Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/upstream-linus
[pandora-kernel.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 void __weak perf_event_print_debug(void)        { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92         if (!__get_cpu_var(perf_disable_count)++)
93                 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98         if (!--__get_cpu_var(perf_disable_count))
99                 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109         struct perf_event_context *ctx;
110
111         ctx = container_of(head, struct perf_event_context, rcu_head);
112         kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117         if (atomic_dec_and_test(&ctx->refcount)) {
118                 if (ctx->parent_ctx)
119                         put_ctx(ctx->parent_ctx);
120                 if (ctx->task)
121                         put_task_struct(ctx->task);
122                 call_rcu(&ctx->rcu_head, free_ctx);
123         }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128         if (ctx->parent_ctx) {
129                 put_ctx(ctx->parent_ctx);
130                 ctx->parent_ctx = NULL;
131         }
132 }
133
134 /*
135  * If we inherit events we want to return the parent event id
136  * to userspace.
137  */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140         u64 id = event->id;
141
142         if (event->parent)
143                 id = event->parent->id;
144
145         return id;
146 }
147
148 /*
149  * Get the perf_event_context for a task and lock it.
150  * This has to cope with with the fact that until it is locked,
151  * the context could get moved to another task.
152  */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156         struct perf_event_context *ctx;
157
158         rcu_read_lock();
159  retry:
160         ctx = rcu_dereference(task->perf_event_ctxp);
161         if (ctx) {
162                 /*
163                  * If this context is a clone of another, it might
164                  * get swapped for another underneath us by
165                  * perf_event_task_sched_out, though the
166                  * rcu_read_lock() protects us from any context
167                  * getting freed.  Lock the context and check if it
168                  * got swapped before we could get the lock, and retry
169                  * if so.  If we locked the right context, then it
170                  * can't get swapped on us any more.
171                  */
172                 raw_spin_lock_irqsave(&ctx->lock, *flags);
173                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175                         goto retry;
176                 }
177
178                 if (!atomic_inc_not_zero(&ctx->refcount)) {
179                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180                         ctx = NULL;
181                 }
182         }
183         rcu_read_unlock();
184         return ctx;
185 }
186
187 /*
188  * Get the context for a task and increment its pin_count so it
189  * can't get swapped to another task.  This also increments its
190  * reference count so that the context can't get freed.
191  */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194         struct perf_event_context *ctx;
195         unsigned long flags;
196
197         ctx = perf_lock_task_context(task, &flags);
198         if (ctx) {
199                 ++ctx->pin_count;
200                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201         }
202         return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207         unsigned long flags;
208
209         raw_spin_lock_irqsave(&ctx->lock, flags);
210         --ctx->pin_count;
211         raw_spin_unlock_irqrestore(&ctx->lock, flags);
212         put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217         return local_clock();
218 }
219
220 /*
221  * Update the record of the current time in a context.
222  */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225         u64 now = perf_clock();
226
227         ctx->time += now - ctx->timestamp;
228         ctx->timestamp = now;
229 }
230
231 /*
232  * Update the total_time_enabled and total_time_running fields for a event.
233  */
234 static void update_event_times(struct perf_event *event)
235 {
236         struct perf_event_context *ctx = event->ctx;
237         u64 run_end;
238
239         if (event->state < PERF_EVENT_STATE_INACTIVE ||
240             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241                 return;
242
243         if (ctx->is_active)
244                 run_end = ctx->time;
245         else
246                 run_end = event->tstamp_stopped;
247
248         event->total_time_enabled = run_end - event->tstamp_enabled;
249
250         if (event->state == PERF_EVENT_STATE_INACTIVE)
251                 run_end = event->tstamp_stopped;
252         else
253                 run_end = ctx->time;
254
255         event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259  * Update total_time_enabled and total_time_running for all events in a group.
260  */
261 static void update_group_times(struct perf_event *leader)
262 {
263         struct perf_event *event;
264
265         update_event_times(leader);
266         list_for_each_entry(event, &leader->sibling_list, group_entry)
267                 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273         if (event->attr.pinned)
274                 return &ctx->pinned_groups;
275         else
276                 return &ctx->flexible_groups;
277 }
278
279 /*
280  * Add a event from the lists for its context.
281  * Must be called with ctx->mutex and ctx->lock held.
282  */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287         event->attach_state |= PERF_ATTACH_CONTEXT;
288
289         /*
290          * If we're a stand alone event or group leader, we go to the context
291          * list, group events are kept attached to the group so that
292          * perf_group_detach can, at all times, locate all siblings.
293          */
294         if (event->group_leader == event) {
295                 struct list_head *list;
296
297                 if (is_software_event(event))
298                         event->group_flags |= PERF_GROUP_SOFTWARE;
299
300                 list = ctx_group_list(event, ctx);
301                 list_add_tail(&event->group_entry, list);
302         }
303
304         list_add_rcu(&event->event_entry, &ctx->event_list);
305         ctx->nr_events++;
306         if (event->attr.inherit_stat)
307                 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312         struct perf_event *group_leader = event->group_leader;
313
314         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315         event->attach_state |= PERF_ATTACH_GROUP;
316
317         if (group_leader == event)
318                 return;
319
320         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321                         !is_software_event(event))
322                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324         list_add_tail(&event->group_entry, &group_leader->sibling_list);
325         group_leader->nr_siblings++;
326 }
327
328 /*
329  * Remove a event from the lists for its context.
330  * Must be called with ctx->mutex and ctx->lock held.
331  */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335         /*
336          * We can have double detach due to exit/hot-unplug + close.
337          */
338         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339                 return;
340
341         event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343         ctx->nr_events--;
344         if (event->attr.inherit_stat)
345                 ctx->nr_stat--;
346
347         list_del_rcu(&event->event_entry);
348
349         if (event->group_leader == event)
350                 list_del_init(&event->group_entry);
351
352         update_group_times(event);
353
354         /*
355          * If event was in error state, then keep it
356          * that way, otherwise bogus counts will be
357          * returned on read(). The only way to get out
358          * of error state is by explicit re-enabling
359          * of the event
360          */
361         if (event->state > PERF_EVENT_STATE_OFF)
362                 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367         struct perf_event *sibling, *tmp;
368         struct list_head *list = NULL;
369
370         /*
371          * We can have double detach due to exit/hot-unplug + close.
372          */
373         if (!(event->attach_state & PERF_ATTACH_GROUP))
374                 return;
375
376         event->attach_state &= ~PERF_ATTACH_GROUP;
377
378         /*
379          * If this is a sibling, remove it from its group.
380          */
381         if (event->group_leader != event) {
382                 list_del_init(&event->group_entry);
383                 event->group_leader->nr_siblings--;
384                 return;
385         }
386
387         if (!list_empty(&event->group_entry))
388                 list = &event->group_entry;
389
390         /*
391          * If this was a group event with sibling events then
392          * upgrade the siblings to singleton events by adding them
393          * to whatever list we are on.
394          */
395         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396                 if (list)
397                         list_move_tail(&sibling->group_entry, list);
398                 sibling->group_leader = sibling;
399
400                 /* Inherit group flags from the previous leader */
401                 sibling->group_flags = event->group_flags;
402         }
403 }
404
405 static inline int
406 event_filter_match(struct perf_event *event)
407 {
408         return event->cpu == -1 || event->cpu == smp_processor_id();
409 }
410
411 static void
412 event_sched_out(struct perf_event *event,
413                   struct perf_cpu_context *cpuctx,
414                   struct perf_event_context *ctx)
415 {
416         u64 delta;
417         /*
418          * An event which could not be activated because of
419          * filter mismatch still needs to have its timings
420          * maintained, otherwise bogus information is return
421          * via read() for time_enabled, time_running:
422          */
423         if (event->state == PERF_EVENT_STATE_INACTIVE
424             && !event_filter_match(event)) {
425                 delta = ctx->time - event->tstamp_stopped;
426                 event->tstamp_running += delta;
427                 event->tstamp_stopped = ctx->time;
428         }
429
430         if (event->state != PERF_EVENT_STATE_ACTIVE)
431                 return;
432
433         event->state = PERF_EVENT_STATE_INACTIVE;
434         if (event->pending_disable) {
435                 event->pending_disable = 0;
436                 event->state = PERF_EVENT_STATE_OFF;
437         }
438         event->tstamp_stopped = ctx->time;
439         event->pmu->disable(event);
440         event->oncpu = -1;
441
442         if (!is_software_event(event))
443                 cpuctx->active_oncpu--;
444         ctx->nr_active--;
445         if (event->attr.exclusive || !cpuctx->active_oncpu)
446                 cpuctx->exclusive = 0;
447 }
448
449 static void
450 group_sched_out(struct perf_event *group_event,
451                 struct perf_cpu_context *cpuctx,
452                 struct perf_event_context *ctx)
453 {
454         struct perf_event *event;
455         int state = group_event->state;
456
457         event_sched_out(group_event, cpuctx, ctx);
458
459         /*
460          * Schedule out siblings (if any):
461          */
462         list_for_each_entry(event, &group_event->sibling_list, group_entry)
463                 event_sched_out(event, cpuctx, ctx);
464
465         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466                 cpuctx->exclusive = 0;
467 }
468
469 /*
470  * Cross CPU call to remove a performance event
471  *
472  * We disable the event on the hardware level first. After that we
473  * remove it from the context list.
474  */
475 static void __perf_event_remove_from_context(void *info)
476 {
477         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
478         struct perf_event *event = info;
479         struct perf_event_context *ctx = event->ctx;
480
481         /*
482          * If this is a task context, we need to check whether it is
483          * the current task context of this cpu. If not it has been
484          * scheduled out before the smp call arrived.
485          */
486         if (ctx->task && cpuctx->task_ctx != ctx)
487                 return;
488
489         raw_spin_lock(&ctx->lock);
490         /*
491          * Protect the list operation against NMI by disabling the
492          * events on a global level.
493          */
494         perf_disable();
495
496         event_sched_out(event, cpuctx, ctx);
497
498         list_del_event(event, ctx);
499
500         if (!ctx->task) {
501                 /*
502                  * Allow more per task events with respect to the
503                  * reservation:
504                  */
505                 cpuctx->max_pertask =
506                         min(perf_max_events - ctx->nr_events,
507                             perf_max_events - perf_reserved_percpu);
508         }
509
510         perf_enable();
511         raw_spin_unlock(&ctx->lock);
512 }
513
514
515 /*
516  * Remove the event from a task's (or a CPU's) list of events.
517  *
518  * Must be called with ctx->mutex held.
519  *
520  * CPU events are removed with a smp call. For task events we only
521  * call when the task is on a CPU.
522  *
523  * If event->ctx is a cloned context, callers must make sure that
524  * every task struct that event->ctx->task could possibly point to
525  * remains valid.  This is OK when called from perf_release since
526  * that only calls us on the top-level context, which can't be a clone.
527  * When called from perf_event_exit_task, it's OK because the
528  * context has been detached from its task.
529  */
530 static void perf_event_remove_from_context(struct perf_event *event)
531 {
532         struct perf_event_context *ctx = event->ctx;
533         struct task_struct *task = ctx->task;
534
535         if (!task) {
536                 /*
537                  * Per cpu events are removed via an smp call and
538                  * the removal is always successful.
539                  */
540                 smp_call_function_single(event->cpu,
541                                          __perf_event_remove_from_context,
542                                          event, 1);
543                 return;
544         }
545
546 retry:
547         task_oncpu_function_call(task, __perf_event_remove_from_context,
548                                  event);
549
550         raw_spin_lock_irq(&ctx->lock);
551         /*
552          * If the context is active we need to retry the smp call.
553          */
554         if (ctx->nr_active && !list_empty(&event->group_entry)) {
555                 raw_spin_unlock_irq(&ctx->lock);
556                 goto retry;
557         }
558
559         /*
560          * The lock prevents that this context is scheduled in so we
561          * can remove the event safely, if the call above did not
562          * succeed.
563          */
564         if (!list_empty(&event->group_entry))
565                 list_del_event(event, ctx);
566         raw_spin_unlock_irq(&ctx->lock);
567 }
568
569 /*
570  * Cross CPU call to disable a performance event
571  */
572 static void __perf_event_disable(void *info)
573 {
574         struct perf_event *event = info;
575         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
576         struct perf_event_context *ctx = event->ctx;
577
578         /*
579          * If this is a per-task event, need to check whether this
580          * event's task is the current task on this cpu.
581          */
582         if (ctx->task && cpuctx->task_ctx != ctx)
583                 return;
584
585         raw_spin_lock(&ctx->lock);
586
587         /*
588          * If the event is on, turn it off.
589          * If it is in error state, leave it in error state.
590          */
591         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592                 update_context_time(ctx);
593                 update_group_times(event);
594                 if (event == event->group_leader)
595                         group_sched_out(event, cpuctx, ctx);
596                 else
597                         event_sched_out(event, cpuctx, ctx);
598                 event->state = PERF_EVENT_STATE_OFF;
599         }
600
601         raw_spin_unlock(&ctx->lock);
602 }
603
604 /*
605  * Disable a event.
606  *
607  * If event->ctx is a cloned context, callers must make sure that
608  * every task struct that event->ctx->task could possibly point to
609  * remains valid.  This condition is satisifed when called through
610  * perf_event_for_each_child or perf_event_for_each because they
611  * hold the top-level event's child_mutex, so any descendant that
612  * goes to exit will block in sync_child_event.
613  * When called from perf_pending_event it's OK because event->ctx
614  * is the current context on this CPU and preemption is disabled,
615  * hence we can't get into perf_event_task_sched_out for this context.
616  */
617 void perf_event_disable(struct perf_event *event)
618 {
619         struct perf_event_context *ctx = event->ctx;
620         struct task_struct *task = ctx->task;
621
622         if (!task) {
623                 /*
624                  * Disable the event on the cpu that it's on
625                  */
626                 smp_call_function_single(event->cpu, __perf_event_disable,
627                                          event, 1);
628                 return;
629         }
630
631  retry:
632         task_oncpu_function_call(task, __perf_event_disable, event);
633
634         raw_spin_lock_irq(&ctx->lock);
635         /*
636          * If the event is still active, we need to retry the cross-call.
637          */
638         if (event->state == PERF_EVENT_STATE_ACTIVE) {
639                 raw_spin_unlock_irq(&ctx->lock);
640                 goto retry;
641         }
642
643         /*
644          * Since we have the lock this context can't be scheduled
645          * in, so we can change the state safely.
646          */
647         if (event->state == PERF_EVENT_STATE_INACTIVE) {
648                 update_group_times(event);
649                 event->state = PERF_EVENT_STATE_OFF;
650         }
651
652         raw_spin_unlock_irq(&ctx->lock);
653 }
654
655 static int
656 event_sched_in(struct perf_event *event,
657                  struct perf_cpu_context *cpuctx,
658                  struct perf_event_context *ctx)
659 {
660         if (event->state <= PERF_EVENT_STATE_OFF)
661                 return 0;
662
663         event->state = PERF_EVENT_STATE_ACTIVE;
664         event->oncpu = smp_processor_id();
665         /*
666          * The new state must be visible before we turn it on in the hardware:
667          */
668         smp_wmb();
669
670         if (event->pmu->enable(event)) {
671                 event->state = PERF_EVENT_STATE_INACTIVE;
672                 event->oncpu = -1;
673                 return -EAGAIN;
674         }
675
676         event->tstamp_running += ctx->time - event->tstamp_stopped;
677
678         if (!is_software_event(event))
679                 cpuctx->active_oncpu++;
680         ctx->nr_active++;
681
682         if (event->attr.exclusive)
683                 cpuctx->exclusive = 1;
684
685         return 0;
686 }
687
688 static int
689 group_sched_in(struct perf_event *group_event,
690                struct perf_cpu_context *cpuctx,
691                struct perf_event_context *ctx)
692 {
693         struct perf_event *event, *partial_group = NULL;
694         const struct pmu *pmu = group_event->pmu;
695         bool txn = false;
696
697         if (group_event->state == PERF_EVENT_STATE_OFF)
698                 return 0;
699
700         /* Check if group transaction availabe */
701         if (pmu->start_txn)
702                 txn = true;
703
704         if (txn)
705                 pmu->start_txn(pmu);
706
707         if (event_sched_in(group_event, cpuctx, ctx)) {
708                 if (txn)
709                         pmu->cancel_txn(pmu);
710                 return -EAGAIN;
711         }
712
713         /*
714          * Schedule in siblings as one group (if any):
715          */
716         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
717                 if (event_sched_in(event, cpuctx, ctx)) {
718                         partial_group = event;
719                         goto group_error;
720                 }
721         }
722
723         if (!txn || !pmu->commit_txn(pmu))
724                 return 0;
725
726 group_error:
727         /*
728          * Groups can be scheduled in as one unit only, so undo any
729          * partial group before returning:
730          */
731         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
732                 if (event == partial_group)
733                         break;
734                 event_sched_out(event, cpuctx, ctx);
735         }
736         event_sched_out(group_event, cpuctx, ctx);
737
738         if (txn)
739                 pmu->cancel_txn(pmu);
740
741         return -EAGAIN;
742 }
743
744 /*
745  * Work out whether we can put this event group on the CPU now.
746  */
747 static int group_can_go_on(struct perf_event *event,
748                            struct perf_cpu_context *cpuctx,
749                            int can_add_hw)
750 {
751         /*
752          * Groups consisting entirely of software events can always go on.
753          */
754         if (event->group_flags & PERF_GROUP_SOFTWARE)
755                 return 1;
756         /*
757          * If an exclusive group is already on, no other hardware
758          * events can go on.
759          */
760         if (cpuctx->exclusive)
761                 return 0;
762         /*
763          * If this group is exclusive and there are already
764          * events on the CPU, it can't go on.
765          */
766         if (event->attr.exclusive && cpuctx->active_oncpu)
767                 return 0;
768         /*
769          * Otherwise, try to add it if all previous groups were able
770          * to go on.
771          */
772         return can_add_hw;
773 }
774
775 static void add_event_to_ctx(struct perf_event *event,
776                                struct perf_event_context *ctx)
777 {
778         list_add_event(event, ctx);
779         perf_group_attach(event);
780         event->tstamp_enabled = ctx->time;
781         event->tstamp_running = ctx->time;
782         event->tstamp_stopped = ctx->time;
783 }
784
785 /*
786  * Cross CPU call to install and enable a performance event
787  *
788  * Must be called with ctx->mutex held
789  */
790 static void __perf_install_in_context(void *info)
791 {
792         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
793         struct perf_event *event = info;
794         struct perf_event_context *ctx = event->ctx;
795         struct perf_event *leader = event->group_leader;
796         int err;
797
798         /*
799          * If this is a task context, we need to check whether it is
800          * the current task context of this cpu. If not it has been
801          * scheduled out before the smp call arrived.
802          * Or possibly this is the right context but it isn't
803          * on this cpu because it had no events.
804          */
805         if (ctx->task && cpuctx->task_ctx != ctx) {
806                 if (cpuctx->task_ctx || ctx->task != current)
807                         return;
808                 cpuctx->task_ctx = ctx;
809         }
810
811         raw_spin_lock(&ctx->lock);
812         ctx->is_active = 1;
813         update_context_time(ctx);
814
815         /*
816          * Protect the list operation against NMI by disabling the
817          * events on a global level. NOP for non NMI based events.
818          */
819         perf_disable();
820
821         add_event_to_ctx(event, ctx);
822
823         if (event->cpu != -1 && event->cpu != smp_processor_id())
824                 goto unlock;
825
826         /*
827          * Don't put the event on if it is disabled or if
828          * it is in a group and the group isn't on.
829          */
830         if (event->state != PERF_EVENT_STATE_INACTIVE ||
831             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
832                 goto unlock;
833
834         /*
835          * An exclusive event can't go on if there are already active
836          * hardware events, and no hardware event can go on if there
837          * is already an exclusive event on.
838          */
839         if (!group_can_go_on(event, cpuctx, 1))
840                 err = -EEXIST;
841         else
842                 err = event_sched_in(event, cpuctx, ctx);
843
844         if (err) {
845                 /*
846                  * This event couldn't go on.  If it is in a group
847                  * then we have to pull the whole group off.
848                  * If the event group is pinned then put it in error state.
849                  */
850                 if (leader != event)
851                         group_sched_out(leader, cpuctx, ctx);
852                 if (leader->attr.pinned) {
853                         update_group_times(leader);
854                         leader->state = PERF_EVENT_STATE_ERROR;
855                 }
856         }
857
858         if (!err && !ctx->task && cpuctx->max_pertask)
859                 cpuctx->max_pertask--;
860
861  unlock:
862         perf_enable();
863
864         raw_spin_unlock(&ctx->lock);
865 }
866
867 /*
868  * Attach a performance event to a context
869  *
870  * First we add the event to the list with the hardware enable bit
871  * in event->hw_config cleared.
872  *
873  * If the event is attached to a task which is on a CPU we use a smp
874  * call to enable it in the task context. The task might have been
875  * scheduled away, but we check this in the smp call again.
