futex: Do not leak robust list to unprivileged process
[pandora-kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63
64 #include <asm/futex.h>
65
66 #include "rtmutex_common.h"
67
68 int __read_mostly futex_cmpxchg_enabled;
69
70 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
71
72 /*
73  * Futex flags used to encode options to functions and preserve them across
74  * restarts.
75  */
76 #define FLAGS_SHARED            0x01
77 #define FLAGS_CLOCKRT           0x02
78 #define FLAGS_HAS_TIMEOUT       0x04
79
80 /*
81  * Priority Inheritance state:
82  */
83 struct futex_pi_state {
84         /*
85          * list of 'owned' pi_state instances - these have to be
86          * cleaned up in do_exit() if the task exits prematurely:
87          */
88         struct list_head list;
89
90         /*
91          * The PI object:
92          */
93         struct rt_mutex pi_mutex;
94
95         struct task_struct *owner;
96         atomic_t refcount;
97
98         union futex_key key;
99 };
100
101 /**
102  * struct futex_q - The hashed futex queue entry, one per waiting task
103  * @list:               priority-sorted list of tasks waiting on this futex
104  * @task:               the task waiting on the futex
105  * @lock_ptr:           the hash bucket lock
106  * @key:                the key the futex is hashed on
107  * @pi_state:           optional priority inheritance state
108  * @rt_waiter:          rt_waiter storage for use with requeue_pi
109  * @requeue_pi_key:     the requeue_pi target futex key
110  * @bitset:             bitset for the optional bitmasked wakeup
111  *
112  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
113  * we can wake only the relevant ones (hashed queues may be shared).
114  *
115  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
116  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
117  * The order of wakeup is always to make the first condition true, then
118  * the second.
119  *
120  * PI futexes are typically woken before they are removed from the hash list via
121  * the rt_mutex code. See unqueue_me_pi().
122  */
123 struct futex_q {
124         struct plist_node list;
125
126         struct task_struct *task;
127         spinlock_t *lock_ptr;
128         union futex_key key;
129         struct futex_pi_state *pi_state;
130         struct rt_mutex_waiter *rt_waiter;
131         union futex_key *requeue_pi_key;
132         u32 bitset;
133 };
134
135 static const struct futex_q futex_q_init = {
136         /* list gets initialized in queue_me()*/
137         .key = FUTEX_KEY_INIT,
138         .bitset = FUTEX_BITSET_MATCH_ANY
139 };
140
141 /*
142  * Hash buckets are shared by all the futex_keys that hash to the same
143  * location.  Each key may have multiple futex_q structures, one for each task
144  * waiting on a futex.
145  */
146 struct futex_hash_bucket {
147         spinlock_t lock;
148         struct plist_head chain;
149 };
150
151 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
152
153 /*
154  * We hash on the keys returned from get_futex_key (see below).
155  */
156 static struct futex_hash_bucket *hash_futex(union futex_key *key)
157 {
158         u32 hash = jhash2((u32*)&key->both.word,
159                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
160                           key->both.offset);
161         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
162 }
163
164 /*
165  * Return 1 if two futex_keys are equal, 0 otherwise.
166  */
167 static inline int match_futex(union futex_key *key1, union futex_key *key2)
168 {
169         return (key1 && key2
170                 && key1->both.word == key2->both.word
171                 && key1->both.ptr == key2->both.ptr
172                 && key1->both.offset == key2->both.offset);
173 }
174
175 /*
176  * Take a reference to the resource addressed by a key.
177  * Can be called while holding spinlocks.
178  *
179  */
180 static void get_futex_key_refs(union futex_key *key)
181 {
182         if (!key->both.ptr)
183                 return;
184
185         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
186         case FUT_OFF_INODE:
187                 ihold(key->shared.inode);
188                 break;
189         case FUT_OFF_MMSHARED:
190                 atomic_inc(&key->private.mm->mm_count);
191                 break;
192         }
193 }
194
195 /*
196  * Drop a reference to the resource addressed by a key.
197  * The hash bucket spinlock must not be held.
198  */
199 static void drop_futex_key_refs(union futex_key *key)
200 {
201         if (!key->both.ptr) {
202                 /* If we're here then we tried to put a key we failed to get */
203                 WARN_ON_ONCE(1);
204                 return;
205         }
206
207         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
208         case FUT_OFF_INODE:
209                 iput(key->shared.inode);
210                 break;
211         case FUT_OFF_MMSHARED:
212                 mmdrop(key->private.mm);
213                 break;
214         }
215 }
216
217 /**
218  * get_futex_key() - Get parameters which are the keys for a futex
219  * @uaddr:      virtual address of the futex
220  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
221  * @key:        address where result is stored.
222  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
223  *              VERIFY_WRITE)
224  *
225  * Returns a negative error code or 0
226  * The key words are stored in *key on success.
227  *
228  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
229  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
230  * We can usually work out the index without swapping in the page.
231  *
232  * lock_page() might sleep, the caller should not hold a spinlock.
233  */
234 static int
235 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
236 {
237         unsigned long address = (unsigned long)uaddr;
238         struct mm_struct *mm = current->mm;
239         struct page *page, *page_head;
240         int err, ro = 0;
241
242         /*
243          * The futex address must be "naturally" aligned.
244          */
245         key->both.offset = address % PAGE_SIZE;
246         if (unlikely((address % sizeof(u32)) != 0))
247                 return -EINVAL;
248         address -= key->both.offset;
249
250         /*
251          * PROCESS_PRIVATE futexes are fast.
252          * As the mm cannot disappear under us and the 'key' only needs
253          * virtual address, we dont even have to find the underlying vma.
254          * Note : We do have to check 'uaddr' is a valid user address,
255          *        but access_ok() should be faster than find_vma()
256          */
257         if (!fshared) {
258                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
259                         return -EFAULT;
260                 key->private.mm = mm;
261                 key->private.address = address;
262                 get_futex_key_refs(key);
263                 return 0;
264         }
265
266 again:
267         err = get_user_pages_fast(address, 1, 1, &page);
268         /*
269          * If write access is not required (eg. FUTEX_WAIT), try
270          * and get read-only access.
271          */
272         if (err == -EFAULT && rw == VERIFY_READ) {
273                 err = get_user_pages_fast(address, 1, 0, &page);
274                 ro = 1;
275         }
276         if (err < 0)
277                 return err;
278         else
279                 err = 0;
280
281 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
282         page_head = page;
283         if (unlikely(PageTail(page))) {
284                 put_page(page);
285                 /* serialize against __split_huge_page_splitting() */
286                 local_irq_disable();
287                 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
288                         page_head = compound_head(page);
289                         /*
290                          * page_head is valid pointer but we must pin
291                          * it before taking the PG_lock and/or
292                          * PG_compound_lock. The moment we re-enable
293                          * irqs __split_huge_page_splitting() can
294                          * return and the head page can be freed from
295                          * under us. We can't take the PG_lock and/or
296                          * PG_compound_lock on a page that could be
297                          * freed from under us.
298                          */
299                         if (page != page_head) {
300                                 get_page(page_head);
301                                 put_page(page);
302                         }
303                         local_irq_enable();
304                 } else {
305                         local_irq_enable();
306                         goto again;
307                 }
308         }
309 #else
310         page_head = compound_head(page);
311         if (page != page_head) {
312                 get_page(page_head);
313                 put_page(page);
314         }
315 #endif
316
317         lock_page(page_head);
318
319         /*
320          * If page_head->mapping is NULL, then it cannot be a PageAnon
321          * page; but it might be the ZERO_PAGE or in the gate area or
322          * in a special mapping (all cases which we are happy to fail);
323          * or it may have been a good file page when get_user_pages_fast
324          * found it, but truncated or holepunched or subjected to
325          * invalidate_complete_page2 before we got the page lock (also
326          * cases which we are happy to fail).  And we hold a reference,
327          * so refcount care in invalidate_complete_page's remove_mapping
328          * prevents drop_caches from setting mapping to NULL beneath us.
329          *
330          * The case we do have to guard against is when memory pressure made
331          * shmem_writepage move it from filecache to swapcache beneath us:
332          * an unlikely race, but we do need to retry for page_head->mapping.
333          */
334         if (!page_head->mapping) {
335                 int shmem_swizzled = PageSwapCache(page_head);
336                 unlock_page(page_head);
337                 put_page(page_head);
338                 if (shmem_swizzled)
339                         goto again;
340                 return -EFAULT;
341         }
342
343         /*
344          * Private mappings are handled in a simple way.
345          *
346          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
347          * it's a read-only handle, it's expected that futexes attach to
348          * the object not the particular process.
349          */
350         if (PageAnon(page_head)) {
351                 /*
352                  * A RO anonymous page will never change and thus doesn't make
353                  * sense for futex operations.
354                  */
355                 if (ro) {
356                         err = -EFAULT;
357                         goto out;
358                 }
359
360                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
361                 key->private.mm = mm;
362                 key->private.address = address;
363         } else {
364                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
365                 key->shared.inode = page_head->mapping->host;
366                 key->shared.pgoff = page_head->index;
367         }
368
369         get_futex_key_refs(key);
370
371 out:
372         unlock_page(page_head);
373         put_page(page_head);
374         return err;
375 }
376
377 static inline void put_futex_key(union futex_key *key)
378 {
379         drop_futex_key_refs(key);
380 }
381
382 /**
383  * fault_in_user_writeable() - Fault in user address and verify RW access
384  * @uaddr:      pointer to faulting user space address
385  *
386  * Slow path to fixup the fault we just took in the atomic write
387  * access to @uaddr.
388  *
389  * We have no generic implementation of a non-destructive write to the
390  * user address. We know that we faulted in the atomic pagefault
391  * disabled section so we can as well avoid the #PF overhead by
392  * calling get_user_pages() right away.
