futex-prevent-requeue-pi-on-same-futex.patch futex: Forbid uaddr == uaddr2 in futex_r...
[pandora-kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/hugetlb.h>
64
65 #include <asm/futex.h>
66
67 #include "rtmutex_common.h"
68
69 int __read_mostly futex_cmpxchg_enabled;
70
71 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72
73 /*
74  * Futex flags used to encode options to functions and preserve them across
75  * restarts.
76  */
77 #define FLAGS_SHARED            0x01
78 #define FLAGS_CLOCKRT           0x02
79 #define FLAGS_HAS_TIMEOUT       0x04
80
81 /*
82  * Priority Inheritance state:
83  */
84 struct futex_pi_state {
85         /*
86          * list of 'owned' pi_state instances - these have to be
87          * cleaned up in do_exit() if the task exits prematurely:
88          */
89         struct list_head list;
90
91         /*
92          * The PI object:
93          */
94         struct rt_mutex pi_mutex;
95
96         struct task_struct *owner;
97         atomic_t refcount;
98
99         union futex_key key;
100 };
101
102 /**
103  * struct futex_q - The hashed futex queue entry, one per waiting task
104  * @list:               priority-sorted list of tasks waiting on this futex
105  * @task:               the task waiting on the futex
106  * @lock_ptr:           the hash bucket lock
107  * @key:                the key the futex is hashed on
108  * @pi_state:           optional priority inheritance state
109  * @rt_waiter:          rt_waiter storage for use with requeue_pi
110  * @requeue_pi_key:     the requeue_pi target futex key
111  * @bitset:             bitset for the optional bitmasked wakeup
112  *
113  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
114  * we can wake only the relevant ones (hashed queues may be shared).
115  *
116  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
117  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
118  * The order of wakeup is always to make the first condition true, then
119  * the second.
120  *
121  * PI futexes are typically woken before they are removed from the hash list via
122  * the rt_mutex code. See unqueue_me_pi().
123  */
124 struct futex_q {
125         struct plist_node list;
126
127         struct task_struct *task;
128         spinlock_t *lock_ptr;
129         union futex_key key;
130         struct futex_pi_state *pi_state;
131         struct rt_mutex_waiter *rt_waiter;
132         union futex_key *requeue_pi_key;
133         u32 bitset;
134 };
135
136 static const struct futex_q futex_q_init = {
137         /* list gets initialized in queue_me()*/
138         .key = FUTEX_KEY_INIT,
139         .bitset = FUTEX_BITSET_MATCH_ANY
140 };
141
142 /*
143  * Hash buckets are shared by all the futex_keys that hash to the same
144  * location.  Each key may have multiple futex_q structures, one for each task
145  * waiting on a futex.
146  */
147 struct futex_hash_bucket {
148         spinlock_t lock;
149         struct plist_head chain;
150 };
151
152 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
153
154 /*
155  * We hash on the keys returned from get_futex_key (see below).
156  */
157 static struct futex_hash_bucket *hash_futex(union futex_key *key)
158 {
159         u32 hash = jhash2((u32*)&key->both.word,
160                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
161                           key->both.offset);
162         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
163 }
164
165 /*
166  * Return 1 if two futex_keys are equal, 0 otherwise.
167  */
168 static inline int match_futex(union futex_key *key1, union futex_key *key2)
169 {
170         return (key1 && key2
171                 && key1->both.word == key2->both.word
172                 && key1->both.ptr == key2->both.ptr
173                 && key1->both.offset == key2->both.offset);
174 }
175
176 /*
177  * Take a reference to the resource addressed by a key.
178  * Can be called while holding spinlocks.
179  *
180  */
181 static void get_futex_key_refs(union futex_key *key)
182 {
183         if (!key->both.ptr)
184                 return;
185
186         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
187         case FUT_OFF_INODE:
188                 ihold(key->shared.inode);
189                 break;
190         case FUT_OFF_MMSHARED:
191                 atomic_inc(&key->private.mm->mm_count);
192                 break;
193         }
194 }
195
196 /*
197  * Drop a reference to the resource addressed by a key.
198  * The hash bucket spinlock must not be held.
199  */
200 static void drop_futex_key_refs(union futex_key *key)
201 {
202         if (!key->both.ptr) {
203                 /* If we're here then we tried to put a key we failed to get */
204                 WARN_ON_ONCE(1);
205                 return;
206         }
207
208         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
209         case FUT_OFF_INODE:
210                 iput(key->shared.inode);
211                 break;
212         case FUT_OFF_MMSHARED:
213                 mmdrop(key->private.mm);
214                 break;
215         }
216 }
217
218 /**
219  * get_futex_key() - Get parameters which are the keys for a futex
220  * @uaddr:      virtual address of the futex
221  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
222  * @key:        address where result is stored.
223  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
224  *              VERIFY_WRITE)
225  *
226  * Returns a negative error code or 0
227  * The key words are stored in *key on success.
228  *
229  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
230  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
231  * We can usually work out the index without swapping in the page.
232  *
233  * lock_page() might sleep, the caller should not hold a spinlock.
234  */
235 static int
236 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
237 {
238         unsigned long address = (unsigned long)uaddr;
239         struct mm_struct *mm = current->mm;
240         struct page *page, *page_head;
241         int err, ro = 0;
242
243         /*
244          * The futex address must be "naturally" aligned.
245          */
246         key->both.offset = address % PAGE_SIZE;
247         if (unlikely((address % sizeof(u32)) != 0))
248                 return -EINVAL;
249         address -= key->both.offset;
250
251         /*
252          * PROCESS_PRIVATE futexes are fast.
253          * As the mm cannot disappear under us and the 'key' only needs
254          * virtual address, we dont even have to find the underlying vma.
255          * Note : We do have to check 'uaddr' is a valid user address,
256          *        but access_ok() should be faster than find_vma()
257          */
258         if (!fshared) {
259                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
260                         return -EFAULT;
261                 key->private.mm = mm;
262                 key->private.address = address;
263                 get_futex_key_refs(key);
264                 return 0;
265         }
266
267 again:
268         err = get_user_pages_fast(address, 1, 1, &page);
269         /*
270          * If write access is not required (eg. FUTEX_WAIT), try
271          * and get read-only access.
272          */
273         if (err == -EFAULT && rw == VERIFY_READ) {
274                 err = get_user_pages_fast(address, 1, 0, &page);
275                 ro = 1;
276         }
277         if (err < 0)
278                 return err;
279         else
280                 err = 0;
281
282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
283         page_head = page;
284         if (unlikely(PageTail(page))) {
285                 put_page(page);
286                 /* serialize against __split_huge_page_splitting() */
287                 local_irq_disable();
288                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
289                         page_head = compound_head(page);
290                         /*
291                          * page_head is valid pointer but we must pin
292                          * it before taking the PG_lock and/or
293                          * PG_compound_lock. The moment we re-enable
294                          * irqs __split_huge_page_splitting() can
295                          * return and the head page can be freed from
296                          * under us. We can't take the PG_lock and/or
297                          * PG_compound_lock on a page that could be
298                          * freed from under us.
299                          */
300                         if (page != page_head) {
301                                 get_page(page_head);
302                                 put_page(page);
303                         }
304                         local_irq_enable();
305                 } else {
306                         local_irq_enable();
307                         goto again;
308                 }
309         }
310 #else
311         page_head = compound_head(page);
312         if (page != page_head) {
313                 get_page(page_head);
314                 put_page(page);
315         }
316 #endif
317
318         lock_page(page_head);
319
320         /*
321          * If page_head->mapping is NULL, then it cannot be a PageAnon
322          * page; but it might be the ZERO_PAGE or in the gate area or
323          * in a special mapping (all cases which we are happy to fail);
324          * or it may have been a good file page when get_user_pages_fast
325          * found it, but truncated or holepunched or subjected to
326          * invalidate_complete_page2 before we got the page lock (also
327          * cases which we are happy to fail).  And we hold a reference,
328          * so refcount care in invalidate_complete_page's remove_mapping
329          * prevents drop_caches from setting mapping to NULL beneath us.