876  *
877  * Must be called with ctx->mutex held.
878  */
879 static void
880 perf_install_in_context(struct perf_event_context *ctx,
881                         struct perf_event *event,
882                         int cpu)
883 {
884         struct task_struct *task = ctx->task;
885
886         if (!task) {
887                 /*
888                  * Per cpu events are installed via an smp call and
889                  * the install is always successful.
890                  */
891                 smp_call_function_single(cpu, __perf_install_in_context,
892                                          event, 1);
893                 return;
894         }
895
896 retry:
897         task_oncpu_function_call(task, __perf_install_in_context,
898                                  event);
899
900         raw_spin_lock_irq(&ctx->lock);
901         /*
902          * we need to retry the smp call.
903          */
904         if (ctx->is_active && list_empty(&event->group_entry)) {
905                 raw_spin_unlock_irq(&ctx->lock);
906                 goto retry;
907         }
908
909         /*
910          * The lock prevents that this context is scheduled in so we
911          * can add the event safely, if it the call above did not
912          * succeed.
913          */
914         if (list_empty(&event->group_entry))
915                 add_event_to_ctx(event, ctx);
916         raw_spin_unlock_irq(&ctx->lock);
917 }
918
919 /*
920  * Put a event into inactive state and update time fields.
921  * Enabling the leader of a group effectively enables all
922  * the group members that aren't explicitly disabled, so we
923  * have to update their ->tstamp_enabled also.
924  * Note: this works for group members as well as group leaders
925  * since the non-leader members' sibling_lists will be empty.
926  */
927 static void __perf_event_mark_enabled(struct perf_event *event,
928                                         struct perf_event_context *ctx)
929 {
930         struct perf_event *sub;
931
932         event->state = PERF_EVENT_STATE_INACTIVE;
933         event->tstamp_enabled = ctx->time - event->total_time_enabled;
934         list_for_each_entry(sub, &event->sibling_list, group_entry)
935                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
936                         sub->tstamp_enabled =
937                                 ctx->time - sub->total_time_enabled;
938 }
939
940 /*
941  * Cross CPU call to enable a performance event
942  */
943 static void __perf_event_enable(void *info)
944 {
945         struct perf_event *event = info;
946         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
947         struct perf_event_context *ctx = event->ctx;
948         struct perf_event *leader = event->group_leader;
949         int err;
950
951         /*
952          * If this is a per-task event, need to check whether this
953          * event's task is the current task on this cpu.
954          */
955         if (ctx->task && cpuctx->task_ctx != ctx) {
956                 if (cpuctx->task_ctx || ctx->task != current)
957                         return;
958                 cpuctx->task_ctx = ctx;
959         }
960
961         raw_spin_lock(&ctx->lock);
962         ctx->is_active = 1;
963         update_context_time(ctx);
964
965         if (event->state >= PERF_EVENT_STATE_INACTIVE)
966                 goto unlock;
967         __perf_event_mark_enabled(event, ctx);
968
969         if (event->cpu != -1 && event->cpu != smp_processor_id())
970                 goto unlock;
971
972         /*
973          * If the event is in a group and isn't the group leader,
974          * then don't put it on unless the group is on.
975          */
976         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
977                 goto unlock;
978
979         if (!group_can_go_on(event, cpuctx, 1)) {
980                 err = -EEXIST;
981         } else {
982                 perf_disable();
983                 if (event == leader)
984                         err = group_sched_in(event, cpuctx, ctx);
985                 else
986                         err = event_sched_in(event, cpuctx, ctx);
987                 perf_enable();
988         }
989
990         if (err) {
991                 /*
992                  * If this event can't go on and it's part of a
993                  * group, then the whole group has to come off.
994                  */
995                 if (leader != event)
996                         group_sched_out(leader, cpuctx, ctx);
997                 if (leader->attr.pinned) {
998                         update_group_times(leader);
999                         leader->state = PERF_EVENT_STATE_ERROR;
1000                 }
1001         }
1002
1003  unlock:
1004         raw_spin_unlock(&ctx->lock);
1005 }
1006
1007 /*
1008  * Enable a event.
1009  *
1010  * If event->ctx is a cloned context, callers must make sure that
1011  * every task struct that event->ctx->task could possibly point to
1012  * remains valid.  This condition is satisfied when called through
1013  * perf_event_for_each_child or perf_event_for_each as described
1014  * for perf_event_disable.
1015  */
1016 void perf_event_enable(struct perf_event *event)
1017 {
1018         struct perf_event_context *ctx = event->ctx;
1019         struct task_struct *task = ctx->task;
1020
1021         if (!task) {
1022                 /*
1023                  * Enable the event on the cpu that it's on
1024                  */
1025                 smp_call_function_single(event->cpu, __perf_event_enable,
1026                                          event, 1);
1027                 return;
1028         }
1029
1030         raw_spin_lock_irq(&ctx->lock);
1031         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1032                 goto out;
1033
1034         /*
1035          * If the event is in error state, clear that first.
1036          * That way, if we see the event in error state below, we
1037          * know that it has gone back into error state, as distinct
1038          * from the task having been scheduled away before the
1039          * cross-call arrived.
1040          */
1041         if (event->state == PERF_EVENT_STATE_ERROR)
1042                 event->state = PERF_EVENT_STATE_OFF;
1043
1044  retry:
1045         raw_spin_unlock_irq(&ctx->lock);
1046         task_oncpu_function_call(task, __perf_event_enable, event);
1047
1048         raw_spin_lock_irq(&ctx->lock);
1049
1050         /*
1051          * If the context is active and the event is still off,
1052          * we need to retry the cross-call.
1053          */
1054         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1055                 goto retry;
1056
1057         /*
1058          * Since we have the lock this context can't be scheduled
1059          * in, so we can change the state safely.
1060          */
1061         if (event->state == PERF_EVENT_STATE_OFF)
1062                 __perf_event_mark_enabled(event, ctx);
1063
1064  out:
1065         raw_spin_unlock_irq(&ctx->lock);
1066 }
1067
1068 static int perf_event_refresh(struct perf_event *event, int refresh)
1069 {
1070         /*
1071          * not supported on inherited events
1072          */
1073         if (event->attr.inherit)
1074                 return -EINVAL;
1075
1076         atomic_add(refresh, &event->event_limit);
1077         perf_event_enable(event);
1078
1079         return 0;
1080 }
1081
1082 enum event_type_t {
1083         EVENT_FLEXIBLE = 0x1,
1084         EVENT_PINNED = 0x2,
1085         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1086 };
1087
1088 static void ctx_sched_out(struct perf_event_context *ctx,
1089                           struct perf_cpu_context *cpuctx,
1090                           enum event_type_t event_type)
1091 {
1092         struct perf_event *event;
1093
1094         raw_spin_lock(&ctx->lock);
1095         ctx->is_active = 0;
1096         if (likely(!ctx->nr_events))
1097                 goto out;
1098         update_context_time(ctx);
1099
1100         perf_disable();
1101         if (!ctx->nr_active)
1102                 goto out_enable;
1103
1104         if (event_type & EVENT_PINNED)
1105                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1106                         group_sched_out(event, cpuctx, ctx);
1107
1108         if (event_type & EVENT_FLEXIBLE)
1109                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1110                         group_sched_out(event, cpuctx, ctx);
1111
1112  out_enable:
1113         perf_enable();
1114  out:
1115         raw_spin_unlock(&ctx->lock);
1116 }
1117
1118 /*
1119  * Test whether two contexts are equivalent, i.e. whether they
1120  * have both been cloned from the same version of the same context
1121  * and they both have the same number of enabled events.
1122  * If the number of enabled events is the same, then the set
1123  * of enabled events should be the same, because these are both
1124  * inherited contexts, therefore we can't access individual events
1125  * in them directly with an fd; we can only enable/disable all
1126  * events via prctl, or enable/disable all events in a family
1127  * via ioctl, which will have the same effect on both contexts.
1128  */
1129 static int context_equiv(struct perf_event_context *ctx1,
1130                          struct perf_event_context *ctx2)
1131 {
1132         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1133                 && ctx1->parent_gen == ctx2->parent_gen
1134                 && !ctx1->pin_count && !ctx2->pin_count;
1135 }
1136
1137 static void __perf_event_sync_stat(struct perf_event *event,
1138                                      struct perf_event *next_event)
1139 {
1140         u64 value;
1141
1142         if (!event->attr.inherit_stat)
1143                 return;
1144
1145         /*
1146          * Update the event value, we cannot use perf_event_read()
1147          * because we're in the middle of a context switch and have IRQs
1148          * disabled, which upsets smp_call_function_single(), however
1149          * we know the event must be on the current CPU, therefore we
1150          * don't need to use it.
1151          */
1152         switch (event->state) {
1153         case PERF_EVENT_STATE_ACTIVE:
1154                 event->pmu->read(event);
1155                 /* fall-through */
1156
1157         case PERF_EVENT_STATE_INACTIVE:
1158                 update_event_times(event);
1159                 break;
1160
1161         default:
1162                 break;
1163         }
1164
1165         /*
1166          * In order to keep per-task stats reliable we need to flip the event
1167          * values when we flip the contexts.
1168          */
1169         value = local64_read(&next_event->count);
1170         value = local64_xchg(&event->count, value);
1171         local64_set(&next_event->count, value);
1172
1173         swap(event->total_time_enabled, next_event->total_time_enabled);
1174         swap(event->total_time_running, next_event->total_time_running);
1175
1176         /*
1177          * Since we swizzled the values, update the user visible data too.
1178          */
1179         perf_event_update_userpage(event);
1180         perf_event_update_userpage(next_event);
1181 }
1182
1183 #define list_next_entry(pos, member) \
1184         list_entry(pos->member.next, typeof(*pos), member)
1185
1186 static void perf_event_sync_stat(struct perf_event_context *ctx,
1187                                    struct perf_event_context *next_ctx)
1188 {
1189         struct perf_event *event, *next_event;
1190
1191         if (!ctx->nr_stat)
1192                 return;
1193
1194         update_context_time(ctx);
1195
1196         event = list_first_entry(&ctx->event_list,
1197                                    struct perf_event, event_entry);
1198
1199         next_event = list_first_entry(&next_ctx->event_list,
1200                                         struct perf_event, event_entry);
1201
1202         while (&event->event_entry != &ctx->event_list &&
1203                &next_event->event_entry != &next_ctx->event_list) {
1204
1205                 __perf_event_sync_stat(event, next_event);
1206
1207                 event = list_next_entry(event, event_entry);
1208                 next_event = list_next_entry(next_event, event_entry);
1209         }
1210 }
1211
1212 /*
1213  * Called from scheduler to remove the events of the current task,
1214  * with interrupts disabled.
1215  *
1216  * We stop each event and update the event value in event->count.
1217  *
1218  * This does not protect us against NMI, but disable()
1219  * sets the disabled bit in the control field of event _before_
1220  * accessing the event control register. If a NMI hits, then it will
1221  * not restart the event.
1222  */
1223 void perf_event_task_sched_out(struct task_struct *task,
1224                                  struct task_struct *next)
1225 {
1226         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1227         struct perf_event_context *ctx = task->perf_event_ctxp;
1228         struct perf_event_context *next_ctx;
1229         struct perf_event_context *parent;
1230         int do_switch = 1;
1231
1232         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1233
1234         if (likely(!ctx || !cpuctx->task_ctx))
1235                 return;
1236
1237         rcu_read_lock();
1238         parent = rcu_dereference(ctx->parent_ctx);
1239         next_ctx = next->perf_event_ctxp;
1240         if (parent && next_ctx &&
1241             rcu_dereference(next_ctx->parent_ctx) == parent) {
1242                 /*
1243                  * Looks like the two contexts are clones, so we might be
1244                  * able to optimize the context switch.  We lock both
1245                  * contexts and check that they are clones under the
1246                  * lock (including re-checking that neither has been
1247                  * uncloned in the meantime).  It doesn't matter which
1248                  * order we take the locks because no other cpu could
1249                  * be trying to lock both of these tasks.
1250                  */
1251                 raw_spin_lock(&ctx->lock);
1252                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1253                 if (context_equiv(ctx, next_ctx)) {
1254                         /*
1255                          * XXX do we need a memory barrier of sorts
1256                          * wrt to rcu_dereference() of perf_event_ctxp
1257                          */
1258                         task->perf_event_ctxp = next_ctx;
1259                         next->perf_event_ctxp = ctx;
1260                         ctx->task = next;
1261                         next_ctx->task = task;
1262                         do_switch = 0;
1263
1264                         perf_event_sync_stat(ctx, next_ctx);
1265                 }
1266                 raw_spin_unlock(&next_ctx->lock);
1267                 raw_spin_unlock(&ctx->lock);
1268         }
1269         rcu_read_unlock();
1270
1271         if (do_switch) {
1272                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1273                 cpuctx->task_ctx = NULL;
1274         }
1275 }
1276
1277 static void task_ctx_sched_out(struct perf_event_context *ctx,
1278                                enum event_type_t event_type)
1279 {
1280         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1281
1282         if (!cpuctx->task_ctx)
1283                 return;
1284
1285         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1286                 return;
1287
1288         ctx_sched_out(ctx, cpuctx, event_type);
1289         cpuctx->task_ctx = NULL;
1290 }
1291
1292 /*
1293  * Called with IRQs disabled
1294  */
1295 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1296 {
1297         task_ctx_sched_out(ctx, EVENT_ALL);
1298 }
1299
1300 /*
1301  * Called with IRQs disabled
1302  */
1303 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1304                               enum event_type_t event_type)
1305 {
1306         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1307 }
1308
1309 static void
1310 ctx_pinned_sched_in(struct perf_event_context *ctx,
1311                     struct perf_cpu_context *cpuctx)
1312 {
1313         struct perf_event *event;
1314
1315         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1316                 if (event->state <= PERF_EVENT_STATE_OFF)
1317                         continue;
1318                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1319                         continue;
1320
1321                 if (group_can_go_on(event, cpuctx, 1))
1322                         group_sched_in(event, cpuctx, ctx);
1323
1324                 /*
1325                  * If this pinned group hasn't been scheduled,
1326                  * put it in error state.
1327                  */
1328                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1329                         update_group_times(event);
1330                         event->state = PERF_EVENT_STATE_ERROR;
1331                 }
1332         }
1333 }
1334
1335 static void
1336 ctx_flexible_sched_in(struct perf_event_context *ctx,
1337                       struct perf_cpu_context *cpuctx)
1338 {
1339         struct perf_event *event;
1340         int can_add_hw = 1;
1341
1342         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1343                 /* Ignore events in OFF or ERROR state */
1344                 if (event->state <= PERF_EVENT_STATE_OFF)
1345                         continue;
1346                 /*
1347                  * Listen to the 'cpu' scheduling filter constraint
1348                  * of events:
1349                  */
1350                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1351                         continue;
1352
1353                 if (group_can_go_on(event, cpuctx, can_add_hw))
1354                         if (group_sched_in(event, cpuctx, ctx))
1355                                 can_add_hw = 0;
1356         }
1357 }
1358
1359 static void
1360 ctx_sched_in(struct perf_event_context *ctx,
1361              struct perf_cpu_context *cpuctx,
1362              enum event_type_t event_type)
1363 {
1364         raw_spin_lock(&ctx->lock);
1365         ctx->is_active = 1;
1366         if (likely(!ctx->nr_events))
1367                 goto out;
1368
1369         ctx->timestamp = perf_clock();
1370
1371         perf_disable();
1372
1373         /*
1374          * First go through the list and put on any pinned groups
1375          * in order to give them the best chance of going on.
1376          */
1377         if (event_type & EVENT_PINNED)
1378                 ctx_pinned_sched_in(ctx, cpuctx);
1379
1380         /* Then walk through the lower prio flexible groups */
1381         if (event_type & EVENT_FLEXIBLE)
1382                 ctx_flexible_sched_in(ctx, cpuctx);
1383
1384         perf_enable();
1385  out:
1386         raw_spin_unlock(&ctx->lock);
1387 }
1388
1389 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1390                              enum event_type_t event_type)
1391 {
1392         struct perf_event_context *ctx = &cpuctx->ctx;
1393
1394         ctx_sched_in(ctx, cpuctx, event_type);
1395 }
1396
1397 static void task_ctx_sched_in(struct task_struct *task,
1398                               enum event_type_t event_type)
1399 {
1400         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1401         struct perf_event_context *ctx = task->perf_event_ctxp;
1402
1403         if (likely(!ctx))
1404                 return;
1405         if (cpuctx->task_ctx == ctx)
1406                 return;
1407         ctx_sched_in(ctx, cpuctx, event_type);
1408         cpuctx->task_ctx = ctx;
1409 }
1410 /*
1411  * Called from scheduler to add the events of the current task
1412  * with interrupts disabled.
1413  *
1414  * We restore the event value and then enable it.
1415  *
1416  * This does not protect us against NMI, but enable()
1417  * sets the enabled bit in the control field of event _before_
1418  * accessing the event control register. If a NMI hits, then it will
1419  * keep the event running.
1420  */
1421 void perf_event_task_sched_in(struct task_struct *task)
1422 {
1423         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1424         struct perf_event_context *ctx = task->perf_event_ctxp;
1425
1426         if (likely(!ctx))
1427                 return;
1428
1429         if (cpuctx->task_ctx == ctx)
1430                 return;
1431
1432         perf_disable();
1433
1434         /*
1435          * We want to keep the following priority order:
1436          * cpu pinned (that don't need to move), task pinned,
1437          * cpu flexible, task flexible.
1438          */
1439         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1440
1441         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1442         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1443         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1444
1445         cpuctx->task_ctx = ctx;
1446
1447         perf_enable();
1448 }
1449
1450 #define MAX_INTERRUPTS (~0ULL)
1451
1452 static void perf_log_throttle(struct perf_event *event, int enable);
1453
1454 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1455 {
1456         u64 frequency = event->attr.sample_freq;
1457         u64 sec = NSEC_PER_SEC;
1458         u64 divisor, dividend;
1459
1460         int count_fls, nsec_fls, frequency_fls, sec_fls;
1461
1462         count_fls = fls64(count);
1463         nsec_fls = fls64(nsec);
1464         frequency_fls = fls64(frequency);
1465         sec_fls = 30;
1466
1467         /*
1468          * We got @count in @nsec, with a target of sample_freq HZ
1469          * the target period becomes:
1470          *
1471          *             @count * 10^9
1472          * period = -------------------
1473          *          @nsec * sample_freq
1474          *
1475          */
1476
1477         /*
1478          * Reduce accuracy by one bit such that @a and @b converge
1479          * to a similar magnitude.
1480          */
1481 #define REDUCE_FLS(a, b)                \
1482 do {                                    \
1483         if (a##_fls > b##_fls) {        \
1484                 a >>= 1;                \
1485                 a##_fls--;              \
1486         } else {                        \
1487                 b >>= 1;                \
1488                 b##_fls--;              \
1489         }                               \
1490 } while (0)
1491
1492         /*
1493          * Reduce accuracy until either term fits in a u64, then proceed with
1494          * the other, so that finally we can do a u64/u64 division.
