         .event_init     = task_clock_event_init,
5071         .add            = task_clock_event_add,
5072         .del            = task_clock_event_del,
5073         .start          = task_clock_event_start,
5074         .stop           = task_clock_event_stop,
5075         .read           = task_clock_event_read,
5076 };
5077
5078 static void perf_pmu_nop_void(struct pmu *pmu)
5079 {
5080 }
5081
5082 static int perf_pmu_nop_int(struct pmu *pmu)
5083 {
5084         return 0;
5085 }
5086
5087 static void perf_pmu_start_txn(struct pmu *pmu)
5088 {
5089         perf_pmu_disable(pmu);
5090 }
5091
5092 static int perf_pmu_commit_txn(struct pmu *pmu)
5093 {
5094         perf_pmu_enable(pmu);
5095         return 0;
5096 }
5097
5098 static void perf_pmu_cancel_txn(struct pmu *pmu)
5099 {
5100         perf_pmu_enable(pmu);
5101 }
5102
5103 /*
5104  * Ensures all contexts with the same task_ctx_nr have the same
5105  * pmu_cpu_context too.
5106  */
5107 static void *find_pmu_context(int ctxn)
5108 {
5109         struct pmu *pmu;
5110
5111         if (ctxn < 0)
5112                 return NULL;
5113
5114         list_for_each_entry(pmu, &pmus, entry) {
5115                 if (pmu->task_ctx_nr == ctxn)
5116                         return pmu->pmu_cpu_context;
5117         }
5118
5119         return NULL;
5120 }
5121
5122 static void free_pmu_context(void * __percpu cpu_context)
5123 {
5124         struct pmu *pmu;
5125
5126         mutex_lock(&pmus_lock);
5127         /*
5128          * Like a real lame refcount.
5129          */
5130         list_for_each_entry(pmu, &pmus, entry) {
5131                 if (pmu->pmu_cpu_context == cpu_context)
5132                         goto out;
5133         }
5134
5135         free_percpu(cpu_context);
5136 out:
5137         mutex_unlock(&pmus_lock);
5138 }
5139
5140 int perf_pmu_register(struct pmu *pmu)
5141 {
5142         int cpu, ret;
5143
5144         mutex_lock(&pmus_lock);
5145         ret = -ENOMEM;
5146         pmu->pmu_disable_count = alloc_percpu(int);
5147         if (!pmu->pmu_disable_count)
5148                 goto unlock;
5149
5150         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5151         if (pmu->pmu_cpu_context)
5152                 goto got_cpu_context;
5153
5154         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5155         if (!pmu->pmu_cpu_context)
5156                 goto free_pdc;
5157
5158         for_each_possible_cpu(cpu) {
5159                 struct perf_cpu_context *cpuctx;
5160
5161                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5162                 __perf_event_init_context(&cpuctx->ctx);
5163                 cpuctx->ctx.type = cpu_context;
5164                 cpuctx->ctx.pmu = pmu;
5165                 cpuctx->jiffies_interval = 1;
5166                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5167         }
5168
5169 got_cpu_context:
5170         if (!pmu->start_txn) {
5171                 if (pmu->pmu_enable) {
5172                         /*
5173                          * If we have pmu_enable/pmu_disable calls, install
5174                          * transaction stubs that use that to try and batch
5175                          * hardware accesses.
5176                          */
5177                         pmu->start_txn  = perf_pmu_start_txn;
5178                         pmu->commit_txn = perf_pmu_commit_txn;
5179                         pmu->cancel_txn = perf_pmu_cancel_txn;
5180                 } else {
5181                         pmu->start_txn  = perf_pmu_nop_void;
5182                         pmu->commit_txn = perf_pmu_nop_int;
5183                         pmu->cancel_txn = perf_pmu_nop_void;
5184                 }
5185         }
5186
5187         if (!pmu->pmu_enable) {
5188                 pmu->pmu_enable  = perf_pmu_nop_void;
5189                 pmu->pmu_disable = perf_pmu_nop_void;
5190         }
5191
5192         list_add_rcu(&pmu->entry, &pmus);
5193         ret = 0;
5194 unlock:
5195         mutex_unlock(&pmus_lock);
5196
5197         return ret;
5198
5199 free_pdc:
5200         free_percpu(pmu->pmu_disable_count);
5201         goto unlock;
5202 }
5203
5204 void perf_pmu_unregister(struct pmu *pmu)
5205 {
5206         mutex_lock(&pmus_lock);
5207         list_del_rcu(&pmu->entry);
5208         mutex_unlock(&pmus_lock);
5209
5210         /*
5211          * We dereference the pmu list under both SRCU and regular RCU, so
5212          * synchronize against both of those.