330          *
331          * The case we do have to guard against is when memory pressure made
332          * shmem_writepage move it from filecache to swapcache beneath us:
333          * an unlikely race, but we do need to retry for page_head->mapping.
334          */
335         if (!page_head->mapping) {
336                 int shmem_swizzled = PageSwapCache(page_head);
337                 unlock_page(page_head);
338                 put_page(page_head);
339                 if (shmem_swizzled)
340                         goto again;
341                 return -EFAULT;
342         }
343
344         /*
345          * Private mappings are handled in a simple way.
346          *
347          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
348          * it's a read-only handle, it's expected that futexes attach to
349          * the object not the particular process.
350          */
351         if (PageAnon(page_head)) {
352                 /*
353                  * A RO anonymous page will never change and thus doesn't make
354                  * sense for futex operations.
355                  */
356                 if (ro) {
357                         err = -EFAULT;
358                         goto out;
359                 }
360
361                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
362                 key->private.mm = mm;
363                 key->private.address = address;
364         } else {
365                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
366                 key->shared.inode = page_head->mapping->host;
367                 key->shared.pgoff = basepage_index(page);
368         }
369
370         get_futex_key_refs(key);
371
372 out:
373         unlock_page(page_head);
374         put_page(page_head);
375         return err;
376 }
377
378 static inline void put_futex_key(union futex_key *key)
379 {
380         drop_futex_key_refs(key);
381 }
382
383 /**
384  * fault_in_user_writeable() - Fault in user address and verify RW access
385  * @uaddr:      pointer to faulting user space address
386  *
387  * Slow path to fixup the fault we just took in the atomic write
388  * access to @uaddr.
389  *
390  * We have no generic implementation of a non-destructive write to the
391  * user address. We know that we faulted in the atomic pagefault
392  * disabled section so we can as well avoid the #PF overhead by
393  * calling get_user_pages() right away.
394  */
395 static int fault_in_user_writeable(u32 __user *uaddr)
396 {
397         struct mm_struct *mm = current->mm;
398         int ret;
399
400         down_read(&mm->mmap_sem);
401         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
402                                FAULT_FLAG_WRITE);
403         up_read(&mm->mmap_sem);
404
405         return ret < 0 ? ret : 0;
406 }
407
408 /**
409  * futex_top_waiter() - Return the highest priority waiter on a futex
410  * @hb:         the hash bucket the futex_q's reside in
411  * @key:        the futex key (to distinguish it from other futex futex_q's)
412  *
413  * Must be called with the hb lock held.
414  */
415 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
416                                         union futex_key *key)
417 {
418         struct futex_q *this;
419
420         plist_for_each_entry(this, &hb->chain, list) {
421                 if (match_futex(&this->key, key))
422                         return this;
423         }
424         return NULL;
425 }
426
427 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
428                                       u32 uval, u32 newval)
429 {
430         int ret;
431
432         pagefault_disable();
433         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
434         pagefault_enable();
435
436         return ret;
437 }
438
439 static int get_futex_value_locked(u32 *dest, u32 __user *from)
440 {
441         int ret;
442
443         pagefault_disable();
444         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
445         pagefault_enable();
446
447         return ret ? -EFAULT : 0;
448 }
449
450
451 /*
452  * PI code:
453  */
454 static int refill_pi_state_cache(void)
455 {
456         struct futex_pi_state *pi_state;
457
458         if (likely(current->pi_state_cache))
459                 return 0;
460
461         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
462
463         if (!pi_state)
464                 return -ENOMEM;
465
466         INIT_LIST_HEAD(&pi_state->list);
467         /* pi_mutex gets initialized later */
468         pi_state->owner = NULL;
469         atomic_set(&pi_state->refcount, 1);
470         pi_state->key = FUTEX_KEY_INIT;
471
472         current->pi_state_cache = pi_state;
473
474         return 0;
475 }
476
477 static struct futex_pi_state * alloc_pi_state(void)
478 {
479         struct futex_pi_state *pi_state = current->pi_state_cache;
480
481         WARN_ON(!pi_state);
482         current->pi_state_cache = NULL;
483
484         return pi_state;
485 }
486
487 static void free_pi_state(struct futex_pi_state *pi_state)
488 {
489         if (!atomic_dec_and_test(&pi_state->refcount))
490                 return;
491
492         /*
493          * If pi_state->owner is NULL, the owner is most probably dying
494          * and has cleaned up the pi_state already
495          */
496         if (pi_state->owner) {
497                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
498                 list_del_init(&pi_state->list);
499                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
500
501                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
502         }
503
504         if (current->pi_state_cache)
505                 kfree(pi_state);
506         else {
507                 /*
508                  * pi_state->list is already empty.
509                  * clear pi_state->owner.
510                  * refcount is at 0 - put it back to 1.
511                  */
512                 pi_state->owner = NULL;
513                 atomic_set(&pi_state->refcount, 1);
514                 current->pi_state_cache = pi_state;
515         }
516 }
517
518 /*
519  * Look up the task based on what TID userspace gave us.
520  * We dont trust it.
521  */
522 static struct task_struct * futex_find_get_task(pid_t pid)
523 {
524         struct task_struct *p;
525
526         rcu_read_lock();
527         p = find_task_by_vpid(pid);
528         if (p)
529                 get_task_struct(p);
530
531         rcu_read_unlock();
532
533         return p;
534 }
535
536 /*
537  * This task is holding PI mutexes at exit time => bad.
538  * Kernel cleans up PI-state, but userspace is likely hosed.
539  * (Robust-futex cleanup is separate and might save the day for userspace.)
540  */
541 void exit_pi_state_list(struct task_struct *curr)
542 {
543         struct list_head *next, *head = &curr->pi_state_list;
544         struct futex_pi_state *pi_state;
545         struct futex_hash_bucket *hb;
546         union futex_key key = FUTEX_KEY_INIT;
547
548         if (!futex_cmpxchg_enabled)
549                 return;
550         /*
551          * We are a ZOMBIE and nobody can enqueue itself on
552          * pi_state_list anymore, but we have to be careful
553          * versus waiters unqueueing themselves:
554          */
555         raw_spin_lock_irq(&curr->pi_lock);
556         while (!list_empty(head)) {
557
558                 next = head->next;
559                 pi_state = list_entry(next, struct futex_pi_state, list);
560                 key = pi_state->key;
561                 hb = hash_futex(&key);
562                 raw_spin_unlock_irq(&curr->pi_lock);
563
564                 spin_lock(&hb->lock);
565
566                 raw_spin_lock_irq(&curr->pi_lock);
567                 /*
568                  * We dropped the pi-lock, so re-check whether this
569                  * task still owns the PI-state:
570                  */
571                 if (head->next != next) {
572                         spin_unlock(&hb->lock);
573                         continue;
574                 }
575
576                 WARN_ON(pi_state->owner != curr);
577                 WARN_ON(list_empty(&pi_state->list));
578                 list_del_init(&pi_state->list);
579                 pi_state->owner = NULL;
580                 raw_spin_unlock_irq(&curr->pi_lock);
581
582                 rt_mutex_unlock(&pi_state->pi_mutex);
583
584                 spin_unlock(&hb->lock);
585
586                 raw_spin_lock_irq(&curr->pi_lock);
587         }
588         raw_spin_unlock_irq(&curr->pi_lock);
589 }
590
591 static int
592 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
593                 union futex_key *key, struct futex_pi_state **ps,
594                 struct task_struct *task)
595 {
596         struct futex_pi_state *pi_state = NULL;
597         struct futex_q *this, *next;
598         struct plist_head *head;
599         struct task_struct *p;
600         pid_t pid = uval & FUTEX_TID_MASK;
601
602         head = &hb->chain;
603
604         plist_for_each_entry_safe(this, next, head, list) {
605                 if (match_futex(&this->key, key)) {
606                         /*
607                          * Another waiter already exists - bump up
608                          * the refcount and return its pi_state:
609                          */
610                         pi_state = this->pi_state;
611                         /*
612                          * Userspace might have messed up non-PI and PI futexes
613                          */
614                         if (unlikely(!pi_state))
615                                 return -EINVAL;
616
617                         WARN_ON(!atomic_read(&pi_state->refcount));
618
619                         /*
620                          * When pi_state->owner is NULL then the owner died
621                          * and another waiter is on the fly. pi_state->owner
622                          * is fixed up by the task which acquires
623                          * pi_state->rt_mutex.