1495          */
1496         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1497                 REDUCE_FLS(nsec, frequency);
1498                 REDUCE_FLS(sec, count);
1499         }
1500
1501         if (count_fls + sec_fls > 64) {
1502                 divisor = nsec * frequency;
1503
1504                 while (count_fls + sec_fls > 64) {
1505                         REDUCE_FLS(count, sec);
1506                         divisor >>= 1;
1507                 }
1508
1509                 dividend = count * sec;
1510         } else {
1511                 dividend = count * sec;
1512
1513                 while (nsec_fls + frequency_fls > 64) {
1514                         REDUCE_FLS(nsec, frequency);
1515                         dividend >>= 1;
1516                 }
1517
1518                 divisor = nsec * frequency;
1519         }
1520
1521         if (!divisor)
1522                 return dividend;
1523
1524         return div64_u64(dividend, divisor);
1525 }
1526
1527 static void perf_event_stop(struct perf_event *event)
1528 {
1529         if (!event->pmu->stop)
1530                 return event->pmu->disable(event);
1531
1532         return event->pmu->stop(event);
1533 }
1534
1535 static int perf_event_start(struct perf_event *event)
1536 {
1537         if (!event->pmu->start)
1538                 return event->pmu->enable(event);
1539
1540         return event->pmu->start(event);
1541 }
1542
1543 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1544 {
1545         struct hw_perf_event *hwc = &event->hw;
1546         s64 period, sample_period;
1547         s64 delta;
1548
1549         period = perf_calculate_period(event, nsec, count);
1550
1551         delta = (s64)(period - hwc->sample_period);
1552         delta = (delta + 7) / 8; /* low pass filter */
1553
1554         sample_period = hwc->sample_period + delta;
1555
1556         if (!sample_period)
1557                 sample_period = 1;
1558
1559         hwc->sample_period = sample_period;
1560
1561         if (local64_read(&hwc->period_left) > 8*sample_period) {
1562                 perf_disable();
1563                 perf_event_stop(event);
1564                 local64_set(&hwc->period_left, 0);
1565                 perf_event_start(event);
1566                 perf_enable();
1567         }
1568 }
1569
1570 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1571 {
1572         struct perf_event *event;
1573         struct hw_perf_event *hwc;
1574         u64 interrupts, now;
1575         s64 delta;
1576
1577         raw_spin_lock(&ctx->lock);
1578         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1579                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1580                         continue;
1581
1582                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1583                         continue;
1584
1585                 hwc = &event->hw;
1586
1587                 interrupts = hwc->interrupts;
1588                 hwc->interrupts = 0;
1589
1590                 /*
1591                  * unthrottle events on the tick
1592                  */
1593                 if (interrupts == MAX_INTERRUPTS) {
1594                         perf_log_throttle(event, 1);
1595                         perf_disable();
1596                         event->pmu->unthrottle(event);
1597                         perf_enable();
1598                 }
1599
1600                 if (!event->attr.freq || !event->attr.sample_freq)
1601                         continue;
1602
1603                 perf_disable();
1604                 event->pmu->read(event);
1605                 now = local64_read(&event->count);
1606                 delta = now - hwc->freq_count_stamp;
1607                 hwc->freq_count_stamp = now;
1608
1609                 if (delta > 0)
1610                         perf_adjust_period(event, TICK_NSEC, delta);
1611                 perf_enable();
1612         }
1613         raw_spin_unlock(&ctx->lock);
1614 }
1615
1616 /*
1617  * Round-robin a context's events:
1618  */
1619 static void rotate_ctx(struct perf_event_context *ctx)
1620 {
1621         raw_spin_lock(&ctx->lock);
1622
1623         /* Rotate the first entry last of non-pinned groups */
1624         list_rotate_left(&ctx->flexible_groups);
1625
1626         raw_spin_unlock(&ctx->lock);
1627 }
1628
1629 void perf_event_task_tick(struct task_struct *curr)
1630 {
1631         struct perf_cpu_context *cpuctx;
1632         struct perf_event_context *ctx;
1633         int rotate = 0;
1634
1635         if (!atomic_read(&nr_events))
1636                 return;
1637
1638         cpuctx = &__get_cpu_var(perf_cpu_context);
1639         if (cpuctx->ctx.nr_events &&
1640             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1641                 rotate = 1;
1642
1643         ctx = curr->perf_event_ctxp;
1644         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1645                 rotate = 1;
1646
1647         perf_ctx_adjust_freq(&cpuctx->ctx);
1648         if (ctx)
1649                 perf_ctx_adjust_freq(ctx);
1650
1651         if (!rotate)
1652                 return;
1653
1654         perf_disable();
1655         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1656         if (ctx)
1657                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1658
1659         rotate_ctx(&cpuctx->ctx);
1660         if (ctx)
1661                 rotate_ctx(ctx);
1662
1663         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1664         if (ctx)
1665                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1666         perf_enable();
1667 }
1668
1669 static int event_enable_on_exec(struct perf_event *event,
1670                                 struct perf_event_context *ctx)
1671 {
1672         if (!event->attr.enable_on_exec)
1673                 return 0;
1674
1675         event->attr.enable_on_exec = 0;
1676         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1677                 return 0;
1678
1679         __perf_event_mark_enabled(event, ctx);
1680
1681         return 1;
1682 }
1683
1684 /*
1685  * Enable all of a task's events that have been marked enable-on-exec.
1686  * This expects task == current.
1687  */
1688 static void perf_event_enable_on_exec(struct task_struct *task)
1689 {
1690         struct perf_event_context *ctx;
1691         struct perf_event *event;
1692         unsigned long flags;
1693         int enabled = 0;
1694         int ret;
1695
1696         local_irq_save(flags);
1697         ctx = task->perf_event_ctxp;
1698         if (!ctx || !ctx->nr_events)
1699                 goto out;
1700
1701         __perf_event_task_sched_out(ctx);
1702
1703         raw_spin_lock(&ctx->lock);
1704
1705         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1706                 ret = event_enable_on_exec(event, ctx);
1707                 if (ret)
1708                         enabled = 1;
1709         }
1710
1711         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1712                 ret = event_enable_on_exec(event, ctx);
1713                 if (ret)
1714                         enabled = 1;
1715         }
1716
1717         /*
1718          * Unclone this context if we enabled any event.
1719          */
1720         if (enabled)
1721                 unclone_ctx(ctx);
1722
1723         raw_spin_unlock(&ctx->lock);
1724
1725         perf_event_task_sched_in(task);
1726  out:
1727         local_irq_restore(flags);
1728 }
1729
1730 /*
1731  * Cross CPU call to read the hardware event
1732  */
1733 static void __perf_event_read(void *info)
1734 {
1735         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1736         struct perf_event *event = info;
1737         struct perf_event_context *ctx = event->ctx;
1738
1739         /*
1740          * If this is a task context, we need to check whether it is
1741          * the current task context of this cpu.  If not it has been
1742          * scheduled out before the smp call arrived.  In that case
1743          * event->count would have been updated to a recent sample
1744          * when the event was scheduled out.
1745          */
1746         if (ctx->task && cpuctx->task_ctx != ctx)
1747                 return;
1748
1749         raw_spin_lock(&ctx->lock);
1750         update_context_time(ctx);
1751         update_event_times(event);
1752         raw_spin_unlock(&ctx->lock);
1753
1754         event->pmu->read(event);
1755 }
1756
1757 static inline u64 perf_event_count(struct perf_event *event)
1758 {
1759         return local64_read(&event->count) + atomic64_read(&event->child_count);
1760 }
1761
1762 static u64 perf_event_read(struct perf_event *event)
1763 {
1764         /*
1765          * If event is enabled and currently active on a CPU, update the
1766          * value in the event structure:
1767          */
1768         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1769                 smp_call_function_single(event->oncpu,
1770                                          __perf_event_read, event, 1);
1771         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1772                 struct perf_event_context *ctx = event->ctx;
1773                 unsigned long flags;
1774
1775                 raw_spin_lock_irqsave(&ctx->lock, flags);
1776                 update_context_time(ctx);
1777                 update_event_times(event);
1778                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1779         }
1780
1781         return perf_event_count(event);
1782 }
1783
1784 /*
1785  * Initialize the perf_event context in a task_struct:
1786  */
1787 static void
1788 __perf_event_init_context(struct perf_event_context *ctx,
1789                             struct task_struct *task)
1790 {
1791         raw_spin_lock_init(&ctx->lock);
1792         mutex_init(&ctx->mutex);
1793         INIT_LIST_HEAD(&ctx->pinned_groups);
1794         INIT_LIST_HEAD(&ctx->flexible_groups);
1795         INIT_LIST_HEAD(&ctx->event_list);
1796         atomic_set(&ctx->refcount, 1);
1797         ctx->task = task;
1798 }
1799
1800 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1801 {
1802         struct perf_event_context *ctx;
1803         struct perf_cpu_context *cpuctx;
1804         struct task_struct *task;
1805         unsigned long flags;
1806         int err;
1807
1808         if (pid == -1 && cpu != -1) {
1809                 /* Must be root to operate on a CPU event: */
1810                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1811                         return ERR_PTR(-EACCES);
1812
1813                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1814                         return ERR_PTR(-EINVAL);
1815
1816                 /*
1817                  * We could be clever and allow to attach a event to an
1818                  * offline CPU and activate it when the CPU comes up, but
1819                  * that's for later.
1820                  */
1821                 if (!cpu_online(cpu))
1822                         return ERR_PTR(-ENODEV);
1823
1824                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1825                 ctx = &cpuctx->ctx;
1826                 get_ctx(ctx);
1827
1828                 return ctx;
1829         }
1830
1831         rcu_read_lock();
1832         if (!pid)
1833                 task = current;
1834         else
1835                 task = find_task_by_vpid(pid);
1836         if (task)
1837                 get_task_struct(task);
1838         rcu_read_unlock();
1839
1840         if (!task)
1841                 return ERR_PTR(-ESRCH);
1842
1843         /*
1844          * Can't attach events to a dying task.
1845          */
1846         err = -ESRCH;
1847         if (task->flags & PF_EXITING)
1848                 goto errout;
1849
1850         /* Reuse ptrace permission checks for now. */
1851         err = -EACCES;
1852         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1853                 goto errout;
1854
1855  retry:
1856         ctx = perf_lock_task_context(task, &flags);
1857         if (ctx) {
1858                 unclone_ctx(ctx);
1859                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1860         }
1861
1862         if (!ctx) {
1863                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1864                 err = -ENOMEM;
1865                 if (!ctx)
1866                         goto errout;
1867                 __perf_event_init_context(ctx, task);
1868                 get_ctx(ctx);
1869                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1870                         /*
1871                          * We raced with some other task; use
1872                          * the context they set.
1873                          */
1874                         kfree(ctx);
1875                         goto retry;
1876                 }
1877                 get_task_struct(task);
1878         }
1879
1880         put_task_struct(task);
1881         return ctx;
1882
1883  errout:
1884         put_task_struct(task);
1885         return ERR_PTR(err);
1886 }
1887
1888 static void perf_event_free_filter(struct perf_event *event);
1889
1890 static void free_event_rcu(struct rcu_head *head)
1891 {
1892         struct perf_event *event;
1893
1894         event = container_of(head, struct perf_event, rcu_head);
1895         if (event->ns)
1896                 put_pid_ns(event->ns);
1897         perf_event_free_filter(event);
1898         kfree(event);
1899 }
1900
1901 static void perf_pending_sync(struct perf_event *event);
1902 static void perf_buffer_put(struct perf_buffer *buffer);
1903
1904 static void free_event(struct perf_event *event)
1905 {
1906         perf_pending_sync(event);
1907
1908         if (!event->parent) {
1909                 atomic_dec(&nr_events);
1910                 if (event->attr.mmap || event->attr.mmap_data)
1911                         atomic_dec(&nr_mmap_events);
1912                 if (event->attr.comm)
1913                         atomic_dec(&nr_comm_events);
1914                 if (event->attr.task)
1915                         atomic_dec(&nr_task_events);
1916         }
1917
1918         if (event->buffer) {
1919                 perf_buffer_put(event->buffer);
1920                 event->buffer = NULL;
1921         }
1922
1923         if (event->destroy)
1924                 event->destroy(event);
1925
1926         put_ctx(event->ctx);
1927         call_rcu(&event->rcu_head, free_event_rcu);
1928 }
1929
1930 int perf_event_release_kernel(struct perf_event *event)
1931 {
1932         struct perf_event_context *ctx = event->ctx;
1933
1934         /*
1935          * Remove from the PMU, can't get re-enabled since we got
1936          * here because the last ref went.
1937          */
1938         perf_event_disable(event);
1939
1940         WARN_ON_ONCE(ctx->parent_ctx);
1941         /*
1942          * There are two ways this annotation is useful:
1943          *
1944          *  1) there is a lock recursion from perf_event_exit_task
1945          *     see the comment there.
1946          *
1947          *  2) there is a lock-inversion with mmap_sem through
1948          *     perf_event_read_group(), which takes faults while
1949          *     holding ctx->mutex, however this is called after
1950          *     the last filedesc died, so there is no possibility
1951          *     to trigger the AB-BA case.
1952          */
1953         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1954         raw_spin_lock_irq(&ctx->lock);
1955         perf_group_detach(event);
1956         list_del_event(event, ctx);
1957         raw_spin_unlock_irq(&ctx->lock);
1958         mutex_unlock(&ctx->mutex);
1959
1960         mutex_lock(&event->owner->perf_event_mutex);
1961         list_del_init(&event->owner_entry);
1962         mutex_unlock(&event->owner->perf_event_mutex);
1963         put_task_struct(event->owner);
1964
1965         free_event(event);
1966
1967         return 0;
1968 }
1969 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1970
1971 /*
1972  * Called when the last reference to the file is gone.
1973  */
1974 static int perf_release(struct inode *inode, struct file *file)
1975 {
1976         struct perf_event *event = file->private_data;
1977
1978         file->private_data = NULL;
1979
1980         return perf_event_release_kernel(event);
1981 }
1982
1983 static int perf_event_read_size(struct perf_event *event)
1984 {
1985         int entry = sizeof(u64); /* value */
1986         int size = 0;
1987         int nr = 1;
1988
1989         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1990                 size += sizeof(u64);
1991
1992         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1993                 size += sizeof(u64);
1994
1995         if (event->attr.read_format & PERF_FORMAT_ID)
1996                 entry += sizeof(u64);
1997
1998         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1999                 nr += event->group_leader->nr_siblings;
2000                 size += sizeof(u64);
2001         }
2002
2003         size += entry * nr;
2004
2005         return size;
2006 }
2007
2008 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2009 {
2010         struct perf_event *child;
2011         u64 total = 0;
2012
2013         *enabled = 0;
2014         *running = 0;
2015
2016         mutex_lock(&event->child_mutex);
2017         total += perf_event_read(event);
2018         *enabled += event->total_time_enabled +
2019                         atomic64_read(&event->child_total_time_enabled);
2020         *running += event->total_time_running +
2021                         atomic64_read(&event->child_total_time_running);
2022
2023         list_for_each_entry(child, &event->child_list, child_list) {
2024                 total += perf_event_read(child);
2025                 *enabled += child->total_time_enabled;
2026                 *running += child->total_time_running;
2027         }
2028         mutex_unlock(&event->child_mutex);
2029
2030         return total;
2031 }
2032 EXPORT_SYMBOL_GPL(perf_event_read_value);
2033
2034 static int perf_event_read_group(struct perf_event *event,
2035                                    u64 read_format, char __user *buf)
2036 {
2037         struct perf_event *leader = event->group_leader, *sub;
2038         int n = 0, size = 0, ret = -EFAULT;
2039         struct perf_event_context *ctx = leader->ctx;
2040         u64 values[5];
2041         u64 count, enabled, running;
2042
2043         mutex_lock(&ctx->mutex);
2044         count = perf_event_read_value(leader, &enabled, &running);
2045
2046         values[n++] = 1 + leader->nr_siblings;
2047         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2048                 values[n++] = enabled;
2049         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2050                 values[n++] = running;
2051         values[n++] = count;
2052         if (read_format & PERF_FORMAT_ID)
2053                 values[n++] = primary_event_id(leader);
2054
2055         size = n * sizeof(u64);
2056
2057         if (copy_to_user(buf, values, size))
2058                 goto unlock;
2059
2060         ret = size;
2061
2062         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2063                 n = 0;
2064
2065                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2066                 if (read_format & PERF_FORMAT_ID)
2067                         values[n++] = primary_event_id(sub);
2068
2069                 size = n * sizeof(u64);
2070
2071                 if (copy_to_user(buf + ret, values, size)) {
2072                         ret = -EFAULT;
2073                         goto unlock;
2074                 }
2075
2076                 ret += size;
2077         }
2078 unlock:
2079         mutex_unlock(&ctx->mutex);
2080
2081         return ret;
2082 }
2083
2084 static int perf_event_read_one(struct perf_event *event,
2085                                  u64 read_format, char __user *buf)
2086 {
2087         u64 enabled, running;
2088         u64 values[4];
2089         int n = 0;
2090
2091         values[n++] = perf_event_read_value(event, &enabled, &running);
2092         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2093                 values[n++] = enabled;
2094         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2095                 values[n++] = running;
2096         if (read_format & PERF_FORMAT_ID)
2097                 values[n++] = primary_event_id(event);
2098
2099         if (copy_to_user(buf, values, n * sizeof(u64)))
2100                 return -EFAULT;
2101
2102         return n * sizeof(u64);
2103 }
2104
2105 /*
2106  * Read the performance event - simple non blocking version for now
2107  */
2108 static ssize_t
2109 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2110 {
2111         u64 read_format = event->attr.read_format;
2112         int ret;
2113
2114         /*
2115          * Return end-of-file for a read on a event that is in
2116          * error state (i.e. because it was pinned but it couldn't be
2117          * scheduled on to the CPU at some point).
2118          */
2119         if (event->state == PERF_EVENT_STATE_ERROR)
2120                 return 0;
2121
2122         if (count < perf_event_read_size(event))
2123                 return -ENOSPC;
2124
2125         WARN_ON_ONCE(event->ctx->parent_ctx);
2126         if (read_format & PERF_FORMAT_GROUP)
2127                 ret = perf_event_read_group(event, read_format, buf);
2128         else
2129                 ret = perf_event_read_one(event, read_format, buf);
2130
2131         return ret;
2132 }
2133
2134 static ssize_t
2135 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2136 {
2137         struct perf_event *event = file->private_data;
2138
2139         return perf_read_hw(event, buf, count);
2140 }
2141
2142 static unsigned int perf_poll(struct file *file, poll_table *wait)
2143 {
2144         struct perf_event *event = file->private_data;
2145         struct perf_buffer *buffer;
2146         unsigned int events = POLL_HUP;
2147
2148         rcu_read_lock();
2149         buffer = rcu_dereference(event->buffer);
2150         if (buffer)
2151                 events = atomic_xchg(&buffer->poll, 0);
2152         rcu_read_unlock();
2153
2154         poll_wait(file, &event->waitq, wait);
2155
2156         return events;
2157 }
2158
2159 static void perf_event_reset(struct perf_event *event)
2160 {
2161         (void)perf_event_read(event);
2162         local64_set(&event->count, 0);
2163         perf_event_update_userpage(event);
2164 }
2165
2166 /*
2167  * Holding the top-level event's child_mutex means that any
2168  * descendant process that has inherited this event will block
2169  * in sync_child_event if it goes to exit, thus satisfying the
2170  * task existence requirements of perf_event_enable/disable.
2171  */
2172 static void perf_event_for_each_child(struct perf_event *event,
2173                                         void (*func)(struct perf_event *))
2174 {
2175         struct perf_event *child;
2176
2177         WARN_ON_ONCE(event->ctx->parent_ctx);
2178         mutex_lock(&event->child_mutex);
2179         func(event);
2180         list_for_each_entry(child, &event->child_list, child_list)
2181                 func(child);
2182         mutex_unlock(&event->child_mutex);
2183 }
2184
2185 static void perf_event_for_each(struct perf_event *event,
2186                                   void (*func)(struct perf_event *))
2187 {
2188         struct perf_event_context *ctx = event->ctx;
2189         struct perf_event *sibling;
2190
2191         WARN_ON_ONCE(ctx->parent_ctx);
2192         mutex_lock(&ctx->mutex);
2193         event = event->group_leader;
2194
2195         perf_event_for_each_child(event, func);
2196         func(event);
2197         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2198                 perf_event_for_each_child(event, func);
2199         mutex_unlock(&ctx->mutex);
2200 }
2201
2202 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2203 {
2204         struct perf_event_context *ctx = event->ctx;
2205         int ret = 0;
2206         u64 value;
2207
2208         if (!event->attr.sample_period)
2209                 return -EINVAL;
2210
2211         if (copy_from_user(&value, arg, sizeof(value)))
2212                 return -EFAULT;
2213
2214         if (!value)
2215                 return -EINVAL;
2216
2217         raw_spin_lock_irq(&ctx->lock);
2218         if (event->attr.freq) {
2219                 if (value > sysctl_perf_event_sample_rate) {
2220                         ret = -EINVAL;
2221                         goto unlock;
2222                 }
2223
2224                 event->attr.sample_freq = value;
2225         } else {
2226                 event->attr.sample_period = value;
2227                 event->hw.sample_period = value;
2228         }
2229 unlock:
2230         raw_spin_unlock_irq(&ctx->lock);
2231
2232         return ret;
2233 }
2234
2235 static const struct file_operations perf_fops;
2236
2237 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2238 {
2239         struct file *file;
2240
2241         file = fget_light(fd, fput_needed);
2242         if (!file)
2243                 return ERR_PTR(-EBADF);
2244
2245         if (file->f_op != &perf_fops) {
2246                 fput_light(file, *fput_needed);
2247                 *fput_needed = 0;
2248                 return ERR_PTR(-EBADF);
2249         }
2250
2251         return file->private_data;
2252 }
2253
2254 static int perf_event_set_output(struct perf_event *event,
2255                                  struct perf_event *output_event);
2256 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2257
2258 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2259 {
2260         struct perf_event *event = file->private_data;
2261         void (*func)(struct perf_event *);
2262         u32 flags = arg;
2263
2264         switch (cmd) {
2265         case PERF_EVENT_IOC_ENABLE:
2266                 func = perf_event_enable;
2267                 break;
2268         case PERF_EVENT_IOC_DISABLE:
2269                 func = perf_event_disable;
2270                 break;
2271         case PERF_EVENT_IOC_RESET:
2272                 func = perf_event_reset;
2273                 break;
2274
2275         case PERF_EVENT_IOC_REFRESH:
2276                 return perf_event_refresh(event, arg);
2277
2278         case PERF_EVENT_IOC_PERIOD:
2279                 return perf_event_period(event, (u64 __user *)arg);
2280
2281         case PERF_EVENT_IOC_SET_OUTPUT:
2282         {
2283                 struct perf_event *output_event = NULL;
2284                 int fput_needed = 0;
2285                 int ret;
2286
2287                 if (arg != -1) {
2288                         output_event = perf_fget_light(arg, &fput_needed);
2289                         if (IS_ERR(output_event))
2290                                 return PTR_ERR(output_event);
2291                 }
2292
2293                 ret = perf_event_set_output(event, output_event);
2294                 if (output_event)
2295                         fput_light(output_event->filp, fput_needed);
2296
2297                 return ret;
2298         }
2299
2300         case PERF_EVENT_IOC_SET_FILTER:
2301                 return perf_event_set_filter(event, (void __user *)arg);
2302
2303         default:
2304                 return -ENOTTY;
2305         }
2306
2307         if (flags & PERF_IOC_FLAG_GROUP)
2308                 perf_event_for_each(event, func);
2309         else
2310                 perf_event_for_each_child(event, func);
2311
2312         return 0;
2313 }
2314
2315 int perf_event_task_enable(void)
2316 {
2317         struct perf_event *event;
2318
2319         mutex_lock(&current->perf_event_mutex);
2320         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2321                 perf_event_for_each_child(event, perf_event_enable);
2322         mutex_unlock(&current->perf_event_mutex);
2323
2324         return 0;
2325 }
2326
2327 int perf_event_task_disable(void)
2328 {
2329         struct perf_event *event;
2330
2331         mutex_lock(&current->perf_event_mutex);
2332         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2333                 perf_event_for_each_child(event, perf_event_disable);
2334         mutex_unlock(&current->perf_event_mutex);
2335
2336         return 0;
2337 }
2338
2339 #ifndef PERF_EVENT_INDEX_OFFSET
2340 # define PERF_EVENT_INDEX_OFFSET 0
2341 #endif
2342
2343 static int perf_event_index(struct perf_event *event)
2344 {
2345         if (event->state != PERF_EVENT_STATE_ACTIVE)
2346                 return 0;
2347
2348         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2349 }
2350
2351 /*
2352  * Callers need to ensure there can be no nesting of this function, otherwise
2353  * the seqlock logic goes bad. We can not serialize this because the arch
2354  * code calls this from NMI context.
