kprobes: remove called_from argument
[pandora-kernel.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46
47 #include <asm-generic/sections.h>
48 #include <asm/cacheflush.h>
49 #include <asm/errno.h>
50 #include <asm/uaccess.h>
51
52 #define KPROBE_HASH_BITS 6
53 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
54
55
56 /*
57  * Some oddball architectures like 64bit powerpc have function descriptors
58  * so this must be overridable.
59  */
60 #ifndef kprobe_lookup_name
61 #define kprobe_lookup_name(name, addr) \
62         addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
63 #endif
64
65 static int kprobes_initialized;
66 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
67 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
68
69 /* NOTE: change this value only with kprobe_mutex held */
70 static bool kprobe_enabled;
71
72 static DEFINE_MUTEX(kprobe_mutex);      /* Protects kprobe_table */
73 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
74 static struct {
75         spinlock_t lock ____cacheline_aligned_in_smp;
76 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
77
78 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
79 {
80         return &(kretprobe_table_locks[hash].lock);
81 }
82
83 /*
84  * Normally, functions that we'd want to prohibit kprobes in, are marked
85  * __kprobes. But, there are cases where such functions already belong to
86  * a different section (__sched for preempt_schedule)
87  *
88  * For such cases, we now have a blacklist
89  */
90 static struct kprobe_blackpoint kprobe_blacklist[] = {
91         {"preempt_schedule",},
92         {NULL}    /* Terminator */
93 };
94
95 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
96 /*
97  * kprobe->ainsn.insn points to the copy of the instruction to be
98  * single-stepped. x86_64, POWER4 and above have no-exec support and
99  * stepping on the instruction on a vmalloced/kmalloced/data page
100  * is a recipe for disaster
101  */
102 #define INSNS_PER_PAGE  (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
103
104 struct kprobe_insn_page {
105         struct hlist_node hlist;
106         kprobe_opcode_t *insns;         /* Page of instruction slots */
107         char slot_used[INSNS_PER_PAGE];
108         int nused;
109         int ngarbage;
110 };
111
112 enum kprobe_slot_state {
113         SLOT_CLEAN = 0,
114         SLOT_DIRTY = 1,
115         SLOT_USED = 2,
116 };
117
118 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
119 static struct hlist_head kprobe_insn_pages;
120 static int kprobe_garbage_slots;
121 static int collect_garbage_slots(void);
122
123 static int __kprobes check_safety(void)
124 {
125         int ret = 0;
126 #if defined(CONFIG_PREEMPT) && defined(CONFIG_PM)
127         ret = freeze_processes();
128         if (ret == 0) {
129                 struct task_struct *p, *q;
130                 do_each_thread(p, q) {
131                         if (p != current && p->state == TASK_RUNNING &&
132                             p->pid != 0) {
133                                 printk("Check failed: %s is running\n",p->comm);
134                                 ret = -1;
135                                 goto loop_end;
136                         }
137                 } while_each_thread(p, q);
138         }
139 loop_end:
140         thaw_processes();
141 #else
142         synchronize_sched();
143 #endif
144         return ret;
145 }
146
147 /**
148  * __get_insn_slot() - Find a slot on an executable page for an instruction.
149  * We allocate an executable page if there's no room on existing ones.
150  */
151 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
152 {
153         struct kprobe_insn_page *kip;
154         struct hlist_node *pos;
155
156  retry:
157         hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
158                 if (kip->nused < INSNS_PER_PAGE) {
159                         int i;
160                         for (i = 0; i < INSNS_PER_PAGE; i++) {
161                                 if (kip->slot_used[i] == SLOT_CLEAN) {
162                                         kip->slot_used[i] = SLOT_USED;
163                                         kip->nused++;
164                                         return kip->insns + (i * MAX_INSN_SIZE);
165                                 }
166                         }
167                         /* Surprise!  No unused slots.  Fix kip->nused. */
168                         kip->nused = INSNS_PER_PAGE;
169                 }
170         }
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
174                 goto retry;
175         }
176         /* All out of space.  Need to allocate a new page. Use slot 0. */
177         kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
178         if (!kip)
179                 return NULL;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = module_alloc(PAGE_SIZE);
187         if (!kip->insns) {
188                 kfree(kip);
189                 return NULL;
190         }
191         INIT_HLIST_NODE(&kip->hlist);
192         hlist_add_head(&kip->hlist, &kprobe_insn_pages);
193         memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
194         kip->slot_used[0] = SLOT_USED;
195         kip->nused = 1;
196         kip->ngarbage = 0;
197         return kip->insns;
198 }
199
200 kprobe_opcode_t __kprobes *get_insn_slot(void)
201 {
202         kprobe_opcode_t *ret;
203         mutex_lock(&kprobe_insn_mutex);
204         ret = __get_insn_slot();
205         mutex_unlock(&kprobe_insn_mutex);
206         return ret;
207 }
208
209 /* Return 1 if all garbages are collected, otherwise 0. */
210 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
211 {
212         kip->slot_used[idx] = SLOT_CLEAN;
213         kip->nused--;
214         if (kip->nused == 0) {
215                 /*
216                  * Page is no longer in use.  Free it unless
217                  * it's the last one.  We keep the last one
218                  * so as not to have to set it up again the
219                  * next time somebody inserts a probe.