5213          */
5214         synchronize_srcu(&pmus_srcu);
5215         synchronize_rcu();
5216
5217         free_percpu(pmu->pmu_disable_count);
5218         free_pmu_context(pmu->pmu_cpu_context);
5219 }
5220
5221 struct pmu *perf_init_event(struct perf_event *event)
5222 {
5223         struct pmu *pmu = NULL;
5224         int idx;
5225
5226         idx = srcu_read_lock(&pmus_srcu);
5227         list_for_each_entry_rcu(pmu, &pmus, entry) {
5228                 int ret = pmu->event_init(event);
5229                 if (!ret)
5230                         goto unlock;
5231
5232                 if (ret != -ENOENT) {
5233                         pmu = ERR_PTR(ret);
5234                         goto unlock;
5235                 }
5236         }
5237         pmu = ERR_PTR(-ENOENT);
5238 unlock:
5239         srcu_read_unlock(&pmus_srcu, idx);
5240
5241         return pmu;
5242 }
5243
5244 /*
5245  * Allocate and initialize a event structure
5246  */
5247 static struct perf_event *
5248 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5249                  struct task_struct *task,
5250                  struct perf_event *group_leader,
5251                  struct perf_event *parent_event,
5252                  perf_overflow_handler_t overflow_handler)
5253 {
5254         struct pmu *pmu;
5255         struct perf_event *event;
5256         struct hw_perf_event *hwc;
5257         long err;
5258
5259         event = kzalloc(sizeof(*event), GFP_KERNEL);
5260         if (!event)
5261                 return ERR_PTR(-ENOMEM);
5262
5263         /*
5264          * Single events are their own group leaders, with an
5265          * empty sibling list:
5266          */
5267         if (!group_leader)
5268                 group_leader = event;
5269
5270         mutex_init(&event->child_mutex);
5271         INIT_LIST_HEAD(&event->child_list);
5272
5273         INIT_LIST_HEAD(&event->group_entry);
5274         INIT_LIST_HEAD(&event->event_entry);
5275         INIT_LIST_HEAD(&event->sibling_list);
5276         init_waitqueue_head(&event->waitq);
5277         init_irq_work(&event->pending, perf_pending_event);
5278
5279         mutex_init(&event->mmap_mutex);
5280
5281         event->cpu              = cpu;
5282         event->attr             = *attr;
5283         event->group_leader     = group_leader;
5284         event->pmu              = NULL;
5285         event->oncpu            = -1;
5286
5287         event->parent           = parent_event;
5288
5289         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5290         event->id               = atomic64_inc_return(&perf_event_id);
5291
5292         event->state            = PERF_EVENT_STATE_INACTIVE;
5293
5294         if (task) {
5295                 event->attach_state = PERF_ATTACH_TASK;
5296 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5297                 /*
5298                  * hw_breakpoint is a bit difficult here..
5299                  */
5300                 if (attr->type == PERF_TYPE_BREAKPOINT)
5301                         event->hw.bp_target = task;
5302 #endif
5303         }
5304
5305         if (!overflow_handler && parent_event)
5306                 overflow_handler = parent_event->overflow_handler;
5307         
5308         event->overflow_handler = overflow_handler;
5309
5310         if (attr->disabled)
5311                 event->state = PERF_EVENT_STATE_OFF;
5312
5313         pmu = NULL;
5314
5315         hwc = &event->hw;
5316         hwc->sample_period = attr->sample_period;
5317         if (attr->freq && attr->sample_freq)
5318                 hwc->sample_period = 1;
5319         hwc->last_period = hwc->sample_period;
5320
5321         local64_set(&hwc->period_left, hwc->sample_period);
5322
5323         /*
5324          * we currently do not support PERF_FORMAT_GROUP on inherited events
5325          */
5326         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5327                 goto done;
5328
5329         pmu = perf_init_event(event);
5330
5331 done:
5332         err = 0;
5333         if (!pmu)
5334                 err = -EINVAL;
5335         else if (IS_ERR(pmu))
5336                 err = PTR_ERR(pmu);
5337
5338         if (err) {
5339                 if (event->ns)
5340                         put_pid_ns(event->ns);
5341                 kfree(event);
5342                 return ERR_PTR(err);
5343         }
5344
5345         event->pmu = pmu;
5346
5347         if (!event->parent) {
5348                 if (event->attach_state & PERF_ATTACH_TASK)
5349                         jump_label_inc(&perf_task_events);
5350                 if (event->attr.mmap || event->attr.mmap_data)
5351                         atomic_inc(&nr_mmap_events);
5352                 if (event->attr.comm)
5353                         atomic_inc(&nr_comm_events);
5354                 if (event->attr.task)
5355                         atomic_inc(&nr_task_events);
5356                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5357                         err = get_callchain_buffers();
5358                         if (err) {
5359                                 free_event(event);
5360                                 return ERR_PTR(err);
5361                         }
5362                 }
5363         }
5364
5365         return event;
5366 }
5367
5368 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5369                           struct perf_event_attr *attr)
5370 {
5371         u32 size;
5372         int ret;
5373
5374         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5375                 return -EFAULT;
5376
5377         /*
5378          * zero the full structure, so that a short copy will be nice.