393  */
394 static int fault_in_user_writeable(u32 __user *uaddr)
395 {
396         struct mm_struct *mm = current->mm;
397         int ret;
398
399         down_read(&mm->mmap_sem);
400         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
401                                FAULT_FLAG_WRITE);
402         up_read(&mm->mmap_sem);
403
404         return ret < 0 ? ret : 0;
405 }
406
407 /**
408  * futex_top_waiter() - Return the highest priority waiter on a futex
409  * @hb:         the hash bucket the futex_q's reside in
410  * @key:        the futex key (to distinguish it from other futex futex_q's)
411  *
412  * Must be called with the hb lock held.
413  */
414 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
415                                         union futex_key *key)
416 {
417         struct futex_q *this;
418
419         plist_for_each_entry(this, &hb->chain, list) {
420                 if (match_futex(&this->key, key))
421                         return this;
422         }
423         return NULL;
424 }
425
426 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
427                                       u32 uval, u32 newval)
428 {
429         int ret;
430
431         pagefault_disable();
432         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
433         pagefault_enable();
434
435         return ret;
436 }
437
438 static int get_futex_value_locked(u32 *dest, u32 __user *from)
439 {
440         int ret;
441
442         pagefault_disable();
443         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
444         pagefault_enable();
445
446         return ret ? -EFAULT : 0;
447 }
448
449
450 /*
451  * PI code:
452  */
453 static int refill_pi_state_cache(void)
454 {
455         struct futex_pi_state *pi_state;
456
457         if (likely(current->pi_state_cache))
458                 return 0;
459
460         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
461
462         if (!pi_state)
463                 return -ENOMEM;
464
465         INIT_LIST_HEAD(&pi_state->list);
466         /* pi_mutex gets initialized later */
467         pi_state->owner = NULL;
468         atomic_set(&pi_state->refcount, 1);
469         pi_state->key = FUTEX_KEY_INIT;
470
471         current->pi_state_cache = pi_state;
472
473         return 0;
474 }
475
476 static struct futex_pi_state * alloc_pi_state(void)
477 {
478         struct futex_pi_state *pi_state = current->pi_state_cache;
479
480         WARN_ON(!pi_state);
481         current->pi_state_cache = NULL;
482
483         return pi_state;
484 }
485
486 static void free_pi_state(struct futex_pi_state *pi_state)
487 {
488         if (!atomic_dec_and_test(&pi_state->refcount))
489                 return;
490
491         /*
492          * If pi_state->owner is NULL, the owner is most probably dying
493          * and has cleaned up the pi_state already
494          */
495         if (pi_state->owner) {
496                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
497                 list_del_init(&pi_state->list);
498                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
499
500                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
501         }
502
503         if (current->pi_state_cache)
504                 kfree(pi_state);
505         else {
506                 /*
507                  * pi_state->list is already empty.
508                  * clear pi_state->owner.
509                  * refcount is at 0 - put it back to 1.
510                  */
511                 pi_state->owner = NULL;
512                 atomic_set(&pi_state->refcount, 1);
513                 current->pi_state_cache = pi_state;
514         }
515 }
516
517 /*
518  * Look up the task based on what TID userspace gave us.
519  * We dont trust it.
520  */
521 static struct task_struct * futex_find_get_task(pid_t pid)
522 {
523         struct task_struct *p;
524
525         rcu_read_lock();
526         p = find_task_by_vpid(pid);
527         if (p)
528                 get_task_struct(p);
529
530         rcu_read_unlock();
531
532         return p;
533 }
534
535 /*
536  * This task is holding PI mutexes at exit time => bad.
537  * Kernel cleans up PI-state, but userspace is likely hosed.
538  * (Robust-futex cleanup is separate and might save the day for userspace.)
539  */
540 void exit_pi_state_list(struct task_struct *curr)
541 {
542         struct list_head *next, *head = &curr->pi_state_list;
543         struct futex_pi_state *pi_state;
544         struct futex_hash_bucket *hb;
545         union futex_key key = FUTEX_KEY_INIT;
546
547         if (!futex_cmpxchg_enabled)
548                 return;
549         /*
550          * We are a ZOMBIE and nobody can enqueue itself on
551          * pi_state_list anymore, but we have to be careful
552          * versus waiters unqueueing themselves:
553          */
554         raw_spin_lock_irq(&curr->pi_lock);
555         while (!list_empty(head)) {
556
557                 next = head->next;
558                 pi_state = list_entry(next, struct futex_pi_state, list);
559                 key = pi_state->key;
560                 hb = hash_futex(&key);
561                 raw_spin_unlock_irq(&curr->pi_lock);
562
563                 spin_lock(&hb->lock);
564
565                 raw_spin_lock_irq(&curr->pi_lock);
566                 /*
567                  * We dropped the pi-lock, so re-check whether this
568                  * task still owns the PI-state:
569                  */
570                 if (head->next != next) {
571                         spin_unlock(&hb->lock);
572                         continue;
573                 }
574
575                 WARN_ON(pi_state->owner != curr);
576                 WARN_ON(list_empty(&pi_state->list));
577                 list_del_init(&pi_state->list);
578                 pi_state->owner = NULL;
579                 raw_spin_unlock_irq(&curr->pi_lock);
580
581                 rt_mutex_unlock(&pi_state->pi_mutex);
582
583                 spin_unlock(&hb->lock);
584
585                 raw_spin_lock_irq(&curr->pi_lock);
586         }
587         raw_spin_unlock_irq(&curr->pi_lock);
588 }
589
590 static int
591 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
592                 union futex_key *key, struct futex_pi_state **ps)
593 {
594         struct futex_pi_state *pi_state = NULL;
595         struct futex_q *this, *next;
596         struct plist_head *head;
597         struct task_struct *p;
598         pid_t pid = uval & FUTEX_TID_MASK;
599
600         head = &hb->chain;
601
602         plist_for_each_entry_safe(this, next, head, list) {
603                 if (match_futex(&this->key, key)) {
604                         /*
605                          * Another waiter already exists - bump up
606                          * the refcount and return its pi_state:
607                          */
608                         pi_state = this->pi_state;
609                         /*
610                          * Userspace might have messed up non-PI and PI futexes
611                          */
612                         if (unlikely(!pi_state))
613                                 return -EINVAL;
614
615                         WARN_ON(!atomic_read(&pi_state->refcount));
616
617                         /*
618                          * When pi_state->owner is NULL then the owner died
619                          * and another waiter is on the fly. pi_state->owner
620                          * is fixed up by the task which acquires
621                          * pi_state->rt_mutex.
622                          *
623                          * We do not check for pid == 0 which can happen when
624                          * the owner died and robust_list_exit() cleared the
625                          * TID.
626                          */
627                         if (pid && pi_state->owner) {
628                                 /*
629                                  * Bail out if user space manipulated the
630                                  * futex value.
631                                  */
632                                 if (pid != task_pid_vnr(pi_state->owner))
633                                         return -EINVAL;
634                         }
635
636                         atomic_inc(&pi_state->refcount);
637                         *ps = pi_state;
638
639                         return 0;
640                 }
641         }
642
643         /*
644          * We are the first waiter - try to look up the real owner and attach
645          * the new pi_state to it, but bail out when TID = 0
646          */
647         if (!pid)
648                 return -ESRCH;
649         p = futex_find_get_task(pid);
650         if (!p)
651                 return -ESRCH;
652
653         /*
654          * We need to look at the task state flags to figure out,
655          * whether the task is exiting. To protect against the do_exit
656          * change of the task flags, we do this protected by
657          * p->pi_lock:
658          */
659         raw_spin_lock_irq(&p->pi_lock);
660         if (unlikely(p->flags & PF_EXITING)) {
661                 /*
662                  * The task is on the way out. When PF_EXITPIDONE is
663                  * set, we know that the task has finished the
664                  * cleanup:
665                  */
666                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
667
668                 raw_spin_unlock_irq(&p->pi_lock);
669                 put_task_struct(p);
670                 return ret;
671         }
672
673         pi_state = alloc_pi_state();
674
675         /*
676          * Initialize the pi_mutex in locked state and make 'p'
677          * the owner of it:
678          */
679         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
680
681         /* Store the key for possible exit cleanups: */
682         pi_state->key = *key;
683
684         WARN_ON(!list_empty(&pi_state->list));
685         list_add(&pi_state->list, &p->pi_state_list);
686         pi_state->owner = p;
687         raw_spin_unlock_irq(&p->pi_lock);
688
689         put_task_struct(p);
690
691         *ps = pi_state;
692
693         return 0;
694 }
695
696 /**
697  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
698  * @uaddr:              the pi futex user address
699  * @hb:                 the pi futex hash bucket
700  * @key:                the futex key associated with uaddr and hb
701  * @ps:                 the pi_state pointer where we store the result of the
702  *                      lookup
703  * @task:               the task to perform the atomic lock work for.  This will
704  *                      be "current" except in the case of requeue pi.
705  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
706  *
707  * Returns:
708  *  0 - ready to wait
709  *  1 - acquired the lock
710  * <0 - error
711  *
712  * The hb->lock and futex_key refs shall be held by the caller.
713  */
714 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
715                                 union futex_key *key,
716                                 struct futex_pi_state **ps,
717                                 struct task_struct *task, int set_waiters)
718 {
719         int lock_taken, ret, ownerdied = 0;
720         u32 uval, newval, curval, vpid = task_pid_vnr(task);
721
722 retry:
723         ret = lock_taken = 0;
724
725         /*
726          * To avoid races, we attempt to take the lock here again
727          * (by doing a 0 -> TID atomic cmpxchg), while holding all
728          * the locks. It will most likely not succeed.
729          */
730         newval = vpid;
731         if (set_waiters)
732                 newval |= FUTEX_WAITERS;
733
734         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
735                 return -EFAULT;
736
737         /*
738          * Detect deadlocks.
739          */
740         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
741                 return -EDEADLK;
742
743         /*
744          * Surprise - we got the lock. Just return to userspace:
745          */
746         if (unlikely(!curval))
747                 return 1;
748
749         uval = curval;
750
751         /*
752          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
753          * to wake at the next unlock.
754          */
755         newval = curval | FUTEX_WAITERS;
756
757         /*
758          * There are two cases, where a futex might have no owner (the
759          * owner TID is 0): OWNER_DIED. We take over the futex in this
760          * case. We also do an unconditional take over, when the owner
761          * of the futex died.