2355  */
2356 void perf_event_update_userpage(struct perf_event *event)
2357 {
2358         struct perf_event_mmap_page *userpg;
2359         struct perf_buffer *buffer;
2360
2361         rcu_read_lock();
2362         buffer = rcu_dereference(event->buffer);
2363         if (!buffer)
2364                 goto unlock;
2365
2366         userpg = buffer->user_page;
2367
2368         /*
2369          * Disable preemption so as to not let the corresponding user-space
2370          * spin too long if we get preempted.
2371          */
2372         preempt_disable();
2373         ++userpg->lock;
2374         barrier();
2375         userpg->index = perf_event_index(event);
2376         userpg->offset = perf_event_count(event);
2377         if (event->state == PERF_EVENT_STATE_ACTIVE)
2378                 userpg->offset -= local64_read(&event->hw.prev_count);
2379
2380         userpg->time_enabled = event->total_time_enabled +
2381                         atomic64_read(&event->child_total_time_enabled);
2382
2383         userpg->time_running = event->total_time_running +
2384                         atomic64_read(&event->child_total_time_running);
2385
2386         barrier();
2387         ++userpg->lock;
2388         preempt_enable();
2389 unlock:
2390         rcu_read_unlock();
2391 }
2392
2393 static unsigned long perf_data_size(struct perf_buffer *buffer);
2394
2395 static void
2396 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2397 {
2398         long max_size = perf_data_size(buffer);
2399
2400         if (watermark)
2401                 buffer->watermark = min(max_size, watermark);
2402
2403         if (!buffer->watermark)
2404                 buffer->watermark = max_size / 2;
2405
2406         if (flags & PERF_BUFFER_WRITABLE)
2407                 buffer->writable = 1;
2408
2409         atomic_set(&buffer->refcount, 1);
2410 }
2411
2412 #ifndef CONFIG_PERF_USE_VMALLOC
2413
2414 /*
2415  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2416  */
2417
2418 static struct page *
2419 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2420 {
2421         if (pgoff > buffer->nr_pages)
2422                 return NULL;
2423
2424         if (pgoff == 0)
2425                 return virt_to_page(buffer->user_page);
2426
2427         return virt_to_page(buffer->data_pages[pgoff - 1]);
2428 }
2429
2430 static void *perf_mmap_alloc_page(int cpu)
2431 {
2432         struct page *page;
2433         int node;
2434
2435         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2436         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2437         if (!page)
2438                 return NULL;
2439
2440         return page_address(page);
2441 }
2442
2443 static struct perf_buffer *
2444 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2445 {
2446         struct perf_buffer *buffer;
2447         unsigned long size;
2448         int i;
2449
2450         size = sizeof(struct perf_buffer);
2451         size += nr_pages * sizeof(void *);
2452
2453         buffer = kzalloc(size, GFP_KERNEL);
2454         if (!buffer)
2455                 goto fail;
2456
2457         buffer->user_page = perf_mmap_alloc_page(cpu);
2458         if (!buffer->user_page)
2459                 goto fail_user_page;
2460
2461         for (i = 0; i < nr_pages; i++) {
2462                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2463                 if (!buffer->data_pages[i])
2464                         goto fail_data_pages;
2465         }
2466
2467         buffer->nr_pages = nr_pages;
2468
2469         perf_buffer_init(buffer, watermark, flags);
2470
2471         return buffer;
2472
2473 fail_data_pages:
2474         for (i--; i >= 0; i--)
2475                 free_page((unsigned long)buffer->data_pages[i]);
2476
2477         free_page((unsigned long)buffer->user_page);
2478
2479 fail_user_page:
2480         kfree(buffer);
2481
2482 fail:
2483         return NULL;
2484 }
2485
2486 static void perf_mmap_free_page(unsigned long addr)
2487 {
2488         struct page *page = virt_to_page((void *)addr);
2489
2490         page->mapping = NULL;
2491         __free_page(page);
2492 }
2493
2494 static void perf_buffer_free(struct perf_buffer *buffer)
2495 {
2496         int i;
2497
2498         perf_mmap_free_page((unsigned long)buffer->user_page);
2499         for (i = 0; i < buffer->nr_pages; i++)
2500                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2501         kfree(buffer);
2502 }
2503
2504 static inline int page_order(struct perf_buffer *buffer)
2505 {
2506         return 0;
2507 }
2508
2509 #else
2510
2511 /*
2512  * Back perf_mmap() with vmalloc memory.
2513  *
2514  * Required for architectures that have d-cache aliasing issues.
2515  */
2516
2517 static inline int page_order(struct perf_buffer *buffer)
2518 {
2519         return buffer->page_order;
2520 }
2521
2522 static struct page *
2523 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2524 {
2525         if (pgoff > (1UL << page_order(buffer)))
2526                 return NULL;
2527
2528         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2529 }
2530
2531 static void perf_mmap_unmark_page(void *addr)
2532 {
2533         struct page *page = vmalloc_to_page(addr);
2534
2535         page->mapping = NULL;
2536 }
2537
2538 static void perf_buffer_free_work(struct work_struct *work)
2539 {
2540         struct perf_buffer *buffer;
2541         void *base;
2542         int i, nr;
2543
2544         buffer = container_of(work, struct perf_buffer, work);
2545         nr = 1 << page_order(buffer);
2546
2547         base = buffer->user_page;
2548         for (i = 0; i < nr + 1; i++)
2549                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2550
2551         vfree(base);
2552         kfree(buffer);
2553 }
2554
2555 static void perf_buffer_free(struct perf_buffer *buffer)
2556 {
2557         schedule_work(&buffer->work);
2558 }
2559
2560 static struct perf_buffer *
2561 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2562 {
2563         struct perf_buffer *buffer;
2564         unsigned long size;
2565         void *all_buf;
2566
2567         size = sizeof(struct perf_buffer);
2568         size += sizeof(void *);
2569
2570         buffer = kzalloc(size, GFP_KERNEL);
2571         if (!buffer)
2572                 goto fail;
2573
2574         INIT_WORK(&buffer->work, perf_buffer_free_work);
2575
2576         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2577         if (!all_buf)
2578                 goto fail_all_buf;
2579
2580         buffer->user_page = all_buf;
2581         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2582         buffer->page_order = ilog2(nr_pages);
2583         buffer->nr_pages = 1;
2584
2585         perf_buffer_init(buffer, watermark, flags);
2586
2587         return buffer;
2588
2589 fail_all_buf:
2590         kfree(buffer);
2591
2592 fail:
2593         return NULL;
2594 }
2595
2596 #endif
2597
2598 static unsigned long perf_data_size(struct perf_buffer *buffer)
2599 {
2600         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2601 }
2602
2603 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2604 {
2605         struct perf_event *event = vma->vm_file->private_data;
2606         struct perf_buffer *buffer;
2607         int ret = VM_FAULT_SIGBUS;
2608
2609         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2610                 if (vmf->pgoff == 0)
2611                         ret = 0;
2612                 return ret;
2613         }
2614
2615         rcu_read_lock();
2616         buffer = rcu_dereference(event->buffer);
2617         if (!buffer)
2618                 goto unlock;
2619
2620         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2621                 goto unlock;
2622
2623         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2624         if (!vmf->page)
2625                 goto unlock;
2626
2627         get_page(vmf->page);
2628         vmf->page->mapping = vma->vm_file->f_mapping;
2629         vmf->page->index   = vmf->pgoff;
2630
2631         ret = 0;
2632 unlock:
2633         rcu_read_unlock();
2634
2635         return ret;
2636 }
2637
2638 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2639 {
2640         struct perf_buffer *buffer;
2641
2642         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2643         perf_buffer_free(buffer);
2644 }
2645
2646 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2647 {
2648         struct perf_buffer *buffer;
2649
2650         rcu_read_lock();
2651         buffer = rcu_dereference(event->buffer);
2652         if (buffer) {
2653                 if (!atomic_inc_not_zero(&buffer->refcount))
2654                         buffer = NULL;
2655         }
2656         rcu_read_unlock();
2657
2658         return buffer;
2659 }
2660
2661 static void perf_buffer_put(struct perf_buffer *buffer)
2662 {
2663         if (!atomic_dec_and_test(&buffer->refcount))
2664                 return;
2665
2666         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2667 }
2668
2669 static void perf_mmap_open(struct vm_area_struct *vma)
2670 {
2671         struct perf_event *event = vma->vm_file->private_data;
2672
2673         atomic_inc(&event->mmap_count);
2674 }
2675
2676 static void perf_mmap_close(struct vm_area_struct *vma)
2677 {
2678         struct perf_event *event = vma->vm_file->private_data;
2679
2680         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2681                 unsigned long size = perf_data_size(event->buffer);
2682                 struct user_struct *user = event->mmap_user;
2683                 struct perf_buffer *buffer = event->buffer;
2684
2685                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2686                 vma->vm_mm->locked_vm -= event->mmap_locked;
2687                 rcu_assign_pointer(event->buffer, NULL);
2688                 mutex_unlock(&event->mmap_mutex);
2689
2690                 perf_buffer_put(buffer);
2691                 free_uid(user);
2692         }
2693 }
2694
2695 static const struct vm_operations_struct perf_mmap_vmops = {
2696         .open           = perf_mmap_open,
2697         .close          = perf_mmap_close,
2698         .fault          = perf_mmap_fault,
2699         .page_mkwrite   = perf_mmap_fault,
2700 };
2701
2702 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2703 {
2704         struct perf_event *event = file->private_data;
2705         unsigned long user_locked, user_lock_limit;
2706         struct user_struct *user = current_user();
2707         unsigned long locked, lock_limit;
2708         struct perf_buffer *buffer;
2709         unsigned long vma_size;
2710         unsigned long nr_pages;
2711         long user_extra, extra;
2712         int ret = 0, flags = 0;
2713
2714         /*
2715          * Don't allow mmap() of inherited per-task counters. This would
2716          * create a performance issue due to all children writing to the
2717          * same buffer.
2718          */
2719         if (event->cpu == -1 && event->attr.inherit)
2720                 return -EINVAL;
2721
2722         if (!(vma->vm_flags & VM_SHARED))
2723                 return -EINVAL;
2724
2725         vma_size = vma->vm_end - vma->vm_start;
2726         nr_pages = (vma_size / PAGE_SIZE) - 1;
2727
2728         /*
2729          * If we have buffer pages ensure they're a power-of-two number, so we
2730          * can do bitmasks instead of modulo.
2731          */
2732         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2733                 return -EINVAL;
2734
2735         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2736                 return -EINVAL;
2737
2738         if (vma->vm_pgoff != 0)
2739                 return -EINVAL;
2740
2741         WARN_ON_ONCE(event->ctx->parent_ctx);
2742         mutex_lock(&event->mmap_mutex);
2743         if (event->buffer) {
2744                 if (event->buffer->nr_pages == nr_pages)
2745                         atomic_inc(&event->buffer->refcount);
2746                 else
2747                         ret = -EINVAL;
2748                 goto unlock;
2749         }
2750
2751         user_extra = nr_pages + 1;
2752         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2753
2754         /*
2755          * Increase the limit linearly with more CPUs:
2756          */
2757         user_lock_limit *= num_online_cpus();
2758
2759         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2760
2761         extra = 0;
2762         if (user_locked > user_lock_limit)
2763                 extra = user_locked - user_lock_limit;
2764
2765         lock_limit = rlimit(RLIMIT_MEMLOCK);
2766         lock_limit >>= PAGE_SHIFT;
2767         locked = vma->vm_mm->locked_vm + extra;
2768
2769         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2770                 !capable(CAP_IPC_LOCK)) {
2771                 ret = -EPERM;
2772                 goto unlock;
2773         }
2774
2775         WARN_ON(event->buffer);
2776
2777         if (vma->vm_flags & VM_WRITE)
2778                 flags |= PERF_BUFFER_WRITABLE;
2779
2780         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2781                                    event->cpu, flags);
2782         if (!buffer) {
2783                 ret = -ENOMEM;
2784                 goto unlock;
2785         }
2786         rcu_assign_pointer(event->buffer, buffer);
2787
2788         atomic_long_add(user_extra, &user->locked_vm);
2789         event->mmap_locked = extra;
2790         event->mmap_user = get_current_user();
2791         vma->vm_mm->locked_vm += event->mmap_locked;
2792
2793 unlock:
2794         if (!ret)
2795                 atomic_inc(&event->mmap_count);
2796         mutex_unlock(&event->mmap_mutex);
2797
2798         vma->vm_flags |= VM_RESERVED;
2799         vma->vm_ops = &perf_mmap_vmops;
2800
2801         return ret;
2802 }
2803
2804 static int perf_fasync(int fd, struct file *filp, int on)
2805 {
2806         struct inode *inode = filp->f_path.dentry->d_inode;
2807         struct perf_event *event = filp->private_data;
2808         int retval;
2809
2810         mutex_lock(&inode->i_mutex);
2811         retval = fasync_helper(fd, filp, on, &event->fasync);
2812         mutex_unlock(&inode->i_mutex);
2813
2814         if (retval < 0)
2815                 return retval;
2816
2817         return 0;
2818 }
2819
2820 static const struct file_operations perf_fops = {
2821         .llseek                 = no_llseek,
2822         .release                = perf_release,
2823         .read                   = perf_read,
2824         .poll                   = perf_poll,
2825         .unlocked_ioctl         = perf_ioctl,
2826         .compat_ioctl           = perf_ioctl,
2827         .mmap                   = perf_mmap,
2828         .fasync                 = perf_fasync,
2829 };
2830
2831 /*
2832  * Perf event wakeup
2833  *
2834  * If there's data, ensure we set the poll() state and publish everything
2835  * to user-space before waking everybody up.
2836  */
2837
2838 void perf_event_wakeup(struct perf_event *event)
2839 {
2840         wake_up_all(&event->waitq);
2841
2842         if (event->pending_kill) {
2843                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2844                 event->pending_kill = 0;
2845         }
2846 }
2847
2848 /*
2849  * Pending wakeups
2850  *
2851  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2852  *
2853  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2854  * single linked list and use cmpxchg() to add entries lockless.
2855  */
2856
2857 static void perf_pending_event(struct perf_pending_entry *entry)
2858 {
2859         struct perf_event *event = container_of(entry,
2860                         struct perf_event, pending);
2861
2862         if (event->pending_disable) {
2863                 event->pending_disable = 0;
2864                 __perf_event_disable(event);
2865         }
2866
2867         if (event->pending_wakeup) {
2868                 event->pending_wakeup = 0;
2869                 perf_event_wakeup(event);
2870         }
2871 }
2872
2873 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2874
2875 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2876         PENDING_TAIL,
2877 };
2878
2879 static void perf_pending_queue(struct perf_pending_entry *entry,
2880                                void (*func)(struct perf_pending_entry *))
2881 {
2882         struct perf_pending_entry **head;
2883
2884         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2885                 return;
2886
2887         entry->func = func;
2888
2889         head = &get_cpu_var(perf_pending_head);
2890
2891         do {
2892                 entry->next = *head;
2893         } while (cmpxchg(head, entry->next, entry) != entry->next);
2894
2895         set_perf_event_pending();
2896
2897         put_cpu_var(perf_pending_head);
2898 }
2899
2900 static int __perf_pending_run(void)
2901 {
2902         struct perf_pending_entry *list;
2903         int nr = 0;
2904
2905         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2906         while (list != PENDING_TAIL) {
2907                 void (*func)(struct perf_pending_entry *);
2908                 struct perf_pending_entry *entry = list;
2909
2910                 list = list->next;
2911
2912                 func = entry->func;
2913                 entry->next = NULL;
2914                 /*
2915                  * Ensure we observe the unqueue before we issue the wakeup,
2916                  * so that we won't be waiting forever.
2917                  * -- see perf_not_pending().
2918                  */
2919                 smp_wmb();
2920
2921                 func(entry);
2922                 nr++;
2923         }
2924
2925         return nr;
2926 }
2927
2928 static inline int perf_not_pending(struct perf_event *event)
2929 {
2930         /*
2931          * If we flush on whatever cpu we run, there is a chance we don't
2932          * need to wait.
2933          */
2934         get_cpu();
2935         __perf_pending_run();
2936         put_cpu();
2937
2938         /*
2939          * Ensure we see the proper queue state before going to sleep
2940          * so that we do not miss the wakeup. -- see perf_pending_handle()
2941          */
2942         smp_rmb();
2943         return event->pending.next == NULL;
2944 }
2945
2946 static void perf_pending_sync(struct perf_event *event)
2947 {
2948         wait_event(event->waitq, perf_not_pending(event));
2949 }
2950
2951 void perf_event_do_pending(void)
2952 {
2953         __perf_pending_run();
2954 }
2955
2956 /*
2957  * Callchain support -- arch specific
2958  */
2959
2960 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2961 {
2962         return NULL;
2963 }
2964
2965
2966 /*
2967  * We assume there is only KVM supporting the callbacks.
2968  * Later on, we might change it to a list if there is
2969  * another virtualization implementation supporting the callbacks.
2970  */
2971 struct perf_guest_info_callbacks *perf_guest_cbs;
2972
2973 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2974 {
2975         perf_guest_cbs = cbs;
2976         return 0;
2977 }
2978 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2979
2980 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2981 {
2982         perf_guest_cbs = NULL;
2983         return 0;
2984 }
2985 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2986
2987 /*
2988  * Output
2989  */
2990 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
2991                               unsigned long offset, unsigned long head)
2992 {
2993         unsigned long mask;
2994
2995         if (!buffer->writable)
2996                 return true;
2997
2998         mask = perf_data_size(buffer) - 1;
2999
3000         offset = (offset - tail) & mask;
3001         head   = (head   - tail) & mask;
3002
3003         if ((int)(head - offset) < 0)
3004                 return false;
3005
3006         return true;
3007 }
3008
3009 static void perf_output_wakeup(struct perf_output_handle *handle)
3010 {
3011         atomic_set(&handle->buffer->poll, POLL_IN);
3012
3013         if (handle->nmi) {
3014                 handle->event->pending_wakeup = 1;
3015                 perf_pending_queue(&handle->event->pending,
3016                                    perf_pending_event);
3017         } else
3018                 perf_event_wakeup(handle->event);
3019 }
3020
3021 /*
3022  * We need to ensure a later event_id doesn't publish a head when a former
3023  * event isn't done writing. However since we need to deal with NMIs we
3024  * cannot fully serialize things.
3025  *
3026  * We only publish the head (and generate a wakeup) when the outer-most
3027  * event completes.
