futex: Validate atomic acquisition in futex_lock_pi_atomic()
[pandora-kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/hugetlb.h>
64
65 #include <asm/futex.h>
66
67 #include "rtmutex_common.h"
68
69 int __read_mostly futex_cmpxchg_enabled;
70
71 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72
73 /*
74  * Futex flags used to encode options to functions and preserve them across
75  * restarts.
76  */
77 #define FLAGS_SHARED            0x01
78 #define FLAGS_CLOCKRT           0x02
79 #define FLAGS_HAS_TIMEOUT       0x04
80
81 /*
82  * Priority Inheritance state:
83  */
84 struct futex_pi_state {
85         /*
86          * list of 'owned' pi_state instances - these have to be
87          * cleaned up in do_exit() if the task exits prematurely:
88          */
89         struct list_head list;
90
91         /*
92          * The PI object:
93          */
94         struct rt_mutex pi_mutex;
95
96         struct task_struct *owner;
97         atomic_t refcount;
98
99         union futex_key key;
100 };
101
102 /**
103  * struct futex_q - The hashed futex queue entry, one per waiting task
104  * @list:               priority-sorted list of tasks waiting on this futex
105  * @task:               the task waiting on the futex
106  * @lock_ptr:           the hash bucket lock
107  * @key:                the key the futex is hashed on
108  * @pi_state:           optional priority inheritance state
109  * @rt_waiter:          rt_waiter storage for use with requeue_pi
110  * @requeue_pi_key:     the requeue_pi target futex key
111  * @bitset:             bitset for the optional bitmasked wakeup
112  *
113  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
114  * we can wake only the relevant ones (hashed queues may be shared).
115  *
116  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
117  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
118  * The order of wakeup is always to make the first condition true, then
119  * the second.
120  *
121  * PI futexes are typically woken before they are removed from the hash list via
122  * the rt_mutex code. See unqueue_me_pi().
123  */
124 struct futex_q {
125         struct plist_node list;
126
127         struct task_struct *task;
128         spinlock_t *lock_ptr;
129         union futex_key key;
130         struct futex_pi_state *pi_state;
131         struct rt_mutex_waiter *rt_waiter;
132         union futex_key *requeue_pi_key;
133         u32 bitset;
134 };
135
136 static const struct futex_q futex_q_init = {
137         /* list gets initialized in queue_me()*/
138         .key = FUTEX_KEY_INIT,
139         .bitset = FUTEX_BITSET_MATCH_ANY
140 };
141
142 /*
143  * Hash buckets are shared by all the futex_keys that hash to the same
144  * location.  Each key may have multiple futex_q structures, one for each task
145  * waiting on a futex.
146  */
147 struct futex_hash_bucket {
148         spinlock_t lock;
149         struct plist_head chain;
150 };
151
152 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
153
154 /*
155  * We hash on the keys returned from get_futex_key (see below).
156  */
157 static struct futex_hash_bucket *hash_futex(union futex_key *key)
158 {
159         u32 hash = jhash2((u32*)&key->both.word,
160                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
161                           key->both.offset);
162         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
163 }
164
165 /*
166  * Return 1 if two futex_keys are equal, 0 otherwise.
167  */
168 static inline int match_futex(union futex_key *key1, union futex_key *key2)
169 {
170         return (key1 && key2
171                 && key1->both.word == key2->both.word
172                 && key1->both.ptr == key2->both.ptr
173                 && key1->both.offset == key2->both.offset);
174 }
175
176 /*
177  * Take a reference to the resource addressed by a key.
178  * Can be called while holding spinlocks.
179  *
180  */
181 static void get_futex_key_refs(union futex_key *key)
182 {
183         if (!key->both.ptr)
184                 return;
185
186         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
187         case FUT_OFF_INODE:
188                 ihold(key->shared.inode);
189                 break;
190         case FUT_OFF_MMSHARED:
191                 atomic_inc(&key->private.mm->mm_count);
192                 break;
193         }
194 }
195
196 /*
197  * Drop a reference to the resource addressed by a key.
198  * The hash bucket spinlock must not be held.
199  */
200 static void drop_futex_key_refs(union futex_key *key)
201 {
202         if (!key->both.ptr) {
203                 /* If we're here then we tried to put a key we failed to get */
204                 WARN_ON_ONCE(1);
205                 return;
206         }
207
208         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
209         case FUT_OFF_INODE:
210                 iput(key->shared.inode);
211                 break;
212         case FUT_OFF_MMSHARED:
213                 mmdrop(key->private.mm);
214                 break;
215         }
216 }
217
218 /**
219  * get_futex_key() - Get parameters which are the keys for a futex
220  * @uaddr:      virtual address of the futex
221  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
222  * @key:        address where result is stored.
223  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
224  *              VERIFY_WRITE)
225  *
226  * Returns a negative error code or 0
227  * The key words are stored in *key on success.
228  *
229  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
230  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
231  * We can usually work out the index without swapping in the page.
232  *
233  * lock_page() might sleep, the caller should not hold a spinlock.
234  */
235 static int
236 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
237 {
238         unsigned long address = (unsigned long)uaddr;
239         struct mm_struct *mm = current->mm;
240         struct page *page, *page_head;
241         int err, ro = 0;
242
243         /*
244          * The futex address must be "naturally" aligned.
245          */
246         key->both.offset = address % PAGE_SIZE;
247         if (unlikely((address % sizeof(u32)) != 0))
248                 return -EINVAL;
249         address -= key->both.offset;
250
251         /*
252          * PROCESS_PRIVATE futexes are fast.
253          * As the mm cannot disappear under us and the 'key' only needs
254          * virtual address, we dont even have to find the underlying vma.
255          * Note : We do have to check 'uaddr' is a valid user address,
256          *        but access_ok() should be faster than find_vma()
257          */
258         if (!fshared) {
259                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
260                         return -EFAULT;
261                 key->private.mm = mm;
262                 key->private.address = address;
263                 get_futex_key_refs(key);
264                 return 0;
265         }
266
267 again:
268         err = get_user_pages_fast(address, 1, 1, &page);
269         /*
270          * If write access is not required (eg. FUTEX_WAIT), try
271          * and get read-only access.
272          */
273         if (err == -EFAULT && rw == VERIFY_READ) {
274                 err = get_user_pages_fast(address, 1, 0, &page);
275                 ro = 1;
276         }
277         if (err < 0)
278                 return err;
279         else
280                 err = 0;
281
282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
283         page_head = page;
284         if (unlikely(PageTail(page))) {
285                 put_page(page);
286                 /* serialize against __split_huge_page_splitting() */
287                 local_irq_disable();
288                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
289                         page_head = compound_head(page);
290                         /*
291                          * page_head is valid pointer but we must pin
292                          * it before taking the PG_lock and/or
293                          * PG_compound_lock. The moment we re-enable
294                          * irqs __split_huge_page_splitting() can
295                          * return and the head page can be freed from
296                          * under us. We can't take the PG_lock and/or
297                          * PG_compound_lock on a page that could be
298                          * freed from under us.
299                          */
300                         if (page != page_head) {
301                                 get_page(page_head);
302                                 put_page(page);
303                         }
304                         local_irq_enable();
305                 } else {
306                         local_irq_enable();
307                         goto again;
308                 }
309         }
310 #else
311         page_head = compound_head(page);
312         if (page != page_head) {
313                 get_page(page_head);
314                 put_page(page);
315         }
316 #endif
317
318         lock_page(page_head);
319
320         /*
321          * If page_head->mapping is NULL, then it cannot be a PageAnon
322          * page; but it might be the ZERO_PAGE or in the gate area or
323          * in a special mapping (all cases which we are happy to fail);
324          * or it may have been a good file page when get_user_pages_fast
325          * found it, but truncated or holepunched or subjected to
326          * invalidate_complete_page2 before we got the page lock (also
327          * cases which we are happy to fail).  And we hold a reference,
328          * so refcount care in invalidate_complete_page's remove_mapping
329          * prevents drop_caches from setting mapping to NULL beneath us.
330          *
331          * The case we do have to guard against is when memory pressure made
332          * shmem_writepage move it from filecache to swapcache beneath us:
333          * an unlikely race, but we do need to retry for page_head->mapping.
334          */
335         if (!page_head->mapping) {
336                 int shmem_swizzled = PageSwapCache(page_head);
337                 unlock_page(page_head);
338                 put_page(page_head);
339                 if (shmem_swizzled)
340                         goto again;
341                 return -EFAULT;
342         }
343
344         /*
345          * Private mappings are handled in a simple way.
346          *
347          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
348          * it's a read-only handle, it's expected that futexes attach to
349          * the object not the particular process.
350          */
351         if (PageAnon(page_head)) {
352                 /*
353                  * A RO anonymous page will never change and thus doesn't make
354                  * sense for futex operations.
355                  */
356                 if (ro) {
357                         err = -EFAULT;
358                         goto out;
359                 }
360
361                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
362                 key->private.mm = mm;
363                 key->private.address = address;
364         } else {
365                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
366                 key->shared.inode = page_head->mapping->host;
367                 key->shared.pgoff = basepage_index(page);
368         }
369
370         get_futex_key_refs(key);
371
372 out:
373         unlock_page(page_head);
374         put_page(page_head);
375         return err;
376 }
377
378 static inline void put_futex_key(union futex_key *key)
379 {
380         drop_futex_key_refs(key);
381 }
382
383 /**
384  * fault_in_user_writeable() - Fault in user address and verify RW access
385  * @uaddr:      pointer to faulting user space address
386  *
387  * Slow path to fixup the fault we just took in the atomic write
388  * access to @uaddr.
389  *
390  * We have no generic implementation of a non-destructive write to the
391  * user address. We know that we faulted in the atomic pagefault
392  * disabled section so we can as well avoid the #PF overhead by
393  * calling get_user_pages() right away.
394  */
395 static int fault_in_user_writeable(u32 __user *uaddr)
396 {
397         struct mm_struct *mm = current->mm;
398         int ret;
399
400         down_read(&mm->mmap_sem);
401         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
402                                FAULT_FLAG_WRITE);
403         up_read(&mm->mmap_sem);
404
405         return ret < 0 ? ret : 0;
406 }
407
408 /**
409  * futex_top_waiter() - Return the highest priority waiter on a futex
410  * @hb:         the hash bucket the futex_q's reside in
411  * @key:        the futex key (to distinguish it from other futex futex_q's)
412  *
413  * Must be called with the hb lock held.