762          *
763          * This is safe as we are protected by the hash bucket lock !
764          */
765         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
766                 /* Keep the OWNER_DIED bit */
767                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
768                 ownerdied = 0;
769                 lock_taken = 1;
770         }
771
772         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
773                 return -EFAULT;
774         if (unlikely(curval != uval))
775                 goto retry;
776
777         /*
778          * We took the lock due to owner died take over.
779          */
780         if (unlikely(lock_taken))
781                 return 1;
782
783         /*
784          * We dont have the lock. Look up the PI state (or create it if
785          * we are the first waiter):
786          */
787         ret = lookup_pi_state(uval, hb, key, ps);
788
789         if (unlikely(ret)) {
790                 switch (ret) {
791                 case -ESRCH:
792                         /*
793                          * No owner found for this futex. Check if the
794                          * OWNER_DIED bit is set to figure out whether
795                          * this is a robust futex or not.
796                          */
797                         if (get_futex_value_locked(&curval, uaddr))
798                                 return -EFAULT;
799
800                         /*
801                          * We simply start over in case of a robust
802                          * futex. The code above will take the futex
803                          * and return happy.
804                          */
805                         if (curval & FUTEX_OWNER_DIED) {
806                                 ownerdied = 1;
807                                 goto retry;
808                         }
809                 default:
810                         break;
811                 }
812         }
813
814         return ret;
815 }
816
817 /**
818  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
819  * @q:  The futex_q to unqueue
820  *
821  * The q->lock_ptr must not be NULL and must be held by the caller.
822  */
823 static void __unqueue_futex(struct futex_q *q)
824 {
825         struct futex_hash_bucket *hb;
826
827         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
828             || WARN_ON(plist_node_empty(&q->list)))
829                 return;
830
831         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
832         plist_del(&q->list, &hb->chain);
833 }
834
835 /*
836  * The hash bucket lock must be held when this is called.
837  * Afterwards, the futex_q must not be accessed.
838  */
839 static void wake_futex(struct futex_q *q)
840 {
841         struct task_struct *p = q->task;
842
843         /*
844          * We set q->lock_ptr = NULL _before_ we wake up the task. If
845          * a non-futex wake up happens on another CPU then the task
846          * might exit and p would dereference a non-existing task
847          * struct. Prevent this by holding a reference on p across the
848          * wake up.
849          */
850         get_task_struct(p);
851
852         __unqueue_futex(q);
853         /*
854          * The waiting task can free the futex_q as soon as
855          * q->lock_ptr = NULL is written, without taking any locks. A
856          * memory barrier is required here to prevent the following
857          * store to lock_ptr from getting ahead of the plist_del.
858          */
859         smp_wmb();
860         q->lock_ptr = NULL;
861
862         wake_up_state(p, TASK_NORMAL);
863         put_task_struct(p);
864 }
865
866 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
867 {
868         struct task_struct *new_owner;
869         struct futex_pi_state *pi_state = this->pi_state;
870         u32 uninitialized_var(curval), newval;
871
872         if (!pi_state)
873                 return -EINVAL;
874
875         /*
876          * If current does not own the pi_state then the futex is
877          * inconsistent and user space fiddled with the futex value.
878          */
879         if (pi_state->owner != current)
880                 return -EINVAL;
881
882         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
883         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
884
885         /*
886          * It is possible that the next waiter (the one that brought
887          * this owner to the kernel) timed out and is no longer
888          * waiting on the lock.
889          */
890         if (!new_owner)
891                 new_owner = this->task;
892
893         /*
894          * We pass it to the next owner. (The WAITERS bit is always
895          * kept enabled while there is PI state around. We must also
896          * preserve the owner died bit.)
897          */
898         if (!(uval & FUTEX_OWNER_DIED)) {
899                 int ret = 0;
900
901                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
902
903                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
904                         ret = -EFAULT;
905                 else if (curval != uval)
906                         ret = -EINVAL;
907                 if (ret) {
908                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
909                         return ret;
910                 }
911         }
912
913         raw_spin_lock_irq(&pi_state->owner->pi_lock);
914         WARN_ON(list_empty(&pi_state->list));
915         list_del_init(&pi_state->list);
916         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
917
918         raw_spin_lock_irq(&new_owner->pi_lock);
919         WARN_ON(!list_empty(&pi_state->list));
920         list_add(&pi_state->list, &new_owner->pi_state_list);
921         pi_state->owner = new_owner;
922         raw_spin_unlock_irq(&new_owner->pi_lock);
923
924         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
925         rt_mutex_unlock(&pi_state->pi_mutex);
926
927         return 0;
928 }
929
930 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
931 {
932         u32 uninitialized_var(oldval);
933
934         /*
935          * There is no waiter, so we unlock the futex. The owner died
936          * bit has not to be preserved here. We are the owner:
937          */
938         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
939                 return -EFAULT;
940         if (oldval != uval)
941                 return -EAGAIN;
942
943         return 0;
944 }
945
946 /*
947  * Express the locking dependencies for lockdep:
948  */
949 static inline void
950 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
951 {
952         if (hb1 <= hb2) {
953                 spin_lock(&hb1->lock);
954                 if (hb1 < hb2)
955                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
956         } else { /* hb1 > hb2 */
957                 spin_lock(&hb2->lock);
958                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
959         }
960 }
961
962 static inline void
963 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
964 {
965         spin_unlock(&hb1->lock);
966         if (hb1 != hb2)
967                 spin_unlock(&hb2->lock);
968 }
969
970 /*
971  * Wake up waiters matching bitset queued on this futex (uaddr).
972  */
973 static int
974 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
975 {
976         struct futex_hash_bucket *hb;
977         struct futex_q *this, *next;
978         struct plist_head *head;
979         union futex_key key = FUTEX_KEY_INIT;
980         int ret;
981
982         if (!bitset)
983                 return -EINVAL;
984
985         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
986         if (unlikely(ret != 0))
987                 goto out;
988
989         hb = hash_futex(&key);
990         spin_lock(&hb->lock);
991         head = &hb->chain;
992
993         plist_for_each_entry_safe(this, next, head, list) {
994                 if (match_futex (&this->key, &key)) {
995                         if (this->pi_state || this->rt_waiter) {
996                                 ret = -EINVAL;
997                                 break;
998                         }
999
1000                         /* Check if one of the bits is set in both bitsets */
1001                         if (!(this->bitset & bitset))
1002                                 continue;
1003
1004                         wake_futex(this);
1005                         if (++ret >= nr_wake)
1006                                 break;
1007                 }
1008         }
1009
1010         spin_unlock(&hb->lock);
1011         put_futex_key(&key);
1012 out:
1013         return ret;
1014 }
1015
1016 /*
1017  * Wake up all waiters hashed on the physical page that is mapped
1018  * to this virtual address:
1019  */
1020 static int
1021 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1022               int nr_wake, int nr_wake2, int op)
1023 {
1024         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1025         struct futex_hash_bucket *hb1, *hb2;
1026         struct plist_head *head;
1027         struct futex_q *this, *next;
1028         int ret, op_ret;
1029
1030 retry:
1031         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1032         if (unlikely(ret != 0))
1033                 goto out;
1034         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1035         if (unlikely(ret != 0))
1036                 goto out_put_key1;
1037
1038         hb1 = hash_futex(&key1);
1039         hb2 = hash_futex(&key2);
1040
1041 retry_private:
1042         double_lock_hb(hb1, hb2);
1043         op_ret = futex_atomic_op_inuser(op, uaddr2);
1044         if (unlikely(op_ret < 0)) {
1045
1046                 double_unlock_hb(hb1, hb2);
1047
1048 #ifndef CONFIG_MMU
1049                 /*
1050                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1051                  * but we might get them from range checking
1052                  */
1053                 ret = op_ret;
1054                 goto out_put_keys;
1055 #endif
1056
1057                 if (unlikely(op_ret != -EFAULT)) {
1058                         ret = op_ret;
1059                         goto out_put_keys;
1060                 }
1061
1062                 ret = fault_in_user_writeable(uaddr2);
1063                 if (ret)
1064                         goto out_put_keys;
1065
1066                 if (!(flags & FLAGS_SHARED))
1067                         goto retry_private;
1068
1069                 put_futex_key(&key2);
1070                 put_futex_key(&key1);
1071                 goto retry;
1072         }
1073
1074         head = &hb1->chain;
1075
1076         plist_for_each_entry_safe(this, next, head, list) {
1077                 if (match_futex (&this->key, &key1)) {
1078                         wake_futex(this);
1079                         if (++ret >= nr_wake)
1080                                 break;
1081                 }
1082         }
1083
1084         if (op_ret > 0) {
1085                 head = &hb2->chain;
1086
1087                 op_ret = 0;
1088                 plist_for_each_entry_safe(this, next, head, list) {
1089                         if (match_futex (&this->key, &key2)) {
1090                                 wake_futex(this);
1091                                 if (++op_ret >= nr_wake2)
1092                                         break;
1093                         }
1094                 }
1095                 ret += op_ret;
1096         }
1097
1098         double_unlock_hb(hb1, hb2);
1099 out_put_keys:
1100         put_futex_key(&key2);
1101 out_put_key1:
1102         put_futex_key(&key1);
1103 out:
1104         return ret;
1105 }
1106
1107 /**
1108  * requeue_futex() - Requeue a futex_q from one hb to another
1109  * @q:          the futex_q to requeue
1110  * @hb1:        the source hash_bucket
1111  * @hb2:        the target hash_bucket
1112  * @key2:       the new key for the requeued futex_q
1113  */
1114 static inline
1115 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1116                    struct futex_hash_bucket *hb2, union futex_key *key2)
1117 {
1118
1119         /*
1120          * If key1 and key2 hash to the same bucket, no need to
1121          * requeue.