5379          */
5380         memset(attr, 0, sizeof(*attr));
5381
5382         ret = get_user(size, &uattr->size);
5383         if (ret)
5384                 return ret;
5385
5386         if (size > PAGE_SIZE)   /* silly large */
5387                 goto err_size;
5388
5389         if (!size)              /* abi compat */
5390                 size = PERF_ATTR_SIZE_VER0;
5391
5392         if (size < PERF_ATTR_SIZE_VER0)
5393                 goto err_size;
5394
5395         /*
5396          * If we're handed a bigger struct than we know of,
5397          * ensure all the unknown bits are 0 - i.e. new
5398          * user-space does not rely on any kernel feature
5399          * extensions we dont know about yet.
5400          */
5401         if (size > sizeof(*attr)) {
5402                 unsigned char __user *addr;
5403                 unsigned char __user *end;
5404                 unsigned char val;
5405
5406                 addr = (void __user *)uattr + sizeof(*attr);
5407                 end  = (void __user *)uattr + size;
5408
5409                 for (; addr < end; addr++) {
5410                         ret = get_user(val, addr);
5411                         if (ret)
5412                                 return ret;
5413                         if (val)
5414                                 goto err_size;
5415                 }
5416                 size = sizeof(*attr);
5417         }
5418
5419         ret = copy_from_user(attr, uattr, size);
5420         if (ret)
5421                 return -EFAULT;
5422
5423         /*
5424          * If the type exists, the corresponding creation will verify
5425          * the attr->config.
5426          */
5427         if (attr->type >= PERF_TYPE_MAX)
5428                 return -EINVAL;
5429
5430         if (attr->__reserved_1)
5431                 return -EINVAL;
5432
5433         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5434                 return -EINVAL;
5435
5436         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5437                 return -EINVAL;
5438
5439 out:
5440         return ret;
5441
5442 err_size:
5443         put_user(sizeof(*attr), &uattr->size);
5444         ret = -E2BIG;
5445         goto out;
5446 }
5447
5448 static int
5449 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5450 {
5451         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5452         int ret = -EINVAL;
5453
5454         if (!output_event)
5455                 goto set;
5456
5457         /* don't allow circular references */
5458         if (event == output_event)
5459                 goto out;
5460
5461         /*
5462          * Don't allow cross-cpu buffers
5463          */
5464         if (output_event->cpu != event->cpu)
5465                 goto out;
5466
5467         /*
5468          * If its not a per-cpu buffer, it must be the same task.
5469          */
5470         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5471                 goto out;
5472
5473 set:
5474         mutex_lock(&event->mmap_mutex);
5475         /* Can't redirect output if we've got an active mmap() */
5476         if (atomic_read(&event->mmap_count))
5477                 goto unlock;
5478
5479         if (output_event) {
5480                 /* get the buffer we want to redirect to */
5481                 buffer = perf_buffer_get(output_event);
5482                 if (!buffer)
5483                         goto unlock;
5484         }
5485
5486         old_buffer = event->buffer;
5487         rcu_assign_pointer(event->buffer, buffer);
5488         ret = 0;
5489 unlock:
5490         mutex_unlock(&event->mmap_mutex);
5491
5492         if (old_buffer)
5493                 perf_buffer_put(old_buffer);
5494 out:
5495         return ret;
5496 }
5497
5498 /**
5499  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5500  *
5501  * @attr_uptr:  event_id type attributes for monitoring/sampling
5502  * @pid:                target pid
5503  * @cpu:                target cpu
5504  * @group_fd:           group leader event fd
5505  */
5506 SYSCALL_DEFINE5(perf_event_open,
5507                 struct perf_event_attr __user *, attr_uptr,
5508                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5509 {
5510         struct perf_event *group_leader = NULL, *output_event = NULL;
5511         struct perf_event *event, *sibling;
5512         struct perf_event_attr attr;
5513         struct perf_event_context *ctx;
5514         struct file *event_file = NULL;
5515         struct file *group_file = NULL;
5516         struct task_struct *task = NULL;
5517         struct pmu *pmu;
5518         int event_fd;
5519         int move_group = 0;
5520         int fput_needed = 0;
5521         int err;
5522
5523         /* for future expandability... */
5524         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5525                 return -EINVAL;
5526
5527         err = perf_copy_attr(attr_uptr, &attr);
5528         if (err)
5529                 return err;
5530
5531         if (!attr.exclude_kernel) {
5532                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5533                         return -EACCES;
5534         }
5535
5536         if (attr.freq) {
5537                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5538                         return -EINVAL;
5539         }
5540
5541         event_fd = get_unused_fd_flags(O_RDWR);
5542         if (event_fd < 0)
5543                 return event_fd;
5544
5545         if (group_fd != -1) {
5546                 group_leader = perf_fget_light(group_fd, &fput_needed);
5547                 if (IS_ERR(group_leader)) {
5548                         err = PTR_ERR(group_leader);
5549                         goto err_fd;
5550                 }
5551                 group_file = group_leader->filp;
5552                 if (flags & PERF_FLAG_FD_OUTPUT)
5553                         output_event = group_leader;
5554                 if (flags & PERF_FLAG_FD_NO_GROUP)
5555                         group_leader = NULL;
5556         }
5557
5558         if (pid != -1) {
5559                 task = find_lively_task_by_vpid(pid);
5560                 if (IS_ERR(task)) {
5561                         err = PTR_ERR(task);
5562                         goto err_group_fd;
5563                 }
5564         }
5565
5566         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5567         if (IS_ERR(event)) {
5568                 err = PTR_ERR(event);
5569                 goto err_task;
5570         }
5571
5572         /*
5573          * Special case software events and allow them to be part of
5574          * any hardware group.