220                  */
221                 hlist_del(&kip->hlist);
222                 if (hlist_empty(&kprobe_insn_pages)) {
223                         INIT_HLIST_NODE(&kip->hlist);
224                         hlist_add_head(&kip->hlist,
225                                        &kprobe_insn_pages);
226                 } else {
227                         module_free(NULL, kip->insns);
228                         kfree(kip);
229                 }
230                 return 1;
231         }
232         return 0;
233 }
234
235 static int __kprobes collect_garbage_slots(void)
236 {
237         struct kprobe_insn_page *kip;
238         struct hlist_node *pos, *next;
239         int safety;
240
241         /* Ensure no-one is preepmted on the garbages */
242         mutex_unlock(&kprobe_insn_mutex);
243         safety = check_safety();
244         mutex_lock(&kprobe_insn_mutex);
245         if (safety != 0)
246                 return -EAGAIN;
247
248         hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
249                 int i;
250                 if (kip->ngarbage == 0)
251                         continue;
252                 kip->ngarbage = 0;      /* we will collect all garbages */
253                 for (i = 0; i < INSNS_PER_PAGE; i++) {
254                         if (kip->slot_used[i] == SLOT_DIRTY &&
255                             collect_one_slot(kip, i))
256                                 break;
257                 }
258         }
259         kprobe_garbage_slots = 0;
260         return 0;
261 }
262
263 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
264 {
265         struct kprobe_insn_page *kip;
266         struct hlist_node *pos;
267
268         mutex_lock(&kprobe_insn_mutex);
269         hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
270                 if (kip->insns <= slot &&
271                     slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
272                         int i = (slot - kip->insns) / MAX_INSN_SIZE;
273                         if (dirty) {
274                                 kip->slot_used[i] = SLOT_DIRTY;
275                                 kip->ngarbage++;
276                         } else {
277                                 collect_one_slot(kip, i);
278                         }
279                         break;
280                 }
281         }
282
283         if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
284                 collect_garbage_slots();
285
286         mutex_unlock(&kprobe_insn_mutex);
287 }
288 #endif
289
290 /* We have preemption disabled.. so it is safe to use __ versions */
291 static inline void set_kprobe_instance(struct kprobe *kp)
292 {
293         __get_cpu_var(kprobe_instance) = kp;
294 }
295
296 static inline void reset_kprobe_instance(void)
297 {
298         __get_cpu_var(kprobe_instance) = NULL;
299 }
300
301 /*
302  * This routine is called either:
303  *      - under the kprobe_mutex - during kprobe_[un]register()
304  *                              OR
305  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
306  */
307 struct kprobe __kprobes *get_kprobe(void *addr)
308 {
309         struct hlist_head *head;
310         struct hlist_node *node;
311         struct kprobe *p;
312
313         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
314         hlist_for_each_entry_rcu(p, node, head, hlist) {
315                 if (p->addr == addr)
316                         return p;
317         }
318         return NULL;
319 }
320
321 /*
322  * Aggregate handlers for multiple kprobes support - these handlers
323  * take care of invoking the individual kprobe handlers on p->list
324  */
325 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
326 {
327         struct kprobe *kp;
328
329         list_for_each_entry_rcu(kp, &p->list, list) {
330                 if (kp->pre_handler && !kprobe_gone(kp)) {
331                         set_kprobe_instance(kp);
332                         if (kp->pre_handler(kp, regs))
333                                 return 1;
334                 }
335                 reset_kprobe_instance();
336         }
337         return 0;
338 }
339
340 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
341                                         unsigned long flags)
342 {
343         struct kprobe *kp;
344
345         list_for_each_entry_rcu(kp, &p->list, list) {
346                 if (kp->post_handler && !kprobe_gone(kp)) {
347                         set_kprobe_instance(kp);
348                         kp->post_handler(kp, regs, flags);
349                         reset_kprobe_instance();
350                 }
351         }
352 }
353
354 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
355                                         int trapnr)
356 {
357         struct kprobe *cur = __get_cpu_var(kprobe_instance);
358
359         /*
360          * if we faulted "during" the execution of a user specified
361          * probe handler, invoke just that probe's fault handler
362          */
363         if (cur && cur->fault_handler) {
364                 if (cur->fault_handler(cur, regs, trapnr))
365                         return 1;
366         }
367         return 0;
368 }
369
370 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
371 {
372         struct kprobe *cur = __get_cpu_var(kprobe_instance);
373         int ret = 0;
374
375         if (cur && cur->break_handler) {
376                 if (cur->break_handler(cur, regs))
377                         ret = 1;
378         }
379         reset_kprobe_instance();
380         return ret;
381 }
382
383 /* Walks the list and increments nmissed count for multiprobe case */
384 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
385 {
386         struct kprobe *kp;
387         if (p->pre_handler != aggr_pre_handler) {
388                 p->nmissed++;
389         } else {
390                 list_for_each_entry_rcu(kp, &p->list, list)
391                         kp->nmissed++;
392         }
393         return;
394 }
395
396 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
397                                 struct hlist_head *head)
398 {
399         struct kretprobe *rp = ri->rp;
400
401         /* remove rp inst off the rprobe_inst_table */
402         hlist_del(&ri->hlist);
403         INIT_HLIST_NODE(&ri->hlist);
404         if (likely(rp)) {
405                 spin_lock(&rp->lock);
406                 hlist_add_head(&ri->hlist, &rp->free_instances);
407                 spin_unlock(&rp->lock);
408         } else
409                 /* Unregistering */
410                 hlist_add_head(&ri->hlist, head);
411 }
412
413 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
414                          struct hlist_head **head, unsigned long *flags)
415 {
416         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
417         spinlock_t *hlist_lock;
418
419         *head = &kretprobe_inst_table[hash];
420         hlist_lock = kretprobe_table_lock_ptr(hash);
421         spin_lock_irqsave(hlist_lock, *flags);
422 }
423
424 static void __kprobes kretprobe_table_lock(unsigned long hash,
425         unsigned long *flags)
426 {
427         spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
428         spin_lock_irqsave(hlist_lock, *flags);
429 }
430
431 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
432         unsigned long *flags)
433 {
434         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
435         spinlock_t *hlist_lock;
436
437         hlist_lock = kretprobe_table_lock_ptr(hash);
438         spin_unlock_irqrestore(hlist_lock, *flags);
439 }
440
441 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
442 {
443         spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
444         spin_unlock_irqrestore(hlist_lock, *flags);
445 }
446
447 /*
448  * This function is called from finish_task_switch when task tk becomes dead,
449  * so that we can recycle any function-return probe instances associated
450  * with this task. These left over instances represent probed functions
451  * that have been called but will never return.