3028  */
3029 static void perf_output_get_handle(struct perf_output_handle *handle)
3030 {
3031         struct perf_buffer *buffer = handle->buffer;
3032
3033         preempt_disable();
3034         local_inc(&buffer->nest);
3035         handle->wakeup = local_read(&buffer->wakeup);
3036 }
3037
3038 static void perf_output_put_handle(struct perf_output_handle *handle)
3039 {
3040         struct perf_buffer *buffer = handle->buffer;
3041         unsigned long head;
3042
3043 again:
3044         head = local_read(&buffer->head);
3045
3046         /*
3047          * IRQ/NMI can happen here, which means we can miss a head update.
3048          */
3049
3050         if (!local_dec_and_test(&buffer->nest))
3051                 goto out;
3052
3053         /*
3054          * Publish the known good head. Rely on the full barrier implied
3055          * by atomic_dec_and_test() order the buffer->head read and this
3056          * write.
3057          */
3058         buffer->user_page->data_head = head;
3059
3060         /*
3061          * Now check if we missed an update, rely on the (compiler)
3062          * barrier in atomic_dec_and_test() to re-read buffer->head.
3063          */
3064         if (unlikely(head != local_read(&buffer->head))) {
3065                 local_inc(&buffer->nest);
3066                 goto again;
3067         }
3068
3069         if (handle->wakeup != local_read(&buffer->wakeup))
3070                 perf_output_wakeup(handle);
3071
3072  out:
3073         preempt_enable();
3074 }
3075
3076 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3077                       const void *buf, unsigned int len)
3078 {
3079         do {
3080                 unsigned long size = min_t(unsigned long, handle->size, len);
3081
3082                 memcpy(handle->addr, buf, size);
3083
3084                 len -= size;
3085                 handle->addr += size;
3086                 buf += size;
3087                 handle->size -= size;
3088                 if (!handle->size) {
3089                         struct perf_buffer *buffer = handle->buffer;
3090
3091                         handle->page++;
3092                         handle->page &= buffer->nr_pages - 1;
3093                         handle->addr = buffer->data_pages[handle->page];
3094                         handle->size = PAGE_SIZE << page_order(buffer);
3095                 }
3096         } while (len);
3097 }
3098
3099 int perf_output_begin(struct perf_output_handle *handle,
3100                       struct perf_event *event, unsigned int size,
3101                       int nmi, int sample)
3102 {
3103         struct perf_buffer *buffer;
3104         unsigned long tail, offset, head;
3105         int have_lost;
3106         struct {
3107                 struct perf_event_header header;
3108                 u64                      id;
3109                 u64                      lost;
3110         } lost_event;
3111
3112         rcu_read_lock();
3113         /*
3114          * For inherited events we send all the output towards the parent.
3115          */
3116         if (event->parent)
3117                 event = event->parent;
3118
3119         buffer = rcu_dereference(event->buffer);
3120         if (!buffer)
3121                 goto out;
3122
3123         handle->buffer  = buffer;
3124         handle->event   = event;
3125         handle->nmi     = nmi;
3126         handle->sample  = sample;
3127
3128         if (!buffer->nr_pages)
3129                 goto out;
3130
3131         have_lost = local_read(&buffer->lost);
3132         if (have_lost)
3133                 size += sizeof(lost_event);
3134
3135         perf_output_get_handle(handle);
3136
3137         do {
3138                 /*
3139                  * Userspace could choose to issue a mb() before updating the
3140                  * tail pointer. So that all reads will be completed before the
3141                  * write is issued.
3142                  */
3143                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3144                 smp_rmb();
3145                 offset = head = local_read(&buffer->head);
3146                 head += size;
3147                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3148                         goto fail;
3149         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3150
3151         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3152                 local_add(buffer->watermark, &buffer->wakeup);
3153
3154         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3155         handle->page &= buffer->nr_pages - 1;
3156         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3157         handle->addr = buffer->data_pages[handle->page];
3158         handle->addr += handle->size;
3159         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3160
3161         if (have_lost) {
3162                 lost_event.header.type = PERF_RECORD_LOST;
3163                 lost_event.header.misc = 0;
3164                 lost_event.header.size = sizeof(lost_event);
3165                 lost_event.id          = event->id;
3166                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3167
3168                 perf_output_put(handle, lost_event);
3169         }
3170
3171         return 0;
3172
3173 fail:
3174         local_inc(&buffer->lost);
3175         perf_output_put_handle(handle);
3176 out:
3177         rcu_read_unlock();
3178
3179         return -ENOSPC;
3180 }
3181
3182 void perf_output_end(struct perf_output_handle *handle)
3183 {
3184         struct perf_event *event = handle->event;
3185         struct perf_buffer *buffer = handle->buffer;
3186
3187         int wakeup_events = event->attr.wakeup_events;
3188
3189         if (handle->sample && wakeup_events) {
3190                 int events = local_inc_return(&buffer->events);
3191                 if (events >= wakeup_events) {
3192                         local_sub(wakeup_events, &buffer->events);
3193                         local_inc(&buffer->wakeup);
3194                 }
3195         }
3196
3197         perf_output_put_handle(handle);
3198         rcu_read_unlock();
3199 }
3200
3201 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3202 {
3203         /*
3204          * only top level events have the pid namespace they were created in
3205          */
3206         if (event->parent)
3207                 event = event->parent;
3208
3209         return task_tgid_nr_ns(p, event->ns);
3210 }
3211
3212 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3213 {
3214         /*
3215          * only top level events have the pid namespace they were created in
3216          */
3217         if (event->parent)
3218                 event = event->parent;
3219
3220         return task_pid_nr_ns(p, event->ns);
3221 }
3222
3223 static void perf_output_read_one(struct perf_output_handle *handle,
3224                                  struct perf_event *event)
3225 {
3226         u64 read_format = event->attr.read_format;
3227         u64 values[4];
3228         int n = 0;
3229
3230         values[n++] = perf_event_count(event);
3231         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3232                 values[n++] = event->total_time_enabled +
3233                         atomic64_read(&event->child_total_time_enabled);
3234         }
3235         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3236                 values[n++] = event->total_time_running +
3237                         atomic64_read(&event->child_total_time_running);
3238         }
3239         if (read_format & PERF_FORMAT_ID)
3240                 values[n++] = primary_event_id(event);
3241
3242         perf_output_copy(handle, values, n * sizeof(u64));
3243 }
3244
3245 /*
3246  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3247  */
3248 static void perf_output_read_group(struct perf_output_handle *handle,
3249                             struct perf_event *event)
3250 {
3251         struct perf_event *leader = event->group_leader, *sub;
3252         u64 read_format = event->attr.read_format;
3253         u64 values[5];
3254         int n = 0;
3255
3256         values[n++] = 1 + leader->nr_siblings;
3257
3258         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3259                 values[n++] = leader->total_time_enabled;
3260
3261         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3262                 values[n++] = leader->total_time_running;
3263
3264         if (leader != event)
3265                 leader->pmu->read(leader);
3266
3267         values[n++] = perf_event_count(leader);
3268         if (read_format & PERF_FORMAT_ID)
3269                 values[n++] = primary_event_id(leader);
3270
3271         perf_output_copy(handle, values, n * sizeof(u64));
3272
3273         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3274                 n = 0;
3275
3276                 if (sub != event)
3277                         sub->pmu->read(sub);
3278
3279                 values[n++] = perf_event_count(sub);
3280                 if (read_format & PERF_FORMAT_ID)
3281                         values[n++] = primary_event_id(sub);
3282
3283                 perf_output_copy(handle, values, n * sizeof(u64));
3284         }
3285 }
3286
3287 static void perf_output_read(struct perf_output_handle *handle,
3288                              struct perf_event *event)
3289 {
3290         if (event->attr.read_format & PERF_FORMAT_GROUP)
3291                 perf_output_read_group(handle, event);
3292         else
3293                 perf_output_read_one(handle, event);
3294 }
3295
3296 void perf_output_sample(struct perf_output_handle *handle,
3297                         struct perf_event_header *header,
3298                         struct perf_sample_data *data,
3299                         struct perf_event *event)
3300 {
3301         u64 sample_type = data->type;
3302
3303         perf_output_put(handle, *header);
3304
3305         if (sample_type & PERF_SAMPLE_IP)
3306                 perf_output_put(handle, data->ip);
3307
3308         if (sample_type & PERF_SAMPLE_TID)
3309                 perf_output_put(handle, data->tid_entry);
3310
3311         if (sample_type & PERF_SAMPLE_TIME)
3312                 perf_output_put(handle, data->time);
3313
3314         if (sample_type & PERF_SAMPLE_ADDR)
3315                 perf_output_put(handle, data->addr);
3316
3317         if (sample_type & PERF_SAMPLE_ID)
3318                 perf_output_put(handle, data->id);
3319
3320         if (sample_type & PERF_SAMPLE_STREAM_ID)
3321                 perf_output_put(handle, data->stream_id);
3322
3323         if (sample_type & PERF_SAMPLE_CPU)
3324                 perf_output_put(handle, data->cpu_entry);
3325
3326         if (sample_type & PERF_SAMPLE_PERIOD)
3327                 perf_output_put(handle, data->period);
3328
3329         if (sample_type & PERF_SAMPLE_READ)
3330                 perf_output_read(handle, event);
3331
3332         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3333                 if (data->callchain) {
3334                         int size = 1;
3335
3336                         if (data->callchain)
3337                                 size += data->callchain->nr;
3338
3339                         size *= sizeof(u64);
3340
3341                         perf_output_copy(handle, data->callchain, size);
3342                 } else {
3343                         u64 nr = 0;
3344                         perf_output_put(handle, nr);
3345                 }
3346         }
3347
3348         if (sample_type & PERF_SAMPLE_RAW) {
3349                 if (data->raw) {
3350                         perf_output_put(handle, data->raw->size);
3351                         perf_output_copy(handle, data->raw->data,
3352                                          data->raw->size);
3353                 } else {
3354                         struct {
3355                                 u32     size;
3356                                 u32     data;
3357                         } raw = {
3358                                 .size = sizeof(u32),
3359                                 .data = 0,
3360                         };
3361                         perf_output_put(handle, raw);
3362                 }
3363         }
3364 }
3365
3366 void perf_prepare_sample(struct perf_event_header *header,
3367                          struct perf_sample_data *data,
3368                          struct perf_event *event,
3369                          struct pt_regs *regs)
3370 {
3371         u64 sample_type = event->attr.sample_type;
3372
3373         data->type = sample_type;
3374
3375         header->type = PERF_RECORD_SAMPLE;
3376         header->size = sizeof(*header);
3377
3378         header->misc = 0;
3379         header->misc |= perf_misc_flags(regs);
3380
3381         if (sample_type & PERF_SAMPLE_IP) {
3382                 data->ip = perf_instruction_pointer(regs);
3383
3384                 header->size += sizeof(data->ip);
3385         }
3386
3387         if (sample_type & PERF_SAMPLE_TID) {
3388                 /* namespace issues */
3389                 data->tid_entry.pid = perf_event_pid(event, current);
3390                 data->tid_entry.tid = perf_event_tid(event, current);
3391
3392                 header->size += sizeof(data->tid_entry);
3393         }
3394
3395         if (sample_type & PERF_SAMPLE_TIME) {
3396                 data->time = perf_clock();
3397
3398                 header->size += sizeof(data->time);
3399         }
3400
3401         if (sample_type & PERF_SAMPLE_ADDR)
3402                 header->size += sizeof(data->addr);
3403
3404         if (sample_type & PERF_SAMPLE_ID) {
3405                 data->id = primary_event_id(event);
3406
3407                 header->size += sizeof(data->id);
3408         }
3409
3410         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3411                 data->stream_id = event->id;
3412
3413                 header->size += sizeof(data->stream_id);
3414         }
3415
3416         if (sample_type & PERF_SAMPLE_CPU) {
3417                 data->cpu_entry.cpu             = raw_smp_processor_id();
3418                 data->cpu_entry.reserved        = 0;
3419
3420                 header->size += sizeof(data->cpu_entry);
3421         }
3422
3423         if (sample_type & PERF_SAMPLE_PERIOD)
3424                 header->size += sizeof(data->period);
3425
3426         if (sample_type & PERF_SAMPLE_READ)
3427                 header->size += perf_event_read_size(event);
3428
3429         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3430                 int size = 1;
3431
3432                 data->callchain = perf_callchain(regs);
3433
3434                 if (data->callchain)
3435                         size += data->callchain->nr;
3436
3437                 header->size += size * sizeof(u64);
3438         }
3439
3440         if (sample_type & PERF_SAMPLE_RAW) {
3441                 int size = sizeof(u32);
3442
3443                 if (data->raw)
3444                         size += data->raw->size;
3445                 else
3446                         size += sizeof(u32);
3447
3448                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3449                 header->size += size;
3450         }
3451 }
3452
3453 static void perf_event_output(struct perf_event *event, int nmi,
3454                                 struct perf_sample_data *data,
3455                                 struct pt_regs *regs)
3456 {
3457         struct perf_output_handle handle;
3458         struct perf_event_header header;
3459
3460         perf_prepare_sample(&header, data, event, regs);
3461
3462         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3463                 return;
3464
3465         perf_output_sample(&handle, &header, data, event);
3466
3467         perf_output_end(&handle);
3468 }
3469
3470 /*
3471  * read event_id
3472  */
3473
3474 struct perf_read_event {
3475         struct perf_event_header        header;
3476
3477         u32                             pid;
3478         u32                             tid;
3479 };
3480
3481 static void
3482 perf_event_read_event(struct perf_event *event,
3483                         struct task_struct *task)
3484 {
3485         struct perf_output_handle handle;
3486         struct perf_read_event read_event = {
3487                 .header = {
3488                         .type = PERF_RECORD_READ,
3489                         .misc = 0,
3490                         .size = sizeof(read_event) + perf_event_read_size(event),
3491                 },
3492                 .pid = perf_event_pid(event, task),
3493                 .tid = perf_event_tid(event, task),
3494         };
3495         int ret;
3496
3497         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3498         if (ret)
3499                 return;
3500
3501         perf_output_put(&handle, read_event);
3502         perf_output_read(&handle, event);
3503
3504         perf_output_end(&handle);
3505 }
3506
3507 /*
3508  * task tracking -- fork/exit
3509  *
3510  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3511  */
3512
3513 struct perf_task_event {
3514         struct task_struct              *task;
3515         struct perf_event_context       *task_ctx;
3516
3517         struct {
3518                 struct perf_event_header        header;
3519
3520                 u32                             pid;
3521                 u32                             ppid;
3522                 u32                             tid;
3523                 u32                             ptid;
3524                 u64                             time;
3525         } event_id;
3526 };
3527
3528 static void perf_event_task_output(struct perf_event *event,
3529                                      struct perf_task_event *task_event)
3530 {
3531         struct perf_output_handle handle;
3532         struct task_struct *task = task_event->task;
3533         int size, ret;
3534
3535         size  = task_event->event_id.header.size;
3536         ret = perf_output_begin(&handle, event, size, 0, 0);
3537
3538         if (ret)
3539                 return;
3540
3541         task_event->event_id.pid = perf_event_pid(event, task);
3542         task_event->event_id.ppid = perf_event_pid(event, current);
3543
3544         task_event->event_id.tid = perf_event_tid(event, task);
3545         task_event->event_id.ptid = perf_event_tid(event, current);
3546
3547         perf_output_put(&handle, task_event->event_id);
3548
3549         perf_output_end(&handle);
3550 }
3551
3552 static int perf_event_task_match(struct perf_event *event)
3553 {
3554         if (event->state < PERF_EVENT_STATE_INACTIVE)
3555                 return 0;
3556
3557         if (event->cpu != -1 && event->cpu != smp_processor_id())
3558                 return 0;
3559
3560         if (event->attr.comm || event->attr.mmap ||
3561             event->attr.mmap_data || event->attr.task)
3562                 return 1;
3563
3564         return 0;
3565 }
3566
3567 static void perf_event_task_ctx(struct perf_event_context *ctx,
3568                                   struct perf_task_event *task_event)
3569 {
3570         struct perf_event *event;
3571
3572         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3573                 if (perf_event_task_match(event))
3574                         perf_event_task_output(event, task_event);
3575         }
3576 }
3577
3578 static void perf_event_task_event(struct perf_task_event *task_event)
3579 {
3580         struct perf_cpu_context *cpuctx;
3581         struct perf_event_context *ctx = task_event->task_ctx;
3582
3583         rcu_read_lock();
3584         cpuctx = &get_cpu_var(perf_cpu_context);
3585         perf_event_task_ctx(&cpuctx->ctx, task_event);
3586         if (!ctx)
3587                 ctx = rcu_dereference(current->perf_event_ctxp);
3588         if (ctx)
3589                 perf_event_task_ctx(ctx, task_event);
3590         put_cpu_var(perf_cpu_context);
3591         rcu_read_unlock();
3592 }
3593
3594 static void perf_event_task(struct task_struct *task,
3595                               struct perf_event_context *task_ctx,
3596                               int new)
3597 {
3598         struct perf_task_event task_event;
3599
3600         if (!atomic_read(&nr_comm_events) &&
3601             !atomic_read(&nr_mmap_events) &&
3602             !atomic_read(&nr_task_events))
3603                 return;
3604
3605         task_event = (struct perf_task_event){
3606                 .task     = task,
3607                 .task_ctx = task_ctx,
3608                 .event_id    = {
3609                         .header = {
3610                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3611                                 .misc = 0,
3612                                 .size = sizeof(task_event.event_id),
3613                         },
3614                         /* .pid  */
3615                         /* .ppid */
3616                         /* .tid  */
3617                         /* .ptid */
3618                         .time = perf_clock(),
3619                 },
3620         };
3621
3622         perf_event_task_event(&task_event);
3623 }
3624
3625 void perf_event_fork(struct task_struct *task)
3626 {
3627         perf_event_task(task, NULL, 1);
3628 }
3629
3630 /*
3631  * comm tracking
3632  */
3633
3634 struct perf_comm_event {
3635         struct task_struct      *task;
3636         char                    *comm;
3637         int                     comm_size;
3638
3639         struct {
3640                 struct perf_event_header        header;
3641
3642                 u32                             pid;
3643                 u32                             tid;
3644         } event_id;
3645 };
3646
3647 static void perf_event_comm_output(struct perf_event *event,
3648                                      struct perf_comm_event *comm_event)
3649 {
3650         struct perf_output_handle handle;
3651         int size = comm_event->event_id.header.size;
3652         int ret = perf_output_begin(&handle, event, size, 0, 0);
3653
3654         if (ret)
3655                 return;
3656
3657         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3658         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3659
3660         perf_output_put(&handle, comm_event->event_id);
3661         perf_output_copy(&handle, comm_event->comm,
3662                                    comm_event->comm_size);
3663         perf_output_end(&handle);
3664 }
3665
3666 static int perf_event_comm_match(struct perf_event *event)
3667 {
3668         if (event->state < PERF_EVENT_STATE_INACTIVE)
3669                 return 0;
3670
3671         if (event->cpu != -1 && event->cpu != smp_processor_id())
3672                 return 0;
3673
3674         if (event->attr.comm)
3675                 return 1;
3676
3677         return 0;
3678 }
3679
3680 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3681                                   struct perf_comm_event *comm_event)
3682 {
3683         struct perf_event *event;
3684
3685         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3686                 if (perf_event_comm_match(event))
3687                         perf_event_comm_output(event, comm_event);
3688         }
3689 }
3690
3691 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3692 {
3693         struct perf_cpu_context *cpuctx;
3694         struct perf_event_context *ctx;
3695         unsigned int size;
3696         char comm[TASK_COMM_LEN];
3697
3698         memset(comm, 0, sizeof(comm));
3699         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3700         size = ALIGN(strlen(comm)+1, sizeof(u64));
3701
3702         comm_event->comm = comm;
3703         comm_event->comm_size = size;
3704
3705         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3706
3707         rcu_read_lock();
3708         cpuctx = &get_cpu_var(perf_cpu_context);
3709         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3710         ctx = rcu_dereference(current->perf_event_ctxp);
3711         if (ctx)
3712                 perf_event_comm_ctx(ctx, comm_event);
3713         put_cpu_var(perf_cpu_context);
3714         rcu_read_unlock();
3715 }
3716
3717 void perf_event_comm(struct task_struct *task)
3718 {
3719         struct perf_comm_event comm_event;
3720
3721         if (task->perf_event_ctxp)
3722                 perf_event_enable_on_exec(task);
3723
3724         if (!atomic_read(&nr_comm_events))
3725                 return;
3726
3727         comm_event = (struct perf_comm_event){
3728                 .task   = task,
3729                 /* .comm      */
3730                 /* .comm_size */
3731                 .event_id  = {
3732                         .header = {
3733                                 .type = PERF_RECORD_COMM,
3734                                 .misc = 0,
3735                                 /* .size */
3736                         },
3737                         /* .pid */
3738                         /* .tid */
3739                 },
3740         };
3741
3742         perf_event_comm_event(&comm_event);
3743 }
3744
3745 /*
3746  * mmap tracking
3747  */
3748
3749 struct perf_mmap_event {
3750         struct vm_area_struct   *vma;
3751
3752         const char              *file_name;
3753         int                     file_size;
3754
3755         struct {
3756                 struct perf_event_header        header;
3757
3758                 u32                             pid;
3759                 u32                             tid;
3760                 u64                             start;
3761                 u64                             len;
3762                 u64                             pgoff;
3763         } event_id;
3764 };
3765
3766 static void perf_event_mmap_output(struct perf_event *event,
3767                                      struct perf_mmap_event *mmap_event)
3768 {
3769         struct perf_output_handle handle;
3770         int size = mmap_event->event_id.header.size;
3771         int ret = perf_output_begin(&handle, event, size, 0, 0);
3772
3773         if (ret)
3774                 return;
3775
3776         mmap_event->event_id.pid = perf_event_pid(event, current);
3777         mmap_event->event_id.tid = perf_event_tid(event, current);
3778
3779         perf_output_put(&handle, mmap_event->event_id);
3780         perf_output_copy(&handle, mmap_event->file_name,
3781                                    mmap_event->file_size);
3782         perf_output_end(&handle);
3783 }
3784
3785 static int perf_event_mmap_match(struct perf_event *event,
3786                                    struct perf_mmap_event *mmap_event,
3787                                    int executable)
3788 {
3789         if (event->state < PERF_EVENT_STATE_INACTIVE)
3790                 return 0;
3791
3792         if (event->cpu != -1 && event->cpu != smp_processor_id())
3793                 return 0;
3794
3795         if ((!executable && event->attr.mmap_data) ||
3796             (executable && event->attr.mmap))
3797                 return 1;
3798
3799         return 0;
3800 }
3801
3802 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3803                                   struct perf_mmap_event *mmap_event,
3804                                   int executable)
3805 {
3806         struct perf_event *event;
3807
3808         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3809                 if (perf_event_mmap_match(event, mmap_event, executable))
3810                         perf_event_mmap_output(event, mmap_event);
3811         }
3812 }
3813
3814 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3815 {
3816         struct perf_cpu_context *cpuctx;
3817         struct perf_event_context *ctx;
3818         struct vm_area_struct *vma = mmap_event->vma;
3819         struct file *file = vma->vm_file;
3820         unsigned int size;
3821         char tmp[16];
3822         char *buf = NULL;
3823         const char *name;
3824
3825         memset(tmp, 0, sizeof(tmp));
3826
3827         if (file) {
3828                 /*
3829                  * d_path works from the end of the buffer backwards, so we
3830                  * need to add enough zero bytes after the string to handle
3831                  * the 64bit alignment we do later.