5575          */
5576         pmu = event->pmu;
5577
5578         if (group_leader &&
5579             (is_software_event(event) != is_software_event(group_leader))) {
5580                 if (is_software_event(event)) {
5581                         /*
5582                          * If event and group_leader are not both a software
5583                          * event, and event is, then group leader is not.
5584                          *
5585                          * Allow the addition of software events to !software
5586                          * groups, this is safe because software events never
5587                          * fail to schedule.
5588                          */
5589                         pmu = group_leader->pmu;
5590                 } else if (is_software_event(group_leader) &&
5591                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5592                         /*
5593                          * In case the group is a pure software group, and we
5594                          * try to add a hardware event, move the whole group to
5595                          * the hardware context.
5596                          */
5597                         move_group = 1;
5598                 }
5599         }
5600
5601         /*
5602          * Get the target context (task or percpu):
5603          */
5604         ctx = find_get_context(pmu, task, cpu);
5605         if (IS_ERR(ctx)) {
5606                 err = PTR_ERR(ctx);
5607                 goto err_alloc;
5608         }
5609
5610         /*
5611          * Look up the group leader (we will attach this event to it):
5612          */
5613         if (group_leader) {
5614                 err = -EINVAL;
5615
5616                 /*
5617                  * Do not allow a recursive hierarchy (this new sibling
5618                  * becoming part of another group-sibling):
5619                  */
5620                 if (group_leader->group_leader != group_leader)
5621                         goto err_context;
5622                 /*
5623                  * Do not allow to attach to a group in a different
5624                  * task or CPU context:
5625                  */
5626                 if (move_group) {
5627                         if (group_leader->ctx->type != ctx->type)
5628                                 goto err_context;
5629                 } else {
5630                         if (group_leader->ctx != ctx)
5631                                 goto err_context;
5632                 }
5633
5634                 /*
5635                  * Only a group leader can be exclusive or pinned
5636                  */
5637                 if (attr.exclusive || attr.pinned)
5638                         goto err_context;
5639         }
5640
5641         if (output_event) {
5642                 err = perf_event_set_output(event, output_event);
5643                 if (err)
5644                         goto err_context;
5645         }
5646
5647         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5648         if (IS_ERR(event_file)) {
5649                 err = PTR_ERR(event_file);
5650                 goto err_context;
5651         }
5652
5653         if (move_group) {
5654                 struct perf_event_context *gctx = group_leader->ctx;
5655
5656                 mutex_lock(&gctx->mutex);
5657                 perf_event_remove_from_context(group_leader);
5658                 list_for_each_entry(sibling, &group_leader->sibling_list,
5659                                     group_entry) {
5660                         perf_event_remove_from_context(sibling);
5661                         put_ctx(gctx);
5662                 }
5663                 mutex_unlock(&gctx->mutex);
5664                 put_ctx(gctx);
5665         }
5666
5667         event->filp = event_file;
5668         WARN_ON_ONCE(ctx->parent_ctx);
5669         mutex_lock(&ctx->mutex);
5670
5671         if (move_group) {
5672                 perf_install_in_context(ctx, group_leader, cpu);
5673                 get_ctx(ctx);
5674                 list_for_each_entry(sibling, &group_leader->sibling_list,
5675                                     group_entry) {
5676                         perf_install_in_context(ctx, sibling, cpu);
5677                         get_ctx(ctx);
5678                 }
5679         }
5680
5681         perf_install_in_context(ctx, event, cpu);
5682         ++ctx->generation;
5683         mutex_unlock(&ctx->mutex);
5684
5685         event->owner = current;
5686         get_task_struct(current);
5687         mutex_lock(&current->perf_event_mutex);
5688         list_add_tail(&event->owner_entry, &current->perf_event_list);
5689         mutex_unlock(&current->perf_event_mutex);
5690
5691         /*
5692          * Drop the reference on the group_event after placing the
5693          * new event on the sibling_list. This ensures destruction
5694          * of the group leader will find the pointer to itself in
5695          * perf_group_detach().