414  */
415 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
416                                         union futex_key *key)
417 {
418         struct futex_q *this;
419
420         plist_for_each_entry(this, &hb->chain, list) {
421                 if (match_futex(&this->key, key))
422                         return this;
423         }
424         return NULL;
425 }
426
427 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
428                                       u32 uval, u32 newval)
429 {
430         int ret;
431
432         pagefault_disable();
433         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
434         pagefault_enable();
435
436         return ret;
437 }
438
439 static int get_futex_value_locked(u32 *dest, u32 __user *from)
440 {
441         int ret;
442
443         pagefault_disable();
444         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
445         pagefault_enable();
446
447         return ret ? -EFAULT : 0;
448 }
449
450
451 /*
452  * PI code:
453  */
454 static int refill_pi_state_cache(void)
455 {
456         struct futex_pi_state *pi_state;
457
458         if (likely(current->pi_state_cache))
459                 return 0;
460
461         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
462
463         if (!pi_state)
464                 return -ENOMEM;
465
466         INIT_LIST_HEAD(&pi_state->list);
467         /* pi_mutex gets initialized later */
468         pi_state->owner = NULL;
469         atomic_set(&pi_state->refcount, 1);
470         pi_state->key = FUTEX_KEY_INIT;
471
472         current->pi_state_cache = pi_state;
473
474         return 0;
475 }
476
477 static struct futex_pi_state * alloc_pi_state(void)
478 {
479         struct futex_pi_state *pi_state = current->pi_state_cache;
480
481         WARN_ON(!pi_state);
482         current->pi_state_cache = NULL;
483
484         return pi_state;
485 }
486
487 static void free_pi_state(struct futex_pi_state *pi_state)
488 {
489         if (!atomic_dec_and_test(&pi_state->refcount))
490                 return;
491
492         /*
493          * If pi_state->owner is NULL, the owner is most probably dying
494          * and has cleaned up the pi_state already
495          */
496         if (pi_state->owner) {
497                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
498                 list_del_init(&pi_state->list);
499                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
500
501                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
502         }
503
504         if (current->pi_state_cache)
505                 kfree(pi_state);
506         else {
507                 /*
508                  * pi_state->list is already empty.
509                  * clear pi_state->owner.
510                  * refcount is at 0 - put it back to 1.
511                  */
512                 pi_state->owner = NULL;
513                 atomic_set(&pi_state->refcount, 1);
514                 current->pi_state_cache = pi_state;
515         }
516 }
517
518 /*
519  * Look up the task based on what TID userspace gave us.
520  * We dont trust it.
521  */
522 static struct task_struct * futex_find_get_task(pid_t pid)
523 {
524         struct task_struct *p;
525
526         rcu_read_lock();
527         p = find_task_by_vpid(pid);
528         if (p)
529                 get_task_struct(p);
530
531         rcu_read_unlock();
532
533         return p;
534 }
535
536 /*
537  * This task is holding PI mutexes at exit time => bad.
538  * Kernel cleans up PI-state, but userspace is likely hosed.
539  * (Robust-futex cleanup is separate and might save the day for userspace.)
540  */
541 void exit_pi_state_list(struct task_struct *curr)
542 {
543         struct list_head *next, *head = &curr->pi_state_list;
544         struct futex_pi_state *pi_state;
545         struct futex_hash_bucket *hb;
546         union futex_key key = FUTEX_KEY_INIT;
547
548         if (!futex_cmpxchg_enabled)
549                 return;
550         /*
551          * We are a ZOMBIE and nobody can enqueue itself on
552          * pi_state_list anymore, but we have to be careful
553          * versus waiters unqueueing themselves:
554          */
555         raw_spin_lock_irq(&curr->pi_lock);
556         while (!list_empty(head)) {
557
558                 next = head->next;
559                 pi_state = list_entry(next, struct futex_pi_state, list);
560                 key = pi_state->key;
561                 hb = hash_futex(&key);
562                 raw_spin_unlock_irq(&curr->pi_lock);
563
564                 spin_lock(&hb->lock);
565
566                 raw_spin_lock_irq(&curr->pi_lock);
567                 /*
568                  * We dropped the pi-lock, so re-check whether this
569                  * task still owns the PI-state:
570                  */
571                 if (head->next != next) {
572                         spin_unlock(&hb->lock);
573                         continue;
574                 }
575
576                 WARN_ON(pi_state->owner != curr);
577                 WARN_ON(list_empty(&pi_state->list));
578                 list_del_init(&pi_state->list);
579                 pi_state->owner = NULL;
580                 raw_spin_unlock_irq(&curr->pi_lock);
581
582                 rt_mutex_unlock(&pi_state->pi_mutex);
583
584                 spin_unlock(&hb->lock);
585
586                 raw_spin_lock_irq(&curr->pi_lock);
587         }
588         raw_spin_unlock_irq(&curr->pi_lock);
589 }
590
591 static int
592 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
593                 union futex_key *key, struct futex_pi_state **ps,
594                 struct task_struct *task)
595 {
596         struct futex_pi_state *pi_state = NULL;
597         struct futex_q *this, *next;
598         struct plist_head *head;
599         struct task_struct *p;
600         pid_t pid = uval & FUTEX_TID_MASK;
601
602         head = &hb->chain;
603
604         plist_for_each_entry_safe(this, next, head, list) {
605                 if (match_futex(&this->key, key)) {
606                         /*
607                          * Another waiter already exists - bump up
608                          * the refcount and return its pi_state:
609                          */
610                         pi_state = this->pi_state;
611                         /*
612                          * Userspace might have messed up non-PI and PI futexes
613                          */
614                         if (unlikely(!pi_state))
615                                 return -EINVAL;
616
617                         WARN_ON(!atomic_read(&pi_state->refcount));
618
619                         /*
620                          * When pi_state->owner is NULL then the owner died
621                          * and another waiter is on the fly. pi_state->owner
622                          * is fixed up by the task which acquires
623                          * pi_state->rt_mutex.
624                          *
625                          * We do not check for pid == 0 which can happen when
626                          * the owner died and robust_list_exit() cleared the
627                          * TID.
628                          */
629                         if (pid && pi_state->owner) {
630                                 /*
631                                  * Bail out if user space manipulated the
632                                  * futex value.
633                                  */
634                                 if (pid != task_pid_vnr(pi_state->owner))
635                                         return -EINVAL;
636                         }
637
638                         /*
639                          * Protect against a corrupted uval. If uval
640                          * is 0x80000000 then pid is 0 and the waiter
641                          * bit is set. So the deadlock check in the
642                          * calling code has failed and we did not fall
643                          * into the check above due to !pid.
644                          */
645                         if (task && pi_state->owner == task)
646                                 return -EDEADLK;
647
648                         atomic_inc(&pi_state->refcount);
649                         *ps = pi_state;
650
651                         return 0;
652                 }
653         }
654
655         /*
656          * We are the first waiter - try to look up the real owner and attach
657          * the new pi_state to it, but bail out when TID = 0
658          */
659         if (!pid)
660                 return -ESRCH;
661         p = futex_find_get_task(pid);
662         if (!p)
663                 return -ESRCH;
664
665         if (!p->mm) {
666                 put_task_struct(p);
667                 return -EPERM;
668         }
669
670         /*
671          * We need to look at the task state flags to figure out,
672          * whether the task is exiting. To protect against the do_exit
673          * change of the task flags, we do this protected by
674          * p->pi_lock:
675          */
676         raw_spin_lock_irq(&p->pi_lock);
677         if (unlikely(p->flags & PF_EXITING)) {
678                 /*
679                  * The task is on the way out. When PF_EXITPIDONE is
680                  * set, we know that the task has finished the
681                  * cleanup:
682                  */
683                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
684
685                 raw_spin_unlock_irq(&p->pi_lock);
686                 put_task_struct(p);
687                 return ret;
688         }
689
690         pi_state = alloc_pi_state();
691
692         /*
693          * Initialize the pi_mutex in locked state and make 'p'
694          * the owner of it:
695          */
696         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
697
698         /* Store the key for possible exit cleanups: */
699         pi_state->key = *key;
700
701         WARN_ON(!list_empty(&pi_state->list));
702         list_add(&pi_state->list, &p->pi_state_list);
703         pi_state->owner = p;
704         raw_spin_unlock_irq(&p->pi_lock);
705
706         put_task_struct(p);
707
708         *ps = pi_state;
709
710         return 0;
711 }
712
713 /**
714  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
715  * @uaddr:              the pi futex user address
716  * @hb:                 the pi futex hash bucket
717  * @key:                the futex key associated with uaddr and hb
718  * @ps:                 the pi_state pointer where we store the result of the
719  *                      lookup
720  * @task:               the task to perform the atomic lock work for.  This will
721  *                      be "current" except in the case of requeue pi.
722  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
723  *
724  * Returns:
725  *  0 - ready to wait
726  *  1 - acquired the lock
727  * <0 - error
728  *
729  * The hb->lock and futex_key refs shall be held by the caller.
730  */
731 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
732                                 union futex_key *key,
733                                 struct futex_pi_state **ps,
734                                 struct task_struct *task, int set_waiters)
735 {
736         int lock_taken, ret, force_take = 0;
737         u32 uval, newval, curval, vpid = task_pid_vnr(task);
738
739 retry:
740         ret = lock_taken = 0;
741
742         /*
743          * To avoid races, we attempt to take the lock here again
744          * (by doing a 0 -> TID atomic cmpxchg), while holding all
745          * the locks. It will most likely not succeed.
746          */
747         newval = vpid;
748         if (set_waiters)
749                 newval |= FUTEX_WAITERS;
750
751         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
752                 return -EFAULT;
753
754         /*
755          * Detect deadlocks.
756          */
757         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
758                 return -EDEADLK;
759
760         /*
761          * Surprise - we got the lock, but we do not trust user space at all.
762          */
763         if (unlikely(!curval)) {
764                 /*
765                  * We verify whether there is kernel state for this
766                  * futex. If not, we can safely assume, that the 0 ->
767                  * TID transition is correct. If state exists, we do
768                  * not bother to fixup the user space state as it was
769                  * corrupted already.
770                  */
771                 return futex_top_waiter(hb, key) ? -EINVAL : 1;
772         }
773
774         uval = curval;
775
776         /*
777          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
778          * to wake at the next unlock.