624                          *
625                          * We do not check for pid == 0 which can happen when
626                          * the owner died and robust_list_exit() cleared the
627                          * TID.
628                          */
629                         if (pid && pi_state->owner) {
630                                 /*
631                                  * Bail out if user space manipulated the
632                                  * futex value.
633                                  */
634                                 if (pid != task_pid_vnr(pi_state->owner))
635                                         return -EINVAL;
636                         }
637
638                         /*
639                          * Protect against a corrupted uval. If uval
640                          * is 0x80000000 then pid is 0 and the waiter
641                          * bit is set. So the deadlock check in the
642                          * calling code has failed and we did not fall
643                          * into the check above due to !pid.
644                          */
645                         if (task && pi_state->owner == task)
646                                 return -EDEADLK;
647
648                         atomic_inc(&pi_state->refcount);
649                         *ps = pi_state;
650
651                         return 0;
652                 }
653         }
654
655         /*
656          * We are the first waiter - try to look up the real owner and attach
657          * the new pi_state to it, but bail out when TID = 0
658          */
659         if (!pid)
660                 return -ESRCH;
661         p = futex_find_get_task(pid);
662         if (!p)
663                 return -ESRCH;
664
665         if (!p->mm) {
666                 put_task_struct(p);
667                 return -EPERM;
668         }
669
670         /*
671          * We need to look at the task state flags to figure out,
672          * whether the task is exiting. To protect against the do_exit
673          * change of the task flags, we do this protected by
674          * p->pi_lock:
675          */
676         raw_spin_lock_irq(&p->pi_lock);
677         if (unlikely(p->flags & PF_EXITING)) {
678                 /*
679                  * The task is on the way out. When PF_EXITPIDONE is
680                  * set, we know that the task has finished the
681                  * cleanup:
682                  */
683                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
684
685                 raw_spin_unlock_irq(&p->pi_lock);
686                 put_task_struct(p);
687                 return ret;
688         }
689
690         pi_state = alloc_pi_state();
691
692         /*
693          * Initialize the pi_mutex in locked state and make 'p'
694          * the owner of it:
695          */
696         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
697
698         /* Store the key for possible exit cleanups: */
699         pi_state->key = *key;
700
701         WARN_ON(!list_empty(&pi_state->list));
702         list_add(&pi_state->list, &p->pi_state_list);
703         pi_state->owner = p;
704         raw_spin_unlock_irq(&p->pi_lock);
705
706         put_task_struct(p);
707
708         *ps = pi_state;
709
710         return 0;
711 }
712
713 /**
714  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
715  * @uaddr:              the pi futex user address
716  * @hb:                 the pi futex hash bucket
717  * @key:                the futex key associated with uaddr and hb
718  * @ps:                 the pi_state pointer where we store the result of the
719  *                      lookup
720  * @task:               the task to perform the atomic lock work for.  This will
721  *                      be "current" except in the case of requeue pi.
722  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
723  *
724  * Returns:
725  *  0 - ready to wait
726  *  1 - acquired the lock
727  * <0 - error
728  *
729  * The hb->lock and futex_key refs shall be held by the caller.
730  */
731 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
732                                 union futex_key *key,
733                                 struct futex_pi_state **ps,
734                                 struct task_struct *task, int set_waiters)
735 {
736         int lock_taken, ret, force_take = 0;
737         u32 uval, newval, curval, vpid = task_pid_vnr(task);
738
739 retry:
740         ret = lock_taken = 0;
741
742         /*
743          * To avoid races, we attempt to take the lock here again
744          * (by doing a 0 -> TID atomic cmpxchg), while holding all
745          * the locks. It will most likely not succeed.
746          */
747         newval = vpid;
748         if (set_waiters)
749                 newval |= FUTEX_WAITERS;
750
751         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
752                 return -EFAULT;
753
754         /*
755          * Detect deadlocks.
756          */
757         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
758                 return -EDEADLK;
759
760         /*
761          * Surprise - we got the lock. Just return to userspace:
762          */
763         if (unlikely(!curval))
764                 return 1;
765
766         uval = curval;
767
768         /*
769          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
770          * to wake at the next unlock.
771          */
772         newval = curval | FUTEX_WAITERS;
773
774         /*
775          * Should we force take the futex? See below.
776          */
777         if (unlikely(force_take)) {
778                 /*
779                  * Keep the OWNER_DIED and the WAITERS bit and set the
780                  * new TID value.
781                  */
782                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
783                 force_take = 0;
784                 lock_taken = 1;
785         }
786
787         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
788                 return -EFAULT;
789         if (unlikely(curval != uval))
790                 goto retry;
791
792         /*
793          * We took the lock due to forced take over.
794          */
795         if (unlikely(lock_taken))
796                 return 1;
797
798         /*
799          * We dont have the lock. Look up the PI state (or create it if
800          * we are the first waiter):
801          */
802         ret = lookup_pi_state(uval, hb, key, ps, task);
803
804         if (unlikely(ret)) {
805                 switch (ret) {
806                 case -ESRCH:
807                         /*
808                          * We failed to find an owner for this
809                          * futex. So we have no pi_state to block
810                          * on. This can happen in two cases:
811                          *
812                          * 1) The owner died
813                          * 2) A stale FUTEX_WAITERS bit
814                          *
815                          * Re-read the futex value.
816                          */
817                         if (get_futex_value_locked(&curval, uaddr))
818                                 return -EFAULT;
819
820                         /*
821                          * If the owner died or we have a stale
822                          * WAITERS bit the owner TID in the user space
823                          * futex is 0.
824                          */
825                         if (!(curval & FUTEX_TID_MASK)) {
826                                 force_take = 1;
827                                 goto retry;
828                         }
829                 default:
830                         break;
831                 }
832         }
833
834         return ret;
835 }
836
837 /**
838  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
839  * @q:  The futex_q to unqueue
840  *
841  * The q->lock_ptr must not be NULL and must be held by the caller.
842  */
843 static void __unqueue_futex(struct futex_q *q)
844 {
845         struct futex_hash_bucket *hb;
846
847         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
848             || WARN_ON(plist_node_empty(&q->list)))
849                 return;
850
851         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
852         plist_del(&q->list, &hb->chain);
853 }
854
855 /*
856  * The hash bucket lock must be held when this is called.
857  * Afterwards, the futex_q must not be accessed.
858  */
859 static void wake_futex(struct futex_q *q)
860 {
861         struct task_struct *p = q->task;
862
863         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
864                 return;
865
866         /*
867          * We set q->lock_ptr = NULL _before_ we wake up the task. If
868          * a non-futex wake up happens on another CPU then the task
869          * might exit and p would dereference a non-existing task
870          * struct. Prevent this by holding a reference on p across the
871          * wake up.
872          */
873         get_task_struct(p);
874
875         __unqueue_futex(q);
876         /*
877          * The waiting task can free the futex_q as soon as
878          * q->lock_ptr = NULL is written, without taking any locks. A
879          * memory barrier is required here to prevent the following
880          * store to lock_ptr from getting ahead of the plist_del.
881          */
882         smp_wmb();
883         q->lock_ptr = NULL;
884
885         wake_up_state(p, TASK_NORMAL);
886         put_task_struct(p);
887 }
888
889 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
890 {
891         struct task_struct *new_owner;
892         struct futex_pi_state *pi_state = this->pi_state;
893         u32 uninitialized_var(curval), newval;
894
895         if (!pi_state)
896                 return -EINVAL;
897
898         /*
899          * If current does not own the pi_state then the futex is
900          * inconsistent and user space fiddled with the futex value.
901          */
902         if (pi_state->owner != current)
903                 return -EINVAL;
904
905         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
906         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
907
908         /*
909          * It is possible that the next waiter (the one that brought
910          * this owner to the kernel) timed out and is no longer
911          * waiting on the lock.