5696          */
5697         fput_light(group_file, fput_needed);
5698         fd_install(event_fd, event_file);
5699         return event_fd;
5700
5701 err_context:
5702         put_ctx(ctx);
5703 err_alloc:
5704         free_event(event);
5705 err_task:
5706         if (task)
5707                 put_task_struct(task);
5708 err_group_fd:
5709         fput_light(group_file, fput_needed);
5710 err_fd:
5711         put_unused_fd(event_fd);
5712         return err;
5713 }
5714
5715 /**
5716  * perf_event_create_kernel_counter
5717  *
5718  * @attr: attributes of the counter to create
5719  * @cpu: cpu in which the counter is bound
5720  * @task: task to profile (NULL for percpu)
5721  */
5722 struct perf_event *
5723 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5724                                  struct task_struct *task,
5725                                  perf_overflow_handler_t overflow_handler)
5726 {
5727         struct perf_event_context *ctx;
5728         struct perf_event *event;
5729         int err;
5730
5731         /*
5732          * Get the target context (task or percpu):
5733          */
5734
5735         event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5736         if (IS_ERR(event)) {
5737                 err = PTR_ERR(event);
5738                 goto err;
5739         }
5740
5741         ctx = find_get_context(event->pmu, task, cpu);
5742         if (IS_ERR(ctx)) {
5743                 err = PTR_ERR(ctx);
5744                 goto err_free;
5745         }
5746
5747         event->filp = NULL;
5748         WARN_ON_ONCE(ctx->parent_ctx);
5749         mutex_lock(&ctx->mutex);
5750         perf_install_in_context(ctx, event, cpu);
5751         ++ctx->generation;
5752         mutex_unlock(&ctx->mutex);
5753
5754         event->owner = current;
5755         get_task_struct(current);
5756         mutex_lock(&current->perf_event_mutex);
5757         list_add_tail(&event->owner_entry, &current->perf_event_list);
5758         mutex_unlock(&current->perf_event_mutex);
5759
5760         return event;
5761
5762 err_free:
5763         free_event(event);
5764 err:
5765         return ERR_PTR(err);
5766 }
5767 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5768
5769 static void sync_child_event(struct perf_event *child_event,
5770                                struct task_struct *child)
5771 {
5772         struct perf_event *parent_event = child_event->parent;
5773         u64 child_val;
5774
5775         if (child_event->attr.inherit_stat)
5776                 perf_event_read_event(child_event, child);
5777
5778         child_val = perf_event_count(child_event);
5779
5780         /*
5781          * Add back the child's count to the parent's count:
5782          */
5783         atomic64_add(child_val, &parent_event->child_count);
5784         atomic64_add(child_event->total_time_enabled,
5785                      &parent_event->child_total_time_enabled);
5786         atomic64_add(child_event->total_time_running,
5787                      &parent_event->child_total_time_running);
5788
5789         /*
5790          * Remove this event from the parent's list
5791          */
5792         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5793         mutex_lock(&parent_event->child_mutex);
5794         list_del_init(&child_event->child_list);
5795         mutex_unlock(&parent_event->child_mutex);
5796
5797         /*
5798          * Release the parent event, if this was the last
5799          * reference to it.
5800          */
5801         fput(parent_event->filp);
5802 }
5803
5804 static void
5805 __perf_event_exit_task(struct perf_event *child_event,
5806                          struct perf_event_context *child_ctx,
5807                          struct task_struct *child)
5808 {
5809         struct perf_event *parent_event;
5810
5811         perf_event_remove_from_context(child_event);
5812
5813         parent_event = child_event->parent;
5814         /*
5815          * It can happen that parent exits first, and has events
5816          * that are still around due to the child reference. These
5817          * events need to be zapped - but otherwise linger.
5818          */
5819         if (parent_event) {
5820                 sync_child_event(child_event, child);
5821                 free_event(child_event);
5822         }
5823 }
5824
5825 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5826 {
5827         struct perf_event *child_event, *tmp;
5828         struct perf_event_context *child_ctx;
5829         unsigned long flags;
5830
5831         if (likely(!child->perf_event_ctxp[ctxn])) {
5832                 perf_event_task(child, NULL, 0);
5833                 return;
5834         }
5835
5836         local_irq_save(flags);
5837         /*
5838          * We can't reschedule here because interrupts are disabled,
5839          * and either child is current or it is a task that can't be
5840          * scheduled, so we are now safe from rescheduling changing
5841          * our context.
5842          */
5843         child_ctx = child->perf_event_ctxp[ctxn];
5844         task_ctx_sched_out(child_ctx, EVENT_ALL);
5845
5846         /*
5847          * Take the context lock here so that if find_get_context is
5848          * reading child->perf_event_ctxp, we wait until it has
5849          * incremented the context's refcount before we do put_ctx below.
5850          */
5851         raw_spin_lock(&child_ctx->lock);
5852         child->perf_event_ctxp[ctxn] = NULL;
5853         /*
5854          * If this context is a clone; unclone it so it can't get
5855          * swapped to another process while we're removing all
5856          * the events from it.
5857          */
5858         unclone_ctx(child_ctx);
5859         update_context_time(child_ctx);
5860         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5861
5862         /*
5863          * Report the task dead after unscheduling the events so that we
5864          * won't get any samples after PERF_RECORD_EXIT. We can however still
5865          * get a few PERF_RECORD_READ events.
