binary_sysctl(): fix memory leak
[pandora-kernel.git] / kernel / mutex.c
1 /*
2  * kernel/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/sched.h>
22 #include <linux/export.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/debug_locks.h>
26
27 /*
28  * In the DEBUG case we are using the "NULL fastpath" for mutexes,
29  * which forces all calls into the slowpath:
30  */
31 #ifdef CONFIG_DEBUG_MUTEXES
32 # include "mutex-debug.h"
33 # include <asm-generic/mutex-null.h>
34 #else
35 # include "mutex.h"
36 # include <asm/mutex.h>
37 #endif
38
39 void
40 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
41 {
42         atomic_set(&lock->count, 1);
43         spin_lock_init(&lock->wait_lock);
44         INIT_LIST_HEAD(&lock->wait_list);
45         mutex_clear_owner(lock);
46
47         debug_mutex_init(lock, name, key);
48 }
49
50 EXPORT_SYMBOL(__mutex_init);
51
52 #ifndef CONFIG_DEBUG_LOCK_ALLOC
53 /*
54  * We split the mutex lock/unlock logic into separate fastpath and
55  * slowpath functions, to reduce the register pressure on the fastpath.
56  * We also put the fastpath first in the kernel image, to make sure the
57  * branch is predicted by the CPU as default-untaken.
58  */
59 static __used noinline void __sched
60 __mutex_lock_slowpath(atomic_t *lock_count);
61
62 /**
63  * mutex_lock - acquire the mutex
64  * @lock: the mutex to be acquired
65  *
66  * Lock the mutex exclusively for this task. If the mutex is not
67  * available right now, it will sleep until it can get it.
68  *
69  * The mutex must later on be released by the same task that
70  * acquired it. Recursive locking is not allowed. The task
71  * may not exit without first unlocking the mutex. Also, kernel
72  * memory where the mutex resides mutex must not be freed with
73  * the mutex still locked. The mutex must first be initialized
74  * (or statically defined) before it can be locked. memset()-ing
75  * the mutex to 0 is not allowed.
76  *
77  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
78  *   checks that will enforce the restrictions and will also do
79  *   deadlock debugging. )
80  *
81  * This function is similar to (but not equivalent to) down().
82  */
83 void __sched mutex_lock(struct mutex *lock)
84 {
85         might_sleep();
86         /*
87          * The locking fastpath is the 1->0 transition from
88          * 'unlocked' into 'locked' state.
89          */
90         __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
91         mutex_set_owner(lock);
92 }
93
94 EXPORT_SYMBOL(mutex_lock);
95 #endif
96
97 static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
98
99 /**
100  * mutex_unlock - release the mutex
101  * @lock: the mutex to be released
102  *
103  * Unlock a mutex that has been locked by this task previously.
104  *
105  * This function must not be used in interrupt context. Unlocking
106  * of a not locked mutex is not allowed.
107  *
108  * This function is similar to (but not equivalent to) up().
109  */
110 void __sched mutex_unlock(struct mutex *lock)
111 {
112         /*
113          * The unlocking fastpath is the 0->1 transition from 'locked'
114          * into 'unlocked' state:
115          */
116 #ifndef CONFIG_DEBUG_MUTEXES
117         /*
118          * When debugging is enabled we must not clear the owner before time,
119          * the slow path will always be taken, and that clears the owner field
120          * after verifying that it was indeed current.
121          */
122         mutex_clear_owner(lock);
123 #endif
124         __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
125 }
126
127 EXPORT_SYMBOL(mutex_unlock);
128
129 /*
130  * Lock a mutex (possibly interruptible), slowpath:
131  */
132 static inline int __sched
133 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
134                     struct lockdep_map *nest_lock, unsigned long ip)
135 {
136         struct task_struct *task = current;
137         struct mutex_waiter waiter;
138         unsigned long flags;
139
140         preempt_disable();
141         mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
142
143 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
144         /*
145          * Optimistic spinning.
146          *
147          * We try to spin for acquisition when we find that there are no
148          * pending waiters and the lock owner is currently running on a
149          * (different) CPU.
150          *
151          * The rationale is that if the lock owner is running, it is likely to
152          * release the lock soon.
153          *
154          * Since this needs the lock owner, and this mutex implementation
155          * doesn't track the owner atomically in the lock field, we need to
156          * track it non-atomically.
157          *
158          * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
159          * to serialize everything.
160          */
161
162         for (;;) {
163                 struct task_struct *owner;
164
165                 /*
166                  * If there's an owner, wait for it to either
167                  * release the lock or go to sleep.
168                  */
169                 owner = ACCESS_ONCE(lock->owner);
170                 if (owner && !mutex_spin_on_owner(lock, owner))
171                         break;
172
173                 if (atomic_cmpxchg(&lock->count, 1, 0) == 1) {
174                         lock_acquired(&lock->dep_map, ip);
175                         mutex_set_owner(lock);
176                         preempt_enable();
177                         return 0;
178                 }
179
180                 /*
181                  * When there's no owner, we might have preempted between the
182                  * owner acquiring the lock and setting the owner field. If
183                  * we're an RT task that will live-lock because we won't let
184                  * the owner complete.