912          */
913         if (!new_owner)
914                 new_owner = this->task;
915
916         /*
917          * We pass it to the next owner. (The WAITERS bit is always
918          * kept enabled while there is PI state around. We must also
919          * preserve the owner died bit.)
920          */
921         if (!(uval & FUTEX_OWNER_DIED)) {
922                 int ret = 0;
923
924                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
925
926                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
927                         ret = -EFAULT;
928                 else if (curval != uval)
929                         ret = -EINVAL;
930                 if (ret) {
931                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
932                         return ret;
933                 }
934         }
935
936         raw_spin_lock_irq(&pi_state->owner->pi_lock);
937         WARN_ON(list_empty(&pi_state->list));
938         list_del_init(&pi_state->list);
939         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
940
941         raw_spin_lock_irq(&new_owner->pi_lock);
942         WARN_ON(!list_empty(&pi_state->list));
943         list_add(&pi_state->list, &new_owner->pi_state_list);
944         pi_state->owner = new_owner;
945         raw_spin_unlock_irq(&new_owner->pi_lock);
946
947         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
948         rt_mutex_unlock(&pi_state->pi_mutex);
949
950         return 0;
951 }
952
953 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
954 {
955         u32 uninitialized_var(oldval);
956
957         /*
958          * There is no waiter, so we unlock the futex. The owner died
959          * bit has not to be preserved here. We are the owner:
960          */
961         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
962                 return -EFAULT;
963         if (oldval != uval)
964                 return -EAGAIN;
965
966         return 0;
967 }
968
969 /*
970  * Express the locking dependencies for lockdep:
971  */
972 static inline void
973 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
974 {
975         if (hb1 <= hb2) {
976                 spin_lock(&hb1->lock);
977                 if (hb1 < hb2)
978                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
979         } else { /* hb1 > hb2 */
980                 spin_lock(&hb2->lock);
981                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
982         }
983 }
984
985 static inline void
986 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
987 {
988         spin_unlock(&hb1->lock);
989         if (hb1 != hb2)
990                 spin_unlock(&hb2->lock);
991 }
992
993 /*
994  * Wake up waiters matching bitset queued on this futex (uaddr).
995  */
996 static int
997 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
998 {
999         struct futex_hash_bucket *hb;
1000         struct futex_q *this, *next;
1001         struct plist_head *head;
1002         union futex_key key = FUTEX_KEY_INIT;
1003         int ret;
1004
1005         if (!bitset)
1006                 return -EINVAL;
1007
1008         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1009         if (unlikely(ret != 0))
1010                 goto out;
1011
1012         hb = hash_futex(&key);
1013         spin_lock(&hb->lock);
1014         head = &hb->chain;
1015
1016         plist_for_each_entry_safe(this, next, head, list) {
1017                 if (match_futex (&this->key, &key)) {
1018                         if (this->pi_state || this->rt_waiter) {
1019                                 ret = -EINVAL;
1020                                 break;
1021                         }
1022
1023                         /* Check if one of the bits is set in both bitsets */
1024                         if (!(this->bitset & bitset))
1025                                 continue;
1026
1027                         wake_futex(this);
1028                         if (++ret >= nr_wake)
1029                                 break;
1030                 }
1031         }
1032
1033         spin_unlock(&hb->lock);
1034         put_futex_key(&key);
1035 out:
1036         return ret;
1037 }
1038
1039 /*
1040  * Wake up all waiters hashed on the physical page that is mapped
1041  * to this virtual address:
1042  */
1043 static int
1044 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1045               int nr_wake, int nr_wake2, int op)
1046 {
1047         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1048         struct futex_hash_bucket *hb1, *hb2;
1049         struct plist_head *head;
1050         struct futex_q *this, *next;
1051         int ret, op_ret;
1052
1053 retry:
1054         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1055         if (unlikely(ret != 0))
1056                 goto out;
1057         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1058         if (unlikely(ret != 0))
1059                 goto out_put_key1;
1060
1061         hb1 = hash_futex(&key1);
1062         hb2 = hash_futex(&key2);
1063
1064 retry_private:
1065         double_lock_hb(hb1, hb2);
1066         op_ret = futex_atomic_op_inuser(op, uaddr2);
1067         if (unlikely(op_ret < 0)) {
1068
1069                 double_unlock_hb(hb1, hb2);
1070
1071 #ifndef CONFIG_MMU
1072                 /*
1073                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1074                  * but we might get them from range checking
1075                  */
1076                 ret = op_ret;
1077                 goto out_put_keys;
1078 #endif
1079
1080                 if (unlikely(op_ret != -EFAULT)) {
1081                         ret = op_ret;
1082                         goto out_put_keys;
1083                 }
1084
1085                 ret = fault_in_user_writeable(uaddr2);
1086                 if (ret)
1087                         goto out_put_keys;
1088
1089                 if (!(flags & FLAGS_SHARED))
1090                         goto retry_private;
1091
1092                 put_futex_key(&key2);
1093                 put_futex_key(&key1);
1094                 goto retry;
1095         }
1096
1097         head = &hb1->chain;
1098
1099         plist_for_each_entry_safe(this, next, head, list) {
1100                 if (match_futex (&this->key, &key1)) {
1101                         if (this->pi_state || this->rt_waiter) {
1102                                 ret = -EINVAL;
1103                                 goto out_unlock;
1104                         }
1105                         wake_futex(this);
1106                         if (++ret >= nr_wake)
1107                                 break;
1108                 }
1109         }
1110
1111         if (op_ret > 0) {
1112                 head = &hb2->chain;
1113
1114                 op_ret = 0;
1115                 plist_for_each_entry_safe(this, next, head, list) {
1116                         if (match_futex (&this->key, &key2)) {
1117                                 if (this->pi_state || this->rt_waiter) {
1118                                         ret = -EINVAL;
1119                                         goto out_unlock;
1120                                 }
1121                                 wake_futex(this);
1122                                 if (++op_ret >= nr_wake2)
1123                                         break;
1124                         }
1125                 }
1126                 ret += op_ret;
1127         }
1128
1129 out_unlock:
1130         double_unlock_hb(hb1, hb2);
1131 out_put_keys:
1132         put_futex_key(&key2);
1133 out_put_key1:
1134         put_futex_key(&key1);
1135 out:
1136         return ret;
1137 }
1138
1139 /**
1140  * requeue_futex() - Requeue a futex_q from one hb to another
1141  * @q:          the futex_q to requeue
1142  * @hb1:        the source hash_bucket
1143  * @hb2:        the target hash_bucket
1144  * @key2:       the new key for the requeued futex_q
1145  */
1146 static inline
1147 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1148                    struct futex_hash_bucket *hb2, union futex_key *key2)
1149 {
1150
1151         /*
1152          * If key1 and key2 hash to the same bucket, no need to
1153          * requeue.
1154          */
1155         if (likely(&hb1->chain != &hb2->chain)) {
1156                 plist_del(&q->list, &hb1->chain);
1157                 plist_add(&q->list, &hb2->chain);
1158                 q->lock_ptr = &hb2->lock;
1159         }
1160         get_futex_key_refs(key2);
1161         q->key = *key2;
1162 }
1163
1164 /**
1165  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1166  * @q:          the futex_q
1167  * @key:        the key of the requeue target futex
1168  * @hb:         the hash_bucket of the requeue target futex
1169  *
1170  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1171  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1172  * to the requeue target futex so the waiter can detect the wakeup on the right
1173  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1174  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1175  * to protect access to the pi_state to fixup the owner later.  Must be called
1176  * with both q->lock_ptr and hb->lock held.
1177  */
1178 static inline
1179 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1180                            struct futex_hash_bucket *hb)
1181 {
1182         get_futex_key_refs(key);
1183         q->key = *key;
1184
1185         __unqueue_futex(q);
1186
1187         WARN_ON(!q->rt_waiter);
1188         q->rt_waiter = NULL;
1189
1190         q->lock_ptr = &hb->lock;
1191
1192         wake_up_state(q->task, TASK_NORMAL);
1193 }
1194
1195 /**
1196  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1197  * @pifutex:            the user address of the to futex
1198  * @hb1:                the from futex hash bucket, must be locked by the caller
1199  * @hb2:                the to futex hash bucket, must be locked by the caller
1200  * @key1:               the from futex key
1201  * @key2:               the to futex key
1202  * @ps:                 address to store the pi_state pointer
1203  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1204  *
1205  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1206  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1207  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1208  * hb1 and hb2 must be held by the caller.