5866          */
5867         perf_event_task(child, child_ctx, 0);
5868
5869         /*
5870          * We can recurse on the same lock type through:
5871          *
5872          *   __perf_event_exit_task()
5873          *     sync_child_event()
5874          *       fput(parent_event->filp)
5875          *         perf_release()
5876          *           mutex_lock(&ctx->mutex)
5877          *
5878          * But since its the parent context it won't be the same instance.
5879          */
5880         mutex_lock(&child_ctx->mutex);
5881
5882 again:
5883         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5884                                  group_entry)
5885                 __perf_event_exit_task(child_event, child_ctx, child);
5886
5887         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5888                                  group_entry)
5889                 __perf_event_exit_task(child_event, child_ctx, child);
5890
5891         /*
5892          * If the last event was a group event, it will have appended all
5893          * its siblings to the list, but we obtained 'tmp' before that which
5894          * will still point to the list head terminating the iteration.
5895          */
5896         if (!list_empty(&child_ctx->pinned_groups) ||
5897             !list_empty(&child_ctx->flexible_groups))
5898                 goto again;
5899
5900         mutex_unlock(&child_ctx->mutex);
5901
5902         put_ctx(child_ctx);
5903 }
5904
5905 /*
5906  * When a child task exits, feed back event values to parent events.
5907  */
5908 void perf_event_exit_task(struct task_struct *child)
5909 {
5910         int ctxn;
5911
5912         for_each_task_context_nr(ctxn)
5913                 perf_event_exit_task_context(child, ctxn);
5914 }
5915
5916 static void perf_free_event(struct perf_event *event,
5917                             struct perf_event_context *ctx)
5918 {
5919         struct perf_event *parent = event->parent;
5920
5921         if (WARN_ON_ONCE(!parent))
5922                 return;
5923
5924         mutex_lock(&parent->child_mutex);
5925         list_del_init(&event->child_list);
5926         mutex_unlock(&parent->child_mutex);
5927
5928         fput(parent->filp);
5929
5930         perf_group_detach(event);
5931         list_del_event(event, ctx);
5932         free_event(event);
5933 }
5934
5935 /*
5936  * free an unexposed, unused context as created by inheritance by
5937  * perf_event_init_task below, used by fork() in case of fail.
5938  */
5939 void perf_event_free_task(struct task_struct *task)
5940 {
5941         struct perf_event_context *ctx;
5942         struct perf_event *event, *tmp;
5943         int ctxn;
5944
5945         for_each_task_context_nr(ctxn) {
5946                 ctx = task->perf_event_ctxp[ctxn];
5947                 if (!ctx)
5948                         continue;
5949
5950                 mutex_lock(&ctx->mutex);
5951 again:
5952                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5953                                 group_entry)
5954                         perf_free_event(event, ctx);
5955
5956                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5957                                 group_entry)
5958                         perf_free_event(event, ctx);
5959
5960                 if (!list_empty(&ctx->pinned_groups) ||
5961                                 !list_empty(&ctx->flexible_groups))
5962                         goto again;
5963
5964                 mutex_unlock(&ctx->mutex);
5965
5966                 put_ctx(ctx);
5967         }
5968 }
5969
5970 void perf_event_delayed_put(struct task_struct *task)
5971 {
5972         int ctxn;
5973
5974         for_each_task_context_nr(ctxn)
5975                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5976 }
5977
5978 /*
5979  * inherit a event from parent task to child task:
5980  */
5981 static struct perf_event *
5982 inherit_event(struct perf_event *parent_event,
5983               struct task_struct *parent,
5984               struct perf_event_context *parent_ctx,
5985               struct task_struct *child,
5986               struct perf_event *group_leader,
5987               struct perf_event_context *child_ctx)
5988 {
5989         struct perf_event *child_event;
5990         unsigned long flags;
5991
5992         /*
5993          * Instead of creating recursive hierarchies of events,
5994          * we link inherited events back to the original parent,
5995          * which has a filp for sure, which we use as the reference
5996          * count:
5997          */
5998         if (parent_event->parent)
5999                 parent_event = parent_event->parent;
6000
6001         child_event = perf_event_alloc(&parent_event->attr,
6002                                            parent_event->cpu,
6003                                            child,
6004                                            group_leader, parent_event,
6005                                            NULL);
6006         if (IS_ERR(child_event))
6007                 return child_event;
6008         get_ctx(child_ctx);
6009
6010         /*
6011          * Make the child state follow the state of the parent event,
6012          * not its attr.disabled bit.  We hold the parent's mutex,
6013          * so we won't race with perf_event_{en, dis}able_family.