185                  */
186                 if (!owner && (need_resched() || rt_task(task)))
187                         break;
188
189                 /*
190                  * The cpu_relax() call is a compiler barrier which forces
191                  * everything in this loop to be re-loaded. We don't need
192                  * memory barriers as we'll eventually observe the right
193                  * values at the cost of a few extra spins.
194                  */
195                 arch_mutex_cpu_relax();
196         }
197 #endif
198         spin_lock_mutex(&lock->wait_lock, flags);
199
200         debug_mutex_lock_common(lock, &waiter);
201         debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
202
203         /* add waiting tasks to the end of the waitqueue (FIFO): */
204         list_add_tail(&waiter.list, &lock->wait_list);
205         waiter.task = task;
206
207         if (atomic_xchg(&lock->count, -1) == 1)
208                 goto done;
209
210         lock_contended(&lock->dep_map, ip);
211
212         for (;;) {
213                 /*
214                  * Lets try to take the lock again - this is needed even if
215                  * we get here for the first time (shortly after failing to
216                  * acquire the lock), to make sure that we get a wakeup once
217                  * it's unlocked. Later on, if we sleep, this is the
218                  * operation that gives us the lock. We xchg it to -1, so
219                  * that when we release the lock, we properly wake up the
220                  * other waiters:
221                  */
222                 if (atomic_xchg(&lock->count, -1) == 1)
223                         break;
224
225                 /*
226                  * got a signal? (This code gets eliminated in the
227                  * TASK_UNINTERRUPTIBLE case.)
228                  */
229                 if (unlikely(signal_pending_state(state, task))) {
230                         mutex_remove_waiter(lock, &waiter,
231                                             task_thread_info(task));
232                         mutex_release(&lock->dep_map, 1, ip);
233                         spin_unlock_mutex(&lock->wait_lock, flags);
234
235                         debug_mutex_free_waiter(&waiter);
236                         preempt_enable();
237                         return -EINTR;
238                 }
239                 __set_task_state(task, state);
240
241                 /* didn't get the lock, go to sleep: */
242                 spin_unlock_mutex(&lock->wait_lock, flags);
243                 preempt_enable_no_resched();
244                 schedule();
245                 preempt_disable();
246                 spin_lock_mutex(&lock->wait_lock, flags);
247         }
248
249 done:
250         lock_acquired(&lock->dep_map, ip);
251         /* got the lock - rejoice! */
252         mutex_remove_waiter(lock, &waiter, current_thread_info());
253         mutex_set_owner(lock);
254
255         /* set it to 0 if there are no waiters left: */
256         if (likely(list_empty(&lock->wait_list)))
257                 atomic_set(&lock->count, 0);
258
259         spin_unlock_mutex(&lock->wait_lock, flags);
260
261         debug_mutex_free_waiter(&waiter);
262         preempt_enable();
263
264         return 0;
265 }
266
267 #ifdef CONFIG_DEBUG_LOCK_ALLOC
268 void __sched
269 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
270 {
271         might_sleep();
272         __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
273 }
274
275 EXPORT_SYMBOL_GPL(mutex_lock_nested);
276
277 void __sched
278 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
279 {
280         might_sleep();
281         __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
282 }
283
284 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
285
286 int __sched
287 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
288 {
289         might_sleep();
290         return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
291 }
292 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
293
294 int __sched
295 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
296 {
297         might_sleep();
298         return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
299                                    subclass, NULL, _RET_IP_);
300 }
301
302 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
303 #endif
304
305 /*
306  * Release the lock, slowpath:
307  */
308 static inline void
309 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
310 {
311         struct mutex *lock = container_of(lock_count, struct mutex, count);
312         unsigned long flags;
313
314         spin_lock_mutex(&lock->wait_lock, flags);
315         mutex_release(&lock->dep_map, nested, _RET_IP_);
316         debug_mutex_unlock(lock);
317
318         /*
319          * some architectures leave the lock unlocked in the fastpath failure
320          * case, others need to leave it locked. In the later case we have to
321          * unlock it here
322          */
323         if (__mutex_slowpath_needs_to_unlock())
324                 atomic_set(&lock->count, 1);
325
326         if (!list_empty(&lock->wait_list)) {
327                 /* get the first entry from the wait-list: */
328                 struct mutex_waiter *waiter =
329                                 list_entry(lock->wait_list.next,
330                                            struct mutex_waiter, list);
331
332                 debug_mutex_wake_waiter(lock, waiter);
333
334                 wake_up_process(waiter->task);
335         }
336
337         spin_unlock_mutex(&lock->wait_lock, flags);
338 }
339
340 /*
341  * Release the lock, slowpath:
342  */
343 static __used noinline void
344 __mutex_unlock_slowpath(atomic_t *lock_count)
345 {
346         __mutex_unlock_common_slowpath(lock_count, 1);
347 }
348
349 #ifndef CONFIG_DEBUG_LOCK_ALLOC
350 /*
351  * Here come the less common (and hence less performance-critical) APIs:
352  * mutex_lock_interruptible() and mutex_trylock().