452  */
453 void __kprobes kprobe_flush_task(struct task_struct *tk)
454 {
455         struct kretprobe_instance *ri;
456         struct hlist_head *head, empty_rp;
457         struct hlist_node *node, *tmp;
458         unsigned long hash, flags = 0;
459
460         if (unlikely(!kprobes_initialized))
461                 /* Early boot.  kretprobe_table_locks not yet initialized. */
462                 return;
463
464         hash = hash_ptr(tk, KPROBE_HASH_BITS);
465         head = &kretprobe_inst_table[hash];
466         kretprobe_table_lock(hash, &flags);
467         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
468                 if (ri->task == tk)
469                         recycle_rp_inst(ri, &empty_rp);
470         }
471         kretprobe_table_unlock(hash, &flags);
472         INIT_HLIST_HEAD(&empty_rp);
473         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
474                 hlist_del(&ri->hlist);
475                 kfree(ri);
476         }
477 }
478
479 static inline void free_rp_inst(struct kretprobe *rp)
480 {
481         struct kretprobe_instance *ri;
482         struct hlist_node *pos, *next;
483
484         hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
485                 hlist_del(&ri->hlist);
486                 kfree(ri);
487         }
488 }
489
490 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
491 {
492         unsigned long flags, hash;
493         struct kretprobe_instance *ri;
494         struct hlist_node *pos, *next;
495         struct hlist_head *head;
496
497         /* No race here */
498         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
499                 kretprobe_table_lock(hash, &flags);
500                 head = &kretprobe_inst_table[hash];
501                 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
502                         if (ri->rp == rp)
503                                 ri->rp = NULL;
504                 }
505                 kretprobe_table_unlock(hash, &flags);
506         }
507         free_rp_inst(rp);
508 }
509
510 /*
511  * Keep all fields in the kprobe consistent
512  */
513 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
514 {
515         memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
516         memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
517 }
518
519 /*
520 * Add the new probe to old_p->list. Fail if this is the
521 * second jprobe at the address - two jprobes can't coexist
522 */
523 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
524 {
525         if (p->break_handler) {
526                 if (old_p->break_handler)
527                         return -EEXIST;
528                 list_add_tail_rcu(&p->list, &old_p->list);
529                 old_p->break_handler = aggr_break_handler;
530         } else
531                 list_add_rcu(&p->list, &old_p->list);
532         if (p->post_handler && !old_p->post_handler)
533                 old_p->post_handler = aggr_post_handler;
534         return 0;
535 }
536
537 /*
538  * Fill in the required fields of the "manager kprobe". Replace the
539  * earlier kprobe in the hlist with the manager kprobe
540  */
541 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
542 {
543         copy_kprobe(p, ap);
544         flush_insn_slot(ap);
545         ap->addr = p->addr;
546         ap->pre_handler = aggr_pre_handler;
547         ap->fault_handler = aggr_fault_handler;
548         /* We don't care the kprobe which has gone. */
549         if (p->post_handler && !kprobe_gone(p))
550                 ap->post_handler = aggr_post_handler;
551         if (p->break_handler && !kprobe_gone(p))
552                 ap->break_handler = aggr_break_handler;
553
554         INIT_LIST_HEAD(&ap->list);
555         list_add_rcu(&p->list, &ap->list);
556
557         hlist_replace_rcu(&p->hlist, &ap->hlist);
558 }
559
560 /*
561  * This is the second or subsequent kprobe at the address - handle
562  * the intricacies
563  */
564 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
565                                           struct kprobe *p)
566 {
567         int ret = 0;
568         struct kprobe *ap;
569
570         if (kprobe_gone(old_p)) {
571                 /*
572                  * Attempting to insert new probe at the same location that
573                  * had a probe in the module vaddr area which already
574                  * freed. So, the instruction slot has already been
575                  * released. We need a new slot for the new probe.