6014          */
6015         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6016                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6017         else
6018                 child_event->state = PERF_EVENT_STATE_OFF;
6019
6020         if (parent_event->attr.freq) {
6021                 u64 sample_period = parent_event->hw.sample_period;
6022                 struct hw_perf_event *hwc = &child_event->hw;
6023
6024                 hwc->sample_period = sample_period;
6025                 hwc->last_period   = sample_period;
6026
6027                 local64_set(&hwc->period_left, sample_period);
6028         }
6029
6030         child_event->ctx = child_ctx;
6031         child_event->overflow_handler = parent_event->overflow_handler;
6032
6033         /*
6034          * Link it up in the child's context:
6035          */
6036         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6037         add_event_to_ctx(child_event, child_ctx);
6038         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6039
6040         /*
6041          * Get a reference to the parent filp - we will fput it
6042          * when the child event exits. This is safe to do because
6043          * we are in the parent and we know that the filp still
6044          * exists and has a nonzero count:
6045          */
6046         atomic_long_inc(&parent_event->filp->f_count);
6047
6048         /*
6049          * Link this into the parent event's child list
6050          */
6051         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6052         mutex_lock(&parent_event->child_mutex);
6053         list_add_tail(&child_event->child_list, &parent_event->child_list);
6054         mutex_unlock(&parent_event->child_mutex);
6055
6056         return child_event;
6057 }
6058
6059 static int inherit_group(struct perf_event *parent_event,
6060               struct task_struct *parent,
6061               struct perf_event_context *parent_ctx,
6062               struct task_struct *child,
6063               struct perf_event_context *child_ctx)
6064 {
6065         struct perf_event *leader;
6066         struct perf_event *sub;
6067         struct perf_event *child_ctr;
6068
6069         leader = inherit_event(parent_event, parent, parent_ctx,
6070                                  child, NULL, child_ctx);
6071         if (IS_ERR(leader))
6072                 return PTR_ERR(leader);
6073         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6074                 child_ctr = inherit_event(sub, parent, parent_ctx,
6075                                             child, leader, child_ctx);
6076                 if (IS_ERR(child_ctr))
6077                         return PTR_ERR(child_ctr);
6078         }
6079         return 0;
6080 }
6081
6082 static int
6083 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6084                    struct perf_event_context *parent_ctx,
6085                    struct task_struct *child, int ctxn,
6086                    int *inherited_all)
6087 {
6088         int ret;
6089         struct perf_event_context *child_ctx;
6090
6091         if (!event->attr.inherit) {
6092                 *inherited_all = 0;
6093                 return 0;
6094         }
6095
6096         child_ctx = child->perf_event_ctxp[ctxn];
6097         if (!child_ctx) {
6098                 /*
6099                  * This is executed from the parent task context, so
6100                  * inherit events that have been marked for cloning.
6101                  * First allocate and initialize a context for the
6102                  * child.
6103                  */
6104
6105                 child_ctx = alloc_perf_context(event->pmu, child);
6106                 if (!child_ctx)
6107                         return -ENOMEM;
6108
6109                 child->perf_event_ctxp[ctxn] = child_ctx;
6110         }
6111
6112         ret = inherit_group(event, parent, parent_ctx,
6113                             child, child_ctx);
6114
6115         if (ret)
6116                 *inherited_all = 0;
6117
6118         return ret;
6119 }
6120
6121 /*
6122  * Initialize the perf_event context in task_struct
6123  */
6124 int perf_event_init_context(struct task_struct *child, int ctxn)
6125 {
6126         struct perf_event_context *child_ctx, *parent_ctx;
6127         struct perf_event_context *cloned_ctx;
6128         struct perf_event *event;
6129         struct task_struct *parent = current;
6130         int inherited_all = 1;
6131         int ret = 0;
6132
6133         child->perf_event_ctxp[ctxn] = NULL;
6134
6135         mutex_init(&child->perf_event_mutex);
6136         INIT_LIST_HEAD(&child->perf_event_list);
6137
6138         if (likely(!parent->perf_event_ctxp[ctxn]))
6139                 return 0;
6140
6141         /*
6142          * If the parent's context is a clone, pin it so it won't get
6143          * swapped under us.
6144          */
6145         parent_ctx = perf_pin_task_context(parent, ctxn);
6146
6147         /*
6148          * No need to check if parent_ctx != NULL here; since we saw
6149          * it non-NULL earlier, the only reason for it to become NULL
6150          * is if we exit, and since we're currently in the middle of
6151          * a fork we can't be exiting at the same time.
6152          */
6153
6154         /*
6155          * Lock the parent list. No need to lock the child - not PID
6156          * hashed yet and not running, so nobody can access it.
6157          */
6158         mutex_lock(&parent_ctx->mutex);
6159
6160         /*
6161          * We dont have to disable NMIs - we are only looking at
6162          * the list, not manipulating it:
6163          */
6164         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6165                 ret = inherit_task_group(event, parent, parent_ctx,
6166                                          child, ctxn, &inherited_all);
6167                 if (ret)
6168                         break;
6169         }
6170
6171         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6172                 ret = inherit_task_group(event, parent, parent_ctx,
6173                                          child, ctxn, &inherited_all);
6174                 if (ret)
6175                         break;
6176         }
6177
6178         child_ctx = child->perf_event_ctxp[ctxn];
6179
6180         if (child_ctx && inherited_all) {
6181                 /*
6182                  * Mark the child context as a clone of the parent
6183                  * context, or of whatever the parent is a clone of.