1122          */
1123         if (likely(&hb1->chain != &hb2->chain)) {
1124                 plist_del(&q->list, &hb1->chain);
1125                 plist_add(&q->list, &hb2->chain);
1126                 q->lock_ptr = &hb2->lock;
1127         }
1128         get_futex_key_refs(key2);
1129         q->key = *key2;
1130 }
1131
1132 /**
1133  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1134  * @q:          the futex_q
1135  * @key:        the key of the requeue target futex
1136  * @hb:         the hash_bucket of the requeue target futex
1137  *
1138  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1139  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1140  * to the requeue target futex so the waiter can detect the wakeup on the right
1141  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1142  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1143  * to protect access to the pi_state to fixup the owner later.  Must be called
1144  * with both q->lock_ptr and hb->lock held.
1145  */
1146 static inline
1147 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1148                            struct futex_hash_bucket *hb)
1149 {
1150         get_futex_key_refs(key);
1151         q->key = *key;
1152
1153         __unqueue_futex(q);
1154
1155         WARN_ON(!q->rt_waiter);
1156         q->rt_waiter = NULL;
1157
1158         q->lock_ptr = &hb->lock;
1159
1160         wake_up_state(q->task, TASK_NORMAL);
1161 }
1162
1163 /**
1164  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1165  * @pifutex:            the user address of the to futex
1166  * @hb1:                the from futex hash bucket, must be locked by the caller
1167  * @hb2:                the to futex hash bucket, must be locked by the caller
1168  * @key1:               the from futex key
1169  * @key2:               the to futex key
1170  * @ps:                 address to store the pi_state pointer
1171  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1172  *
1173  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1174  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1175  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1176  * hb1 and hb2 must be held by the caller.
1177  *
1178  * Returns:
1179  *  0 - failed to acquire the lock atomicly
1180  *  1 - acquired the lock
1181  * <0 - error
1182  */
1183 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1184                                  struct futex_hash_bucket *hb1,
1185                                  struct futex_hash_bucket *hb2,
1186                                  union futex_key *key1, union futex_key *key2,
1187                                  struct futex_pi_state **ps, int set_waiters)
1188 {
1189         struct futex_q *top_waiter = NULL;
1190         u32 curval;
1191         int ret;
1192
1193         if (get_futex_value_locked(&curval, pifutex))
1194                 return -EFAULT;
1195
1196         /*
1197          * Find the top_waiter and determine if there are additional waiters.
1198          * If the caller intends to requeue more than 1 waiter to pifutex,
1199          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1200          * as we have means to handle the possible fault.  If not, don't set
1201          * the bit unecessarily as it will force the subsequent unlock to enter
1202          * the kernel.
1203          */
1204         top_waiter = futex_top_waiter(hb1, key1);
1205
1206         /* There are no waiters, nothing for us to do. */
1207         if (!top_waiter)
1208                 return 0;
1209
1210         /* Ensure we requeue to the expected futex. */
1211         if (!match_futex(top_waiter->requeue_pi_key, key2))
1212                 return -EINVAL;
1213
1214         /*
1215          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1216          * the contended case or if set_waiters is 1.  The pi_state is returned
1217          * in ps in contended cases.
1218          */
1219         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1220                                    set_waiters);
1221         if (ret == 1)
1222                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1223
1224         return ret;
1225 }
1226
1227 /**
1228  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1229  * @uaddr1:     source futex user address
1230  * @flags:      futex flags (FLAGS_SHARED, etc.)
1231  * @uaddr2:     target futex user address
1232  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1233  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1234  * @cmpval:     @uaddr1 expected value (or %NULL)
1235  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1236  *              pi futex (pi to pi requeue is not supported)
1237  *
1238  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1239  * uaddr2 atomically on behalf of the top waiter.
1240  *
1241  * Returns:
1242  * >=0 - on success, the number of tasks requeued or woken
1243  *  <0 - on error
1244  */
1245 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1246                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1247                          u32 *cmpval, int requeue_pi)
1248 {
1249         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1250         int drop_count = 0, task_count = 0, ret;
1251         struct futex_pi_state *pi_state = NULL;
1252         struct futex_hash_bucket *hb1, *hb2;
1253         struct plist_head *head1;
1254         struct futex_q *this, *next;
1255         u32 curval2;
1256
1257         if (requeue_pi) {
1258                 /*
1259                  * requeue_pi requires a pi_state, try to allocate it now
1260                  * without any locks in case it fails.
1261                  */
1262                 if (refill_pi_state_cache())
1263                         return -ENOMEM;
1264                 /*
1265                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1266                  * + nr_requeue, since it acquires the rt_mutex prior to
1267                  * returning to userspace, so as to not leave the rt_mutex with
1268                  * waiters and no owner.  However, second and third wake-ups
1269                  * cannot be predicted as they involve race conditions with the
1270                  * first wake and a fault while looking up the pi_state.  Both
1271                  * pthread_cond_signal() and pthread_cond_broadcast() should
1272                  * use nr_wake=1.
1273                  */
1274                 if (nr_wake != 1)
1275                         return -EINVAL;
1276         }
1277
1278 retry:
1279         if (pi_state != NULL) {
1280                 /*
1281                  * We will have to lookup the pi_state again, so free this one
1282                  * to keep the accounting correct.
1283                  */
1284                 free_pi_state(pi_state);
1285                 pi_state = NULL;
1286         }
1287
1288         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1289         if (unlikely(ret != 0))
1290                 goto out;
1291         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1292                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1293         if (unlikely(ret != 0))
1294                 goto out_put_key1;
1295
1296         hb1 = hash_futex(&key1);
1297         hb2 = hash_futex(&key2);
1298
1299 retry_private:
1300         double_lock_hb(hb1, hb2);
1301
1302         if (likely(cmpval != NULL)) {
1303                 u32 curval;
1304
1305                 ret = get_futex_value_locked(&curval, uaddr1);
1306
1307                 if (unlikely(ret)) {
1308                         double_unlock_hb(hb1, hb2);
1309
1310                         ret = get_user(curval, uaddr1);
1311                         if (ret)
1312                                 goto out_put_keys;
1313
1314                         if (!(flags & FLAGS_SHARED))
1315                                 goto retry_private;
1316
1317                         put_futex_key(&key2);
1318                         put_futex_key(&key1);
1319                         goto retry;
1320                 }
1321                 if (curval != *cmpval) {
1322                         ret = -EAGAIN;
1323                         goto out_unlock;
1324                 }
1325         }
1326
1327         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1328                 /*
1329                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1330                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1331                  * bit.  We force this here where we are able to easily handle
1332                  * faults rather in the requeue loop below.
1333                  */
1334                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1335                                                  &key2, &pi_state, nr_requeue);
1336
1337                 /*
1338                  * At this point the top_waiter has either taken uaddr2 or is
1339                  * waiting on it.  If the former, then the pi_state will not
1340                  * exist yet, look it up one more time to ensure we have a
1341                  * reference to it.
1342                  */
1343                 if (ret == 1) {
1344                         WARN_ON(pi_state);
1345                         drop_count++;
1346                         task_count++;
1347                         ret = get_futex_value_locked(&curval2, uaddr2);
1348                         if (!ret)
1349                                 ret = lookup_pi_state(curval2, hb2, &key2,
1350                                                       &pi_state);
1351                 }
1352
1353                 switch (ret) {
1354                 case 0:
1355                         break;
1356                 case -EFAULT:
1357                         double_unlock_hb(hb1, hb2);
1358                         put_futex_key(&key2);
1359                         put_futex_key(&key1);
1360                         ret = fault_in_user_writeable(uaddr2);
1361                         if (!ret)
1362                                 goto retry;
1363                         goto out;
1364                 case -EAGAIN:
1365                         /* The owner was exiting, try again. */
1366                         double_unlock_hb(hb1, hb2);
1367                         put_futex_key(&key2);
1368                         put_futex_key(&key1);
1369                         cond_resched();
1370                         goto retry;
1371                 default:
1372                         goto out_unlock;
1373                 }
1374         }
1375
1376         head1 = &hb1->chain;
1377         plist_for_each_entry_safe(this, next, head1, list) {
1378                 if (task_count - nr_wake >= nr_requeue)
1379                         break;
1380
1381                 if (!match_futex(&this->key, &key1))
1382                         continue;
1383
1384                 /*
1385                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1386                  * be paired with each other and no other futex ops.
1387                  */
1388                 if ((requeue_pi && !this->rt_waiter) ||
1389                     (!requeue_pi && this->rt_waiter)) {
1390                         ret = -EINVAL;
1391                         break;
1392                 }
1393
1394                 /*
1395                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1396                  * lock, we already woke the top_waiter.  If not, it will be
1397                  * woken by futex_unlock_pi().
1398                  */
1399                 if (++task_count <= nr_wake && !requeue_pi) {
1400                         wake_futex(this);
1401                         continue;
1402                 }
1403
1404                 /* Ensure we requeue to the expected futex for requeue_pi. */
1405                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1406                         ret = -EINVAL;
1407                         break;
1408                 }
1409
1410                 /*
1411                  * Requeue nr_requeue waiters and possibly one more in the case
1412                  * of requeue_pi if we couldn't acquire the lock atomically.
1413                  */
1414                 if (requeue_pi) {
1415                         /* Prepare the waiter to take the rt_mutex. */
1416                         atomic_inc(&pi_state->refcount);
1417                         this->pi_state = pi_state;
1418                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1419                                                         this->rt_waiter,
1420                                                         this->task, 1);
1421                         if (ret == 1) {
1422                                 /* We got the lock. */
1423                                 requeue_pi_wake_futex(this, &key2, hb2);
1424                                 drop_count++;
1425                                 continue;
1426                         } else if (ret) {
1427                                 /* -EDEADLK */
1428                                 this->pi_state = NULL;
1429                                 free_pi_state(pi_state);
1430                                 goto out_unlock;
1431                         }
1432                 }
1433                 requeue_futex(this, hb1, hb2, &key2);
1434                 drop_count++;
1435         }
1436
1437 out_unlock:
1438         double_unlock_hb(hb1, hb2);
1439
1440         /*
1441          * drop_futex_key_refs() must be called outside the spinlocks. During
1442          * the requeue we moved futex_q's from the hash bucket at key1 to the
1443          * one at key2 and updated their key pointer.  We no longer need to
1444          * hold the references to key1.