3832                  */
3833                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3834                 if (!buf) {
3835                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3836                         goto got_name;
3837                 }
3838                 name = d_path(&file->f_path, buf, PATH_MAX);
3839                 if (IS_ERR(name)) {
3840                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3841                         goto got_name;
3842                 }
3843         } else {
3844                 if (arch_vma_name(mmap_event->vma)) {
3845                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3846                                        sizeof(tmp));
3847                         goto got_name;
3848                 }
3849
3850                 if (!vma->vm_mm) {
3851                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3852                         goto got_name;
3853                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
3854                                 vma->vm_end >= vma->vm_mm->brk) {
3855                         name = strncpy(tmp, "[heap]", sizeof(tmp));
3856                         goto got_name;
3857                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
3858                                 vma->vm_end >= vma->vm_mm->start_stack) {
3859                         name = strncpy(tmp, "[stack]", sizeof(tmp));
3860                         goto got_name;
3861                 }
3862
3863                 name = strncpy(tmp, "//anon", sizeof(tmp));
3864                 goto got_name;
3865         }
3866
3867 got_name:
3868         size = ALIGN(strlen(name)+1, sizeof(u64));
3869
3870         mmap_event->file_name = name;
3871         mmap_event->file_size = size;
3872
3873         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3874
3875         rcu_read_lock();
3876         cpuctx = &get_cpu_var(perf_cpu_context);
3877         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3878         ctx = rcu_dereference(current->perf_event_ctxp);
3879         if (ctx)
3880                 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3881         put_cpu_var(perf_cpu_context);
3882         rcu_read_unlock();
3883
3884         kfree(buf);
3885 }
3886
3887 void perf_event_mmap(struct vm_area_struct *vma)
3888 {
3889         struct perf_mmap_event mmap_event;
3890
3891         if (!atomic_read(&nr_mmap_events))
3892                 return;
3893
3894         mmap_event = (struct perf_mmap_event){
3895                 .vma    = vma,
3896                 /* .file_name */
3897                 /* .file_size */
3898                 .event_id  = {
3899                         .header = {
3900                                 .type = PERF_RECORD_MMAP,
3901                                 .misc = PERF_RECORD_MISC_USER,
3902                                 /* .size */
3903                         },
3904                         /* .pid */
3905                         /* .tid */
3906                         .start  = vma->vm_start,
3907                         .len    = vma->vm_end - vma->vm_start,
3908                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3909                 },
3910         };
3911
3912         perf_event_mmap_event(&mmap_event);
3913 }
3914
3915 /*
3916  * IRQ throttle logging
3917  */
3918
3919 static void perf_log_throttle(struct perf_event *event, int enable)
3920 {
3921         struct perf_output_handle handle;
3922         int ret;
3923
3924         struct {
3925                 struct perf_event_header        header;
3926                 u64                             time;
3927                 u64                             id;
3928                 u64                             stream_id;
3929         } throttle_event = {
3930                 .header = {
3931                         .type = PERF_RECORD_THROTTLE,
3932                         .misc = 0,
3933                         .size = sizeof(throttle_event),
3934                 },
3935                 .time           = perf_clock(),
3936                 .id             = primary_event_id(event),
3937                 .stream_id      = event->id,
3938         };
3939
3940         if (enable)
3941                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3942
3943         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3944         if (ret)
3945                 return;
3946
3947         perf_output_put(&handle, throttle_event);
3948         perf_output_end(&handle);
3949 }
3950
3951 /*
3952  * Generic event overflow handling, sampling.
3953  */
3954
3955 static int __perf_event_overflow(struct perf_event *event, int nmi,
3956                                    int throttle, struct perf_sample_data *data,
3957                                    struct pt_regs *regs)
3958 {
3959         int events = atomic_read(&event->event_limit);
3960         struct hw_perf_event *hwc = &event->hw;
3961         int ret = 0;
3962
3963         throttle = (throttle && event->pmu->unthrottle != NULL);
3964
3965         if (!throttle) {
3966                 hwc->interrupts++;
3967         } else {
3968                 if (hwc->interrupts != MAX_INTERRUPTS) {
3969                         hwc->interrupts++;
3970                         if (HZ * hwc->interrupts >
3971                                         (u64)sysctl_perf_event_sample_rate) {
3972                                 hwc->interrupts = MAX_INTERRUPTS;
3973                                 perf_log_throttle(event, 0);
3974                                 ret = 1;
3975                         }
3976                 } else {
3977                         /*
3978                          * Keep re-disabling events even though on the previous
3979                          * pass we disabled it - just in case we raced with a
3980                          * sched-in and the event got enabled again:
3981                          */
3982                         ret = 1;
3983                 }
3984         }
3985
3986         if (event->attr.freq) {
3987                 u64 now = perf_clock();
3988                 s64 delta = now - hwc->freq_time_stamp;
3989
3990                 hwc->freq_time_stamp = now;
3991
3992                 if (delta > 0 && delta < 2*TICK_NSEC)
3993                         perf_adjust_period(event, delta, hwc->last_period);
3994         }
3995
3996         /*
3997          * XXX event_limit might not quite work as expected on inherited
3998          * events
3999          */
4000
4001         event->pending_kill = POLL_IN;
4002         if (events && atomic_dec_and_test(&event->event_limit)) {
4003                 ret = 1;
4004                 event->pending_kill = POLL_HUP;
4005                 if (nmi) {
4006                         event->pending_disable = 1;
4007                         perf_pending_queue(&event->pending,
4008                                            perf_pending_event);
4009                 } else
4010                         perf_event_disable(event);
4011         }
4012
4013         if (event->overflow_handler)
4014                 event->overflow_handler(event, nmi, data, regs);
4015         else
4016                 perf_event_output(event, nmi, data, regs);
4017
4018         return ret;
4019 }
4020
4021 int perf_event_overflow(struct perf_event *event, int nmi,
4022                           struct perf_sample_data *data,
4023                           struct pt_regs *regs)
4024 {
4025         return __perf_event_overflow(event, nmi, 1, data, regs);
4026 }
4027
4028 /*
4029  * Generic software event infrastructure
4030  */
4031
4032 /*
4033  * We directly increment event->count and keep a second value in
4034  * event->hw.period_left to count intervals. This period event
4035  * is kept in the range [-sample_period, 0] so that we can use the
4036  * sign as trigger.
4037  */
4038
4039 static u64 perf_swevent_set_period(struct perf_event *event)
4040 {
4041         struct hw_perf_event *hwc = &event->hw;
4042         u64 period = hwc->last_period;
4043         u64 nr, offset;
4044         s64 old, val;
4045
4046         hwc->last_period = hwc->sample_period;
4047
4048 again:
4049         old = val = local64_read(&hwc->period_left);
4050         if (val < 0)
4051                 return 0;
4052
4053         nr = div64_u64(period + val, period);
4054         offset = nr * period;
4055         val -= offset;
4056         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4057                 goto again;
4058
4059         return nr;
4060 }
4061
4062 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4063                                     int nmi, struct perf_sample_data *data,
4064                                     struct pt_regs *regs)
4065 {
4066         struct hw_perf_event *hwc = &event->hw;
4067         int throttle = 0;
4068
4069         data->period = event->hw.last_period;
4070         if (!overflow)
4071                 overflow = perf_swevent_set_period(event);
4072
4073         if (hwc->interrupts == MAX_INTERRUPTS)
4074                 return;
4075
4076         for (; overflow; overflow--) {
4077                 if (__perf_event_overflow(event, nmi, throttle,
4078                                             data, regs)) {
4079                         /*
4080                          * We inhibit the overflow from happening when
4081                          * hwc->interrupts == MAX_INTERRUPTS.
4082                          */
4083                         break;
4084                 }
4085                 throttle = 1;
4086         }
4087 }
4088
4089 static void perf_swevent_add(struct perf_event *event, u64 nr,
4090                                int nmi, struct perf_sample_data *data,
4091                                struct pt_regs *regs)
4092 {
4093         struct hw_perf_event *hwc = &event->hw;
4094
4095         local64_add(nr, &event->count);
4096
4097         if (!regs)
4098                 return;
4099
4100         if (!hwc->sample_period)
4101                 return;
4102
4103         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4104                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4105
4106         if (local64_add_negative(nr, &hwc->period_left))
4107                 return;
4108
4109         perf_swevent_overflow(event, 0, nmi, data, regs);
4110 }
4111
4112 static int perf_exclude_event(struct perf_event *event,
4113                               struct pt_regs *regs)
4114 {
4115         if (regs) {
4116                 if (event->attr.exclude_user && user_mode(regs))
4117                         return 1;
4118
4119                 if (event->attr.exclude_kernel && !user_mode(regs))
4120                         return 1;
4121         }
4122
4123         return 0;
4124 }
4125
4126 static int perf_swevent_match(struct perf_event *event,
4127                                 enum perf_type_id type,
4128                                 u32 event_id,
4129                                 struct perf_sample_data *data,
4130                                 struct pt_regs *regs)
4131 {
4132         if (event->attr.type != type)
4133                 return 0;
4134
4135         if (event->attr.config != event_id)
4136                 return 0;
4137
4138         if (perf_exclude_event(event, regs))
4139                 return 0;
4140
4141         return 1;
4142 }
4143
4144 static inline u64 swevent_hash(u64 type, u32 event_id)
4145 {
4146         u64 val = event_id | (type << 32);
4147
4148         return hash_64(val, SWEVENT_HLIST_BITS);
4149 }
4150
4151 static inline struct hlist_head *
4152 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4153 {
4154         u64 hash = swevent_hash(type, event_id);
4155
4156         return &hlist->heads[hash];
4157 }
4158
4159 /* For the read side: events when they trigger */
4160 static inline struct hlist_head *
4161 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4162 {
4163         struct swevent_hlist *hlist;
4164
4165         hlist = rcu_dereference(ctx->swevent_hlist);
4166         if (!hlist)
4167                 return NULL;
4168
4169         return __find_swevent_head(hlist, type, event_id);
4170 }
4171
4172 /* For the event head insertion and removal in the hlist */
4173 static inline struct hlist_head *
4174 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4175 {
4176         struct swevent_hlist *hlist;
4177         u32 event_id = event->attr.config;
4178         u64 type = event->attr.type;
4179
4180         /*
4181          * Event scheduling is always serialized against hlist allocation
4182          * and release. Which makes the protected version suitable here.
4183          * The context lock guarantees that.
4184          */
4185         hlist = rcu_dereference_protected(ctx->swevent_hlist,
4186                                           lockdep_is_held(&event->ctx->lock));
4187         if (!hlist)
4188                 return NULL;
4189
4190         return __find_swevent_head(hlist, type, event_id);
4191 }
4192
4193 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4194                                     u64 nr, int nmi,
4195                                     struct perf_sample_data *data,
4196                                     struct pt_regs *regs)
4197 {
4198         struct perf_cpu_context *cpuctx;
4199         struct perf_event *event;
4200         struct hlist_node *node;
4201         struct hlist_head *head;
4202
4203         cpuctx = &__get_cpu_var(perf_cpu_context);
4204
4205         rcu_read_lock();
4206
4207         head = find_swevent_head_rcu(cpuctx, type, event_id);
4208
4209         if (!head)
4210                 goto end;
4211
4212         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4213                 if (perf_swevent_match(event, type, event_id, data, regs))
4214                         perf_swevent_add(event, nr, nmi, data, regs);
4215         }
4216 end:
4217         rcu_read_unlock();
4218 }
4219
4220 int perf_swevent_get_recursion_context(void)
4221 {
4222         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4223         int rctx;
4224
4225         if (in_nmi())
4226                 rctx = 3;
4227         else if (in_irq())
4228                 rctx = 2;
4229         else if (in_softirq())
4230                 rctx = 1;
4231         else
4232                 rctx = 0;
4233
4234         if (cpuctx->recursion[rctx])
4235                 return -1;
4236
4237         cpuctx->recursion[rctx]++;
4238         barrier();
4239
4240         return rctx;
4241 }
4242 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4243
4244 void inline perf_swevent_put_recursion_context(int rctx)
4245 {
4246         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4247         barrier();
4248         cpuctx->recursion[rctx]--;
4249 }
4250
4251 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4252                             struct pt_regs *regs, u64 addr)
4253 {
4254         struct perf_sample_data data;
4255         int rctx;
4256
4257         preempt_disable_notrace();
4258         rctx = perf_swevent_get_recursion_context();
4259         if (rctx < 0)
4260                 return;
4261
4262         perf_sample_data_init(&data, addr);
4263
4264         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4265
4266         perf_swevent_put_recursion_context(rctx);
4267         preempt_enable_notrace();
4268 }
4269
4270 static void perf_swevent_read(struct perf_event *event)
4271 {
4272 }
4273
4274 static int perf_swevent_enable(struct perf_event *event)
4275 {
4276         struct hw_perf_event *hwc = &event->hw;
4277         struct perf_cpu_context *cpuctx;
4278         struct hlist_head *head;
4279
4280         cpuctx = &__get_cpu_var(perf_cpu_context);
4281
4282         if (hwc->sample_period) {
4283                 hwc->last_period = hwc->sample_period;
4284                 perf_swevent_set_period(event);
4285         }
4286
4287         head = find_swevent_head(cpuctx, event);
4288         if (WARN_ON_ONCE(!head))
4289                 return -EINVAL;
4290
4291         hlist_add_head_rcu(&event->hlist_entry, head);
4292
4293         return 0;
4294 }
4295
4296 static void perf_swevent_disable(struct perf_event *event)
4297 {
4298         hlist_del_rcu(&event->hlist_entry);
4299 }
4300
4301 static void perf_swevent_void(struct perf_event *event)
4302 {
4303 }
4304
4305 static int perf_swevent_int(struct perf_event *event)
4306 {
4307         return 0;
4308 }
4309
4310 static const struct pmu perf_ops_generic = {
4311         .enable         = perf_swevent_enable,
4312         .disable        = perf_swevent_disable,
4313         .start          = perf_swevent_int,
4314         .stop           = perf_swevent_void,
4315         .read           = perf_swevent_read,
4316         .unthrottle     = perf_swevent_void, /* hwc->interrupts already reset */
4317 };
4318
4319 /*
4320  * hrtimer based swevent callback
4321  */
4322
4323 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4324 {
4325         enum hrtimer_restart ret = HRTIMER_RESTART;
4326         struct perf_sample_data data;
4327         struct pt_regs *regs;
4328         struct perf_event *event;
4329         u64 period;
4330
4331         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4332         event->pmu->read(event);
4333
4334         perf_sample_data_init(&data, 0);
4335         data.period = event->hw.last_period;
4336         regs = get_irq_regs();
4337
4338         if (regs && !perf_exclude_event(event, regs)) {
4339                 if (!(event->attr.exclude_idle && current->pid == 0))
4340                         if (perf_event_overflow(event, 0, &data, regs))
4341                                 ret = HRTIMER_NORESTART;
4342         }
4343
4344         period = max_t(u64, 10000, event->hw.sample_period);
4345         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4346
4347         return ret;
4348 }
4349
4350 static void perf_swevent_start_hrtimer(struct perf_event *event)
4351 {
4352         struct hw_perf_event *hwc = &event->hw;
4353
4354         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4355         hwc->hrtimer.function = perf_swevent_hrtimer;
4356         if (hwc->sample_period) {
4357                 u64 period;
4358
4359                 if (hwc->remaining) {
4360                         if (hwc->remaining < 0)
4361                                 period = 10000;
4362                         else
4363                                 period = hwc->remaining;
4364                         hwc->remaining = 0;
4365                 } else {
4366                         period = max_t(u64, 10000, hwc->sample_period);
4367                 }
4368                 __hrtimer_start_range_ns(&hwc->hrtimer,
4369                                 ns_to_ktime(period), 0,
4370                                 HRTIMER_MODE_REL, 0);
4371         }
4372 }
4373
4374 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4375 {
4376         struct hw_perf_event *hwc = &event->hw;
4377
4378         if (hwc->sample_period) {
4379                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4380                 hwc->remaining = ktime_to_ns(remaining);
4381
4382                 hrtimer_cancel(&hwc->hrtimer);
4383         }
4384 }
4385
4386 /*
4387  * Software event: cpu wall time clock
4388  */
4389
4390 static void cpu_clock_perf_event_update(struct perf_event *event)
4391 {
4392         int cpu = raw_smp_processor_id();
4393         s64 prev;
4394         u64 now;
4395
4396         now = cpu_clock(cpu);
4397         prev = local64_xchg(&event->hw.prev_count, now);
4398         local64_add(now - prev, &event->count);
4399 }
4400
4401 static int cpu_clock_perf_event_enable(struct perf_event *event)
4402 {
4403         struct hw_perf_event *hwc = &event->hw;
4404         int cpu = raw_smp_processor_id();
4405
4406         local64_set(&hwc->prev_count, cpu_clock(cpu));
4407         perf_swevent_start_hrtimer(event);
4408
4409         return 0;
4410 }
4411
4412 static void cpu_clock_perf_event_disable(struct perf_event *event)
4413 {
4414         perf_swevent_cancel_hrtimer(event);
4415         cpu_clock_perf_event_update(event);
4416 }
4417
4418 static void cpu_clock_perf_event_read(struct perf_event *event)
4419 {
4420         cpu_clock_perf_event_update(event);
4421 }
4422
4423 static const struct pmu perf_ops_cpu_clock = {
4424         .enable         = cpu_clock_perf_event_enable,
4425         .disable        = cpu_clock_perf_event_disable,
4426         .read           = cpu_clock_perf_event_read,
4427 };
4428
4429 /*
4430  * Software event: task time clock
4431  */
4432
4433 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4434 {
4435         u64 prev;
4436         s64 delta;
4437
4438         prev = local64_xchg(&event->hw.prev_count, now);
4439         delta = now - prev;
4440         local64_add(delta, &event->count);
4441 }
4442
4443 static int task_clock_perf_event_enable(struct perf_event *event)
4444 {
4445         struct hw_perf_event *hwc = &event->hw;
4446         u64 now;
4447
4448         now = event->ctx->time;
4449
4450         local64_set(&hwc->prev_count, now);
4451
4452         perf_swevent_start_hrtimer(event);
4453
4454         return 0;
4455 }
4456
4457 static void task_clock_perf_event_disable(struct perf_event *event)
4458 {
4459         perf_swevent_cancel_hrtimer(event);
4460         task_clock_perf_event_update(event, event->ctx->time);
4461
4462 }
4463
4464 static void task_clock_perf_event_read(struct perf_event *event)
4465 {
4466         u64 time;
4467
4468         if (!in_nmi()) {
4469                 update_context_time(event->ctx);
4470                 time = event->ctx->time;
4471         } else {
4472                 u64 now = perf_clock();
4473                 u64 delta = now - event->ctx->timestamp;
4474                 time = event->ctx->time + delta;
4475         }
4476
4477         task_clock_perf_event_update(event, time);
4478 }
4479
4480 static const struct pmu perf_ops_task_clock = {
4481         .enable         = task_clock_perf_event_enable,
4482         .disable        = task_clock_perf_event_disable,
4483         .read           = task_clock_perf_event_read,
4484 };
4485
4486 /* Deref the hlist from the update side */
4487 static inline struct swevent_hlist *
4488 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4489 {
4490         return rcu_dereference_protected(cpuctx->swevent_hlist,
4491                                          lockdep_is_held(&cpuctx->hlist_mutex));
4492 }
4493
4494 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4495 {
4496         struct swevent_hlist *hlist;
4497
4498         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4499         kfree(hlist);
4500 }
4501
4502 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4503 {
4504         struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4505
4506         if (!hlist)
4507                 return;
4508
4509         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4510         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4511 }
4512
4513 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4514 {
4515         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4516
4517         mutex_lock(&cpuctx->hlist_mutex);
4518
4519         if (!--cpuctx->hlist_refcount)
4520                 swevent_hlist_release(cpuctx);
4521
4522         mutex_unlock(&cpuctx->hlist_mutex);
4523 }
4524
4525 static void swevent_hlist_put(struct perf_event *event)
4526 {
4527         int cpu;
4528
4529         if (event->cpu != -1) {
4530                 swevent_hlist_put_cpu(event, event->cpu);
4531                 return;
4532         }
4533
4534         for_each_possible_cpu(cpu)
4535                 swevent_hlist_put_cpu(event, cpu);
4536 }
4537
4538 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4539 {
4540         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4541         int err = 0;
4542
4543         mutex_lock(&cpuctx->hlist_mutex);
4544
4545         if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4546                 struct swevent_hlist *hlist;
4547
4548                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4549                 if (!hlist) {
4550                         err = -ENOMEM;
4551                         goto exit;
4552                 }
4553                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4554         }
4555         cpuctx->hlist_refcount++;
4556  exit:
4557         mutex_unlock(&cpuctx->hlist_mutex);
4558
4559         return err;
4560 }
4561
4562 static int swevent_hlist_get(struct perf_event *event)
4563 {
4564         int err;
4565         int cpu, failed_cpu;
4566
4567         if (event->cpu != -1)
4568                 return swevent_hlist_get_cpu(event, event->cpu);
4569
4570         get_online_cpus();
4571         for_each_possible_cpu(cpu) {
4572                 err = swevent_hlist_get_cpu(event, cpu);
4573                 if (err) {
4574                         failed_cpu = cpu;
4575                         goto fail;
4576                 }
4577         }
4578         put_online_cpus();
4579
4580         return 0;
4581  fail:
4582         for_each_possible_cpu(cpu) {
4583                 if (cpu == failed_cpu)
4584                         break;
4585                 swevent_hlist_put_cpu(event, cpu);
4586         }
4587
4588         put_online_cpus();
4589         return err;
4590 }
4591
4592 #ifdef CONFIG_EVENT_TRACING
4593
4594 static const struct pmu perf_ops_tracepoint = {
4595         .enable         = perf_trace_enable,
4596         .disable        = perf_trace_disable,
4597         .start          = perf_swevent_int,
4598         .stop           = perf_swevent_void,
4599         .read           = perf_swevent_read,
4600         .unthrottle     = perf_swevent_void,
4601 };
4602
4603 static int perf_tp_filter_match(struct perf_event *event,
4604                                 struct perf_sample_data *data)
4605 {
4606         void *record = data->raw->data;
4607
4608         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4609                 return 1;
4610         return 0;
4611 }
4612
4613 static int perf_tp_event_match(struct perf_event *event,
4614                                 struct perf_sample_data *data,
4615                                 struct pt_regs *regs)
4616 {
4617         /*
4618          * All tracepoints are from kernel-space.