1209  *
1210  * Returns:
1211  *  0 - failed to acquire the lock atomicly
1212  * >0 - acquired the lock, return value is vpid of the top_waiter
1213  * <0 - error
1214  */
1215 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1216                                  struct futex_hash_bucket *hb1,
1217                                  struct futex_hash_bucket *hb2,
1218                                  union futex_key *key1, union futex_key *key2,
1219                                  struct futex_pi_state **ps, int set_waiters)
1220 {
1221         struct futex_q *top_waiter = NULL;
1222         u32 curval;
1223         int ret, vpid;
1224
1225         if (get_futex_value_locked(&curval, pifutex))
1226                 return -EFAULT;
1227
1228         /*
1229          * Find the top_waiter and determine if there are additional waiters.
1230          * If the caller intends to requeue more than 1 waiter to pifutex,
1231          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1232          * as we have means to handle the possible fault.  If not, don't set
1233          * the bit unecessarily as it will force the subsequent unlock to enter
1234          * the kernel.
1235          */
1236         top_waiter = futex_top_waiter(hb1, key1);
1237
1238         /* There are no waiters, nothing for us to do. */
1239         if (!top_waiter)
1240                 return 0;
1241
1242         /* Ensure we requeue to the expected futex. */
1243         if (!match_futex(top_waiter->requeue_pi_key, key2))
1244                 return -EINVAL;
1245
1246         /*
1247          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1248          * the contended case or if set_waiters is 1.  The pi_state is returned
1249          * in ps in contended cases.
1250          */
1251         vpid = task_pid_vnr(top_waiter->task);
1252         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1253                                    set_waiters);
1254         if (ret == 1) {
1255                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1256                 return vpid;
1257         }
1258         return ret;
1259 }
1260
1261 /**
1262  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1263  * @uaddr1:     source futex user address
1264  * @flags:      futex flags (FLAGS_SHARED, etc.)
1265  * @uaddr2:     target futex user address
1266  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1267  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1268  * @cmpval:     @uaddr1 expected value (or %NULL)
1269  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1270  *              pi futex (pi to pi requeue is not supported)
1271  *
1272  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1273  * uaddr2 atomically on behalf of the top waiter.
1274  *
1275  * Returns:
1276  * >=0 - on success, the number of tasks requeued or woken
1277  *  <0 - on error
1278  */
1279 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1280                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1281                          u32 *cmpval, int requeue_pi)
1282 {
1283         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1284         int drop_count = 0, task_count = 0, ret;
1285         struct futex_pi_state *pi_state = NULL;
1286         struct futex_hash_bucket *hb1, *hb2;
1287         struct plist_head *head1;
1288         struct futex_q *this, *next;
1289
1290         if (requeue_pi) {
1291                 /*
1292                  * Requeue PI only works on two distinct uaddrs. This
1293                  * check is only valid for private futexes. See below.
1294                  */
1295                 if (uaddr1 == uaddr2)
1296                         return -EINVAL;
1297
1298                 /*
1299                  * requeue_pi requires a pi_state, try to allocate it now
1300                  * without any locks in case it fails.
1301                  */
1302                 if (refill_pi_state_cache())
1303                         return -ENOMEM;
1304                 /*
1305                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1306                  * + nr_requeue, since it acquires the rt_mutex prior to
1307                  * returning to userspace, so as to not leave the rt_mutex with
1308                  * waiters and no owner.  However, second and third wake-ups
1309                  * cannot be predicted as they involve race conditions with the
1310                  * first wake and a fault while looking up the pi_state.  Both
1311                  * pthread_cond_signal() and pthread_cond_broadcast() should
1312                  * use nr_wake=1.
1313                  */
1314                 if (nr_wake != 1)
1315                         return -EINVAL;
1316         }
1317
1318 retry:
1319         if (pi_state != NULL) {
1320                 /*
1321                  * We will have to lookup the pi_state again, so free this one
1322                  * to keep the accounting correct.
1323                  */
1324                 free_pi_state(pi_state);
1325                 pi_state = NULL;
1326         }
1327
1328         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1329         if (unlikely(ret != 0))
1330                 goto out;
1331         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1332                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1333         if (unlikely(ret != 0))
1334                 goto out_put_key1;
1335
1336         /*
1337          * The check above which compares uaddrs is not sufficient for
1338          * shared futexes. We need to compare the keys:
1339          */
1340         if (requeue_pi && match_futex(&key1, &key2)) {
1341                 ret = -EINVAL;
1342                 goto out_put_keys;
1343         }
1344
1345         hb1 = hash_futex(&key1);
1346         hb2 = hash_futex(&key2);
1347
1348 retry_private:
1349         double_lock_hb(hb1, hb2);
1350
1351         if (likely(cmpval != NULL)) {
1352                 u32 curval;
1353
1354                 ret = get_futex_value_locked(&curval, uaddr1);
1355
1356                 if (unlikely(ret)) {
1357                         double_unlock_hb(hb1, hb2);
1358
1359                         ret = get_user(curval, uaddr1);
1360                         if (ret)
1361                                 goto out_put_keys;
1362
1363                         if (!(flags & FLAGS_SHARED))
1364                                 goto retry_private;
1365
1366                         put_futex_key(&key2);
1367                         put_futex_key(&key1);
1368                         goto retry;
1369                 }
1370                 if (curval != *cmpval) {
1371                         ret = -EAGAIN;
1372                         goto out_unlock;
1373                 }
1374         }
1375
1376         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1377                 /*
1378                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1379                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1380                  * bit.  We force this here where we are able to easily handle
1381                  * faults rather in the requeue loop below.
1382                  */
1383                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1384                                                  &key2, &pi_state, nr_requeue);
1385
1386                 /*
1387                  * At this point the top_waiter has either taken uaddr2 or is
1388                  * waiting on it.  If the former, then the pi_state will not
1389                  * exist yet, look it up one more time to ensure we have a
1390                  * reference to it. If the lock was taken, ret contains the
1391                  * vpid of the top waiter task.
1392                  */
1393                 if (ret > 0) {
1394                         WARN_ON(pi_state);
1395                         drop_count++;
1396                         task_count++;
1397                         /*
1398                          * If we acquired the lock, then the user
1399                          * space value of uaddr2 should be vpid. It
1400                          * cannot be changed by the top waiter as it
1401                          * is blocked on hb2 lock if it tries to do
1402                          * so. If something fiddled with it behind our
1403                          * back the pi state lookup might unearth
1404                          * it. So we rather use the known value than
1405                          * rereading and handing potential crap to
1406                          * lookup_pi_state.
1407                          */
1408                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1409                 }
1410
1411                 switch (ret) {
1412                 case 0:
1413                         break;
1414                 case -EFAULT:
1415                         double_unlock_hb(hb1, hb2);
1416                         put_futex_key(&key2);
1417                         put_futex_key(&key1);
1418                         ret = fault_in_user_writeable(uaddr2);
1419                         if (!ret)
1420                                 goto retry;
1421                         goto out;
1422                 case -EAGAIN:
1423                         /* The owner was exiting, try again. */
1424                         double_unlock_hb(hb1, hb2);
1425                         put_futex_key(&key2);
1426                         put_futex_key(&key1);
1427                         cond_resched();
1428                         goto retry;
1429                 default:
1430                         goto out_unlock;
1431                 }
1432         }
1433
1434         head1 = &hb1->chain;
1435         plist_for_each_entry_safe(this, next, head1, list) {
1436                 if (task_count - nr_wake >= nr_requeue)
1437                         break;
1438
1439                 if (!match_futex(&this->key, &key1))
1440                         continue;
1441
1442                 /*
1443                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1444                  * be paired with each other and no other futex ops.
1445                  *
1446                  * We should never be requeueing a futex_q with a pi_state,
1447                  * which is awaiting a futex_unlock_pi().