779          */
780         newval = curval | FUTEX_WAITERS;
781
782         /*
783          * Should we force take the futex? See below.
784          */
785         if (unlikely(force_take)) {
786                 /*
787                  * Keep the OWNER_DIED and the WAITERS bit and set the
788                  * new TID value.
789                  */
790                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
791                 force_take = 0;
792                 lock_taken = 1;
793         }
794
795         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
796                 return -EFAULT;
797         if (unlikely(curval != uval))
798                 goto retry;
799
800         /*
801          * We took the lock due to forced take over.
802          */
803         if (unlikely(lock_taken))
804                 return 1;
805
806         /*
807          * We dont have the lock. Look up the PI state (or create it if
808          * we are the first waiter):
809          */
810         ret = lookup_pi_state(uval, hb, key, ps, task);
811
812         if (unlikely(ret)) {
813                 switch (ret) {
814                 case -ESRCH:
815                         /*
816                          * We failed to find an owner for this
817                          * futex. So we have no pi_state to block
818                          * on. This can happen in two cases:
819                          *
820                          * 1) The owner died
821                          * 2) A stale FUTEX_WAITERS bit
822                          *
823                          * Re-read the futex value.
824                          */
825                         if (get_futex_value_locked(&curval, uaddr))
826                                 return -EFAULT;
827
828                         /*
829                          * If the owner died or we have a stale
830                          * WAITERS bit the owner TID in the user space
831                          * futex is 0.
832                          */
833                         if (!(curval & FUTEX_TID_MASK)) {
834                                 force_take = 1;
835                                 goto retry;
836                         }
837                 default:
838                         break;
839                 }
840         }
841
842         return ret;
843 }
844
845 /**
846  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
847  * @q:  The futex_q to unqueue
848  *
849  * The q->lock_ptr must not be NULL and must be held by the caller.
850  */
851 static void __unqueue_futex(struct futex_q *q)
852 {
853         struct futex_hash_bucket *hb;
854
855         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
856             || WARN_ON(plist_node_empty(&q->list)))
857                 return;
858
859         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
860         plist_del(&q->list, &hb->chain);
861 }
862
863 /*
864  * The hash bucket lock must be held when this is called.
865  * Afterwards, the futex_q must not be accessed.
866  */
867 static void wake_futex(struct futex_q *q)
868 {
869         struct task_struct *p = q->task;
870
871         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
872                 return;
873
874         /*
875          * We set q->lock_ptr = NULL _before_ we wake up the task. If
876          * a non-futex wake up happens on another CPU then the task
877          * might exit and p would dereference a non-existing task
878          * struct. Prevent this by holding a reference on p across the
879          * wake up.
880          */
881         get_task_struct(p);
882
883         __unqueue_futex(q);
884         /*
885          * The waiting task can free the futex_q as soon as
886          * q->lock_ptr = NULL is written, without taking any locks. A
887          * memory barrier is required here to prevent the following
888          * store to lock_ptr from getting ahead of the plist_del.
889          */
890         smp_wmb();
891         q->lock_ptr = NULL;
892
893         wake_up_state(p, TASK_NORMAL);
894         put_task_struct(p);
895 }
896
897 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
898 {
899         struct task_struct *new_owner;
900         struct futex_pi_state *pi_state = this->pi_state;
901         u32 uninitialized_var(curval), newval;
902
903         if (!pi_state)
904                 return -EINVAL;
905
906         /*
907          * If current does not own the pi_state then the futex is
908          * inconsistent and user space fiddled with the futex value.
909          */
910         if (pi_state->owner != current)
911                 return -EINVAL;
912
913         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
914         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
915
916         /*
917          * It is possible that the next waiter (the one that brought
918          * this owner to the kernel) timed out and is no longer
919          * waiting on the lock.
920          */
921         if (!new_owner)
922                 new_owner = this->task;
923
924         /*
925          * We pass it to the next owner. (The WAITERS bit is always
926          * kept enabled while there is PI state around. We must also
927          * preserve the owner died bit.)
928          */
929         if (!(uval & FUTEX_OWNER_DIED)) {
930                 int ret = 0;
931
932                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
933
934                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
935                         ret = -EFAULT;
936                 else if (curval != uval)
937                         ret = -EINVAL;
938                 if (ret) {
939                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
940                         return ret;
941                 }
942         }
943
944         raw_spin_lock_irq(&pi_state->owner->pi_lock);
945         WARN_ON(list_empty(&pi_state->list));
946         list_del_init(&pi_state->list);
947         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
948
949         raw_spin_lock_irq(&new_owner->pi_lock);
950         WARN_ON(!list_empty(&pi_state->list));
951         list_add(&pi_state->list, &new_owner->pi_state_list);
952         pi_state->owner = new_owner;
953         raw_spin_unlock_irq(&new_owner->pi_lock);
954
955         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
956         rt_mutex_unlock(&pi_state->pi_mutex);
957
958         return 0;
959 }
960
961 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
962 {
963         u32 uninitialized_var(oldval);
964
965         /*
966          * There is no waiter, so we unlock the futex. The owner died
967          * bit has not to be preserved here. We are the owner:
968          */
969         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
970                 return -EFAULT;
971         if (oldval != uval)
972                 return -EAGAIN;
973
974         return 0;
975 }
976
977 /*
978  * Express the locking dependencies for lockdep:
979  */
980 static inline void
981 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
982 {
983         if (hb1 <= hb2) {
984                 spin_lock(&hb1->lock);
985                 if (hb1 < hb2)
986                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
987         } else { /* hb1 > hb2 */
988                 spin_lock(&hb2->lock);
989                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
990         }
991 }
992
993 static inline void
994 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
995 {
996         spin_unlock(&hb1->lock);
997         if (hb1 != hb2)
998                 spin_unlock(&hb2->lock);
999 }
1000
1001 /*
1002  * Wake up waiters matching bitset queued on this futex (uaddr).
1003  */
1004 static int
1005 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1006 {
1007         struct futex_hash_bucket *hb;
1008         struct futex_q *this, *next;
1009         struct plist_head *head;
1010         union futex_key key = FUTEX_KEY_INIT;
1011         int ret;
1012
1013         if (!bitset)
1014                 return -EINVAL;
1015
1016         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1017         if (unlikely(ret != 0))
1018                 goto out;
1019
1020         hb = hash_futex(&key);
1021         spin_lock(&hb->lock);
1022         head = &hb->chain;
1023
1024         plist_for_each_entry_safe(this, next, head, list) {
1025                 if (match_futex (&this->key, &key)) {
1026                         if (this->pi_state || this->rt_waiter) {
1027                                 ret = -EINVAL;
1028                                 break;
1029                         }
1030
1031                         /* Check if one of the bits is set in both bitsets */
1032                         if (!(this->bitset & bitset))
1033                                 continue;
1034
1035                         wake_futex(this);
1036                         if (++ret >= nr_wake)
1037                                 break;
1038                 }
1039         }
1040
1041         spin_unlock(&hb->lock);
1042         put_futex_key(&key);
1043 out:
1044         return ret;
1045 }
1046
1047 /*
1048  * Wake up all waiters hashed on the physical page that is mapped
1049  * to this virtual address:
1050  */
1051 static int
1052 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1053               int nr_wake, int nr_wake2, int op)
1054 {
1055         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1056         struct futex_hash_bucket *hb1, *hb2;
1057         struct plist_head *head;
1058         struct futex_q *this, *next;
1059         int ret, op_ret;
1060
1061 retry:
1062         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1063         if (unlikely(ret != 0))
1064                 goto out;
1065         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1066         if (unlikely(ret != 0))
1067                 goto out_put_key1;
1068
1069         hb1 = hash_futex(&key1);
1070         hb2 = hash_futex(&key2);
1071
1072 retry_private:
1073         double_lock_hb(hb1, hb2);
1074         op_ret = futex_atomic_op_inuser(op, uaddr2);
1075         if (unlikely(op_ret < 0)) {
1076
1077                 double_unlock_hb(hb1, hb2);
1078
1079 #ifndef CONFIG_MMU
1080                 /*
1081                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1082                  * but we might get them from range checking
1083                  */
1084                 ret = op_ret;
1085                 goto out_put_keys;
1086 #endif
1087
1088                 if (unlikely(op_ret != -EFAULT)) {
1089                         ret = op_ret;
1090                         goto out_put_keys;
1091                 }
1092
1093                 ret = fault_in_user_writeable(uaddr2);
1094                 if (ret)
1095                         goto out_put_keys;
1096
1097                 if (!(flags & FLAGS_SHARED))
1098                         goto retry_private;
1099
1100                 put_futex_key(&key2);
1101                 put_futex_key(&key1);
1102                 goto retry;
1103         }
1104
1105         head = &hb1->chain;
1106
1107         plist_for_each_entry_safe(this, next, head, list) {
1108                 if (match_futex (&this->key, &key1)) {
1109                         if (this->pi_state || this->rt_waiter) {
1110                                 ret = -EINVAL;
1111                                 goto out_unlock;
1112                         }
1113                         wake_futex(this);
1114                         if (++ret >= nr_wake)
1115                                 break;
1116                 }
1117         }
1118
1119         if (op_ret > 0) {
1120                 head = &hb2->chain;
1121
1122                 op_ret = 0;
1123                 plist_for_each_entry_safe(this, next, head, list) {
1124                         if (match_futex (&this->key, &key2)) {
1125                                 if (this->pi_state || this->rt_waiter) {
1126                                         ret = -EINVAL;
1127                                         goto out_unlock;
1128                                 }
1129                                 wake_futex(this);
1130                                 if (++op_ret >= nr_wake2)
1131                                         break;
1132                         }
1133                 }
1134                 ret += op_ret;
1135         }
1136
1137 out_unlock:
1138         double_unlock_hb(hb1, hb2);
1139 out_put_keys:
1140         put_futex_key(&key2);
1141 out_put_key1:
1142         put_futex_key(&key1);
1143 out:
1144         return ret;
1145 }
1146
1147 /**
1148  * requeue_futex() - Requeue a futex_q from one hb to another
1149  * @q:          the futex_q to requeue
1150  * @hb1:        the source hash_bucket
1151  * @hb2:        the target hash_bucket
1152  * @key2:       the new key for the requeued futex_q
1153  */
1154 static inline
1155 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1156                    struct futex_hash_bucket *hb2, union futex_key *key2)
1157 {
1158
1159         /*
1160          * If key1 and key2 hash to the same bucket, no need to
1161          * requeue.