576                  */
577                 ret = arch_prepare_kprobe(old_p);
578                 if (ret)
579                         return ret;
580         }
581         if (old_p->pre_handler == aggr_pre_handler) {
582                 copy_kprobe(old_p, p);
583                 ret = add_new_kprobe(old_p, p);
584                 ap = old_p;
585         } else {
586                 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
587                 if (!ap) {
588                         if (kprobe_gone(old_p))
589                                 arch_remove_kprobe(old_p);
590                         return -ENOMEM;
591                 }
592                 add_aggr_kprobe(ap, old_p);
593                 copy_kprobe(ap, p);
594                 ret = add_new_kprobe(ap, p);
595         }
596         if (kprobe_gone(old_p)) {
597                 /*
598                  * If the old_p has gone, its breakpoint has been disarmed.
599                  * We have to arm it again after preparing real kprobes.
600                  */
601                 ap->flags &= ~KPROBE_FLAG_GONE;
602                 if (kprobe_enabled)
603                         arch_arm_kprobe(ap);
604         }
605         return ret;
606 }
607
608 static int __kprobes in_kprobes_functions(unsigned long addr)
609 {
610         struct kprobe_blackpoint *kb;
611
612         if (addr >= (unsigned long)__kprobes_text_start &&
613             addr < (unsigned long)__kprobes_text_end)
614                 return -EINVAL;
615         /*
616          * If there exists a kprobe_blacklist, verify and
617          * fail any probe registration in the prohibited area
618          */
619         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
620                 if (kb->start_addr) {
621                         if (addr >= kb->start_addr &&
622                             addr < (kb->start_addr + kb->range))
623                                 return -EINVAL;
624                 }
625         }
626         return 0;
627 }
628
629 /*
630  * If we have a symbol_name argument, look it up and add the offset field
631  * to it. This way, we can specify a relative address to a symbol.
632  */
633 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
634 {
635         kprobe_opcode_t *addr = p->addr;
636         if (p->symbol_name) {
637                 if (addr)
638                         return NULL;
639                 kprobe_lookup_name(p->symbol_name, addr);
640         }
641
642         if (!addr)
643                 return NULL;
644         return (kprobe_opcode_t *)(((char *)addr) + p->offset);
645 }
646
647 int __kprobes register_kprobe(struct kprobe *p)
648 {
649         int ret = 0;
650         struct kprobe *old_p;
651         struct module *probed_mod;
652         kprobe_opcode_t *addr;
653
654         addr = kprobe_addr(p);
655         if (!addr)
656                 return -EINVAL;
657         p->addr = addr;
658
659         preempt_disable();
660         if (!__kernel_text_address((unsigned long) p->addr) ||
661             in_kprobes_functions((unsigned long) p->addr)) {
662                 preempt_enable();
663                 return -EINVAL;
664         }
665
666         p->flags = 0;
667         /*
668          * Check if are we probing a module.
669          */
670         probed_mod = __module_text_address((unsigned long) p->addr);
671         if (probed_mod) {
672                 /*
673                  * We must hold a refcount of the probed module while updating
674                  * its code to prohibit unexpected unloading.
675                  */
676                 if (unlikely(!try_module_get(probed_mod))) {
677                         preempt_enable();
678                         return -EINVAL;
679                 }
680         }
681         preempt_enable();
682
683         p->nmissed = 0;
684         INIT_LIST_HEAD(&p->list);
685         mutex_lock(&kprobe_mutex);
686         old_p = get_kprobe(p->addr);
687         if (old_p) {
688                 ret = register_aggr_kprobe(old_p, p);
689                 goto out;
690         }
691
692         ret = arch_prepare_kprobe(p);
693         if (ret)
694                 goto out;
695
696         INIT_HLIST_NODE(&p->hlist);
697         hlist_add_head_rcu(&p->hlist,
698                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
699
700         if (kprobe_enabled)
701                 arch_arm_kprobe(p);
702
703 out:
704         mutex_unlock(&kprobe_mutex);
705
706         if (probed_mod)
707                 module_put(probed_mod);
708
709         return ret;
710 }
711
712 /*
713  * Unregister a kprobe without a scheduler synchronization.
714  */
715 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
716 {
717         struct kprobe *old_p, *list_p;
718
719         old_p = get_kprobe(p->addr);
720         if (unlikely(!old_p))
721                 return -EINVAL;
722
723         if (p != old_p) {
724                 list_for_each_entry_rcu(list_p, &old_p->list, list)
725                         if (list_p == p)
726                         /* kprobe p is a valid probe */
727                                 goto valid_p;
728                 return -EINVAL;
729         }
730 valid_p:
731         if (old_p == p ||
732             (old_p->pre_handler == aggr_pre_handler &&
733              list_is_singular(&old_p->list))) {
734                 /*
735                  * Only probe on the hash list. Disarm only if kprobes are
736                  * enabled and not gone - otherwise, the breakpoint would
737                  * already have been removed. We save on flushing icache.