1448                  */
1449                 if ((requeue_pi && !this->rt_waiter) ||
1450                     (!requeue_pi && this->rt_waiter) ||
1451                     this->pi_state) {
1452                         ret = -EINVAL;
1453                         break;
1454                 }
1455
1456                 /*
1457                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1458                  * lock, we already woke the top_waiter.  If not, it will be
1459                  * woken by futex_unlock_pi().
1460                  */
1461                 if (++task_count <= nr_wake && !requeue_pi) {
1462                         wake_futex(this);
1463                         continue;
1464                 }
1465
1466                 /* Ensure we requeue to the expected futex for requeue_pi. */
1467                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1468                         ret = -EINVAL;
1469                         break;
1470                 }
1471
1472                 /*
1473                  * Requeue nr_requeue waiters and possibly one more in the case
1474                  * of requeue_pi if we couldn't acquire the lock atomically.
1475                  */
1476                 if (requeue_pi) {
1477                         /* Prepare the waiter to take the rt_mutex. */
1478                         atomic_inc(&pi_state->refcount);
1479                         this->pi_state = pi_state;
1480                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1481                                                         this->rt_waiter,
1482                                                         this->task, 1);
1483                         if (ret == 1) {
1484                                 /* We got the lock. */
1485                                 requeue_pi_wake_futex(this, &key2, hb2);
1486                                 drop_count++;
1487                                 continue;
1488                         } else if (ret) {
1489                                 /* -EDEADLK */
1490                                 this->pi_state = NULL;
1491                                 free_pi_state(pi_state);
1492                                 goto out_unlock;
1493                         }
1494                 }
1495                 requeue_futex(this, hb1, hb2, &key2);
1496                 drop_count++;
1497         }
1498
1499 out_unlock:
1500         double_unlock_hb(hb1, hb2);
1501
1502         /*
1503          * drop_futex_key_refs() must be called outside the spinlocks. During
1504          * the requeue we moved futex_q's from the hash bucket at key1 to the
1505          * one at key2 and updated their key pointer.  We no longer need to
1506          * hold the references to key1.
1507          */
1508         while (--drop_count >= 0)
1509                 drop_futex_key_refs(&key1);
1510
1511 out_put_keys:
1512         put_futex_key(&key2);
1513 out_put_key1:
1514         put_futex_key(&key1);
1515 out:
1516         if (pi_state != NULL)
1517                 free_pi_state(pi_state);
1518         return ret ? ret : task_count;
1519 }
1520
1521 /* The key must be already stored in q->key. */
1522 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1523         __acquires(&hb->lock)
1524 {
1525         struct futex_hash_bucket *hb;
1526
1527         hb = hash_futex(&q->key);
1528         q->lock_ptr = &hb->lock;
1529
1530         spin_lock(&hb->lock);
1531         return hb;
1532 }
1533
1534 static inline void
1535 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1536         __releases(&hb->lock)
1537 {
1538         spin_unlock(&hb->lock);
1539 }
1540
1541 /**
1542  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1543  * @q:  The futex_q to enqueue
1544  * @hb: The destination hash bucket
1545  *
1546  * The hb->lock must be held by the caller, and is released here. A call to
1547  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1548  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1549  * or nothing if the unqueue is done as part of the wake process and the unqueue
1550  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1551  * an example).
1552  */
1553 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1554         __releases(&hb->lock)
1555 {
1556         int prio;
1557
1558         /*
1559          * The priority used to register this element is
1560          * - either the real thread-priority for the real-time threads
1561          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1562          * - or MAX_RT_PRIO for non-RT threads.
1563          * Thus, all RT-threads are woken first in priority order, and
1564          * the others are woken last, in FIFO order.
1565          */
1566         prio = min(current->normal_prio, MAX_RT_PRIO);
1567
1568         plist_node_init(&q->list, prio);
1569         plist_add(&q->list, &hb->chain);
1570         q->task = current;
1571         spin_unlock(&hb->lock);
1572 }
1573
1574 /**
1575  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1576  * @q:  The futex_q to unqueue
1577  *
1578  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1579  * be paired with exactly one earlier call to queue_me().
1580  *
1581  * Returns:
1582  *   1 - if the futex_q was still queued (and we removed unqueued it)
1583  *   0 - if the futex_q was already removed by the waking thread
1584  */
1585 static int unqueue_me(struct futex_q *q)
1586 {
1587         spinlock_t *lock_ptr;
1588         int ret = 0;
1589
1590         /* In the common case we don't take the spinlock, which is nice. */
1591 retry:
1592         lock_ptr = q->lock_ptr;
1593         barrier();
1594         if (lock_ptr != NULL) {
1595                 spin_lock(lock_ptr);
1596                 /*
1597                  * q->lock_ptr can change between reading it and
1598                  * spin_lock(), causing us to take the wrong lock.  This
1599                  * corrects the race condition.
1600                  *
1601                  * Reasoning goes like this: if we have the wrong lock,
1602                  * q->lock_ptr must have changed (maybe several times)
1603                  * between reading it and the spin_lock().  It can
1604                  * change again after the spin_lock() but only if it was
1605                  * already changed before the spin_lock().  It cannot,
1606                  * however, change back to the original value.  Therefore
1607                  * we can detect whether we acquired the correct lock.
1608                  */
1609                 if (unlikely(lock_ptr != q->lock_ptr)) {
1610                         spin_unlock(lock_ptr);
1611                         goto retry;
1612                 }
1613                 __unqueue_futex(q);
1614
1615                 BUG_ON(q->pi_state);
1616
1617                 spin_unlock(lock_ptr);
1618                 ret = 1;
1619         }
1620
1621         drop_futex_key_refs(&q->key);
1622         return ret;
1623 }
1624
1625 /*
1626  * PI futexes can not be requeued and must remove themself from the
1627  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1628  * and dropped here.
1629  */
1630 static void unqueue_me_pi(struct futex_q *q)
1631         __releases(q->lock_ptr)
1632 {
1633         __unqueue_futex(q);
1634
1635         BUG_ON(!q->pi_state);
1636         free_pi_state(q->pi_state);
1637         q->pi_state = NULL;
1638
1639         spin_unlock(q->lock_ptr);
1640 }
1641
1642 /*
1643  * Fixup the pi_state owner with the new owner.
1644  *
1645  * Must be called with hash bucket lock held and mm->sem held for non
1646  * private futexes.
1647  */
1648 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1649                                 struct task_struct *newowner)
1650 {
1651         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1652         struct futex_pi_state *pi_state = q->pi_state;
1653         struct task_struct *oldowner = pi_state->owner;
1654         u32 uval, uninitialized_var(curval), newval;
1655         int ret;
1656
1657         /* Owner died? */
1658         if (!pi_state->owner)
1659                 newtid |= FUTEX_OWNER_DIED;
1660
1661         /*
1662          * We are here either because we stole the rtmutex from the
1663          * previous highest priority waiter or we are the highest priority
1664          * waiter but failed to get the rtmutex the first time.
1665          * We have to replace the newowner TID in the user space variable.
1666          * This must be atomic as we have to preserve the owner died bit here.
1667          *
1668          * Note: We write the user space value _before_ changing the pi_state
1669          * because we can fault here. Imagine swapped out pages or a fork
1670          * that marked all the anonymous memory readonly for cow.
1671          *
1672          * Modifying pi_state _before_ the user space value would
1673          * leave the pi_state in an inconsistent state when we fault
1674          * here, because we need to drop the hash bucket lock to
1675          * handle the fault. This might be observed in the PID check
1676          * in lookup_pi_state.
1677          */
1678 retry:
1679         if (get_futex_value_locked(&uval, uaddr))
1680                 goto handle_fault;
1681
1682         while (1) {
1683                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1684
1685                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1686                         goto handle_fault;
1687                 if (curval == uval)
1688                         break;
1689                 uval = curval;
1690         }
1691
1692         /*
1693          * We fixed up user space. Now we need to fix the pi_state
1694          * itself.