1445          */
1446         while (--drop_count >= 0)
1447                 drop_futex_key_refs(&key1);
1448
1449 out_put_keys:
1450         put_futex_key(&key2);
1451 out_put_key1:
1452         put_futex_key(&key1);
1453 out:
1454         if (pi_state != NULL)
1455                 free_pi_state(pi_state);
1456         return ret ? ret : task_count;
1457 }
1458
1459 /* The key must be already stored in q->key. */
1460 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1461         __acquires(&hb->lock)
1462 {
1463         struct futex_hash_bucket *hb;
1464
1465         hb = hash_futex(&q->key);
1466         q->lock_ptr = &hb->lock;
1467
1468         spin_lock(&hb->lock);
1469         return hb;
1470 }
1471
1472 static inline void
1473 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1474         __releases(&hb->lock)
1475 {
1476         spin_unlock(&hb->lock);
1477 }
1478
1479 /**
1480  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1481  * @q:  The futex_q to enqueue
1482  * @hb: The destination hash bucket
1483  *
1484  * The hb->lock must be held by the caller, and is released here. A call to
1485  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1486  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1487  * or nothing if the unqueue is done as part of the wake process and the unqueue
1488  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1489  * an example).
1490  */
1491 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1492         __releases(&hb->lock)
1493 {
1494         int prio;
1495
1496         /*
1497          * The priority used to register this element is
1498          * - either the real thread-priority for the real-time threads
1499          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1500          * - or MAX_RT_PRIO for non-RT threads.
1501          * Thus, all RT-threads are woken first in priority order, and
1502          * the others are woken last, in FIFO order.
1503          */
1504         prio = min(current->normal_prio, MAX_RT_PRIO);
1505
1506         plist_node_init(&q->list, prio);
1507         plist_add(&q->list, &hb->chain);
1508         q->task = current;
1509         spin_unlock(&hb->lock);
1510 }
1511
1512 /**
1513  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1514  * @q:  The futex_q to unqueue
1515  *
1516  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1517  * be paired with exactly one earlier call to queue_me().
1518  *
1519  * Returns:
1520  *   1 - if the futex_q was still queued (and we removed unqueued it)
1521  *   0 - if the futex_q was already removed by the waking thread
1522  */
1523 static int unqueue_me(struct futex_q *q)
1524 {
1525         spinlock_t *lock_ptr;
1526         int ret = 0;
1527
1528         /* In the common case we don't take the spinlock, which is nice. */
1529 retry:
1530         lock_ptr = q->lock_ptr;
1531         barrier();
1532         if (lock_ptr != NULL) {
1533                 spin_lock(lock_ptr);
1534                 /*
1535                  * q->lock_ptr can change between reading it and
1536                  * spin_lock(), causing us to take the wrong lock.  This
1537                  * corrects the race condition.
1538                  *
1539                  * Reasoning goes like this: if we have the wrong lock,
1540                  * q->lock_ptr must have changed (maybe several times)
1541                  * between reading it and the spin_lock().  It can
1542                  * change again after the spin_lock() but only if it was
1543                  * already changed before the spin_lock().  It cannot,
1544                  * however, change back to the original value.  Therefore
1545                  * we can detect whether we acquired the correct lock.
1546                  */
1547                 if (unlikely(lock_ptr != q->lock_ptr)) {
1548                         spin_unlock(lock_ptr);
1549                         goto retry;
1550                 }
1551                 __unqueue_futex(q);
1552
1553                 BUG_ON(q->pi_state);
1554
1555                 spin_unlock(lock_ptr);
1556                 ret = 1;
1557         }
1558
1559         drop_futex_key_refs(&q->key);
1560         return ret;
1561 }
1562
1563 /*
1564  * PI futexes can not be requeued and must remove themself from the
1565  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1566  * and dropped here.
1567  */
1568 static void unqueue_me_pi(struct futex_q *q)
1569         __releases(q->lock_ptr)
1570 {
1571         __unqueue_futex(q);
1572
1573         BUG_ON(!q->pi_state);
1574         free_pi_state(q->pi_state);
1575         q->pi_state = NULL;
1576
1577         spin_unlock(q->lock_ptr);
1578 }
1579
1580 /*
1581  * Fixup the pi_state owner with the new owner.
1582  *
1583  * Must be called with hash bucket lock held and mm->sem held for non
1584  * private futexes.
1585  */
1586 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1587                                 struct task_struct *newowner)
1588 {
1589         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1590         struct futex_pi_state *pi_state = q->pi_state;
1591         struct task_struct *oldowner = pi_state->owner;
1592         u32 uval, uninitialized_var(curval), newval;
1593         int ret;
1594
1595         /* Owner died? */
1596         if (!pi_state->owner)
1597                 newtid |= FUTEX_OWNER_DIED;
1598
1599         /*
1600          * We are here either because we stole the rtmutex from the
1601          * previous highest priority waiter or we are the highest priority
1602          * waiter but failed to get the rtmutex the first time.
1603          * We have to replace the newowner TID in the user space variable.
1604          * This must be atomic as we have to preserve the owner died bit here.
1605          *
1606          * Note: We write the user space value _before_ changing the pi_state
1607          * because we can fault here. Imagine swapped out pages or a fork
1608          * that marked all the anonymous memory readonly for cow.
1609          *
1610          * Modifying pi_state _before_ the user space value would
1611          * leave the pi_state in an inconsistent state when we fault
1612          * here, because we need to drop the hash bucket lock to
1613          * handle the fault. This might be observed in the PID check
1614          * in lookup_pi_state.
1615          */
1616 retry:
1617         if (get_futex_value_locked(&uval, uaddr))
1618                 goto handle_fault;
1619
1620         while (1) {
1621                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1622
1623                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1624                         goto handle_fault;
1625                 if (curval == uval)
1626                         break;
1627                 uval = curval;
1628         }
1629
1630         /*
1631          * We fixed up user space. Now we need to fix the pi_state
1632          * itself.
1633          */
1634         if (pi_state->owner != NULL) {
1635                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1636                 WARN_ON(list_empty(&pi_state->list));
1637                 list_del_init(&pi_state->list);
1638                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1639         }
1640
1641         pi_state->owner = newowner;
1642
1643         raw_spin_lock_irq(&newowner->pi_lock);
1644         WARN_ON(!list_empty(&pi_state->list));
1645         list_add(&pi_state->list, &newowner->pi_state_list);
1646         raw_spin_unlock_irq(&newowner->pi_lock);
1647         return 0;
1648
1649         /*
1650          * To handle the page fault we need to drop the hash bucket
1651          * lock here. That gives the other task (either the highest priority
1652          * waiter itself or the task which stole the rtmutex) the
1653          * chance to try the fixup of the pi_state. So once we are
1654          * back from handling the fault we need to check the pi_state
1655          * after reacquiring the hash bucket lock and before trying to
1656          * do another fixup. When the fixup has been done already we
1657          * simply return.
1658          */
1659 handle_fault:
1660         spin_unlock(q->lock_ptr);
1661
1662         ret = fault_in_user_writeable(uaddr);
1663
1664         spin_lock(q->lock_ptr);
1665
1666         /*
1667          * Check if someone else fixed it for us:
1668          */
1669         if (pi_state->owner != oldowner)
1670                 return 0;
1671
1672         if (ret)
1673                 return ret;
1674
1675         goto retry;
1676 }
1677
1678 static long futex_wait_restart(struct restart_block *restart);
1679
1680 /**
1681  * fixup_owner() - Post lock pi_state and corner case management
1682  * @uaddr:      user address of the futex
1683  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1684  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1685  *
1686  * After attempting to lock an rt_mutex, this function is called to cleanup
1687  * the pi_state owner as well as handle race conditions that may allow us to
1688  * acquire the lock. Must be called with the hb lock held.
1689  *
1690  * Returns:
1691  *  1 - success, lock taken
1692  *  0 - success, lock not taken
1693  * <0 - on error (-EFAULT)
1694  */
1695 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1696 {
1697         struct task_struct *owner;
1698         int ret = 0;
1699
1700         if (locked) {
1701                 /*
1702                  * Got the lock. We might not be the anticipated owner if we
1703                  * did a lock-steal - fix up the PI-state in that case:
1704                  */
1705                 if (q->pi_state->owner != current)
1706                         ret = fixup_pi_state_owner(uaddr, q, current);
1707                 goto out;
1708         }
1709
1710         /*
1711          * Catch the rare case, where the lock was released when we were on the
1712          * way back before we locked the hash bucket.
1713          */
1714         if (q->pi_state->owner == current) {
1715                 /*
1716                  * Try to get the rt_mutex now. This might fail as some other
1717                  * task acquired the rt_mutex after we removed ourself from the
1718                  * rt_mutex waiters list.
1719                  */
1720                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1721                         locked = 1;
1722                         goto out;
1723                 }
1724
1725                 /*
1726                  * pi_state is incorrect, some other task did a lock steal and
1727                  * we returned due to timeout or signal without taking the
1728                  * rt_mutex. Too late.
1729                  */
1730                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1731                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1732                 if (!owner)
1733                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1734                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1735                 ret = fixup_pi_state_owner(uaddr, q, owner);
1736                 goto out;
1737         }
1738
1739         /*
1740          * Paranoia check. If we did not take the lock, then we should not be
1741          * the owner of the rt_mutex.
1742          */
1743         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1744                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1745                                 "pi-state %p\n", ret,
1746                                 q->pi_state->pi_mutex.owner,
1747                                 q->pi_state->owner);
1748
1749 out:
1750         return ret ? ret : locked;
1751 }
1752
1753 /**
1754  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1755  * @hb:         the futex hash bucket, must be locked by the caller
1756  * @q:          the futex_q to queue up on
1757  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1758  */
1759 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1760                                 struct hrtimer_sleeper *timeout)
1761 {
1762         /*
1763          * The task state is guaranteed to be set before another task can
1764          * wake it. set_current_state() is implemented using set_mb() and
1765          * queue_me() calls spin_unlock() upon completion, both serializing
1766          * access to the hash list and forcing another memory barrier.