738                  */
739                 if (kprobe_enabled && !kprobe_gone(old_p))
740                         arch_disarm_kprobe(p);
741                 hlist_del_rcu(&old_p->hlist);
742         } else {
743                 if (p->break_handler && !kprobe_gone(p))
744                         old_p->break_handler = NULL;
745                 if (p->post_handler && !kprobe_gone(p)) {
746                         list_for_each_entry_rcu(list_p, &old_p->list, list) {
747                                 if ((list_p != p) && (list_p->post_handler))
748                                         goto noclean;
749                         }
750                         old_p->post_handler = NULL;
751                 }
752 noclean:
753                 list_del_rcu(&p->list);
754         }
755         return 0;
756 }
757
758 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
759 {
760         struct kprobe *old_p;
761
762         if (list_empty(&p->list))
763                 arch_remove_kprobe(p);
764         else if (list_is_singular(&p->list)) {
765                 /* "p" is the last child of an aggr_kprobe */
766                 old_p = list_entry(p->list.next, struct kprobe, list);
767                 list_del(&p->list);
768                 arch_remove_kprobe(old_p);
769                 kfree(old_p);
770         }
771 }
772
773 int __kprobes register_kprobes(struct kprobe **kps, int num)
774 {
775         int i, ret = 0;
776
777         if (num <= 0)
778                 return -EINVAL;
779         for (i = 0; i < num; i++) {
780                 ret = register_kprobe(kps[i]);
781                 if (ret < 0) {
782                         if (i > 0)
783                                 unregister_kprobes(kps, i);
784                         break;
785                 }
786         }
787         return ret;
788 }
789
790 void __kprobes unregister_kprobe(struct kprobe *p)
791 {
792         unregister_kprobes(&p, 1);
793 }
794
795 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
796 {
797         int i;
798
799         if (num <= 0)
800                 return;
801         mutex_lock(&kprobe_mutex);
802         for (i = 0; i < num; i++)
803                 if (__unregister_kprobe_top(kps[i]) < 0)
804                         kps[i]->addr = NULL;
805         mutex_unlock(&kprobe_mutex);
806
807         synchronize_sched();
808         for (i = 0; i < num; i++)
809                 if (kps[i]->addr)
810                         __unregister_kprobe_bottom(kps[i]);
811 }
812
813 static struct notifier_block kprobe_exceptions_nb = {
814         .notifier_call = kprobe_exceptions_notify,
815         .priority = 0x7fffffff /* we need to be notified first */
816 };
817
818 unsigned long __weak arch_deref_entry_point(void *entry)
819 {
820         return (unsigned long)entry;
821 }
822
823 int __kprobes register_jprobes(struct jprobe **jps, int num)
824 {
825         struct jprobe *jp;
826         int ret = 0, i;
827
828         if (num <= 0)
829                 return -EINVAL;
830         for (i = 0; i < num; i++) {
831                 unsigned long addr;
832                 jp = jps[i];
833                 addr = arch_deref_entry_point(jp->entry);
834
835                 if (!kernel_text_address(addr))
836                         ret = -EINVAL;
837                 else {
838                         /* Todo: Verify probepoint is a function entry point */
839                         jp->kp.pre_handler = setjmp_pre_handler;
840                         jp->kp.break_handler = longjmp_break_handler;
841                         ret = register_kprobe(&jp->kp);
842                 }
843                 if (ret < 0) {
844                         if (i > 0)
845                                 unregister_jprobes(jps, i);
846                         break;
847                 }
848         }
849         return ret;
850 }
851
852 int __kprobes register_jprobe(struct jprobe *jp)
853 {
854         return register_jprobes(&jp, 1);
855 }
856
857 void __kprobes unregister_jprobe(struct jprobe *jp)
858 {
859         unregister_jprobes(&jp, 1);
860 }
861
862 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
863 {
864         int i;
865
866         if (num <= 0)
867                 return;
868         mutex_lock(&kprobe_mutex);
869         for (i = 0; i < num; i++)
870                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
871                         jps[i]->kp.addr = NULL;
872         mutex_unlock(&kprobe_mutex);
873
874         synchronize_sched();
875         for (i = 0; i < num; i++) {
876                 if (jps[i]->kp.addr)
877                         __unregister_kprobe_bottom(&jps[i]->kp);
878         }
879 }
880
881 #ifdef CONFIG_KRETPROBES
882 /*
883  * This kprobe pre_handler is registered with every kretprobe. When probe
884  * hits it will set up the return probe.