1695          */
1696         if (pi_state->owner != NULL) {
1697                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1698                 WARN_ON(list_empty(&pi_state->list));
1699                 list_del_init(&pi_state->list);
1700                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1701         }
1702
1703         pi_state->owner = newowner;
1704
1705         raw_spin_lock_irq(&newowner->pi_lock);
1706         WARN_ON(!list_empty(&pi_state->list));
1707         list_add(&pi_state->list, &newowner->pi_state_list);
1708         raw_spin_unlock_irq(&newowner->pi_lock);
1709         return 0;
1710
1711         /*
1712          * To handle the page fault we need to drop the hash bucket
1713          * lock here. That gives the other task (either the highest priority
1714          * waiter itself or the task which stole the rtmutex) the
1715          * chance to try the fixup of the pi_state. So once we are
1716          * back from handling the fault we need to check the pi_state
1717          * after reacquiring the hash bucket lock and before trying to
1718          * do another fixup. When the fixup has been done already we
1719          * simply return.
1720          */
1721 handle_fault:
1722         spin_unlock(q->lock_ptr);
1723
1724         ret = fault_in_user_writeable(uaddr);
1725
1726         spin_lock(q->lock_ptr);
1727
1728         /*
1729          * Check if someone else fixed it for us:
1730          */
1731         if (pi_state->owner != oldowner)
1732                 return 0;
1733
1734         if (ret)
1735                 return ret;
1736
1737         goto retry;
1738 }
1739
1740 static long futex_wait_restart(struct restart_block *restart);
1741
1742 /**
1743  * fixup_owner() - Post lock pi_state and corner case management
1744  * @uaddr:      user address of the futex
1745  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1746  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1747  *
1748  * After attempting to lock an rt_mutex, this function is called to cleanup
1749  * the pi_state owner as well as handle race conditions that may allow us to
1750  * acquire the lock. Must be called with the hb lock held.
1751  *
1752  * Returns:
1753  *  1 - success, lock taken
1754  *  0 - success, lock not taken
1755  * <0 - on error (-EFAULT)
1756  */
1757 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1758 {
1759         struct task_struct *owner;
1760         int ret = 0;
1761
1762         if (locked) {
1763                 /*
1764                  * Got the lock. We might not be the anticipated owner if we
1765                  * did a lock-steal - fix up the PI-state in that case:
1766                  */
1767                 if (q->pi_state->owner != current)
1768                         ret = fixup_pi_state_owner(uaddr, q, current);
1769                 goto out;
1770         }
1771
1772         /*
1773          * Catch the rare case, where the lock was released when we were on the
1774          * way back before we locked the hash bucket.
1775          */
1776         if (q->pi_state->owner == current) {
1777                 /*
1778                  * Try to get the rt_mutex now. This might fail as some other
1779                  * task acquired the rt_mutex after we removed ourself from the
1780                  * rt_mutex waiters list.
1781                  */
1782                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1783                         locked = 1;
1784                         goto out;
1785                 }
1786
1787                 /*
1788                  * pi_state is incorrect, some other task did a lock steal and
1789                  * we returned due to timeout or signal without taking the
1790                  * rt_mutex. Too late.
1791                  */
1792                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1793                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1794                 if (!owner)
1795                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1796                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1797                 ret = fixup_pi_state_owner(uaddr, q, owner);
1798                 goto out;
1799         }
1800
1801         /*
1802          * Paranoia check. If we did not take the lock, then we should not be
1803          * the owner of the rt_mutex.
1804          */
1805         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1806                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1807                                 "pi-state %p\n", ret,
1808                                 q->pi_state->pi_mutex.owner,
1809                                 q->pi_state->owner);
1810
1811 out:
1812         return ret ? ret : locked;
1813 }
1814
1815 /**
1816  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1817  * @hb:         the futex hash bucket, must be locked by the caller
1818  * @q:          the futex_q to queue up on
1819  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1820  */
1821 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1822                                 struct hrtimer_sleeper *timeout)
1823 {
1824         /*
1825          * The task state is guaranteed to be set before another task can
1826          * wake it. set_current_state() is implemented using set_mb() and
1827          * queue_me() calls spin_unlock() upon completion, both serializing
1828          * access to the hash list and forcing another memory barrier.
1829          */
1830         set_current_state(TASK_INTERRUPTIBLE);
1831         queue_me(q, hb);
1832
1833         /* Arm the timer */
1834         if (timeout) {
1835                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1836                 if (!hrtimer_active(&timeout->timer))
1837                         timeout->task = NULL;
1838         }
1839
1840         /*
1841          * If we have been removed from the hash list, then another task
1842          * has tried to wake us, and we can skip the call to schedule().
1843          */
1844         if (likely(!plist_node_empty(&q->list))) {
1845                 /*
1846                  * If the timer has already expired, current will already be
1847                  * flagged for rescheduling. Only call schedule if there
1848                  * is no timeout, or if it has yet to expire.
1849                  */
1850                 if (!timeout || timeout->task)
1851                         schedule();
1852         }
1853         __set_current_state(TASK_RUNNING);
1854 }
1855
1856 /**
1857  * futex_wait_setup() - Prepare to wait on a futex
1858  * @uaddr:      the futex userspace address
1859  * @val:        the expected value
1860  * @flags:      futex flags (FLAGS_SHARED, etc.)
1861  * @q:          the associated futex_q
1862  * @hb:         storage for hash_bucket pointer to be returned to caller
1863  *
1864  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1865  * compare it with the expected value.  Handle atomic faults internally.
1866  * Return with the hb lock held and a q.key reference on success, and unlocked
1867  * with no q.key reference on failure.
1868  *
1869  * Returns:
1870  *  0 - uaddr contains val and hb has been locked
1871  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1872  */
1873 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1874                            struct futex_q *q, struct futex_hash_bucket **hb)
1875 {
1876         u32 uval;
1877         int ret;
1878
1879         /*
1880          * Access the page AFTER the hash-bucket is locked.
1881          * Order is important:
1882          *
1883          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1884          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1885          *
1886          * The basic logical guarantee of a futex is that it blocks ONLY
1887          * if cond(var) is known to be true at the time of blocking, for
1888          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1889          * would open a race condition where we could block indefinitely with
1890          * cond(var) false, which would violate the guarantee.
1891          *
1892          * On the other hand, we insert q and release the hash-bucket only
1893          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1894          * absorb a wakeup if *uaddr does not match the desired values
1895          * while the syscall executes.
1896          */
1897 retry:
1898         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1899         if (unlikely(ret != 0))
1900                 return ret;
1901
1902 retry_private:
1903         *hb = queue_lock(q);
1904
1905         ret = get_futex_value_locked(&uval, uaddr);
1906
1907         if (ret) {
1908                 queue_unlock(q, *hb);
1909
1910                 ret = get_user(uval, uaddr);
1911                 if (ret)
1912                         goto out;
1913
1914                 if (!(flags & FLAGS_SHARED))
1915                         goto retry_private;
1916
1917                 put_futex_key(&q->key);
1918                 goto retry;
1919         }
1920
1921         if (uval != val) {
1922                 queue_unlock(q, *hb);
1923                 ret = -EWOULDBLOCK;
1924         }
1925
1926 out:
1927         if (ret)
1928                 put_futex_key(&q->key);
1929         return ret;
1930 }
1931
1932 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1933                       ktime_t *abs_time, u32 bitset)
1934 {
1935         struct hrtimer_sleeper timeout, *to = NULL;
1936         struct restart_block *restart;
1937         struct futex_hash_bucket *hb;
1938         struct futex_q q = futex_q_init;
1939         int ret;
1940
1941         if (!bitset)
1942                 return -EINVAL;
1943         q.bitset = bitset;
1944
1945         if (abs_time) {
1946                 to = &timeout;
1947
1948                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1949                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
1950                                       HRTIMER_MODE_ABS);
1951                 hrtimer_init_sleeper(to, current);
1952                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1953                                              current->timer_slack_ns);
1954         }
1955
1956 retry:
1957         /*
1958          * Prepare to wait on uaddr. On success, holds hb lock and increments
1959          * q.key refs.