353  */
354 static noinline int __sched
355 __mutex_lock_killable_slowpath(atomic_t *lock_count);
356
357 static noinline int __sched
358 __mutex_lock_interruptible_slowpath(atomic_t *lock_count);
359
360 /**
361  * mutex_lock_interruptible - acquire the mutex, interruptible
362  * @lock: the mutex to be acquired
363  *
364  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
365  * been acquired or sleep until the mutex becomes available. If a
366  * signal arrives while waiting for the lock then this function
367  * returns -EINTR.
368  *
369  * This function is similar to (but not equivalent to) down_interruptible().
370  */
371 int __sched mutex_lock_interruptible(struct mutex *lock)
372 {
373         int ret;
374
375         might_sleep();
376         ret =  __mutex_fastpath_lock_retval
377                         (&lock->count, __mutex_lock_interruptible_slowpath);
378         if (!ret)
379                 mutex_set_owner(lock);
380
381         return ret;
382 }
383
384 EXPORT_SYMBOL(mutex_lock_interruptible);
385
386 int __sched mutex_lock_killable(struct mutex *lock)
387 {
388         int ret;
389
390         might_sleep();
391         ret = __mutex_fastpath_lock_retval
392                         (&lock->count, __mutex_lock_killable_slowpath);
393         if (!ret)
394                 mutex_set_owner(lock);
395
396         return ret;
397 }
398 EXPORT_SYMBOL(mutex_lock_killable);
399
400 static __used noinline void __sched
401 __mutex_lock_slowpath(atomic_t *lock_count)
402 {
403         struct mutex *lock = container_of(lock_count, struct mutex, count);
404
405         __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
406 }
407
408 static noinline int __sched
409 __mutex_lock_killable_slowpath(atomic_t *lock_count)
410 {
411         struct mutex *lock = container_of(lock_count, struct mutex, count);
412
413         return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
414 }
415
416 static noinline int __sched
417 __mutex_lock_interruptible_slowpath(atomic_t *lock_count)
418 {
419         struct mutex *lock = container_of(lock_count, struct mutex, count);
420
421         return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
422 }
423 #endif
424
425 /*
426  * Spinlock based trylock, we take the spinlock and check whether we
427  * can get the lock:
428  */
429 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
430 {
431         struct mutex *lock = container_of(lock_count, struct mutex, count);
432         unsigned long flags;
433         int prev;
434
435         spin_lock_mutex(&lock->wait_lock, flags);
436
437         prev = atomic_xchg(&lock->count, -1);
438         if (likely(prev == 1)) {
439                 mutex_set_owner(lock);
440                 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
441         }
442
443         /* Set it back to 0 if there are no waiters: */
444         if (likely(list_empty(&lock->wait_list)))
445                 atomic_set(&lock->count, 0);
446
447         spin_unlock_mutex(&lock->wait_lock, flags);
448
449         return prev == 1;
450 }
451
452 /**
453  * mutex_trylock - try to acquire the mutex, without waiting
454  * @lock: the mutex to be acquired
455  *
456  * Try to acquire the mutex atomically. Returns 1 if the mutex
457  * has been acquired successfully, and 0 on contention.
458  *
459  * NOTE: this function follows the spin_trylock() convention, so
460  * it is negated from the down_trylock() return values! Be careful
461  * about this when converting semaphore users to mutexes.
462  *
463  * This function must not be used in interrupt context. The
464  * mutex must be released by the same task that acquired it.
465  */
466 int __sched mutex_trylock(struct mutex *lock)
467 {
468         int ret;
469
470         ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
471         if (ret)
472                 mutex_set_owner(lock);
473
474         return ret;
475 }
476 EXPORT_SYMBOL(mutex_trylock);
477
478 /**
479  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
480  * @cnt: the atomic which we are to dec
481  * @lock: the mutex to return holding if we dec to 0
482  *
483  * return true and hold lock if we dec to 0, return false otherwise
484  */
485 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
486 {
487         /* dec if we can't possibly hit 0 */
488         if (atomic_add_unless(cnt, -1, 1))
489                 return 0;
490         /* we might hit 0, so take the lock */
491         mutex_lock(lock);
492         if (!atomic_dec_and_test(cnt)) {
493                 /* when we actually did the dec, we didn't hit 0 */
494                 mutex_unlock(lock);
495                 return 0;
496         }
497         /* we hit 0, and we hold the lock */
498         return 1;
499 }
500 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);