885  */
886 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
887                                            struct pt_regs *regs)
888 {
889         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
890         unsigned long hash, flags = 0;
891         struct kretprobe_instance *ri;
892
893         /*TODO: consider to only swap the RA after the last pre_handler fired */
894         hash = hash_ptr(current, KPROBE_HASH_BITS);
895         spin_lock_irqsave(&rp->lock, flags);
896         if (!hlist_empty(&rp->free_instances)) {
897                 ri = hlist_entry(rp->free_instances.first,
898                                 struct kretprobe_instance, hlist);
899                 hlist_del(&ri->hlist);
900                 spin_unlock_irqrestore(&rp->lock, flags);
901
902                 ri->rp = rp;
903                 ri->task = current;
904
905                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
906                         spin_unlock_irqrestore(&rp->lock, flags);
907                         return 0;
908                 }
909
910                 arch_prepare_kretprobe(ri, regs);
911
912                 /* XXX(hch): why is there no hlist_move_head? */
913                 INIT_HLIST_NODE(&ri->hlist);
914                 kretprobe_table_lock(hash, &flags);
915                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
916                 kretprobe_table_unlock(hash, &flags);
917         } else {
918                 rp->nmissed++;
919                 spin_unlock_irqrestore(&rp->lock, flags);
920         }
921         return 0;
922 }
923
924 int __kprobes register_kretprobe(struct kretprobe *rp)
925 {
926         int ret = 0;
927         struct kretprobe_instance *inst;
928         int i;
929         void *addr;
930
931         if (kretprobe_blacklist_size) {
932                 addr = kprobe_addr(&rp->kp);
933                 if (!addr)
934                         return -EINVAL;
935
936                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
937                         if (kretprobe_blacklist[i].addr == addr)
938                                 return -EINVAL;
939                 }
940         }
941
942         rp->kp.pre_handler = pre_handler_kretprobe;
943         rp->kp.post_handler = NULL;
944         rp->kp.fault_handler = NULL;
945         rp->kp.break_handler = NULL;
946
947         /* Pre-allocate memory for max kretprobe instances */
948         if (rp->maxactive <= 0) {
949 #ifdef CONFIG_PREEMPT
950                 rp->maxactive = max(10, 2 * NR_CPUS);
951 #else
952                 rp->maxactive = NR_CPUS;
953 #endif
954         }
955         spin_lock_init(&rp->lock);
956         INIT_HLIST_HEAD(&rp->free_instances);
957         for (i = 0; i < rp->maxactive; i++) {
958                 inst = kmalloc(sizeof(struct kretprobe_instance) +
959                                rp->data_size, GFP_KERNEL);
960                 if (inst == NULL) {
961                         free_rp_inst(rp);
962                         return -ENOMEM;
963                 }
964                 INIT_HLIST_NODE(&inst->hlist);
965                 hlist_add_head(&inst->hlist, &rp->free_instances);
966         }
967
968         rp->nmissed = 0;
969         /* Establish function entry probe point */
970         ret = register_kprobe(&rp->kp);
971         if (ret != 0)
972                 free_rp_inst(rp);
973         return ret;
974 }
975
976 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
977 {
978         int ret = 0, i;
979
980         if (num <= 0)
981                 return -EINVAL;
982         for (i = 0; i < num; i++) {
983                 ret = register_kretprobe(rps[i]);
984                 if (ret < 0) {
985                         if (i > 0)
986                                 unregister_kretprobes(rps, i);
987                         break;
988                 }
989         }
990         return ret;
991 }
992
993 void __kprobes unregister_kretprobe(struct kretprobe *rp)
994 {
995         unregister_kretprobes(&rp, 1);
996 }
997
998 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
999 {
1000         int i;
1001
1002         if (num <= 0)
1003                 return;
1004         mutex_lock(&kprobe_mutex);
1005         for (i = 0; i < num; i++)
1006                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1007                         rps[i]->kp.addr = NULL;
1008         mutex_unlock(&kprobe_mutex);
1009
1010         synchronize_sched();
1011         for (i = 0; i < num; i++) {
1012                 if (rps[i]->kp.addr) {
1013                         __unregister_kprobe_bottom(&rps[i]->kp);
1014                         cleanup_rp_inst(rps[i]);
1015                 }
1016         }
1017 }
1018
1019 #else /* CONFIG_KRETPROBES */
1020 int __kprobes register_kretprobe(struct kretprobe *rp)
1021 {
1022         return -ENOSYS;
1023 }
1024
1025 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1026 {
1027         return -ENOSYS;
1028 }
1029 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1030 {
1031 }
1032
1033 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1034 {
1035 }
1036
1037 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1038                                            struct pt_regs *regs)
1039 {
1040         return 0;
1041 }
1042
1043 #endif /* CONFIG_KRETPROBES */
1044
1045 /* Set the kprobe gone and remove its instruction buffer. */
1046 static void __kprobes kill_kprobe(struct kprobe *p)
1047 {
1048         struct kprobe *kp;
1049         p->flags |= KPROBE_FLAG_GONE;
1050         if (p->pre_handler == aggr_pre_handler) {
1051                 /*
1052                  * If this is an aggr_kprobe, we have to list all the
1053                  * chained probes and mark them GONE.
1054                  */
1055                 list_for_each_entry_rcu(kp, &p->list, list)
1056                         kp->flags |= KPROBE_FLAG_GONE;
1057                 p->post_handler = NULL;
1058                 p->break_handler = NULL;
1059         }
1060         /*
1061          * Here, we can remove insn_slot safely, because no thread calls
1062          * the original probed function (which will be freed soon) any more.
1063          */
1064         arch_remove_kprobe(p);
1065 }
1066
1067 /* Module notifier call back, checking kprobes on the module */
1068 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1069                                              unsigned long val, void *data)
1070 {
1071         struct module *mod = data;
1072         struct hlist_head *head;
1073         struct hlist_node *node;
1074         struct kprobe *p;
1075         unsigned int i;
1076
1077         if (val != MODULE_STATE_GOING)
1078                 return NOTIFY_DONE;
1079
1080         /*
1081          * module .text section will be freed. We need to
1082          * disable kprobes which have been inserted in the section.
1083          */
1084         mutex_lock(&kprobe_mutex);
1085         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1086                 head = &kprobe_table[i];
1087                 hlist_for_each_entry_rcu(p, node, head, hlist)
1088                         if (within_module_core((unsigned long)p->addr, mod)) {
1089                                 /*
1090                                  * The vaddr this probe is installed will soon
1091                                  * be vfreed buy not synced to disk. Hence,
1092                                  * disarming the breakpoint isn't needed.