1162          */
1163         if (likely(&hb1->chain != &hb2->chain)) {
1164                 plist_del(&q->list, &hb1->chain);
1165                 plist_add(&q->list, &hb2->chain);
1166                 q->lock_ptr = &hb2->lock;
1167         }
1168         get_futex_key_refs(key2);
1169         q->key = *key2;
1170 }
1171
1172 /**
1173  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1174  * @q:          the futex_q
1175  * @key:        the key of the requeue target futex
1176  * @hb:         the hash_bucket of the requeue target futex
1177  *
1178  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1179  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1180  * to the requeue target futex so the waiter can detect the wakeup on the right
1181  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1182  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1183  * to protect access to the pi_state to fixup the owner later.  Must be called
1184  * with both q->lock_ptr and hb->lock held.
1185  */
1186 static inline
1187 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1188                            struct futex_hash_bucket *hb)
1189 {
1190         get_futex_key_refs(key);
1191         q->key = *key;
1192
1193         __unqueue_futex(q);
1194
1195         WARN_ON(!q->rt_waiter);
1196         q->rt_waiter = NULL;
1197
1198         q->lock_ptr = &hb->lock;
1199
1200         wake_up_state(q->task, TASK_NORMAL);
1201 }
1202
1203 /**
1204  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1205  * @pifutex:            the user address of the to futex
1206  * @hb1:                the from futex hash bucket, must be locked by the caller
1207  * @hb2:                the to futex hash bucket, must be locked by the caller
1208  * @key1:               the from futex key
1209  * @key2:               the to futex key
1210  * @ps:                 address to store the pi_state pointer
1211  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1212  *
1213  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1214  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1215  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1216  * hb1 and hb2 must be held by the caller.
1217  *
1218  * Returns:
1219  *  0 - failed to acquire the lock atomicly
1220  * >0 - acquired the lock, return value is vpid of the top_waiter
1221  * <0 - error
1222  */
1223 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1224                                  struct futex_hash_bucket *hb1,
1225                                  struct futex_hash_bucket *hb2,
1226                                  union futex_key *key1, union futex_key *key2,
1227                                  struct futex_pi_state **ps, int set_waiters)
1228 {
1229         struct futex_q *top_waiter = NULL;
1230         u32 curval;
1231         int ret, vpid;
1232
1233         if (get_futex_value_locked(&curval, pifutex))
1234                 return -EFAULT;
1235
1236         /*
1237          * Find the top_waiter and determine if there are additional waiters.
1238          * If the caller intends to requeue more than 1 waiter to pifutex,
1239          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1240          * as we have means to handle the possible fault.  If not, don't set
1241          * the bit unecessarily as it will force the subsequent unlock to enter
1242          * the kernel.
1243          */
1244         top_waiter = futex_top_waiter(hb1, key1);
1245
1246         /* There are no waiters, nothing for us to do. */
1247         if (!top_waiter)
1248                 return 0;
1249
1250         /* Ensure we requeue to the expected futex. */
1251         if (!match_futex(top_waiter->requeue_pi_key, key2))
1252                 return -EINVAL;
1253
1254         /*
1255          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1256          * the contended case or if set_waiters is 1.  The pi_state is returned
1257          * in ps in contended cases.
1258          */
1259         vpid = task_pid_vnr(top_waiter->task);
1260         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1261                                    set_waiters);
1262         if (ret == 1) {
1263                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1264                 return vpid;
1265         }
1266         return ret;
1267 }
1268
1269 /**
1270  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1271  * @uaddr1:     source futex user address
1272  * @flags:      futex flags (FLAGS_SHARED, etc.)
1273  * @uaddr2:     target futex user address
1274  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1275  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1276  * @cmpval:     @uaddr1 expected value (or %NULL)
1277  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1278  *              pi futex (pi to pi requeue is not supported)
1279  *
1280  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1281  * uaddr2 atomically on behalf of the top waiter.
1282  *
1283  * Returns:
1284  * >=0 - on success, the number of tasks requeued or woken
1285  *  <0 - on error
1286  */
1287 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1288                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1289                          u32 *cmpval, int requeue_pi)
1290 {
1291         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1292         int drop_count = 0, task_count = 0, ret;
1293         struct futex_pi_state *pi_state = NULL;
1294         struct futex_hash_bucket *hb1, *hb2;
1295         struct plist_head *head1;
1296         struct futex_q *this, *next;
1297
1298         if (requeue_pi) {
1299                 /*
1300                  * Requeue PI only works on two distinct uaddrs. This
1301                  * check is only valid for private futexes. See below.
1302                  */
1303                 if (uaddr1 == uaddr2)
1304                         return -EINVAL;
1305
1306                 /*
1307                  * requeue_pi requires a pi_state, try to allocate it now
1308                  * without any locks in case it fails.
1309                  */
1310                 if (refill_pi_state_cache())
1311                         return -ENOMEM;
1312                 /*
1313                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1314                  * + nr_requeue, since it acquires the rt_mutex prior to
1315                  * returning to userspace, so as to not leave the rt_mutex with
1316                  * waiters and no owner.  However, second and third wake-ups
1317                  * cannot be predicted as they involve race conditions with the
1318                  * first wake and a fault while looking up the pi_state.  Both
1319                  * pthread_cond_signal() and pthread_cond_broadcast() should
1320                  * use nr_wake=1.
1321                  */
1322                 if (nr_wake != 1)
1323                         return -EINVAL;
1324         }
1325
1326 retry:
1327         if (pi_state != NULL) {
1328                 /*
1329                  * We will have to lookup the pi_state again, so free this one
1330                  * to keep the accounting correct.
1331                  */
1332                 free_pi_state(pi_state);
1333                 pi_state = NULL;
1334         }
1335
1336         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1337         if (unlikely(ret != 0))
1338                 goto out;
1339         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1340                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1341         if (unlikely(ret != 0))
1342                 goto out_put_key1;
1343
1344         /*
1345          * The check above which compares uaddrs is not sufficient for
1346          * shared futexes. We need to compare the keys:
1347          */
1348         if (requeue_pi && match_futex(&key1, &key2)) {
1349                 ret = -EINVAL;
1350                 goto out_put_keys;
1351         }
1352
1353         hb1 = hash_futex(&key1);
1354         hb2 = hash_futex(&key2);
1355
1356 retry_private:
1357         double_lock_hb(hb1, hb2);
1358
1359         if (likely(cmpval != NULL)) {
1360                 u32 curval;
1361
1362                 ret = get_futex_value_locked(&curval, uaddr1);
1363
1364                 if (unlikely(ret)) {
1365                         double_unlock_hb(hb1, hb2);
1366
1367                         ret = get_user(curval, uaddr1);
1368                         if (ret)
1369                                 goto out_put_keys;
1370
1371                         if (!(flags & FLAGS_SHARED))
1372                                 goto retry_private;
1373
1374                         put_futex_key(&key2);
1375                         put_futex_key(&key1);
1376                         goto retry;
1377                 }
1378                 if (curval != *cmpval) {
1379                         ret = -EAGAIN;
1380                         goto out_unlock;
1381                 }
1382         }
1383
1384         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1385                 /*
1386                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1387                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1388                  * bit.  We force this here where we are able to easily handle
1389                  * faults rather in the requeue loop below.
1390                  */
1391                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1392                                                  &key2, &pi_state, nr_requeue);
1393
1394                 /*
1395                  * At this point the top_waiter has either taken uaddr2 or is
1396                  * waiting on it.  If the former, then the pi_state will not
1397                  * exist yet, look it up one more time to ensure we have a
1398                  * reference to it. If the lock was taken, ret contains the
1399                  * vpid of the top waiter task.
1400                  */
1401                 if (ret > 0) {
1402                         WARN_ON(pi_state);
1403                         drop_count++;
1404                         task_count++;
1405                         /*
1406                          * If we acquired the lock, then the user
1407                          * space value of uaddr2 should be vpid. It
1408                          * cannot be changed by the top waiter as it
1409                          * is blocked on hb2 lock if it tries to do
1410                          * so. If something fiddled with it behind our
1411                          * back the pi state lookup might unearth
1412                          * it. So we rather use the known value than
1413                          * rereading and handing potential crap to
1414                          * lookup_pi_state.
1415                          */
1416                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1417                 }
1418
1419                 switch (ret) {
1420                 case 0:
1421                         break;
1422                 case -EFAULT:
1423                         double_unlock_hb(hb1, hb2);
1424                         put_futex_key(&key2);
1425                         put_futex_key(&key1);
1426                         ret = fault_in_user_writeable(uaddr2);
1427                         if (!ret)
1428                                 goto retry;
1429                         goto out;
1430                 case -EAGAIN:
1431                         /* The owner was exiting, try again. */
1432                         double_unlock_hb(hb1, hb2);
1433                         put_futex_key(&key2);
1434                         put_futex_key(&key1);
1435                         cond_resched();
1436                         goto retry;
1437                 default:
1438                         goto out_unlock;
1439                 }
1440         }
1441
1442         head1 = &hb1->chain;
1443         plist_for_each_entry_safe(this, next, head1, list) {
1444                 if (task_count - nr_wake >= nr_requeue)
1445                         break;
1446
1447                 if (!match_futex(&this->key, &key1))
1448                         continue;
1449
1450                 /*
1451                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1452                  * be paired with each other and no other futex ops.
1453                  *
1454                  * We should never be requeueing a futex_q with a pi_state,
1455                  * which is awaiting a futex_unlock_pi().
1456                  */
1457                 if ((requeue_pi && !this->rt_waiter) ||
1458                     (!requeue_pi && this->rt_waiter) ||
1459                     this->pi_state) {
1460                         ret = -EINVAL;
1461                         break;
1462                 }
1463
1464                 /*
1465                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1466                  * lock, we already woke the top_waiter.  If not, it will be
1467                  * woken by futex_unlock_pi().
1468                  */
1469                 if (++task_count <= nr_wake && !requeue_pi) {
1470                         wake_futex(this);
1471                         continue;
1472                 }
1473
1474                 /* Ensure we requeue to the expected futex for requeue_pi. */
1475                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1476                         ret = -EINVAL;
1477                         break;
1478                 }
1479
1480                 /*
1481                  * Requeue nr_requeue waiters and possibly one more in the case
1482                  * of requeue_pi if we couldn't acquire the lock atomically.