1767          */
1768         set_current_state(TASK_INTERRUPTIBLE);
1769         queue_me(q, hb);
1770
1771         /* Arm the timer */
1772         if (timeout) {
1773                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1774                 if (!hrtimer_active(&timeout->timer))
1775                         timeout->task = NULL;
1776         }
1777
1778         /*
1779          * If we have been removed from the hash list, then another task
1780          * has tried to wake us, and we can skip the call to schedule().
1781          */
1782         if (likely(!plist_node_empty(&q->list))) {
1783                 /*
1784                  * If the timer has already expired, current will already be
1785                  * flagged for rescheduling. Only call schedule if there
1786                  * is no timeout, or if it has yet to expire.
1787                  */
1788                 if (!timeout || timeout->task)
1789                         schedule();
1790         }
1791         __set_current_state(TASK_RUNNING);
1792 }
1793
1794 /**
1795  * futex_wait_setup() - Prepare to wait on a futex
1796  * @uaddr:      the futex userspace address
1797  * @val:        the expected value
1798  * @flags:      futex flags (FLAGS_SHARED, etc.)
1799  * @q:          the associated futex_q
1800  * @hb:         storage for hash_bucket pointer to be returned to caller
1801  *
1802  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1803  * compare it with the expected value.  Handle atomic faults internally.
1804  * Return with the hb lock held and a q.key reference on success, and unlocked
1805  * with no q.key reference on failure.
1806  *
1807  * Returns:
1808  *  0 - uaddr contains val and hb has been locked
1809  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1810  */
1811 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1812                            struct futex_q *q, struct futex_hash_bucket **hb)
1813 {
1814         u32 uval;
1815         int ret;
1816
1817         /*
1818          * Access the page AFTER the hash-bucket is locked.
1819          * Order is important:
1820          *
1821          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1822          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1823          *
1824          * The basic logical guarantee of a futex is that it blocks ONLY
1825          * if cond(var) is known to be true at the time of blocking, for
1826          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1827          * would open a race condition where we could block indefinitely with
1828          * cond(var) false, which would violate the guarantee.
1829          *
1830          * On the other hand, we insert q and release the hash-bucket only
1831          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1832          * absorb a wakeup if *uaddr does not match the desired values
1833          * while the syscall executes.
1834          */
1835 retry:
1836         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1837         if (unlikely(ret != 0))
1838                 return ret;
1839
1840 retry_private:
1841         *hb = queue_lock(q);
1842
1843         ret = get_futex_value_locked(&uval, uaddr);
1844
1845         if (ret) {
1846                 queue_unlock(q, *hb);
1847
1848                 ret = get_user(uval, uaddr);
1849                 if (ret)
1850                         goto out;
1851
1852                 if (!(flags & FLAGS_SHARED))
1853                         goto retry_private;
1854
1855                 put_futex_key(&q->key);
1856                 goto retry;
1857         }
1858
1859         if (uval != val) {
1860                 queue_unlock(q, *hb);
1861                 ret = -EWOULDBLOCK;
1862         }
1863
1864 out:
1865         if (ret)
1866                 put_futex_key(&q->key);
1867         return ret;
1868 }
1869
1870 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1871                       ktime_t *abs_time, u32 bitset)
1872 {
1873         struct hrtimer_sleeper timeout, *to = NULL;
1874         struct restart_block *restart;
1875         struct futex_hash_bucket *hb;
1876         struct futex_q q = futex_q_init;
1877         int ret;
1878
1879         if (!bitset)
1880                 return -EINVAL;
1881         q.bitset = bitset;
1882
1883         if (abs_time) {
1884                 to = &timeout;
1885
1886                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1887                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
1888                                       HRTIMER_MODE_ABS);
1889                 hrtimer_init_sleeper(to, current);
1890                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1891                                              current->timer_slack_ns);
1892         }
1893
1894 retry:
1895         /*
1896          * Prepare to wait on uaddr. On success, holds hb lock and increments
1897          * q.key refs.
1898          */
1899         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1900         if (ret)
1901                 goto out;
1902
1903         /* queue_me and wait for wakeup, timeout, or a signal. */
1904         futex_wait_queue_me(hb, &q, to);
1905
1906         /* If we were woken (and unqueued), we succeeded, whatever. */
1907         ret = 0;
1908         /* unqueue_me() drops q.key ref */
1909         if (!unqueue_me(&q))
1910                 goto out;
1911         ret = -ETIMEDOUT;
1912         if (to && !to->task)
1913                 goto out;
1914
1915         /*
1916          * We expect signal_pending(current), but we might be the
1917          * victim of a spurious wakeup as well.
1918          */
1919         if (!signal_pending(current))
1920                 goto retry;
1921
1922         ret = -ERESTARTSYS;
1923         if (!abs_time)
1924                 goto out;
1925
1926         restart = &current_thread_info()->restart_block;
1927         restart->fn = futex_wait_restart;
1928         restart->futex.uaddr = uaddr;
1929         restart->futex.val = val;
1930         restart->futex.time = abs_time->tv64;
1931         restart->futex.bitset = bitset;
1932         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1933
1934         ret = -ERESTART_RESTARTBLOCK;
1935
1936 out:
1937         if (to) {
1938                 hrtimer_cancel(&to->timer);
1939                 destroy_hrtimer_on_stack(&to->timer);
1940         }
1941         return ret;
1942 }
1943
1944
1945 static long futex_wait_restart(struct restart_block *restart)
1946 {
1947         u32 __user *uaddr = restart->futex.uaddr;
1948         ktime_t t, *tp = NULL;
1949
1950         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1951                 t.tv64 = restart->futex.time;
1952                 tp = &t;
1953         }
1954         restart->fn = do_no_restart_syscall;
1955
1956         return (long)futex_wait(uaddr, restart->futex.flags,
1957                                 restart->futex.val, tp, restart->futex.bitset);
1958 }
1959
1960
1961 /*
1962  * Userspace tried a 0 -> TID atomic transition of the futex value
1963  * and failed. The kernel side here does the whole locking operation:
1964  * if there are waiters then it will block, it does PI, etc. (Due to
1965  * races the kernel might see a 0 value of the futex too.)
1966  */
1967 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1968                          ktime_t *time, int trylock)
1969 {
1970         struct hrtimer_sleeper timeout, *to = NULL;
1971         struct futex_hash_bucket *hb;
1972         struct futex_q q = futex_q_init;
1973         int res, ret;
1974
1975         if (refill_pi_state_cache())
1976                 return -ENOMEM;
1977
1978         if (time) {
1979                 to = &timeout;
1980                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1981                                       HRTIMER_MODE_ABS);
1982                 hrtimer_init_sleeper(to, current);
1983                 hrtimer_set_expires(&to->timer, *time);
1984         }
1985
1986 retry:
1987         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
1988         if (unlikely(ret != 0))
1989                 goto out;
1990
1991 retry_private:
1992         hb = queue_lock(&q);
1993
1994         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1995         if (unlikely(ret)) {
1996                 switch (ret) {
1997                 case 1:
1998                         /* We got the lock. */
1999                         ret = 0;
2000                         goto out_unlock_put_key;
2001                 case -EFAULT:
2002                         goto uaddr_faulted;
2003                 case -EAGAIN:
2004                         /*
2005                          * Task is exiting and we just wait for the
2006                          * exit to complete.
2007                          */
2008                         queue_unlock(&q, hb);
2009                         put_futex_key(&q.key);
2010                         cond_resched();
2011                         goto retry;
2012                 default:
2013                         goto out_unlock_put_key;
2014                 }
2015         }
2016
2017         /*
2018          * Only actually queue now that the atomic ops are done:
2019          */
2020         queue_me(&q, hb);
2021
2022         WARN_ON(!q.pi_state);
2023         /*
2024          * Block on the PI mutex:
2025          */
2026         if (!trylock)
2027                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2028         else {
2029                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2030                 /* Fixup the trylock return value: */
2031                 ret = ret ? 0 : -EWOULDBLOCK;
2032         }
2033
2034         spin_lock(q.lock_ptr);
2035         /*
2036          * Fixup the pi_state owner and possibly acquire the lock if we
2037          * haven't already.
2038          */
2039         res = fixup_owner(uaddr, &q, !ret);
2040         /*
2041          * If fixup_owner() returned an error, proprogate that.  If it acquired
2042          * the lock, clear our -ETIMEDOUT or -EINTR.
2043          */
2044         if (res)
2045                 ret = (res < 0) ? res : 0;
2046
2047         /*
2048          * If fixup_owner() faulted and was unable to handle the fault, unlock
2049          * it and return the fault to userspace.
2050          */
2051         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2052                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2053
2054         /* Unqueue and drop the lock */
2055         unqueue_me_pi(&q);
2056
2057         goto out_put_key;
2058
2059 out_unlock_put_key:
2060         queue_unlock(&q, hb);
2061
2062 out_put_key:
2063         put_futex_key(&q.key);
2064 out:
2065         if (to)
2066                 destroy_hrtimer_on_stack(&to->timer);
2067         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2068
2069 uaddr_faulted:
2070         queue_unlock(&q, hb);
2071
2072         ret = fault_in_user_writeable(uaddr);
2073         if (ret)
2074                 goto out_put_key;
2075
2076         if (!(flags & FLAGS_SHARED))
2077                 goto retry_private;
2078
2079         put_futex_key(&q.key);
2080         goto retry;
2081 }
2082
2083 /*
2084  * Userspace attempted a TID -> 0 atomic transition, and failed.
2085  * This is the in-kernel slowpath: we look up the PI state (if any),
2086  * and do the rt-mutex unlock.