6184                  * Note that if the parent is a clone, it could get
6185                  * uncloned at any point, but that doesn't matter
6186                  * because the list of events and the generation
6187                  * count can't have changed since we took the mutex.
6188                  */
6189                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6190                 if (cloned_ctx) {
6191                         child_ctx->parent_ctx = cloned_ctx;
6192                         child_ctx->parent_gen = parent_ctx->parent_gen;
6193                 } else {
6194                         child_ctx->parent_ctx = parent_ctx;
6195                         child_ctx->parent_gen = parent_ctx->generation;
6196                 }
6197                 get_ctx(child_ctx->parent_ctx);
6198         }
6199
6200         mutex_unlock(&parent_ctx->mutex);
6201
6202         perf_unpin_context(parent_ctx);
6203
6204         return ret;
6205 }
6206
6207 /*
6208  * Initialize the perf_event context in task_struct
6209  */
6210 int perf_event_init_task(struct task_struct *child)
6211 {
6212         int ctxn, ret;
6213
6214         for_each_task_context_nr(ctxn) {
6215                 ret = perf_event_init_context(child, ctxn);
6216                 if (ret)
6217                         return ret;
6218         }
6219
6220         return 0;
6221 }
6222
6223 static void __init perf_event_init_all_cpus(void)
6224 {
6225         struct swevent_htable *swhash;
6226         int cpu;
6227
6228         for_each_possible_cpu(cpu) {
6229                 swhash = &per_cpu(swevent_htable, cpu);
6230                 mutex_init(&swhash->hlist_mutex);
6231                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6232         }
6233 }
6234
6235 static void __cpuinit perf_event_init_cpu(int cpu)
6236 {
6237         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6238
6239         mutex_lock(&swhash->hlist_mutex);
6240         if (swhash->hlist_refcount > 0) {
6241                 struct swevent_hlist *hlist;
6242
6243                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6244                 WARN_ON(!hlist);
6245                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6246         }
6247         mutex_unlock(&swhash->hlist_mutex);
6248 }
6249
6250 #ifdef CONFIG_HOTPLUG_CPU
6251 static void perf_pmu_rotate_stop(struct pmu *pmu)
6252 {
6253         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6254
6255         WARN_ON(!irqs_disabled());
6256
6257         list_del_init(&cpuctx->rotation_list);
6258 }
6259
6260 static void __perf_event_exit_context(void *__info)
6261 {
6262         struct perf_event_context *ctx = __info;
6263         struct perf_event *event, *tmp;
6264
6265         perf_pmu_rotate_stop(ctx->pmu);
6266
6267         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6268                 __perf_event_remove_from_context(event);
6269         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6270                 __perf_event_remove_from_context(event);
6271 }
6272
6273 static void perf_event_exit_cpu_context(int cpu)
6274 {
6275         struct perf_event_context *ctx;
6276         struct pmu *pmu;
6277         int idx;
6278
6279         idx = srcu_read_lock(&pmus_srcu);
6280         list_for_each_entry_rcu(pmu, &pmus, entry) {
6281                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6282
6283                 mutex_lock(&ctx->mutex);
6284                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6285                 mutex_unlock(&ctx->mutex);
6286         }
6287         srcu_read_unlock(&pmus_srcu, idx);
6288 }
6289
6290 static void perf_event_exit_cpu(int cpu)
6291 {
6292         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6293
6294         mutex_lock(&swhash->hlist_mutex);
6295         swevent_hlist_release(swhash);
6296         mutex_unlock(&swhash->hlist_mutex);
6297
6298         perf_event_exit_cpu_context(cpu);
6299 }
6300 #else
6301 static inline void perf_event_exit_cpu(int cpu) { }
6302 #endif
6303
6304 static int __cpuinit
6305 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6306 {
6307         unsigned int cpu = (long)hcpu;
6308
6309         switch (action & ~CPU_TASKS_FROZEN) {
6310
6311         case CPU_UP_PREPARE:
6312         case CPU_DOWN_FAILED:
6313                 perf_event_init_cpu(cpu);
6314                 break;
6315
6316         case CPU_UP_CANCELED:
6317         case CPU_DOWN_PREPARE:
6318                 perf_event_exit_cpu(cpu);
6319                 break;
6320
6321         default:
6322                 break;
6323         }
6324
6325         return NOTIFY_OK;
6326 }
6327
6328 void __init perf_event_init(void)
6329 {
6330         perf_event_init_all_cpus();
6331         init_srcu_struct(&pmus_srcu);
6332         perf_pmu_register(&perf_swevent);
6333         perf_pmu_register(&perf_cpu_clock);
6334         perf_pmu_register(&perf_task_clock);
6335         perf_tp_register();
6336         perf_cpu_notifier(perf_cpu_notify);
6337 }