1483                  */
1484                 if (requeue_pi) {
1485                         /* Prepare the waiter to take the rt_mutex. */
1486                         atomic_inc(&pi_state->refcount);
1487                         this->pi_state = pi_state;
1488                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1489                                                         this->rt_waiter,
1490                                                         this->task, 1);
1491                         if (ret == 1) {
1492                                 /* We got the lock. */
1493                                 requeue_pi_wake_futex(this, &key2, hb2);
1494                                 drop_count++;
1495                                 continue;
1496                         } else if (ret) {
1497                                 /* -EDEADLK */
1498                                 this->pi_state = NULL;
1499                                 free_pi_state(pi_state);
1500                                 goto out_unlock;
1501                         }
1502                 }
1503                 requeue_futex(this, hb1, hb2, &key2);
1504                 drop_count++;
1505         }
1506
1507 out_unlock:
1508         double_unlock_hb(hb1, hb2);
1509
1510         /*
1511          * drop_futex_key_refs() must be called outside the spinlocks. During
1512          * the requeue we moved futex_q's from the hash bucket at key1 to the
1513          * one at key2 and updated their key pointer.  We no longer need to
1514          * hold the references to key1.
1515          */
1516         while (--drop_count >= 0)
1517                 drop_futex_key_refs(&key1);
1518
1519 out_put_keys:
1520         put_futex_key(&key2);
1521 out_put_key1:
1522         put_futex_key(&key1);
1523 out:
1524         if (pi_state != NULL)
1525                 free_pi_state(pi_state);
1526         return ret ? ret : task_count;
1527 }
1528
1529 /* The key must be already stored in q->key. */
1530 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1531         __acquires(&hb->lock)
1532 {
1533         struct futex_hash_bucket *hb;
1534
1535         hb = hash_futex(&q->key);
1536         q->lock_ptr = &hb->lock;
1537
1538         spin_lock(&hb->lock);
1539         return hb;
1540 }
1541
1542 static inline void
1543 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1544         __releases(&hb->lock)
1545 {
1546         spin_unlock(&hb->lock);
1547 }
1548
1549 /**
1550  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1551  * @q:  The futex_q to enqueue
1552  * @hb: The destination hash bucket
1553  *
1554  * The hb->lock must be held by the caller, and is released here. A call to
1555  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1556  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1557  * or nothing if the unqueue is done as part of the wake process and the unqueue
1558  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1559  * an example).
1560  */
1561 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1562         __releases(&hb->lock)
1563 {
1564         int prio;
1565
1566         /*
1567          * The priority used to register this element is
1568          * - either the real thread-priority for the real-time threads
1569          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1570          * - or MAX_RT_PRIO for non-RT threads.
1571          * Thus, all RT-threads are woken first in priority order, and
1572          * the others are woken last, in FIFO order.
1573          */
1574         prio = min(current->normal_prio, MAX_RT_PRIO);
1575
1576         plist_node_init(&q->list, prio);
1577         plist_add(&q->list, &hb->chain);
1578         q->task = current;
1579         spin_unlock(&hb->lock);
1580 }
1581
1582 /**
1583  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1584  * @q:  The futex_q to unqueue
1585  *
1586  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1587  * be paired with exactly one earlier call to queue_me().
1588  *
1589  * Returns:
1590  *   1 - if the futex_q was still queued (and we removed unqueued it)
1591  *   0 - if the futex_q was already removed by the waking thread
1592  */
1593 static int unqueue_me(struct futex_q *q)
1594 {
1595         spinlock_t *lock_ptr;
1596         int ret = 0;
1597
1598         /* In the common case we don't take the spinlock, which is nice. */
1599 retry:
1600         lock_ptr = q->lock_ptr;
1601         barrier();
1602         if (lock_ptr != NULL) {
1603                 spin_lock(lock_ptr);
1604                 /*
1605                  * q->lock_ptr can change between reading it and
1606                  * spin_lock(), causing us to take the wrong lock.  This
1607                  * corrects the race condition.
1608                  *
1609                  * Reasoning goes like this: if we have the wrong lock,
1610                  * q->lock_ptr must have changed (maybe several times)
1611                  * between reading it and the spin_lock().  It can
1612                  * change again after the spin_lock() but only if it was
1613                  * already changed before the spin_lock().  It cannot,
1614                  * however, change back to the original value.  Therefore
1615                  * we can detect whether we acquired the correct lock.
1616                  */
1617                 if (unlikely(lock_ptr != q->lock_ptr)) {
1618                         spin_unlock(lock_ptr);
1619                         goto retry;
1620                 }
1621                 __unqueue_futex(q);
1622
1623                 BUG_ON(q->pi_state);
1624
1625                 spin_unlock(lock_ptr);
1626                 ret = 1;
1627         }
1628
1629         drop_futex_key_refs(&q->key);
1630         return ret;
1631 }
1632
1633 /*
1634  * PI futexes can not be requeued and must remove themself from the
1635  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1636  * and dropped here.
1637  */
1638 static void unqueue_me_pi(struct futex_q *q)
1639         __releases(q->lock_ptr)
1640 {
1641         __unqueue_futex(q);
1642
1643         BUG_ON(!q->pi_state);
1644         free_pi_state(q->pi_state);
1645         q->pi_state = NULL;
1646
1647         spin_unlock(q->lock_ptr);
1648 }
1649
1650 /*
1651  * Fixup the pi_state owner with the new owner.
1652  *
1653  * Must be called with hash bucket lock held and mm->sem held for non
1654  * private futexes.
1655  */
1656 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1657                                 struct task_struct *newowner)
1658 {
1659         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1660         struct futex_pi_state *pi_state = q->pi_state;
1661         struct task_struct *oldowner = pi_state->owner;
1662         u32 uval, uninitialized_var(curval), newval;
1663         int ret;
1664
1665         /* Owner died? */
1666         if (!pi_state->owner)
1667                 newtid |= FUTEX_OWNER_DIED;
1668
1669         /*
1670          * We are here either because we stole the rtmutex from the
1671          * previous highest priority waiter or we are the highest priority
1672          * waiter but failed to get the rtmutex the first time.
1673          * We have to replace the newowner TID in the user space variable.
1674          * This must be atomic as we have to preserve the owner died bit here.
1675          *
1676          * Note: We write the user space value _before_ changing the pi_state
1677          * because we can fault here. Imagine swapped out pages or a fork
1678          * that marked all the anonymous memory readonly for cow.
1679          *
1680          * Modifying pi_state _before_ the user space value would
1681          * leave the pi_state in an inconsistent state when we fault
1682          * here, because we need to drop the hash bucket lock to
1683          * handle the fault. This might be observed in the PID check
1684          * in lookup_pi_state.
1685          */
1686 retry:
1687         if (get_futex_value_locked(&uval, uaddr))
1688                 goto handle_fault;
1689
1690         while (1) {
1691                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1692
1693                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1694                         goto handle_fault;
1695                 if (curval == uval)
1696                         break;
1697                 uval = curval;
1698         }
1699
1700         /*
1701          * We fixed up user space. Now we need to fix the pi_state
1702          * itself.
1703          */
1704         if (pi_state->owner != NULL) {
1705                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1706                 WARN_ON(list_empty(&pi_state->list));
1707                 list_del_init(&pi_state->list);
1708                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1709         }
1710
1711         pi_state->owner = newowner;
1712
1713         raw_spin_lock_irq(&newowner->pi_lock);
1714         WARN_ON(!list_empty(&pi_state->list));
1715         list_add(&pi_state->list, &newowner->pi_state_list);
1716         raw_spin_unlock_irq(&newowner->pi_lock);
1717         return 0;
1718
1719         /*
1720          * To handle the page fault we need to drop the hash bucket
1721          * lock here. That gives the other task (either the highest priority
1722          * waiter itself or the task which stole the rtmutex) the
1723          * chance to try the fixup of the pi_state. So once we are
1724          * back from handling the fault we need to check the pi_state
1725          * after reacquiring the hash bucket lock and before trying to
1726          * do another fixup. When the fixup has been done already we
1727          * simply return.
1728          */
1729 handle_fault:
1730         spin_unlock(q->lock_ptr);
1731
1732         ret = fault_in_user_writeable(uaddr);
1733
1734         spin_lock(q->lock_ptr);
1735
1736         /*
1737          * Check if someone else fixed it for us:
1738          */
1739         if (pi_state->owner != oldowner)
1740                 return 0;
1741
1742         if (ret)
1743                 return ret;
1744
1745         goto retry;
1746 }
1747
1748 static long futex_wait_restart(struct restart_block *restart);
1749
1750 /**
1751  * fixup_owner() - Post lock pi_state and corner case management
1752  * @uaddr:      user address of the futex
1753  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1754  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1755  *
1756  * After attempting to lock an rt_mutex, this function is called to cleanup
1757  * the pi_state owner as well as handle race conditions that may allow us to
1758  * acquire the lock. Must be called with the hb lock held.
1759  *
1760  * Returns:
1761  *  1 - success, lock taken
1762  *  0 - success, lock not taken
1763  * <0 - on error (-EFAULT)
1764  */
1765 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1766 {
1767         struct task_struct *owner;
1768         int ret = 0;
1769
1770         if (locked) {
1771                 /*
1772                  * Got the lock. We might not be the anticipated owner if we
1773                  * did a lock-steal - fix up the PI-state in that case:
1774                  */
1775                 if (q->pi_state->owner != current)
1776                         ret = fixup_pi_state_owner(uaddr, q, current);
1777                 goto out;
1778         }
1779
1780         /*
1781          * Catch the rare case, where the lock was released when we were on the
1782          * way back before we locked the hash bucket.
1783          */
1784         if (q->pi_state->owner == current) {
1785                 /*
1786                  * Try to get the rt_mutex now. This might fail as some other
1787                  * task acquired the rt_mutex after we removed ourself from the
1788                  * rt_mutex waiters list.
1789                  */
1790                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1791                         locked = 1;
1792                         goto out;
1793                 }
1794
1795                 /*
1796                  * pi_state is incorrect, some other task did a lock steal and
1797                  * we returned due to timeout or signal without taking the
1798                  * rt_mutex. Too late.
1799                  */
1800                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1801                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1802                 if (!owner)
1803                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1804                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1805                 ret = fixup_pi_state_owner(uaddr, q, owner);
1806                 goto out;
1807         }
1808
1809         /*
1810          * Paranoia check. If we did not take the lock, then we should not be
1811          * the owner of the rt_mutex.