2087  */
2088 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2089 {
2090         struct futex_hash_bucket *hb;
2091         struct futex_q *this, *next;
2092         struct plist_head *head;
2093         union futex_key key = FUTEX_KEY_INIT;
2094         u32 uval, vpid = task_pid_vnr(current);
2095         int ret;
2096
2097 retry:
2098         if (get_user(uval, uaddr))
2099                 return -EFAULT;
2100         /*
2101          * We release only a lock we actually own:
2102          */
2103         if ((uval & FUTEX_TID_MASK) != vpid)
2104                 return -EPERM;
2105
2106         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2107         if (unlikely(ret != 0))
2108                 goto out;
2109
2110         hb = hash_futex(&key);
2111         spin_lock(&hb->lock);
2112
2113         /*
2114          * To avoid races, try to do the TID -> 0 atomic transition
2115          * again. If it succeeds then we can return without waking
2116          * anyone else up:
2117          */
2118         if (!(uval & FUTEX_OWNER_DIED) &&
2119             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2120                 goto pi_faulted;
2121         /*
2122          * Rare case: we managed to release the lock atomically,
2123          * no need to wake anyone else up:
2124          */
2125         if (unlikely(uval == vpid))
2126                 goto out_unlock;
2127
2128         /*
2129          * Ok, other tasks may need to be woken up - check waiters
2130          * and do the wakeup if necessary:
2131          */
2132         head = &hb->chain;
2133
2134         plist_for_each_entry_safe(this, next, head, list) {
2135                 if (!match_futex (&this->key, &key))
2136                         continue;
2137                 ret = wake_futex_pi(uaddr, uval, this);
2138                 /*
2139                  * The atomic access to the futex value
2140                  * generated a pagefault, so retry the
2141                  * user-access and the wakeup:
2142                  */
2143                 if (ret == -EFAULT)
2144                         goto pi_faulted;
2145                 goto out_unlock;
2146         }
2147         /*
2148          * No waiters - kernel unlocks the futex:
2149          */
2150         if (!(uval & FUTEX_OWNER_DIED)) {
2151                 ret = unlock_futex_pi(uaddr, uval);
2152                 if (ret == -EFAULT)
2153                         goto pi_faulted;
2154         }
2155
2156 out_unlock:
2157         spin_unlock(&hb->lock);
2158         put_futex_key(&key);
2159
2160 out:
2161         return ret;
2162
2163 pi_faulted:
2164         spin_unlock(&hb->lock);
2165         put_futex_key(&key);
2166
2167         ret = fault_in_user_writeable(uaddr);
2168         if (!ret)
2169                 goto retry;
2170
2171         return ret;
2172 }
2173
2174 /**
2175  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2176  * @hb:         the hash_bucket futex_q was original enqueued on
2177  * @q:          the futex_q woken while waiting to be requeued
2178  * @key2:       the futex_key of the requeue target futex
2179  * @timeout:    the timeout associated with the wait (NULL if none)
2180  *
2181  * Detect if the task was woken on the initial futex as opposed to the requeue
2182  * target futex.  If so, determine if it was a timeout or a signal that caused
2183  * the wakeup and return the appropriate error code to the caller.  Must be
2184  * called with the hb lock held.
2185  *
2186  * Returns
2187  *  0 - no early wakeup detected
2188  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2189  */
2190 static inline
2191 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2192                                    struct futex_q *q, union futex_key *key2,
2193                                    struct hrtimer_sleeper *timeout)
2194 {
2195         int ret = 0;
2196
2197         /*
2198          * With the hb lock held, we avoid races while we process the wakeup.
2199          * We only need to hold hb (and not hb2) to ensure atomicity as the
2200          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2201          * It can't be requeued from uaddr2 to something else since we don't
2202          * support a PI aware source futex for requeue.
2203          */
2204         if (!match_futex(&q->key, key2)) {
2205                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2206                 /*
2207                  * We were woken prior to requeue by a timeout or a signal.
2208                  * Unqueue the futex_q and determine which it was.
2209                  */
2210                 plist_del(&q->list, &hb->chain);
2211
2212                 /* Handle spurious wakeups gracefully */
2213                 ret = -EWOULDBLOCK;
2214                 if (timeout && !timeout->task)
2215                         ret = -ETIMEDOUT;
2216                 else if (signal_pending(current))
2217                         ret = -ERESTARTNOINTR;
2218         }
2219         return ret;
2220 }
2221
2222 /**
2223  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2224  * @uaddr:      the futex we initially wait on (non-pi)
2225  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2226  *              the same type, no requeueing from private to shared, etc.
2227  * @val:        the expected value of uaddr
2228  * @abs_time:   absolute timeout
2229  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2230  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2231  * @uaddr2:     the pi futex we will take prior to returning to user-space
2232  *
2233  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2234  * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2235  * complete the acquisition of the rt_mutex prior to returning to userspace.
2236  * This ensures the rt_mutex maintains an owner when it has waiters; without
2237  * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2238  * need to.
2239  *
2240  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2241  * via the following:
2242  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2243  * 2) wakeup on uaddr2 after a requeue
2244  * 3) signal
2245  * 4) timeout
2246  *
2247  * If 3, cleanup and return -ERESTARTNOINTR.
2248  *
2249  * If 2, we may then block on trying to take the rt_mutex and return via:
2250  * 5) successful lock
2251  * 6) signal
2252  * 7) timeout
2253  * 8) other lock acquisition failure
2254  *
2255  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2256  *
2257  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2258  *
2259  * Returns:
2260  *  0 - On success
2261  * <0 - On error
2262  */
2263 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2264                                  u32 val, ktime_t *abs_time, u32 bitset,
2265                                  u32 __user *uaddr2)
2266 {
2267         struct hrtimer_sleeper timeout, *to = NULL;
2268         struct rt_mutex_waiter rt_waiter;
2269         struct rt_mutex *pi_mutex = NULL;
2270         struct futex_hash_bucket *hb;
2271         union futex_key key2 = FUTEX_KEY_INIT;
2272         struct futex_q q = futex_q_init;
2273         int res, ret;
2274
2275         if (!bitset)
2276                 return -EINVAL;
2277
2278         if (abs_time) {
2279                 to = &timeout;
2280                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2281                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2282                                       HRTIMER_MODE_ABS);
2283                 hrtimer_init_sleeper(to, current);
2284                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2285                                              current->timer_slack_ns);
2286         }
2287
2288         /*
2289          * The waiter is allocated on our stack, manipulated by the requeue
2290          * code while we sleep on uaddr.
2291          */
2292         debug_rt_mutex_init_waiter(&rt_waiter);
2293         rt_waiter.task = NULL;
2294
2295         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2296         if (unlikely(ret != 0))
2297                 goto out;
2298
2299         q.bitset = bitset;
2300         q.rt_waiter = &rt_waiter;
2301         q.requeue_pi_key = &key2;
2302
2303         /*
2304          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2305          * count.
2306          */
2307         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2308         if (ret)
2309                 goto out_key2;
2310
2311         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2312         futex_wait_queue_me(hb, &q, to);
2313
2314         spin_lock(&hb->lock);
2315         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2316         spin_unlock(&hb->lock);
2317         if (ret)
2318                 goto out_put_keys;
2319
2320         /*
2321          * In order for us to be here, we know our q.key == key2, and since
2322          * we took the hb->lock above, we also know that futex_requeue() has
2323          * completed and we no longer have to concern ourselves with a wakeup
2324          * race with the atomic proxy lock acquisition by the requeue code. The
2325          * futex_requeue dropped our key1 reference and incremented our key2
2326          * reference count.
2327          */
2328
2329         /* Check if the requeue code acquired the second futex for us. */
2330         if (!q.rt_waiter) {
2331                 /*
2332                  * Got the lock. We might not be the anticipated owner if we
2333                  * did a lock-steal - fix up the PI-state in that case.
2334                  */
2335                 if (q.pi_state && (q.pi_state->owner != current)) {
2336                         spin_lock(q.lock_ptr);
2337                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2338                         spin_unlock(q.lock_ptr);
2339                 }
2340         } else {
2341                 /*
2342                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2343                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2344                  * the pi_state.
2345                  */
2346                 WARN_ON(!&q.pi_state);
2347                 pi_mutex = &q.pi_state->pi_mutex;
2348                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2349                 debug_rt_mutex_free_waiter(&rt_waiter);
2350
2351                 spin_lock(q.lock_ptr);
2352                 /*
2353                  * Fixup the pi_state owner and possibly acquire the lock if we
2354                  * haven't already.
2355                  */
2356                 res = fixup_owner(uaddr2, &q, !ret);
2357                 /*
2358                  * If fixup_owner() returned an error, proprogate that.  If it
2359                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2360                  */
2361                 if (res)
2362                         ret = (res < 0) ? res : 0;
2363
2364                 /* Unqueue and drop the lock. */
2365                 unqueue_me_pi(&q);
2366         }
2367
2368         /*
2369          * If fixup_pi_state_owner() faulted and was unable to handle the
2370          * fault, unlock the rt_mutex and return the fault to userspace.
2371          */
2372         if (ret == -EFAULT) {
2373                 if (rt_mutex_owner(pi_mutex) == current)
2374                         rt_mutex_unlock(pi_mutex);
2375         } else if (ret == -EINTR) {
2376                 /*
2377                  * We've already been requeued, but cannot restart by calling
2378                  * futex_lock_pi() directly. We could restart this syscall, but
2379                  * it would detect that the user space "val" changed and return
2380                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2381                  * -EWOULDBLOCK directly.
2382                  */
2383                 ret = -EWOULDBLOCK;
2384         }
2385
2386 out_put_keys:
2387         put_futex_key(&q.key);
2388 out_key2:
2389         put_futex_key(&key2);
2390
2391 out:
2392         if (to) {
2393                 hrtimer_cancel(&to->timer);
2394                 destroy_hrtimer_on_stack(&to->timer);
2395         }
2396         return ret;
2397 }
2398
2399 /*
2400  * Support for robust futexes: the kernel cleans up held futexes at
2401  * thread exit time.
2402  *
2403  * Implementation: user-space maintains a per-thread list of locks it
2404  * is holding. Upon do_exit(), the kernel carefully walks this list,
2405  * and marks all locks that are owned by this thread with the
2406  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2407  * always manipulated with the lock held, so the list is private and
2408  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2409  * field, to allow the kernel to clean up if the thread dies after
2410  * acquiring the lock, but just before it could have added itself to
2411  * the list. There can only be one such pending lock.