4619          */
4620         if (event->attr.exclude_kernel)
4621                 return 0;
4622
4623         if (!perf_tp_filter_match(event, data))
4624                 return 0;
4625
4626         return 1;
4627 }
4628
4629 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4630                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4631 {
4632         struct perf_sample_data data;
4633         struct perf_event *event;
4634         struct hlist_node *node;
4635
4636         struct perf_raw_record raw = {
4637                 .size = entry_size,
4638                 .data = record,
4639         };
4640
4641         perf_sample_data_init(&data, addr);
4642         data.raw = &raw;
4643
4644         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4645                 if (perf_tp_event_match(event, &data, regs))
4646                         perf_swevent_add(event, count, 1, &data, regs);
4647         }
4648
4649         perf_swevent_put_recursion_context(rctx);
4650 }
4651 EXPORT_SYMBOL_GPL(perf_tp_event);
4652
4653 static void tp_perf_event_destroy(struct perf_event *event)
4654 {
4655         perf_trace_destroy(event);
4656 }
4657
4658 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4659 {
4660         int err;
4661
4662         /*
4663          * Raw tracepoint data is a severe data leak, only allow root to
4664          * have these.
4665          */
4666         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4667                         perf_paranoid_tracepoint_raw() &&
4668                         !capable(CAP_SYS_ADMIN))
4669                 return ERR_PTR(-EPERM);
4670
4671         err = perf_trace_init(event);
4672         if (err)
4673                 return NULL;
4674
4675         event->destroy = tp_perf_event_destroy;
4676
4677         return &perf_ops_tracepoint;
4678 }
4679
4680 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4681 {
4682         char *filter_str;
4683         int ret;
4684
4685         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4686                 return -EINVAL;
4687
4688         filter_str = strndup_user(arg, PAGE_SIZE);
4689         if (IS_ERR(filter_str))
4690                 return PTR_ERR(filter_str);
4691
4692         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4693
4694         kfree(filter_str);
4695         return ret;
4696 }
4697
4698 static void perf_event_free_filter(struct perf_event *event)
4699 {
4700         ftrace_profile_free_filter(event);
4701 }
4702
4703 #else
4704
4705 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4706 {
4707         return NULL;
4708 }
4709
4710 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4711 {
4712         return -ENOENT;
4713 }
4714
4715 static void perf_event_free_filter(struct perf_event *event)
4716 {
4717 }
4718
4719 #endif /* CONFIG_EVENT_TRACING */
4720
4721 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4722 static void bp_perf_event_destroy(struct perf_event *event)
4723 {
4724         release_bp_slot(event);
4725 }
4726
4727 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4728 {
4729         int err;
4730
4731         err = register_perf_hw_breakpoint(bp);
4732         if (err)
4733                 return ERR_PTR(err);
4734
4735         bp->destroy = bp_perf_event_destroy;
4736
4737         return &perf_ops_bp;
4738 }
4739
4740 void perf_bp_event(struct perf_event *bp, void *data)
4741 {
4742         struct perf_sample_data sample;
4743         struct pt_regs *regs = data;
4744
4745         perf_sample_data_init(&sample, bp->attr.bp_addr);
4746
4747         if (!perf_exclude_event(bp, regs))
4748                 perf_swevent_add(bp, 1, 1, &sample, regs);
4749 }
4750 #else
4751 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4752 {
4753         return NULL;
4754 }
4755
4756 void perf_bp_event(struct perf_event *bp, void *regs)
4757 {
4758 }
4759 #endif
4760
4761 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4762
4763 static void sw_perf_event_destroy(struct perf_event *event)
4764 {
4765         u64 event_id = event->attr.config;
4766
4767         WARN_ON(event->parent);
4768
4769         atomic_dec(&perf_swevent_enabled[event_id]);
4770         swevent_hlist_put(event);
4771 }
4772
4773 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4774 {
4775         const struct pmu *pmu = NULL;
4776         u64 event_id = event->attr.config;
4777
4778         /*
4779          * Software events (currently) can't in general distinguish
4780          * between user, kernel and hypervisor events.
4781          * However, context switches and cpu migrations are considered
4782          * to be kernel events, and page faults are never hypervisor
4783          * events.
4784          */
4785         switch (event_id) {
4786         case PERF_COUNT_SW_CPU_CLOCK:
4787                 pmu = &perf_ops_cpu_clock;
4788
4789                 break;
4790         case PERF_COUNT_SW_TASK_CLOCK:
4791                 /*
4792                  * If the user instantiates this as a per-cpu event,
4793                  * use the cpu_clock event instead.
4794                  */
4795                 if (event->ctx->task)
4796                         pmu = &perf_ops_task_clock;
4797                 else
4798                         pmu = &perf_ops_cpu_clock;
4799
4800                 break;
4801         case PERF_COUNT_SW_PAGE_FAULTS:
4802         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4803         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4804         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4805         case PERF_COUNT_SW_CPU_MIGRATIONS:
4806         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4807         case PERF_COUNT_SW_EMULATION_FAULTS:
4808                 if (!event->parent) {
4809                         int err;
4810
4811                         err = swevent_hlist_get(event);
4812                         if (err)
4813                                 return ERR_PTR(err);
4814
4815                         atomic_inc(&perf_swevent_enabled[event_id]);
4816                         event->destroy = sw_perf_event_destroy;
4817                 }
4818                 pmu = &perf_ops_generic;
4819                 break;
4820         }
4821
4822         return pmu;
4823 }
4824
4825 /*
4826  * Allocate and initialize a event structure
4827  */
4828 static struct perf_event *
4829 perf_event_alloc(struct perf_event_attr *attr,
4830                    int cpu,
4831                    struct perf_event_context *ctx,
4832                    struct perf_event *group_leader,
4833                    struct perf_event *parent_event,
4834                    perf_overflow_handler_t overflow_handler,
4835                    gfp_t gfpflags)
4836 {
4837         const struct pmu *pmu;
4838         struct perf_event *event;
4839         struct hw_perf_event *hwc;
4840         long err;
4841
4842         event = kzalloc(sizeof(*event), gfpflags);
4843         if (!event)
4844                 return ERR_PTR(-ENOMEM);
4845
4846         /*
4847          * Single events are their own group leaders, with an
4848          * empty sibling list:
4849          */
4850         if (!group_leader)
4851                 group_leader = event;
4852
4853         mutex_init(&event->child_mutex);
4854         INIT_LIST_HEAD(&event->child_list);
4855
4856         INIT_LIST_HEAD(&event->group_entry);
4857         INIT_LIST_HEAD(&event->event_entry);
4858         INIT_LIST_HEAD(&event->sibling_list);
4859         init_waitqueue_head(&event->waitq);
4860
4861         mutex_init(&event->mmap_mutex);
4862
4863         event->cpu              = cpu;
4864         event->attr             = *attr;
4865         event->group_leader     = group_leader;
4866         event->pmu              = NULL;
4867         event->ctx              = ctx;
4868         event->oncpu            = -1;
4869
4870         event->parent           = parent_event;
4871
4872         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4873         event->id               = atomic64_inc_return(&perf_event_id);
4874
4875         event->state            = PERF_EVENT_STATE_INACTIVE;
4876
4877         if (!overflow_handler && parent_event)
4878                 overflow_handler = parent_event->overflow_handler;
4879         
4880         event->overflow_handler = overflow_handler;
4881
4882         if (attr->disabled)
4883                 event->state = PERF_EVENT_STATE_OFF;
4884
4885         pmu = NULL;
4886
4887         hwc = &event->hw;
4888         hwc->sample_period = attr->sample_period;
4889         if (attr->freq && attr->sample_freq)
4890                 hwc->sample_period = 1;
4891         hwc->last_period = hwc->sample_period;
4892
4893         local64_set(&hwc->period_left, hwc->sample_period);
4894
4895         /*
4896          * we currently do not support PERF_FORMAT_GROUP on inherited events
4897          */
4898         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4899                 goto done;
4900
4901         switch (attr->type) {
4902         case PERF_TYPE_RAW:
4903         case PERF_TYPE_HARDWARE:
4904         case PERF_TYPE_HW_CACHE:
4905                 pmu = hw_perf_event_init(event);
4906                 break;
4907
4908         case PERF_TYPE_SOFTWARE:
4909                 pmu = sw_perf_event_init(event);
4910                 break;
4911
4912         case PERF_TYPE_TRACEPOINT:
4913                 pmu = tp_perf_event_init(event);
4914                 break;
4915
4916         case PERF_TYPE_BREAKPOINT:
4917                 pmu = bp_perf_event_init(event);
4918                 break;
4919
4920
4921         default:
4922                 break;
4923         }
4924 done:
4925         err = 0;
4926         if (!pmu)
4927                 err = -EINVAL;
4928         else if (IS_ERR(pmu))
4929                 err = PTR_ERR(pmu);
4930
4931         if (err) {
4932                 if (event->ns)
4933                         put_pid_ns(event->ns);
4934                 kfree(event);
4935                 return ERR_PTR(err);
4936         }
4937
4938         event->pmu = pmu;
4939
4940         if (!event->parent) {
4941                 atomic_inc(&nr_events);
4942                 if (event->attr.mmap || event->attr.mmap_data)
4943                         atomic_inc(&nr_mmap_events);
4944                 if (event->attr.comm)
4945                         atomic_inc(&nr_comm_events);
4946                 if (event->attr.task)
4947                         atomic_inc(&nr_task_events);
4948         }
4949
4950         return event;
4951 }
4952
4953 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4954                           struct perf_event_attr *attr)
4955 {
4956         u32 size;
4957         int ret;
4958
4959         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4960                 return -EFAULT;
4961
4962         /*
4963          * zero the full structure, so that a short copy will be nice.
4964          */
4965         memset(attr, 0, sizeof(*attr));
4966
4967         ret = get_user(size, &uattr->size);
4968         if (ret)
4969                 return ret;
4970
4971         if (size > PAGE_SIZE)   /* silly large */
4972                 goto err_size;
4973
4974         if (!size)              /* abi compat */
4975                 size = PERF_ATTR_SIZE_VER0;
4976
4977         if (size < PERF_ATTR_SIZE_VER0)
4978                 goto err_size;
4979
4980         /*
4981          * If we're handed a bigger struct than we know of,
4982          * ensure all the unknown bits are 0 - i.e. new
4983          * user-space does not rely on any kernel feature
4984          * extensions we dont know about yet.
4985          */
4986         if (size > sizeof(*attr)) {
4987                 unsigned char __user *addr;
4988                 unsigned char __user *end;
4989                 unsigned char val;
4990
4991                 addr = (void __user *)uattr + sizeof(*attr);
4992                 end  = (void __user *)uattr + size;
4993
4994                 for (; addr < end; addr++) {
4995                         ret = get_user(val, addr);
4996                         if (ret)
4997                                 return ret;
4998                         if (val)
4999                                 goto err_size;
5000                 }
5001                 size = sizeof(*attr);
5002         }
5003
5004         ret = copy_from_user(attr, uattr, size);
5005         if (ret)
5006                 return -EFAULT;
5007
5008         /*
5009          * If the type exists, the corresponding creation will verify
5010          * the attr->config.
5011          */
5012         if (attr->type >= PERF_TYPE_MAX)
5013                 return -EINVAL;
5014
5015         if (attr->__reserved_1)
5016                 return -EINVAL;
5017
5018         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5019                 return -EINVAL;
5020
5021         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5022                 return -EINVAL;
5023
5024 out:
5025         return ret;
5026
5027 err_size:
5028         put_user(sizeof(*attr), &uattr->size);
5029         ret = -E2BIG;
5030         goto out;
5031 }
5032
5033 static int
5034 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5035 {
5036         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5037         int ret = -EINVAL;
5038
5039         if (!output_event)
5040                 goto set;
5041
5042         /* don't allow circular references */
5043         if (event == output_event)
5044                 goto out;
5045
5046         /*
5047          * Don't allow cross-cpu buffers
5048          */
5049         if (output_event->cpu != event->cpu)
5050                 goto out;
5051
5052         /*
5053          * If its not a per-cpu buffer, it must be the same task.
5054          */
5055         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5056                 goto out;
5057
5058 set:
5059         mutex_lock(&event->mmap_mutex);
5060         /* Can't redirect output if we've got an active mmap() */
5061         if (atomic_read(&event->mmap_count))
5062                 goto unlock;
5063
5064         if (output_event) {
5065                 /* get the buffer we want to redirect to */
5066                 buffer = perf_buffer_get(output_event);
5067                 if (!buffer)
5068                         goto unlock;
5069         }
5070
5071         old_buffer = event->buffer;
5072         rcu_assign_pointer(event->buffer, buffer);
5073         ret = 0;
5074 unlock:
5075         mutex_unlock(&event->mmap_mutex);
5076
5077         if (old_buffer)
5078                 perf_buffer_put(old_buffer);
5079 out:
5080         return ret;
5081 }
5082
5083 /**
5084  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5085  *
5086  * @attr_uptr:  event_id type attributes for monitoring/sampling
5087  * @pid:                target pid
5088  * @cpu:                target cpu
5089  * @group_fd:           group leader event fd
5090  */
5091 SYSCALL_DEFINE5(perf_event_open,
5092                 struct perf_event_attr __user *, attr_uptr,
5093                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5094 {
5095         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5096         struct perf_event_attr attr;
5097         struct perf_event_context *ctx;
5098         struct file *event_file = NULL;
5099         struct file *group_file = NULL;
5100         int event_fd;
5101         int fput_needed = 0;
5102         int err;
5103
5104         /* for future expandability... */
5105         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5106                 return -EINVAL;
5107
5108         err = perf_copy_attr(attr_uptr, &attr);
5109         if (err)
5110                 return err;
5111
5112         if (!attr.exclude_kernel) {
5113                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5114                         return -EACCES;
5115         }
5116
5117         if (attr.freq) {
5118                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5119                         return -EINVAL;
5120         }
5121
5122         event_fd = get_unused_fd_flags(O_RDWR);
5123         if (event_fd < 0)
5124                 return event_fd;
5125
5126         /*
5127          * Get the target context (task or percpu):
5128          */
5129         ctx = find_get_context(pid, cpu);
5130         if (IS_ERR(ctx)) {
5131                 err = PTR_ERR(ctx);
5132                 goto err_fd;
5133         }
5134
5135         if (group_fd != -1) {
5136                 group_leader = perf_fget_light(group_fd, &fput_needed);
5137                 if (IS_ERR(group_leader)) {
5138                         err = PTR_ERR(group_leader);
5139                         goto err_put_context;
5140                 }
5141                 group_file = group_leader->filp;
5142                 if (flags & PERF_FLAG_FD_OUTPUT)
5143                         output_event = group_leader;
5144                 if (flags & PERF_FLAG_FD_NO_GROUP)
5145                         group_leader = NULL;
5146         }
5147
5148         /*
5149          * Look up the group leader (we will attach this event to it):
5150          */
5151         if (group_leader) {
5152                 err = -EINVAL;
5153
5154                 /*
5155                  * Do not allow a recursive hierarchy (this new sibling
5156                  * becoming part of another group-sibling):
5157                  */
5158                 if (group_leader->group_leader != group_leader)
5159                         goto err_put_context;
5160                 /*
5161                  * Do not allow to attach to a group in a different
5162                  * task or CPU context:
5163                  */
5164                 if (group_leader->ctx != ctx)
5165                         goto err_put_context;
5166                 /*
5167                  * Only a group leader can be exclusive or pinned
5168                  */
5169                 if (attr.exclusive || attr.pinned)
5170                         goto err_put_context;
5171         }
5172
5173         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5174                                      NULL, NULL, GFP_KERNEL);
5175         if (IS_ERR(event)) {
5176                 err = PTR_ERR(event);
5177                 goto err_put_context;
5178         }
5179
5180         if (output_event) {
5181                 err = perf_event_set_output(event, output_event);
5182                 if (err)
5183                         goto err_free_put_context;
5184         }
5185
5186         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5187         if (IS_ERR(event_file)) {
5188                 err = PTR_ERR(event_file);
5189                 goto err_free_put_context;
5190         }
5191
5192         event->filp = event_file;
5193         WARN_ON_ONCE(ctx->parent_ctx);
5194         mutex_lock(&ctx->mutex);
5195         perf_install_in_context(ctx, event, cpu);
5196         ++ctx->generation;
5197         mutex_unlock(&ctx->mutex);
5198
5199         event->owner = current;
5200         get_task_struct(current);
5201         mutex_lock(&current->perf_event_mutex);
5202         list_add_tail(&event->owner_entry, &current->perf_event_list);
5203         mutex_unlock(&current->perf_event_mutex);
5204
5205         /*
5206          * Drop the reference on the group_event after placing the
5207          * new event on the sibling_list. This ensures destruction
5208          * of the group leader will find the pointer to itself in
5209          * perf_group_detach().