1093                                  */
1094                                 kill_kprobe(p);
1095                         }
1096         }
1097         mutex_unlock(&kprobe_mutex);
1098         return NOTIFY_DONE;
1099 }
1100
1101 static struct notifier_block kprobe_module_nb = {
1102         .notifier_call = kprobes_module_callback,
1103         .priority = 0
1104 };
1105
1106 static int __init init_kprobes(void)
1107 {
1108         int i, err = 0;
1109         unsigned long offset = 0, size = 0;
1110         char *modname, namebuf[128];
1111         const char *symbol_name;
1112         void *addr;
1113         struct kprobe_blackpoint *kb;
1114
1115         /* FIXME allocate the probe table, currently defined statically */
1116         /* initialize all list heads */
1117         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1118                 INIT_HLIST_HEAD(&kprobe_table[i]);
1119                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1120                 spin_lock_init(&(kretprobe_table_locks[i].lock));
1121         }
1122
1123         /*
1124          * Lookup and populate the kprobe_blacklist.
1125          *
1126          * Unlike the kretprobe blacklist, we'll need to determine
1127          * the range of addresses that belong to the said functions,
1128          * since a kprobe need not necessarily be at the beginning
1129          * of a function.
1130          */
1131         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1132                 kprobe_lookup_name(kb->name, addr);
1133                 if (!addr)
1134                         continue;
1135
1136                 kb->start_addr = (unsigned long)addr;
1137                 symbol_name = kallsyms_lookup(kb->start_addr,
1138                                 &size, &offset, &modname, namebuf);
1139                 if (!symbol_name)
1140                         kb->range = 0;
1141                 else
1142                         kb->range = size;
1143         }
1144
1145         if (kretprobe_blacklist_size) {
1146                 /* lookup the function address from its name */
1147                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1148                         kprobe_lookup_name(kretprobe_blacklist[i].name,
1149                                            kretprobe_blacklist[i].addr);
1150                         if (!kretprobe_blacklist[i].addr)
1151                                 printk("kretprobe: lookup failed: %s\n",
1152                                        kretprobe_blacklist[i].name);
1153                 }
1154         }
1155
1156         /* By default, kprobes are enabled */
1157         kprobe_enabled = true;
1158
1159         err = arch_init_kprobes();
1160         if (!err)
1161                 err = register_die_notifier(&kprobe_exceptions_nb);
1162         if (!err)
1163                 err = register_module_notifier(&kprobe_module_nb);
1164
1165         kprobes_initialized = (err == 0);
1166
1167         if (!err)
1168                 init_test_probes();
1169         return err;
1170 }
1171
1172 #ifdef CONFIG_DEBUG_FS
1173 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1174                 const char *sym, int offset,char *modname)
1175 {
1176         char *kprobe_type;
1177
1178         if (p->pre_handler == pre_handler_kretprobe)
1179                 kprobe_type = "r";
1180         else if (p->pre_handler == setjmp_pre_handler)
1181                 kprobe_type = "j";
1182         else
1183                 kprobe_type = "k";
1184         if (sym)
1185                 seq_printf(pi, "%p  %s  %s+0x%x  %s %s\n", p->addr, kprobe_type,
1186                         sym, offset, (modname ? modname : " "),
1187                         (kprobe_gone(p) ? "[GONE]" : ""));
1188         else
1189                 seq_printf(pi, "%p  %s  %p %s\n", p->addr, kprobe_type, p->addr,
1190                         (kprobe_gone(p) ? "[GONE]" : ""));
1191 }
1192
1193 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1194 {
1195         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1196 }
1197
1198 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1199 {
1200         (*pos)++;
1201         if (*pos >= KPROBE_TABLE_SIZE)
1202                 return NULL;
1203         return pos;
1204 }
1205
1206 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1207 {
1208         /* Nothing to do */
1209 }
1210
1211 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1212 {
1213         struct hlist_head *head;
1214         struct hlist_node *node;
1215         struct kprobe *p, *kp;
1216         const char *sym = NULL;
1217         unsigned int i = *(loff_t *) v;
1218         unsigned long offset = 0;
1219         char *modname, namebuf[128];
1220
1221         head = &kprobe_table[i];
1222         preempt_disable();
1223         hlist_for_each_entry_rcu(p, node, head, hlist) {
1224                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1225                                         &offset, &modname, namebuf);
1226                 if (p->pre_handler == aggr_pre_handler) {
1227                         list_for_each_entry_rcu(kp, &p->list, list)
1228                                 report_probe(pi, kp, sym, offset, modname);
1229                 } else
1230                         report_probe(pi, p, sym, offset, modname);
1231         }
1232         preempt_enable();
1233         return 0;
1234 }
1235
1236 static struct seq_operations kprobes_seq_ops = {
1237         .start = kprobe_seq_start,