1812          */
1813         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1814                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1815                                 "pi-state %p\n", ret,
1816                                 q->pi_state->pi_mutex.owner,
1817                                 q->pi_state->owner);
1818
1819 out:
1820         return ret ? ret : locked;
1821 }
1822
1823 /**
1824  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1825  * @hb:         the futex hash bucket, must be locked by the caller
1826  * @q:          the futex_q to queue up on
1827  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1828  */
1829 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1830                                 struct hrtimer_sleeper *timeout)
1831 {
1832         /*
1833          * The task state is guaranteed to be set before another task can
1834          * wake it. set_current_state() is implemented using set_mb() and
1835          * queue_me() calls spin_unlock() upon completion, both serializing
1836          * access to the hash list and forcing another memory barrier.
1837          */
1838         set_current_state(TASK_INTERRUPTIBLE);
1839         queue_me(q, hb);
1840
1841         /* Arm the timer */
1842         if (timeout) {
1843                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1844                 if (!hrtimer_active(&timeout->timer))
1845                         timeout->task = NULL;
1846         }
1847
1848         /*
1849          * If we have been removed from the hash list, then another task
1850          * has tried to wake us, and we can skip the call to schedule().
1851          */
1852         if (likely(!plist_node_empty(&q->list))) {
1853                 /*
1854                  * If the timer has already expired, current will already be
1855                  * flagged for rescheduling. Only call schedule if there
1856                  * is no timeout, or if it has yet to expire.
1857                  */
1858                 if (!timeout || timeout->task)
1859                         schedule();
1860         }
1861         __set_current_state(TASK_RUNNING);
1862 }
1863
1864 /**
1865  * futex_wait_setup() - Prepare to wait on a futex
1866  * @uaddr:      the futex userspace address
1867  * @val:        the expected value
1868  * @flags:      futex flags (FLAGS_SHARED, etc.)
1869  * @q:          the associated futex_q
1870  * @hb:         storage for hash_bucket pointer to be returned to caller
1871  *
1872  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1873  * compare it with the expected value.  Handle atomic faults internally.
1874  * Return with the hb lock held and a q.key reference on success, and unlocked
1875  * with no q.key reference on failure.
1876  *
1877  * Returns:
1878  *  0 - uaddr contains val and hb has been locked
1879  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1880  */
1881 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1882                            struct futex_q *q, struct futex_hash_bucket **hb)
1883 {
1884         u32 uval;
1885         int ret;
1886
1887         /*
1888          * Access the page AFTER the hash-bucket is locked.
1889          * Order is important:
1890          *
1891          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1892          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1893          *
1894          * The basic logical guarantee of a futex is that it blocks ONLY
1895          * if cond(var) is known to be true at the time of blocking, for
1896          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1897          * would open a race condition where we could block indefinitely with
1898          * cond(var) false, which would violate the guarantee.
1899          *
1900          * On the other hand, we insert q and release the hash-bucket only
1901          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1902          * absorb a wakeup if *uaddr does not match the desired values
1903          * while the syscall executes.
1904          */
1905 retry:
1906         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1907         if (unlikely(ret != 0))
1908                 return ret;
1909
1910 retry_private:
1911         *hb = queue_lock(q);
1912
1913         ret = get_futex_value_locked(&uval, uaddr);
1914
1915         if (ret) {
1916                 queue_unlock(q, *hb);
1917
1918                 ret = get_user(uval, uaddr);
1919                 if (ret)
1920                         goto out;
1921
1922                 if (!(flags & FLAGS_SHARED))
1923                         goto retry_private;
1924
1925                 put_futex_key(&q->key);
1926                 goto retry;
1927         }
1928
1929         if (uval != val) {
1930                 queue_unlock(q, *hb);
1931                 ret = -EWOULDBLOCK;
1932         }
1933
1934 out:
1935         if (ret)
1936                 put_futex_key(&q->key);
1937         return ret;
1938 }
1939
1940 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1941                       ktime_t *abs_time, u32 bitset)
1942 {
1943         struct hrtimer_sleeper timeout, *to = NULL;
1944         struct restart_block *restart;
1945         struct futex_hash_bucket *hb;
1946         struct futex_q q = futex_q_init;
1947         int ret;
1948
1949         if (!bitset)
1950                 return -EINVAL;
1951         q.bitset = bitset;
1952
1953         if (abs_time) {
1954                 to = &timeout;
1955
1956                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1957                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
1958                                       HRTIMER_MODE_ABS);
1959                 hrtimer_init_sleeper(to, current);
1960                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1961                                              current->timer_slack_ns);
1962         }
1963
1964 retry:
1965         /*
1966          * Prepare to wait on uaddr. On success, holds hb lock and increments
1967          * q.key refs.
1968          */
1969         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1970         if (ret)
1971                 goto out;
1972
1973         /* queue_me and wait for wakeup, timeout, or a signal. */
1974         futex_wait_queue_me(hb, &q, to);
1975
1976         /* If we were woken (and unqueued), we succeeded, whatever. */
1977         ret = 0;
1978         /* unqueue_me() drops q.key ref */
1979         if (!unqueue_me(&q))
1980                 goto out;
1981         ret = -ETIMEDOUT;
1982         if (to && !to->task)
1983                 goto out;
1984
1985         /*
1986          * We expect signal_pending(current), but we might be the
1987          * victim of a spurious wakeup as well.
1988          */
1989         if (!signal_pending(current))
1990                 goto retry;
1991
1992         ret = -ERESTARTSYS;
1993         if (!abs_time)
1994                 goto out;
1995
1996         restart = &current_thread_info()->restart_block;
1997         restart->fn = futex_wait_restart;
1998         restart->futex.uaddr = uaddr;
1999         restart->futex.val = val;
2000         restart->futex.time = abs_time->tv64;
2001         restart->futex.bitset = bitset;
2002         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2003
2004         ret = -ERESTART_RESTARTBLOCK;
2005
2006 out:
2007         if (to) {
2008                 hrtimer_cancel(&to->timer);
2009                 destroy_hrtimer_on_stack(&to->timer);
2010         }
2011         return ret;
2012 }
2013
2014
2015 static long futex_wait_restart(struct restart_block *restart)
2016 {
2017         u32 __user *uaddr = restart->futex.uaddr;
2018         ktime_t t, *tp = NULL;
2019
2020         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2021                 t.tv64 = restart->futex.time;
2022                 tp = &t;
2023         }
2024         restart->fn = do_no_restart_syscall;
2025
2026         return (long)futex_wait(uaddr, restart->futex.flags,
2027                                 restart->futex.val, tp, restart->futex.bitset);
2028 }
2029
2030
2031 /*
2032  * Userspace tried a 0 -> TID atomic transition of the futex value
2033  * and failed. The kernel side here does the whole locking operation:
2034  * if there are waiters then it will block, it does PI, etc. (Due to
2035  * races the kernel might see a 0 value of the futex too.)
2036  */
2037 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2038                          ktime_t *time, int trylock)
2039 {
2040         struct hrtimer_sleeper timeout, *to = NULL;
2041         struct futex_hash_bucket *hb;
2042         struct futex_q q = futex_q_init;
2043         int res, ret;
2044
2045         if (refill_pi_state_cache())
2046                 return -ENOMEM;
2047
2048         if (time) {
2049                 to = &timeout;
2050                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2051                                       HRTIMER_MODE_ABS);
2052                 hrtimer_init_sleeper(to, current);
2053                 hrtimer_set_expires(&to->timer, *time);
2054         }
2055
2056 retry:
2057         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2058         if (unlikely(ret != 0))
2059                 goto out;
2060
2061 retry_private:
2062         hb = queue_lock(&q);
2063
2064         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2065         if (unlikely(ret)) {
2066                 switch (ret) {
2067                 case 1:
2068                         /* We got the lock. */
2069                         ret = 0;
2070                         goto out_unlock_put_key;
2071                 case -EFAULT:
2072                         goto uaddr_faulted;
2073                 case -EAGAIN:
2074                         /*
2075                          * Task is exiting and we just wait for the
2076                          * exit to complete.
2077                          */
2078                         queue_unlock(&q, hb);
2079                         put_futex_key(&q.key);
2080                         cond_resched();
2081                         goto retry;
2082                 default:
2083                         goto out_unlock_put_key;
2084                 }
2085         }
2086
2087         /*
2088          * Only actually queue now that the atomic ops are done:
2089          */
2090         queue_me(&q, hb);
2091
2092         WARN_ON(!q.pi_state);
2093         /*
2094          * Block on the PI mutex:
2095          */
2096         if (!trylock)
2097                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2098         else {
2099                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2100                 /* Fixup the trylock return value: */
2101                 ret = ret ? 0 : -EWOULDBLOCK;
2102         }
2103
2104         spin_lock(q.lock_ptr);
2105         /*
2106          * Fixup the pi_state owner and possibly acquire the lock if we
2107          * haven't already.
2108          */
2109         res = fixup_owner(uaddr, &q, !ret);
2110         /*
2111          * If fixup_owner() returned an error, proprogate that.  If it acquired
2112          * the lock, clear our -ETIMEDOUT or -EINTR.
2113          */
2114         if (res)
2115                 ret = (res < 0) ? res : 0;
2116
2117         /*
2118          * If fixup_owner() faulted and was unable to handle the fault, unlock
2119          * it and return the fault to userspace.
2120          */
2121         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2122                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2123
2124         /* Unqueue and drop the lock */
2125         unqueue_me_pi(&q);
2126
2127         goto out_put_key;
2128
2129 out_unlock_put_key:
2130         queue_unlock(&q, hb);
2131
2132 out_put_key:
2133         put_futex_key(&q.key);
2134 out:
2135         if (to)
2136                 destroy_hrtimer_on_stack(&to->timer);
2137         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2138
2139 uaddr_faulted:
2140         queue_unlock(&q, hb);
2141
2142         ret = fault_in_user_writeable(uaddr);
2143         if (ret)
2144                 goto out_put_key;
2145
2146         if (!(flags & FLAGS_SHARED))
2147                 goto retry_private;
2148
2149         put_futex_key(&q.key);
2150         goto retry;
2151 }
2152
2153 /*
2154  * Userspace attempted a TID -> 0 atomic transition, and failed.
2155  * This is the in-kernel slowpath: we look up the PI state (if any),
2156  * and do the rt-mutex unlock.