5210          */
5211         fput_light(group_file, fput_needed);
5212         fd_install(event_fd, event_file);
5213         return event_fd;
5214
5215 err_free_put_context:
5216         free_event(event);
5217 err_put_context:
5218         fput_light(group_file, fput_needed);
5219         put_ctx(ctx);
5220 err_fd:
5221         put_unused_fd(event_fd);
5222         return err;
5223 }
5224
5225 /**
5226  * perf_event_create_kernel_counter
5227  *
5228  * @attr: attributes of the counter to create
5229  * @cpu: cpu in which the counter is bound
5230  * @pid: task to profile
5231  */
5232 struct perf_event *
5233 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5234                                  pid_t pid,
5235                                  perf_overflow_handler_t overflow_handler)
5236 {
5237         struct perf_event *event;
5238         struct perf_event_context *ctx;
5239         int err;
5240
5241         /*
5242          * Get the target context (task or percpu):
5243          */
5244
5245         ctx = find_get_context(pid, cpu);
5246         if (IS_ERR(ctx)) {
5247                 err = PTR_ERR(ctx);
5248                 goto err_exit;
5249         }
5250
5251         event = perf_event_alloc(attr, cpu, ctx, NULL,
5252                                  NULL, overflow_handler, GFP_KERNEL);
5253         if (IS_ERR(event)) {
5254                 err = PTR_ERR(event);
5255                 goto err_put_context;
5256         }
5257
5258         event->filp = NULL;
5259         WARN_ON_ONCE(ctx->parent_ctx);
5260         mutex_lock(&ctx->mutex);
5261         perf_install_in_context(ctx, event, cpu);
5262         ++ctx->generation;
5263         mutex_unlock(&ctx->mutex);
5264
5265         event->owner = current;
5266         get_task_struct(current);
5267         mutex_lock(&current->perf_event_mutex);
5268         list_add_tail(&event->owner_entry, &current->perf_event_list);
5269         mutex_unlock(&current->perf_event_mutex);
5270
5271         return event;
5272
5273  err_put_context:
5274         put_ctx(ctx);
5275  err_exit:
5276         return ERR_PTR(err);
5277 }
5278 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5279
5280 /*
5281  * inherit a event from parent task to child task:
5282  */
5283 static struct perf_event *
5284 inherit_event(struct perf_event *parent_event,
5285               struct task_struct *parent,
5286               struct perf_event_context *parent_ctx,
5287               struct task_struct *child,
5288               struct perf_event *group_leader,
5289               struct perf_event_context *child_ctx)
5290 {
5291         struct perf_event *child_event;
5292
5293         /*
5294          * Instead of creating recursive hierarchies of events,
5295          * we link inherited events back to the original parent,
5296          * which has a filp for sure, which we use as the reference
5297          * count:
5298          */
5299         if (parent_event->parent)
5300                 parent_event = parent_event->parent;
5301
5302         child_event = perf_event_alloc(&parent_event->attr,
5303                                            parent_event->cpu, child_ctx,
5304                                            group_leader, parent_event,
5305                                            NULL, GFP_KERNEL);
5306         if (IS_ERR(child_event))
5307                 return child_event;
5308         get_ctx(child_ctx);
5309
5310         /*
5311          * Make the child state follow the state of the parent event,
5312          * not its attr.disabled bit.  We hold the parent's mutex,
5313          * so we won't race with perf_event_{en, dis}able_family.
5314          */
5315         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5316                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5317         else
5318                 child_event->state = PERF_EVENT_STATE_OFF;
5319
5320         if (parent_event->attr.freq) {
5321                 u64 sample_period = parent_event->hw.sample_period;
5322                 struct hw_perf_event *hwc = &child_event->hw;
5323
5324                 hwc->sample_period = sample_period;
5325                 hwc->last_period   = sample_period;
5326
5327                 local64_set(&hwc->period_left, sample_period);
5328         }
5329
5330         child_event->overflow_handler = parent_event->overflow_handler;
5331
5332         /*
5333          * Link it up in the child's context:
5334          */
5335         add_event_to_ctx(child_event, child_ctx);
5336
5337         /*
5338          * Get a reference to the parent filp - we will fput it
5339          * when the child event exits. This is safe to do because
5340          * we are in the parent and we know that the filp still
5341          * exists and has a nonzero count:
5342          */
5343         atomic_long_inc(&parent_event->filp->f_count);
5344
5345         /*
5346          * Link this into the parent event's child list
5347          */
5348         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5349         mutex_lock(&parent_event->child_mutex);
5350         list_add_tail(&child_event->child_list, &parent_event->child_list);
5351         mutex_unlock(&parent_event->child_mutex);
5352
5353         return child_event;
5354 }
5355
5356 static int inherit_group(struct perf_event *parent_event,
5357               struct task_struct *parent,
5358               struct perf_event_context *parent_ctx,
5359               struct task_struct *child,
5360               struct perf_event_context *child_ctx)
5361 {
5362         struct perf_event *leader;
5363         struct perf_event *sub;
5364         struct perf_event *child_ctr;
5365
5366         leader = inherit_event(parent_event, parent, parent_ctx,
5367                                  child, NULL, child_ctx);
5368         if (IS_ERR(leader))
5369                 return PTR_ERR(leader);
5370         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5371                 child_ctr = inherit_event(sub, parent, parent_ctx,
5372                                             child, leader, child_ctx);
5373                 if (IS_ERR(child_ctr))
5374                         return PTR_ERR(child_ctr);
5375         }
5376         return 0;
5377 }
5378
5379 static void sync_child_event(struct perf_event *child_event,
5380                                struct task_struct *child)
5381 {
5382         struct perf_event *parent_event = child_event->parent;
5383         u64 child_val;
5384
5385         if (child_event->attr.inherit_stat)
5386                 perf_event_read_event(child_event, child);
5387
5388         child_val = perf_event_count(child_event);
5389
5390         /*
5391          * Add back the child's count to the parent's count:
5392          */
5393         atomic64_add(child_val, &parent_event->child_count);
5394         atomic64_add(child_event->total_time_enabled,
5395                      &parent_event->child_total_time_enabled);
5396         atomic64_add(child_event->total_time_running,
5397                      &parent_event->child_total_time_running);
5398
5399         /*
5400          * Remove this event from the parent's list
5401          */
5402         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5403         mutex_lock(&parent_event->child_mutex);
5404         list_del_init(&child_event->child_list);
5405         mutex_unlock(&parent_event->child_mutex);
5406
5407         /*
5408          * Release the parent event, if this was the last
5409          * reference to it.
5410          */
5411         fput(parent_event->filp);
5412 }
5413
5414 static void
5415 __perf_event_exit_task(struct perf_event *child_event,
5416                          struct perf_event_context *child_ctx,
5417                          struct task_struct *child)
5418 {
5419         struct perf_event *parent_event;
5420
5421         perf_event_remove_from_context(child_event);
5422
5423         parent_event = child_event->parent;
5424         /*
5425          * It can happen that parent exits first, and has events
5426          * that are still around due to the child reference. These
5427          * events need to be zapped - but otherwise linger.
5428          */
5429         if (parent_event) {
5430                 sync_child_event(child_event, child);
5431                 free_event(child_event);
5432         }
5433 }
5434
5435 /*
5436  * When a child task exits, feed back event values to parent events.
5437  */
5438 void perf_event_exit_task(struct task_struct *child)
5439 {
5440         struct perf_event *child_event, *tmp;
5441         struct perf_event_context *child_ctx;
5442         unsigned long flags;
5443
5444         if (likely(!child->perf_event_ctxp)) {
5445                 perf_event_task(child, NULL, 0);
5446                 return;
5447         }
5448
5449         local_irq_save(flags);
5450         /*
5451          * We can't reschedule here because interrupts are disabled,
5452          * and either child is current or it is a task that can't be
5453          * scheduled, so we are now safe from rescheduling changing
5454          * our context.
5455          */
5456         child_ctx = child->perf_event_ctxp;
5457         __perf_event_task_sched_out(child_ctx);
5458
5459         /*
5460          * Take the context lock here so that if find_get_context is
5461          * reading child->perf_event_ctxp, we wait until it has
5462          * incremented the context's refcount before we do put_ctx below.
5463          */
5464         raw_spin_lock(&child_ctx->lock);
5465         child->perf_event_ctxp = NULL;
5466         /*
5467          * If this context is a clone; unclone it so it can't get
5468          * swapped to another process while we're removing all
5469          * the events from it.
5470          */
5471         unclone_ctx(child_ctx);
5472         update_context_time(child_ctx);
5473         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5474
5475         /*
5476          * Report the task dead after unscheduling the events so that we
5477          * won't get any samples after PERF_RECORD_EXIT. We can however still
5478          * get a few PERF_RECORD_READ events.
5479          */
5480         perf_event_task(child, child_ctx, 0);
5481
5482         /*
5483          * We can recurse on the same lock type through:
5484          *
5485          *   __perf_event_exit_task()
5486          *     sync_child_event()
5487          *       fput(parent_event->filp)
5488          *         perf_release()
5489          *           mutex_lock(&ctx->mutex)
5490          *
5491          * But since its the parent context it won't be the same instance.
5492          */
5493         mutex_lock(&child_ctx->mutex);
5494
5495 again:
5496         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5497                                  group_entry)
5498                 __perf_event_exit_task(child_event, child_ctx, child);
5499
5500         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5501                                  group_entry)
5502                 __perf_event_exit_task(child_event, child_ctx, child);
5503
5504         /*
5505          * If the last event was a group event, it will have appended all
5506          * its siblings to the list, but we obtained 'tmp' before that which
5507          * will still point to the list head terminating the iteration.
5508          */
5509         if (!list_empty(&child_ctx->pinned_groups) ||
5510             !list_empty(&child_ctx->flexible_groups))
5511                 goto again;
5512
5513         mutex_unlock(&child_ctx->mutex);
5514
5515         put_ctx(child_ctx);
5516 }
5517
5518 static void perf_free_event(struct perf_event *event,
5519                             struct perf_event_context *ctx)
5520 {
5521         struct perf_event *parent = event->parent;
5522
5523         if (WARN_ON_ONCE(!parent))
5524                 return;
5525
5526         mutex_lock(&parent->child_mutex);
5527         list_del_init(&event->child_list);
5528         mutex_unlock(&parent->child_mutex);
5529
5530         fput(parent->filp);
5531
5532         perf_group_detach(event);
5533         list_del_event(event, ctx);
5534         free_event(event);
5535 }
5536
5537 /*
5538  * free an unexposed, unused context as created by inheritance by
5539  * init_task below, used by fork() in case of fail.
5540  */
5541 void perf_event_free_task(struct task_struct *task)
5542 {
5543         struct perf_event_context *ctx = task->perf_event_ctxp;
5544         struct perf_event *event, *tmp;
5545
5546         if (!ctx)
5547                 return;
5548
5549         mutex_lock(&ctx->mutex);
5550 again:
5551         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5552                 perf_free_event(event, ctx);
5553
5554         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5555                                  group_entry)
5556                 perf_free_event(event, ctx);
5557
5558         if (!list_empty(&ctx->pinned_groups) ||
5559             !list_empty(&ctx->flexible_groups))
5560                 goto again;
5561
5562         mutex_unlock(&ctx->mutex);
5563
5564         put_ctx(ctx);
5565 }
5566
5567 static int
5568 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5569                    struct perf_event_context *parent_ctx,
5570                    struct task_struct *child,
5571                    int *inherited_all)
5572 {
5573         int ret;
5574         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5575
5576         if (!event->attr.inherit) {
5577                 *inherited_all = 0;
5578                 return 0;
5579         }
5580
5581         if (!child_ctx) {
5582                 /*
5583                  * This is executed from the parent task context, so
5584                  * inherit events that have been marked for cloning.
5585                  * First allocate and initialize a context for the
5586                  * child.
5587                  */
5588
5589                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5590                                     GFP_KERNEL);
5591                 if (!child_ctx)
5592                         return -ENOMEM;
5593
5594                 __perf_event_init_context(child_ctx, child);
5595                 child->perf_event_ctxp = child_ctx;
5596                 get_task_struct(child);
5597         }
5598
5599         ret = inherit_group(event, parent, parent_ctx,
5600                             child, child_ctx);
5601
5602         if (ret)
5603                 *inherited_all = 0;
5604
5605         return ret;
5606 }
5607
5608
5609 /*
5610  * Initialize the perf_event context in task_struct
5611  */
5612 int perf_event_init_task(struct task_struct *child)
5613 {
5614         struct perf_event_context *child_ctx, *parent_ctx;
5615         struct perf_event_context *cloned_ctx;
5616         struct perf_event *event;
5617         struct task_struct *parent = current;
5618         int inherited_all = 1;
5619         int ret = 0;
5620
5621         child->perf_event_ctxp = NULL;
5622
5623         mutex_init(&child->perf_event_mutex);
5624         INIT_LIST_HEAD(&child->perf_event_list);
5625
5626         if (likely(!parent->perf_event_ctxp))
5627                 return 0;
5628
5629         /*
5630          * If the parent's context is a clone, pin it so it won't get
5631          * swapped under us.
5632          */
5633         parent_ctx = perf_pin_task_context(parent);
5634
5635         /*
5636          * No need to check if parent_ctx != NULL here; since we saw
5637          * it non-NULL earlier, the only reason for it to become NULL
5638          * is if we exit, and since we're currently in the middle of
5639          * a fork we can't be exiting at the same time.
5640          */
5641
5642         /*
5643          * Lock the parent list. No need to lock the child - not PID
5644          * hashed yet and not running, so nobody can access it.
5645          */
5646         mutex_lock(&parent_ctx->mutex);
5647
5648         /*
5649          * We dont have to disable NMIs - we are only looking at
5650          * the list, not manipulating it:
5651          */
5652         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5653                 ret = inherit_task_group(event, parent, parent_ctx, child,
5654                                          &inherited_all);
5655                 if (ret)
5656                         break;
5657         }
5658
5659         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5660                 ret = inherit_task_group(event, parent, parent_ctx, child,
5661                                          &inherited_all);
5662                 if (ret)
5663                         break;
5664         }
5665
5666         child_ctx = child->perf_event_ctxp;
5667
5668         if (child_ctx && inherited_all) {
5669                 /*
5670                  * Mark the child context as a clone of the parent
5671                  * context, or of whatever the parent is a clone of.
5672                  * Note that if the parent is a clone, it could get
5673                  * uncloned at any point, but that doesn't matter
5674                  * because the list of events and the generation
5675                  * count can't have changed since we took the mutex.
5676                  */
5677                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5678                 if (cloned_ctx) {
5679                         child_ctx->parent_ctx = cloned_ctx;
5680                         child_ctx->parent_gen = parent_ctx->parent_gen;
5681                 } else {
5682                         child_ctx->parent_ctx = parent_ctx;
5683                         child_ctx->parent_gen = parent_ctx->generation;
5684                 }
5685                 get_ctx(child_ctx->parent_ctx);
5686         }
5687
5688         mutex_unlock(&parent_ctx->mutex);
5689
5690         perf_unpin_context(parent_ctx);
5691
5692         return ret;
5693 }
5694
5695 static void __init perf_event_init_all_cpus(void)
5696 {
5697         int cpu;
5698         struct perf_cpu_context *cpuctx;
5699
5700         for_each_possible_cpu(cpu) {
5701                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5702                 mutex_init(&cpuctx->hlist_mutex);
5703                 __perf_event_init_context(&cpuctx->ctx, NULL);
5704         }
5705 }
5706
5707 static void __cpuinit perf_event_init_cpu(int cpu)
5708 {
5709         struct perf_cpu_context *cpuctx;
5710
5711         cpuctx = &per_cpu(perf_cpu_context, cpu);
5712
5713         spin_lock(&perf_resource_lock);
5714         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5715         spin_unlock(&perf_resource_lock);
5716
5717         mutex_lock(&cpuctx->hlist_mutex);
5718         if (cpuctx->hlist_refcount > 0) {
5719                 struct swevent_hlist *hlist;
5720
5721                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5722                 WARN_ON_ONCE(!hlist);
5723                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5724         }
5725         mutex_unlock(&cpuctx->hlist_mutex);
5726 }
5727
5728 #ifdef CONFIG_HOTPLUG_CPU
5729 static void __perf_event_exit_cpu(void *info)
5730 {
5731         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5732         struct perf_event_context *ctx = &cpuctx->ctx;
5733         struct perf_event *event, *tmp;
5734
5735         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5736                 __perf_event_remove_from_context(event);
5737         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5738                 __perf_event_remove_from_context(event);
5739 }
5740 static void perf_event_exit_cpu(int cpu)
5741 {
5742         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5743         struct perf_event_context *ctx = &cpuctx->ctx;
5744
5745         mutex_lock(&cpuctx->hlist_mutex);
5746         swevent_hlist_release(cpuctx);
5747         mutex_unlock(&cpuctx->hlist_mutex);
5748
5749         mutex_lock(&ctx->mutex);
5750         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5751         mutex_unlock(&ctx->mutex);
5752 }
5753 #else
5754 static inline void perf_event_exit_cpu(int cpu) { }
5755 #endif
5756
5757 static int __cpuinit
5758 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5759 {
5760         unsigned int cpu = (long)hcpu;
5761
5762         switch (action & ~CPU_TASKS_FROZEN) {
5763
5764         case CPU_UP_PREPARE:
5765         case CPU_DOWN_FAILED:
5766                 perf_event_init_cpu(cpu);
5767                 break;
5768
5769         case CPU_UP_CANCELED:
5770         case CPU_DOWN_PREPARE:
5771                 perf_event_exit_cpu(cpu);
5772                 break;
5773
5774         default:
5775                 break;
5776         }
5777
5778         return NOTIFY_OK;
5779 }
5780
5781 /*
5782  * This has to have a higher priority than migration_notifier in sched.c.
5783  */
5784 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5785         .notifier_call          = perf_cpu_notify,
5786         .priority               = 20,
5787 };
5788
5789 void __init perf_event_init(void)
5790 {
5791         perf_event_init_all_cpus();
5792         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5793                         (void *)(long)smp_processor_id());
5794         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5795                         (void *)(long)smp_processor_id());
5796         register_cpu_notifier(&perf_cpu_nb);
5797 }
5798
5799 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5800                                         struct sysdev_class_attribute *attr,
5801                                         char *buf)
5802 {
5803         return sprintf(buf, "%d\n", perf_reserved_percpu);
5804 }
5805
5806 static ssize_t
5807 perf_set_reserve_percpu(struct sysdev_class *class,
5808                         struct sysdev_class_attribute *attr,
5809                         const char *buf,
5810                         size_t count)
5811 {
5812         struct perf_cpu_context *cpuctx;
5813         unsigned long val;
5814         int err, cpu, mpt;
5815
5816         err = strict_strtoul(buf, 10, &val);
5817         if (err)
5818                 return err;
5819         if (val > perf_max_events)
5820                 return -EINVAL;
5821
5822         spin_lock(&perf_resource_lock);
5823         perf_reserved_percpu = val;
5824         for_each_online_cpu(cpu) {
5825                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5826                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5827                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5828                           perf_max_events - perf_reserved_percpu);
5829                 cpuctx->max_pertask = mpt;
5830                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5831         }
5832         spin_unlock(&perf_resource_lock);
5833
5834         return count;
5835 }
5836
5837 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5838                                     struct sysdev_class_attribute *attr,
5839                                     char *buf)
5840 {
5841         return sprintf(buf, "%d\n", perf_overcommit);
5842 }
5843
5844 static ssize_t
5845 perf_set_overcommit(struct sysdev_class *class,
5846                     struct sysdev_class_attribute *attr,
5847                     const char *buf, size_t count)
5848 {
5849         unsigned long val;
5850         int err;
5851
5852         err = strict_strtoul(buf, 10, &val);
5853         if (err)
5854                 return err;
5855         if (val > 1)
5856                 return -EINVAL;
5857
5858         spin_lock(&perf_resource_lock);
5859         perf_overcommit = val;
5860         spin_unlock(&perf_resource_lock);
5861
5862         return count;
5863 }
5864
5865 static SYSDEV_CLASS_ATTR(
5866                                 reserve_percpu,
5867                                 0644,
5868                                 perf_show_reserve_percpu,
5869                                 perf_set_reserve_percpu
5870                         );
5871
5872 static SYSDEV_CLASS_ATTR(
5873                                 overcommit,
5874                                 0644,
5875                                 perf_show_overcommit,
5876                                 perf_set_overcommit
5877                         );
5878
5879 static struct attribute *perfclass_attrs[] = {
5880         &attr_reserve_percpu.attr,
5881         &attr_overcommit.attr,
5882         NULL
5883 };
5884
5885 static struct attribute_group perfclass_attr_group = {
5886         .attrs                  = perfclass_attrs,
5887         .name                   = "perf_events",
5888 };
5889
5890 static int __init perf_event_sysfs_init(void)
5891 {
5892         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5893                                   &perfclass_attr_group);
5894 }
5895 device_initcall(perf_event_sysfs_init);