1238         .next  = kprobe_seq_next,
1239         .stop  = kprobe_seq_stop,
1240         .show  = show_kprobe_addr
1241 };
1242
1243 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1244 {
1245         return seq_open(filp, &kprobes_seq_ops);
1246 }
1247
1248 static struct file_operations debugfs_kprobes_operations = {
1249         .open           = kprobes_open,
1250         .read           = seq_read,
1251         .llseek         = seq_lseek,
1252         .release        = seq_release,
1253 };
1254
1255 static void __kprobes enable_all_kprobes(void)
1256 {
1257         struct hlist_head *head;
1258         struct hlist_node *node;
1259         struct kprobe *p;
1260         unsigned int i;
1261
1262         mutex_lock(&kprobe_mutex);
1263
1264         /* If kprobes are already enabled, just return */
1265         if (kprobe_enabled)
1266                 goto already_enabled;
1267
1268         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1269                 head = &kprobe_table[i];
1270                 hlist_for_each_entry_rcu(p, node, head, hlist)
1271                         if (!kprobe_gone(p))
1272                                 arch_arm_kprobe(p);
1273         }
1274
1275         kprobe_enabled = true;
1276         printk(KERN_INFO "Kprobes globally enabled\n");
1277
1278 already_enabled:
1279         mutex_unlock(&kprobe_mutex);
1280         return;
1281 }
1282
1283 static void __kprobes disable_all_kprobes(void)
1284 {
1285         struct hlist_head *head;
1286         struct hlist_node *node;
1287         struct kprobe *p;
1288         unsigned int i;
1289
1290         mutex_lock(&kprobe_mutex);
1291
1292         /* If kprobes are already disabled, just return */
1293         if (!kprobe_enabled)
1294                 goto already_disabled;
1295
1296         kprobe_enabled = false;
1297         printk(KERN_INFO "Kprobes globally disabled\n");
1298         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1299                 head = &kprobe_table[i];
1300                 hlist_for_each_entry_rcu(p, node, head, hlist) {
1301                         if (!arch_trampoline_kprobe(p) && !kprobe_gone(p))
1302                                 arch_disarm_kprobe(p);
1303                 }
1304         }
1305
1306         mutex_unlock(&kprobe_mutex);
1307         /* Allow all currently running kprobes to complete */
1308         synchronize_sched();
1309         return;
1310
1311 already_disabled:
1312         mutex_unlock(&kprobe_mutex);
1313         return;
1314 }
1315
1316 /*
1317  * XXX: The debugfs bool file interface doesn't allow for callbacks
1318  * when the bool state is switched. We can reuse that facility when
1319  * available
1320  */
1321 static ssize_t read_enabled_file_bool(struct file *file,
1322                char __user *user_buf, size_t count, loff_t *ppos)
1323 {
1324         char buf[3];
1325
1326         if (kprobe_enabled)
1327                 buf[0] = '1';
1328         else
1329                 buf[0] = '0';
1330         buf[1] = '\n';
1331         buf[2] = 0x00;
1332         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1333 }
1334
1335 static ssize_t write_enabled_file_bool(struct file *file,
1336                const char __user *user_buf, size_t count, loff_t *ppos)
1337 {
1338         char buf[32];
1339         int buf_size;
1340
1341         buf_size = min(count, (sizeof(buf)-1));
1342         if (copy_from_user(buf, user_buf, buf_size))
1343                 return -EFAULT;
1344
1345         switch (buf[0]) {
1346         case 'y':
1347         case 'Y':
1348         case '1':
1349                 enable_all_kprobes();
1350                 break;
1351         case 'n':
1352         case 'N':
1353         case '0':
1354                 disable_all_kprobes();
1355                 break;
1356         }
1357
1358         return count;
1359 }
1360
1361 static struct file_operations fops_kp = {
1362         .read =         read_enabled_file_bool,
1363         .write =        write_enabled_file_bool,
1364 };
1365
1366 static int __kprobes debugfs_kprobe_init(void)
1367 {
1368         struct dentry *dir, *file;
1369         unsigned int value = 1;
1370
1371         dir = debugfs_create_dir("kprobes", NULL);
1372         if (!dir)
1373                 return -ENOMEM;
1374
1375         file = debugfs_create_file("list", 0444, dir, NULL,
1376                                 &debugfs_kprobes_operations);
1377         if (!file) {
1378                 debugfs_remove(dir);
1379                 return -ENOMEM;
1380         }
1381
1382         file = debugfs_create_file("enabled", 0600, dir,
1383                                         &value, &fops_kp);
1384         if (!file) {
1385                 debugfs_remove(dir);
1386                 return -ENOMEM;
1387         }
1388
1389         return 0;
1390 }
1391
1392 late_initcall(debugfs_kprobe_init);
1393 #endif /* CONFIG_DEBUG_FS */
1394
1395 module_init(init_kprobes);
1396
1397 EXPORT_SYMBOL_GPL(register_kprobe);
1398 EXPORT_SYMBOL_GPL(unregister_kprobe);
1399 EXPORT_SYMBOL_GPL(register_kprobes);
1400 EXPORT_SYMBOL_GPL(unregister_kprobes);
1401 EXPORT_SYMBOL_GPL(register_jprobe);
1402 EXPORT_SYMBOL_GPL(unregister_jprobe);
1403 EXPORT_SYMBOL_GPL(register_jprobes);
1404 EXPORT_SYMBOL_GPL(unregister_jprobes);
1405 EXPORT_SYMBOL_GPL(jprobe_return);
1406 EXPORT_SYMBOL_GPL(register_kretprobe);
1407 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1408 EXPORT_SYMBOL_GPL(register_kretprobes);
1409 EXPORT_SYMBOL_GPL(unregister_kretprobes);