2157  */
2158 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2159 {
2160         struct futex_hash_bucket *hb;
2161         struct futex_q *this, *next;
2162         struct plist_head *head;
2163         union futex_key key = FUTEX_KEY_INIT;
2164         u32 uval, vpid = task_pid_vnr(current);
2165         int ret;
2166
2167 retry:
2168         if (get_user(uval, uaddr))
2169                 return -EFAULT;
2170         /*
2171          * We release only a lock we actually own:
2172          */
2173         if ((uval & FUTEX_TID_MASK) != vpid)
2174                 return -EPERM;
2175
2176         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2177         if (unlikely(ret != 0))
2178                 goto out;
2179
2180         hb = hash_futex(&key);
2181         spin_lock(&hb->lock);
2182
2183         /*
2184          * To avoid races, try to do the TID -> 0 atomic transition
2185          * again. If it succeeds then we can return without waking
2186          * anyone else up:
2187          */
2188         if (!(uval & FUTEX_OWNER_DIED) &&
2189             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2190                 goto pi_faulted;
2191         /*
2192          * Rare case: we managed to release the lock atomically,
2193          * no need to wake anyone else up:
2194          */
2195         if (unlikely(uval == vpid))
2196                 goto out_unlock;
2197
2198         /*
2199          * Ok, other tasks may need to be woken up - check waiters
2200          * and do the wakeup if necessary:
2201          */
2202         head = &hb->chain;
2203
2204         plist_for_each_entry_safe(this, next, head, list) {
2205                 if (!match_futex (&this->key, &key))
2206                         continue;
2207                 ret = wake_futex_pi(uaddr, uval, this);
2208                 /*
2209                  * The atomic access to the futex value
2210                  * generated a pagefault, so retry the
2211                  * user-access and the wakeup:
2212                  */
2213                 if (ret == -EFAULT)
2214                         goto pi_faulted;
2215                 goto out_unlock;
2216         }
2217         /*
2218          * No waiters - kernel unlocks the futex:
2219          */
2220         if (!(uval & FUTEX_OWNER_DIED)) {
2221                 ret = unlock_futex_pi(uaddr, uval);
2222                 if (ret == -EFAULT)
2223                         goto pi_faulted;
2224         }
2225
2226 out_unlock:
2227         spin_unlock(&hb->lock);
2228         put_futex_key(&key);
2229
2230 out:
2231         return ret;
2232
2233 pi_faulted:
2234         spin_unlock(&hb->lock);
2235         put_futex_key(&key);
2236
2237         ret = fault_in_user_writeable(uaddr);
2238         if (!ret)
2239                 goto retry;
2240
2241         return ret;
2242 }
2243
2244 /**
2245  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2246  * @hb:         the hash_bucket futex_q was original enqueued on
2247  * @q:          the futex_q woken while waiting to be requeued
2248  * @key2:       the futex_key of the requeue target futex
2249  * @timeout:    the timeout associated with the wait (NULL if none)
2250  *
2251  * Detect if the task was woken on the initial futex as opposed to the requeue
2252  * target futex.  If so, determine if it was a timeout or a signal that caused
2253  * the wakeup and return the appropriate error code to the caller.  Must be
2254  * called with the hb lock held.
2255  *
2256  * Returns
2257  *  0 - no early wakeup detected
2258  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2259  */
2260 static inline
2261 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2262                                    struct futex_q *q, union futex_key *key2,
2263                                    struct hrtimer_sleeper *timeout)
2264 {
2265         int ret = 0;
2266
2267         /*
2268          * With the hb lock held, we avoid races while we process the wakeup.
2269          * We only need to hold hb (and not hb2) to ensure atomicity as the
2270          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2271          * It can't be requeued from uaddr2 to something else since we don't
2272          * support a PI aware source futex for requeue.
2273          */
2274         if (!match_futex(&q->key, key2)) {
2275                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2276                 /*
2277                  * We were woken prior to requeue by a timeout or a signal.
2278                  * Unqueue the futex_q and determine which it was.
2279                  */
2280                 plist_del(&q->list, &hb->chain);
2281
2282                 /* Handle spurious wakeups gracefully */
2283                 ret = -EWOULDBLOCK;
2284                 if (timeout && !timeout->task)
2285                         ret = -ETIMEDOUT;
2286                 else if (signal_pending(current))
2287                         ret = -ERESTARTNOINTR;
2288         }
2289         return ret;
2290 }
2291
2292 /**
2293  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2294  * @uaddr:      the futex we initially wait on (non-pi)
2295  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2296  *              the same type, no requeueing from private to shared, etc.
2297  * @val:        the expected value of uaddr
2298  * @abs_time:   absolute timeout
2299  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2300  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2301  * @uaddr2:     the pi futex we will take prior to returning to user-space
2302  *
2303  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2304  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2305  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2306  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2307  * without one, the pi logic would not know which task to boost/deboost, if
2308  * there was a need to.
2309  *
2310  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2311  * via the following:
2312  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2313  * 2) wakeup on uaddr2 after a requeue
2314  * 3) signal
2315  * 4) timeout
2316  *
2317  * If 3, cleanup and return -ERESTARTNOINTR.
2318  *
2319  * If 2, we may then block on trying to take the rt_mutex and return via:
2320  * 5) successful lock
2321  * 6) signal
2322  * 7) timeout
2323  * 8) other lock acquisition failure
2324  *
2325  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2326  *
2327  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2328  *
2329  * Returns:
2330  *  0 - On success
2331  * <0 - On error
2332  */
2333 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2334                                  u32 val, ktime_t *abs_time, u32 bitset,
2335                                  u32 __user *uaddr2)
2336 {
2337         struct hrtimer_sleeper timeout, *to = NULL;
2338         struct rt_mutex_waiter rt_waiter;
2339         struct rt_mutex *pi_mutex = NULL;
2340         struct futex_hash_bucket *hb;
2341         union futex_key key2 = FUTEX_KEY_INIT;
2342         struct futex_q q = futex_q_init;
2343         int res, ret;
2344
2345         if (uaddr == uaddr2)
2346                 return -EINVAL;
2347
2348         if (!bitset)
2349                 return -EINVAL;
2350
2351         if (abs_time) {
2352                 to = &timeout;
2353                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2354                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2355                                       HRTIMER_MODE_ABS);
2356                 hrtimer_init_sleeper(to, current);
2357                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2358                                              current->timer_slack_ns);
2359         }
2360
2361         /*
2362          * The waiter is allocated on our stack, manipulated by the requeue
2363          * code while we sleep on uaddr.
2364          */
2365         debug_rt_mutex_init_waiter(&rt_waiter);
2366         rt_waiter.task = NULL;
2367
2368         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2369         if (unlikely(ret != 0))
2370                 goto out;
2371
2372         q.bitset = bitset;
2373         q.rt_waiter = &rt_waiter;
2374         q.requeue_pi_key = &key2;
2375
2376         /*
2377          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2378          * count.
2379          */
2380         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2381         if (ret)
2382                 goto out_key2;
2383
2384         /*
2385          * The check above which compares uaddrs is not sufficient for
2386          * shared futexes. We need to compare the keys:
2387          */
2388         if (match_futex(&q.key, &key2)) {
2389                 ret = -EINVAL;
2390                 goto out_put_keys;
2391         }
2392
2393         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2394         futex_wait_queue_me(hb, &q, to);
2395
2396         spin_lock(&hb->lock);
2397         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2398         spin_unlock(&hb->lock);
2399         if (ret)
2400                 goto out_put_keys;
2401
2402         /*
2403          * In order for us to be here, we know our q.key == key2, and since
2404          * we took the hb->lock above, we also know that futex_requeue() has
2405          * completed and we no longer have to concern ourselves with a wakeup
2406          * race with the atomic proxy lock acquisition by the requeue code. The
2407          * futex_requeue dropped our key1 reference and incremented our key2
2408          * reference count.
2409          */
2410
2411         /* Check if the requeue code acquired the second futex for us. */
2412         if (!q.rt_waiter) {
2413                 /*
2414                  * Got the lock. We might not be the anticipated owner if we
2415                  * did a lock-steal - fix up the PI-state in that case.
2416                  */
2417                 if (q.pi_state && (q.pi_state->owner != current)) {
2418                         spin_lock(q.lock_ptr);
2419                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2420                         spin_unlock(q.lock_ptr);
2421                 }
2422         } else {
2423                 /*
2424                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2425                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2426                  * the pi_state.
2427                  */
2428                 WARN_ON(!q.pi_state);
2429                 pi_mutex = &q.pi_state->pi_mutex;
2430                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2431                 debug_rt_mutex_free_waiter(&rt_waiter);
2432
2433                 spin_lock(q.lock_ptr);
2434                 /*
2435                  * Fixup the pi_state owner and possibly acquire the lock if we
2436                  * haven't already.
2437                  */
2438                 res = fixup_owner(uaddr2, &q, !ret);
2439                 /*
2440                  * If fixup_owner() returned an error, proprogate that.  If it
2441                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2442                  */
2443                 if (res)
2444                         ret = (res < 0) ? res : 0;
2445
2446                 /* Unqueue and drop the lock. */
2447                 unqueue_me_pi(&q);
2448         }
2449
2450         /*
2451          * If fixup_pi_state_owner() faulted and was unable to handle the
2452          * fault, unlock the rt_mutex and return the fault to userspace.
2453          */
2454         if (ret == -EFAULT) {
2455                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2456                         rt_mutex_unlock(pi_mutex);
2457         } else if (ret == -EINTR) {
2458                 /*
2459                  * We've already been requeued, but cannot restart by calling
2460                  * futex_lock_pi() directly. We could restart this syscall, but
2461                  * it would detect that the user space "val" changed and return
2462                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2463                  * -EWOULDBLOCK directly.
2464                  */
2465                 ret = -EWOULDBLOCK;
2466         }
2467
2468 out_put_keys:
2469         put_futex_key(&q.key);
2470 out_key2:
2471         put_futex_key(&key2);
2472
2473 out:
2474         if (to) {
2475                 hrtimer_cancel(&to->timer);
2476                 destroy_hrtimer_on_stack(&to->timer);
2477         }
2478         return ret;
2479 }
2480
2481 /*
2482  * Support for robust futexes: the kernel cleans up held futexes at
2483  * thread exit time.