2412  */
2413
2414 /**
2415  * sys_set_robust_list() - Set the robust-futex list head of a task
2416  * @head:       pointer to the list-head
2417  * @len:        length of the list-head, as userspace expects
2418  */
2419 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2420                 size_t, len)
2421 {
2422         if (!futex_cmpxchg_enabled)
2423                 return -ENOSYS;
2424         /*
2425          * The kernel knows only one size for now:
2426          */
2427         if (unlikely(len != sizeof(*head)))
2428                 return -EINVAL;
2429
2430         current->robust_list = head;
2431
2432         return 0;
2433 }
2434
2435 /**
2436  * sys_get_robust_list() - Get the robust-futex list head of a task
2437  * @pid:        pid of the process [zero for current task]
2438  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2439  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2440  */
2441 SYSCALL_DEFINE3(get_robust_list, int, pid,
2442                 struct robust_list_head __user * __user *, head_ptr,
2443                 size_t __user *, len_ptr)
2444 {
2445         struct robust_list_head __user *head;
2446         unsigned long ret;
2447         struct task_struct *p;
2448
2449         if (!futex_cmpxchg_enabled)
2450                 return -ENOSYS;
2451
2452         rcu_read_lock();
2453
2454         ret = -ESRCH;
2455         if (!pid)
2456                 p = current;
2457         else {
2458                 p = find_task_by_vpid(pid);
2459                 if (!p)
2460                         goto err_unlock;
2461         }
2462
2463         ret = -EPERM;
2464         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2465                 goto err_unlock;
2466
2467         head = p->robust_list;
2468         rcu_read_unlock();
2469
2470         if (put_user(sizeof(*head), len_ptr))
2471                 return -EFAULT;
2472         return put_user(head, head_ptr);
2473
2474 err_unlock:
2475         rcu_read_unlock();
2476
2477         return ret;
2478 }
2479
2480 /*
2481  * Process a futex-list entry, check whether it's owned by the
2482  * dying task, and do notification if so:
2483  */
2484 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2485 {
2486         u32 uval, uninitialized_var(nval), mval;
2487
2488 retry:
2489         if (get_user(uval, uaddr))
2490                 return -1;
2491
2492         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2493                 /*
2494                  * Ok, this dying thread is truly holding a futex
2495                  * of interest. Set the OWNER_DIED bit atomically
2496                  * via cmpxchg, and if the value had FUTEX_WAITERS
2497                  * set, wake up a waiter (if any). (We have to do a
2498                  * futex_wake() even if OWNER_DIED is already set -
2499                  * to handle the rare but possible case of recursive
2500                  * thread-death.) The rest of the cleanup is done in
2501                  * userspace.
2502                  */
2503                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2504                 /*
2505                  * We are not holding a lock here, but we want to have
2506                  * the pagefault_disable/enable() protection because
2507                  * we want to handle the fault gracefully. If the
2508                  * access fails we try to fault in the futex with R/W
2509                  * verification via get_user_pages. get_user() above
2510                  * does not guarantee R/W access. If that fails we
2511                  * give up and leave the futex locked.
2512                  */
2513                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2514                         if (fault_in_user_writeable(uaddr))
2515                                 return -1;
2516                         goto retry;
2517                 }
2518                 if (nval != uval)
2519                         goto retry;
2520
2521                 /*
2522                  * Wake robust non-PI futexes here. The wakeup of
2523                  * PI futexes happens in exit_pi_state():
2524                  */
2525                 if (!pi && (uval & FUTEX_WAITERS))
2526                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2527         }
2528         return 0;
2529 }
2530
2531 /*
2532  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2533  */
2534 static inline int fetch_robust_entry(struct robust_list __user **entry,
2535                                      struct robust_list __user * __user *head,
2536                                      unsigned int *pi)
2537 {
2538         unsigned long uentry;
2539
2540         if (get_user(uentry, (unsigned long __user *)head))
2541                 return -EFAULT;
2542
2543         *entry = (void __user *)(uentry & ~1UL);
2544         *pi = uentry & 1;
2545
2546         return 0;
2547 }
2548
2549 /*
2550  * Walk curr->robust_list (very carefully, it's a userspace list!)
2551  * and mark any locks found there dead, and notify any waiters.
2552  *
2553  * We silently return on any sign of list-walking problem.
2554  */
2555 void exit_robust_list(struct task_struct *curr)
2556 {
2557         struct robust_list_head __user *head = curr->robust_list;
2558         struct robust_list __user *entry, *next_entry, *pending;
2559         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2560         unsigned int uninitialized_var(next_pi);
2561         unsigned long futex_offset;
2562         int rc;
2563
2564         if (!futex_cmpxchg_enabled)
2565                 return;
2566
2567         /*
2568          * Fetch the list head (which was registered earlier, via
2569          * sys_set_robust_list()):
2570          */
2571         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2572                 return;
2573         /*
2574          * Fetch the relative futex offset:
2575          */
2576         if (get_user(futex_offset, &head->futex_offset))
2577                 return;
2578         /*
2579          * Fetch any possibly pending lock-add first, and handle it
2580          * if it exists:
2581          */
2582         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2583                 return;
2584
2585         next_entry = NULL;      /* avoid warning with gcc */
2586         while (entry != &head->list) {
2587                 /*
2588                  * Fetch the next entry in the list before calling
2589                  * handle_futex_death:
2590                  */
2591                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2592                 /*
2593                  * A pending lock might already be on the list, so
2594                  * don't process it twice:
2595                  */
2596                 if (entry != pending)
2597                         if (handle_futex_death((void __user *)entry + futex_offset,
2598                                                 curr, pi))
2599                                 return;
2600                 if (rc)
2601                         return;
2602                 entry = next_entry;
2603                 pi = next_pi;
2604                 /*
2605                  * Avoid excessively long or circular lists:
2606                  */
2607                 if (!--limit)
2608                         break;
2609
2610                 cond_resched();
2611         }
2612
2613         if (pending)
2614                 handle_futex_death((void __user *)pending + futex_offset,
2615                                    curr, pip);
2616 }
2617
2618 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2619                 u32 __user *uaddr2, u32 val2, u32 val3)
2620 {
2621         int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2622         unsigned int flags = 0;
2623
2624         if (!(op & FUTEX_PRIVATE_FLAG))
2625                 flags |= FLAGS_SHARED;
2626
2627         if (op & FUTEX_CLOCK_REALTIME) {
2628                 flags |= FLAGS_CLOCKRT;
2629                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2630                         return -ENOSYS;
2631         }
2632
2633         switch (cmd) {
2634         case FUTEX_LOCK_PI:
2635         case FUTEX_UNLOCK_PI:
2636         case FUTEX_TRYLOCK_PI:
2637         case FUTEX_WAIT_REQUEUE_PI:
2638         case FUTEX_CMP_REQUEUE_PI:
2639                 if (!futex_cmpxchg_enabled)
2640                         return -ENOSYS;
2641         }
2642
2643         switch (cmd) {
2644         case FUTEX_WAIT:
2645                 val3 = FUTEX_BITSET_MATCH_ANY;
2646         case FUTEX_WAIT_BITSET:
2647                 ret = futex_wait(uaddr, flags, val, timeout, val3);
2648                 break;
2649         case FUTEX_WAKE:
2650                 val3 = FUTEX_BITSET_MATCH_ANY;
2651         case FUTEX_WAKE_BITSET:
2652                 ret = futex_wake(uaddr, flags, val, val3);
2653                 break;
2654         case FUTEX_REQUEUE:
2655                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2656                 break;
2657         case FUTEX_CMP_REQUEUE:
2658                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2659                 break;
2660         case FUTEX_WAKE_OP:
2661                 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2662                 break;
2663         case FUTEX_LOCK_PI:
2664                 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2665                 break;
2666         case FUTEX_UNLOCK_PI:
2667                 ret = futex_unlock_pi(uaddr, flags);
2668                 break;
2669         case FUTEX_TRYLOCK_PI:
2670                 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2671                 break;
2672         case FUTEX_WAIT_REQUEUE_PI:
2673                 val3 = FUTEX_BITSET_MATCH_ANY;
2674                 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2675                                             uaddr2);
2676                 break;
2677         case FUTEX_CMP_REQUEUE_PI:
2678                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2679                 break;
2680         default:
2681                 ret = -ENOSYS;
2682         }
2683         return ret;
2684 }
2685
2686
2687 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2688                 struct timespec __user *, utime, u32 __user *, uaddr2,
2689                 u32, val3)
2690 {
2691         struct timespec ts;
2692         ktime_t t, *tp = NULL;
2693         u32 val2 = 0;
2694         int cmd = op & FUTEX_CMD_MASK;
2695
2696         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2697                       cmd == FUTEX_WAIT_BITSET ||
2698                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2699                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2700                         return -EFAULT;
2701                 if (!timespec_valid(&ts))
2702                         return -EINVAL;
2703
2704                 t = timespec_to_ktime(ts);
2705                 if (cmd == FUTEX_WAIT)
2706                         t = ktime_add_safe(ktime_get(), t);
2707                 tp = &t;
2708         }
2709         /*
2710          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2711          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2712          */
2713         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2714             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2715                 val2 = (u32) (unsigned long) utime;
2716
2717         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2718 }
2719
2720 static int __init futex_init(void)
2721 {
2722         u32 curval;
2723         int i;
2724
2725         /*
2726          * This will fail and we want it. Some arch implementations do
2727          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2728          * functionality. We want to know that before we call in any
2729          * of the complex code paths. Also we want to prevent
2730          * registration of robust lists in that case. NULL is
2731          * guaranteed to fault and we get -EFAULT on functional
2732          * implementation, the non-functional ones will return
2733          * -ENOSYS.
2734          */
2735         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2736                 futex_cmpxchg_enabled = 1;
2737
2738         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2739                 plist_head_init(&futex_queues[i].chain);
2740                 spin_lock_init(&futex_queues[i].lock);
2741         }
2742
2743         return 0;
2744 }
2745 __initcall(futex_init);