2484  *
2485  * Implementation: user-space maintains a per-thread list of locks it
2486  * is holding. Upon do_exit(), the kernel carefully walks this list,
2487  * and marks all locks that are owned by this thread with the
2488  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2489  * always manipulated with the lock held, so the list is private and
2490  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2491  * field, to allow the kernel to clean up if the thread dies after
2492  * acquiring the lock, but just before it could have added itself to
2493  * the list. There can only be one such pending lock.
2494  */
2495
2496 /**
2497  * sys_set_robust_list() - Set the robust-futex list head of a task
2498  * @head:       pointer to the list-head
2499  * @len:        length of the list-head, as userspace expects
2500  */
2501 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2502                 size_t, len)
2503 {
2504         if (!futex_cmpxchg_enabled)
2505                 return -ENOSYS;
2506         /*
2507          * The kernel knows only one size for now:
2508          */
2509         if (unlikely(len != sizeof(*head)))
2510                 return -EINVAL;
2511
2512         current->robust_list = head;
2513
2514         return 0;
2515 }
2516
2517 /**
2518  * sys_get_robust_list() - Get the robust-futex list head of a task
2519  * @pid:        pid of the process [zero for current task]
2520  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2521  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2522  */
2523 SYSCALL_DEFINE3(get_robust_list, int, pid,
2524                 struct robust_list_head __user * __user *, head_ptr,
2525                 size_t __user *, len_ptr)
2526 {
2527         struct robust_list_head __user *head;
2528         unsigned long ret;
2529         struct task_struct *p;
2530
2531         if (!futex_cmpxchg_enabled)
2532                 return -ENOSYS;
2533
2534         rcu_read_lock();
2535
2536         ret = -ESRCH;
2537         if (!pid)
2538                 p = current;
2539         else {
2540                 p = find_task_by_vpid(pid);
2541                 if (!p)
2542                         goto err_unlock;
2543         }
2544
2545         ret = -EPERM;
2546         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2547                 goto err_unlock;
2548
2549         head = p->robust_list;
2550         rcu_read_unlock();
2551
2552         if (put_user(sizeof(*head), len_ptr))
2553                 return -EFAULT;
2554         return put_user(head, head_ptr);
2555
2556 err_unlock:
2557         rcu_read_unlock();
2558
2559         return ret;
2560 }
2561
2562 /*
2563  * Process a futex-list entry, check whether it's owned by the
2564  * dying task, and do notification if so:
2565  */
2566 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2567 {
2568         u32 uval, uninitialized_var(nval), mval;
2569
2570 retry:
2571         if (get_user(uval, uaddr))
2572                 return -1;
2573
2574         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2575                 /*
2576                  * Ok, this dying thread is truly holding a futex
2577                  * of interest. Set the OWNER_DIED bit atomically
2578                  * via cmpxchg, and if the value had FUTEX_WAITERS
2579                  * set, wake up a waiter (if any). (We have to do a
2580                  * futex_wake() even if OWNER_DIED is already set -
2581                  * to handle the rare but possible case of recursive
2582                  * thread-death.) The rest of the cleanup is done in
2583                  * userspace.
2584                  */
2585                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2586                 /*
2587                  * We are not holding a lock here, but we want to have
2588                  * the pagefault_disable/enable() protection because
2589                  * we want to handle the fault gracefully. If the
2590                  * access fails we try to fault in the futex with R/W
2591                  * verification via get_user_pages. get_user() above
2592                  * does not guarantee R/W access. If that fails we
2593                  * give up and leave the futex locked.
2594                  */
2595                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2596                         if (fault_in_user_writeable(uaddr))
2597                                 return -1;
2598                         goto retry;
2599                 }
2600                 if (nval != uval)
2601                         goto retry;
2602
2603                 /*
2604                  * Wake robust non-PI futexes here. The wakeup of
2605                  * PI futexes happens in exit_pi_state():
2606                  */
2607                 if (!pi && (uval & FUTEX_WAITERS))
2608                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2609         }
2610         return 0;
2611 }
2612
2613 /*
2614  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2615  */
2616 static inline int fetch_robust_entry(struct robust_list __user **entry,
2617                                      struct robust_list __user * __user *head,
2618                                      unsigned int *pi)
2619 {
2620         unsigned long uentry;
2621
2622         if (get_user(uentry, (unsigned long __user *)head))
2623                 return -EFAULT;
2624
2625         *entry = (void __user *)(uentry & ~1UL);
2626         *pi = uentry & 1;
2627
2628         return 0;
2629 }
2630
2631 /*
2632  * Walk curr->robust_list (very carefully, it's a userspace list!)
2633  * and mark any locks found there dead, and notify any waiters.
2634  *
2635  * We silently return on any sign of list-walking problem.
2636  */
2637 void exit_robust_list(struct task_struct *curr)
2638 {
2639         struct robust_list_head __user *head = curr->robust_list;
2640         struct robust_list __user *entry, *next_entry, *pending;
2641         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2642         unsigned int uninitialized_var(next_pi);
2643         unsigned long futex_offset;
2644         int rc;
2645
2646         if (!futex_cmpxchg_enabled)
2647                 return;
2648
2649         /*
2650          * Fetch the list head (which was registered earlier, via
2651          * sys_set_robust_list()):
2652          */
2653         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2654                 return;
2655         /*
2656          * Fetch the relative futex offset:
2657          */
2658         if (get_user(futex_offset, &head->futex_offset))
2659                 return;
2660         /*
2661          * Fetch any possibly pending lock-add first, and handle it
2662          * if it exists:
2663          */
2664         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2665                 return;
2666
2667         next_entry = NULL;      /* avoid warning with gcc */
2668         while (entry != &head->list) {
2669                 /*
2670                  * Fetch the next entry in the list before calling
2671                  * handle_futex_death:
2672                  */
2673                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2674                 /*
2675                  * A pending lock might already be on the list, so
2676                  * don't process it twice:
2677                  */
2678                 if (entry != pending)
2679                         if (handle_futex_death((void __user *)entry + futex_offset,
2680                                                 curr, pi))
2681                                 return;
2682                 if (rc)
2683                         return;
2684                 entry = next_entry;
2685                 pi = next_pi;
2686                 /*
2687                  * Avoid excessively long or circular lists:
2688                  */
2689                 if (!--limit)
2690                         break;
2691
2692                 cond_resched();
2693         }
2694
2695         if (pending)
2696                 handle_futex_death((void __user *)pending + futex_offset,
2697                                    curr, pip);
2698 }
2699
2700 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2701                 u32 __user *uaddr2, u32 val2, u32 val3)
2702 {
2703         int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2704         unsigned int flags = 0;
2705
2706         if (!(op & FUTEX_PRIVATE_FLAG))
2707                 flags |= FLAGS_SHARED;
2708
2709         if (op & FUTEX_CLOCK_REALTIME) {
2710                 flags |= FLAGS_CLOCKRT;
2711                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2712                         return -ENOSYS;
2713         }
2714
2715         switch (cmd) {
2716         case FUTEX_LOCK_PI:
2717         case FUTEX_UNLOCK_PI:
2718         case FUTEX_TRYLOCK_PI:
2719         case FUTEX_WAIT_REQUEUE_PI:
2720         case FUTEX_CMP_REQUEUE_PI:
2721                 if (!futex_cmpxchg_enabled)
2722                         return -ENOSYS;
2723         }
2724
2725         switch (cmd) {
2726         case FUTEX_WAIT:
2727                 val3 = FUTEX_BITSET_MATCH_ANY;
2728         case FUTEX_WAIT_BITSET:
2729                 ret = futex_wait(uaddr, flags, val, timeout, val3);
2730                 break;
2731         case FUTEX_WAKE:
2732                 val3 = FUTEX_BITSET_MATCH_ANY;
2733         case FUTEX_WAKE_BITSET:
2734                 ret = futex_wake(uaddr, flags, val, val3);
2735                 break;
2736         case FUTEX_REQUEUE:
2737                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2738                 break;
2739         case FUTEX_CMP_REQUEUE:
2740                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2741                 break;
2742         case FUTEX_WAKE_OP:
2743                 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2744                 break;
2745         case FUTEX_LOCK_PI:
2746                 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2747                 break;
2748         case FUTEX_UNLOCK_PI:
2749                 ret = futex_unlock_pi(uaddr, flags);
2750                 break;
2751         case FUTEX_TRYLOCK_PI:
2752                 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2753                 break;
2754         case FUTEX_WAIT_REQUEUE_PI:
2755                 val3 = FUTEX_BITSET_MATCH_ANY;
2756                 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2757                                             uaddr2);
2758                 break;
2759         case FUTEX_CMP_REQUEUE_PI:
2760                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2761                 break;
2762         default:
2763                 ret = -ENOSYS;
2764         }
2765         return ret;
2766 }
2767
2768
2769 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2770                 struct timespec __user *, utime, u32 __user *, uaddr2,
2771                 u32, val3)
2772 {
2773         struct timespec ts;
2774         ktime_t t, *tp = NULL;
2775         u32 val2 = 0;
2776         int cmd = op & FUTEX_CMD_MASK;
2777
2778         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2779                       cmd == FUTEX_WAIT_BITSET ||
2780                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2781                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2782                         return -EFAULT;
2783                 if (!timespec_valid(&ts))
2784                         return -EINVAL;
2785
2786                 t = timespec_to_ktime(ts);
2787                 if (cmd == FUTEX_WAIT)
2788                         t = ktime_add_safe(ktime_get(), t);
2789                 tp = &t;
2790         }
2791         /*
2792          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2793          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2794          */
2795         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2796             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2797                 val2 = (u32) (unsigned long) utime;
2798
2799         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2800 }
2801
2802 static int __init futex_init(void)
2803 {
2804         u32 curval;
2805         int i;
2806
2807         /*
2808          * This will fail and we want it. Some arch implementations do
2809          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2810          * functionality. We want to know that before we call in any
2811          * of the complex code paths. Also we want to prevent
2812          * registration of robust lists in that case. NULL is
2813          * guaranteed to fault and we get -EFAULT on functional
2814          * implementation, the non-functional ones will return
2815          * -ENOSYS.
2816          */
2817         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2818                 futex_cmpxchg_enabled = 1;
2819
2820         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2821                 plist_head_init(&futex_queues[i].chain);
2822                 spin_lock_init(&futex_queues[i].lock);
2823         }
2824
2825         return 0;
2826 }
2827 __initcall(futex_init);