1960          */
1961         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1962         if (ret)
1963                 goto out;
1964
1965         /* queue_me and wait for wakeup, timeout, or a signal. */
1966         futex_wait_queue_me(hb, &q, to);
1967
1968         /* If we were woken (and unqueued), we succeeded, whatever. */
1969         ret = 0;
1970         /* unqueue_me() drops q.key ref */
1971         if (!unqueue_me(&q))
1972                 goto out;
1973         ret = -ETIMEDOUT;
1974         if (to && !to->task)
1975                 goto out;
1976
1977         /*
1978          * We expect signal_pending(current), but we might be the
1979          * victim of a spurious wakeup as well.
1980          */
1981         if (!signal_pending(current))
1982                 goto retry;
1983
1984         ret = -ERESTARTSYS;
1985         if (!abs_time)
1986                 goto out;
1987
1988         restart = &current_thread_info()->restart_block;
1989         restart->fn = futex_wait_restart;
1990         restart->futex.uaddr = uaddr;
1991         restart->futex.val = val;
1992         restart->futex.time = abs_time->tv64;
1993         restart->futex.bitset = bitset;
1994         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1995
1996         ret = -ERESTART_RESTARTBLOCK;
1997
1998 out:
1999         if (to) {
2000                 hrtimer_cancel(&to->timer);
2001                 destroy_hrtimer_on_stack(&to->timer);
2002         }
2003         return ret;
2004 }
2005
2006
2007 static long futex_wait_restart(struct restart_block *restart)
2008 {
2009         u32 __user *uaddr = restart->futex.uaddr;
2010         ktime_t t, *tp = NULL;
2011
2012         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2013                 t.tv64 = restart->futex.time;
2014                 tp = &t;
2015         }
2016         restart->fn = do_no_restart_syscall;
2017
2018         return (long)futex_wait(uaddr, restart->futex.flags,
2019                                 restart->futex.val, tp, restart->futex.bitset);
2020 }
2021
2022
2023 /*
2024  * Userspace tried a 0 -> TID atomic transition of the futex value
2025  * and failed. The kernel side here does the whole locking operation:
2026  * if there are waiters then it will block, it does PI, etc. (Due to
2027  * races the kernel might see a 0 value of the futex too.)
2028  */
2029 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2030                          ktime_t *time, int trylock)
2031 {
2032         struct hrtimer_sleeper timeout, *to = NULL;
2033         struct futex_hash_bucket *hb;
2034         struct futex_q q = futex_q_init;
2035         int res, ret;
2036
2037         if (refill_pi_state_cache())
2038                 return -ENOMEM;
2039
2040         if (time) {
2041                 to = &timeout;
2042                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2043                                       HRTIMER_MODE_ABS);
2044                 hrtimer_init_sleeper(to, current);
2045                 hrtimer_set_expires(&to->timer, *time);
2046         }
2047
2048 retry:
2049         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2050         if (unlikely(ret != 0))
2051                 goto out;
2052
2053 retry_private:
2054         hb = queue_lock(&q);
2055
2056         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2057         if (unlikely(ret)) {
2058                 switch (ret) {
2059                 case 1:
2060                         /* We got the lock. */
2061                         ret = 0;
2062                         goto out_unlock_put_key;
2063                 case -EFAULT:
2064                         goto uaddr_faulted;
2065                 case -EAGAIN:
2066                         /*
2067                          * Task is exiting and we just wait for the
2068                          * exit to complete.
2069                          */
2070                         queue_unlock(&q, hb);
2071                         put_futex_key(&q.key);
2072                         cond_resched();
2073                         goto retry;
2074                 default:
2075                         goto out_unlock_put_key;
2076                 }
2077         }
2078
2079         /*
2080          * Only actually queue now that the atomic ops are done:
2081          */
2082         queue_me(&q, hb);
2083
2084         WARN_ON(!q.pi_state);
2085         /*
2086          * Block on the PI mutex:
2087          */
2088         if (!trylock)
2089                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2090         else {
2091                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2092                 /* Fixup the trylock return value: */
2093                 ret = ret ? 0 : -EWOULDBLOCK;
2094         }
2095
2096         spin_lock(q.lock_ptr);
2097         /*
2098          * Fixup the pi_state owner and possibly acquire the lock if we
2099          * haven't already.
2100          */
2101         res = fixup_owner(uaddr, &q, !ret);
2102         /*
2103          * If fixup_owner() returned an error, proprogate that.  If it acquired
2104          * the lock, clear our -ETIMEDOUT or -EINTR.
2105          */
2106         if (res)
2107                 ret = (res < 0) ? res : 0;
2108
2109         /*
2110          * If fixup_owner() faulted and was unable to handle the fault, unlock
2111          * it and return the fault to userspace.
2112          */
2113         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2114                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2115
2116         /* Unqueue and drop the lock */
2117         unqueue_me_pi(&q);
2118
2119         goto out_put_key;
2120
2121 out_unlock_put_key:
2122         queue_unlock(&q, hb);
2123
2124 out_put_key:
2125         put_futex_key(&q.key);
2126 out:
2127         if (to)
2128                 destroy_hrtimer_on_stack(&to->timer);
2129         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2130
2131 uaddr_faulted:
2132         queue_unlock(&q, hb);
2133
2134         ret = fault_in_user_writeable(uaddr);
2135         if (ret)
2136                 goto out_put_key;
2137
2138         if (!(flags & FLAGS_SHARED))
2139                 goto retry_private;
2140
2141         put_futex_key(&q.key);
2142         goto retry;
2143 }
2144
2145 /*
2146  * Userspace attempted a TID -> 0 atomic transition, and failed.
2147  * This is the in-kernel slowpath: we look up the PI state (if any),
2148  * and do the rt-mutex unlock.
2149  */
2150 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2151 {
2152         struct futex_hash_bucket *hb;
2153         struct futex_q *this, *next;
2154         struct plist_head *head;
2155         union futex_key key = FUTEX_KEY_INIT;
2156         u32 uval, vpid = task_pid_vnr(current);
2157         int ret;
2158
2159 retry:
2160         if (get_user(uval, uaddr))
2161                 return -EFAULT;
2162         /*
2163          * We release only a lock we actually own:
2164          */
2165         if ((uval & FUTEX_TID_MASK) != vpid)
2166                 return -EPERM;
2167
2168         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2169         if (unlikely(ret != 0))
2170                 goto out;
2171
2172         hb = hash_futex(&key);
2173         spin_lock(&hb->lock);
2174
2175         /*
2176          * To avoid races, try to do the TID -> 0 atomic transition
2177          * again. If it succeeds then we can return without waking
2178          * anyone else up:
2179          */
2180         if (!(uval & FUTEX_OWNER_DIED) &&
2181             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2182                 goto pi_faulted;
2183         /*
2184          * Rare case: we managed to release the lock atomically,
2185          * no need to wake anyone else up:
2186          */
2187         if (unlikely(uval == vpid))
2188                 goto out_unlock;
2189
2190         /*
2191          * Ok, other tasks may need to be woken up - check waiters
2192          * and do the wakeup if necessary:
2193          */
2194         head = &hb->chain;
2195
2196         plist_for_each_entry_safe(this, next, head, list) {
2197                 if (!match_futex (&this->key, &key))
2198                         continue;
2199                 ret = wake_futex_pi(uaddr, uval, this);
2200                 /*
2201                  * The atomic access to the futex value
2202                  * generated a pagefault, so retry the
2203                  * user-access and the wakeup:
2204                  */
2205                 if (ret == -EFAULT)
2206                         goto pi_faulted;
2207                 goto out_unlock;
2208         }
2209         /*
2210          * No waiters - kernel unlocks the futex:
2211          */
2212         if (!(uval & FUTEX_OWNER_DIED)) {
2213                 ret = unlock_futex_pi(uaddr, uval);
2214                 if (ret == -EFAULT)
2215                         goto pi_faulted;
2216         }
2217
2218 out_unlock:
2219         spin_unlock(&hb->lock);
2220         put_futex_key(&key);
2221
2222 out:
2223         return ret;
2224
2225 pi_faulted:
2226         spin_unlock(&hb->lock);
2227         put_futex_key(&key);
2228
2229         ret = fault_in_user_writeable(uaddr);
2230         if (!ret)
2231                 goto retry;
2232
2233         return ret;
2234 }
2235
2236 /**
2237  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2238  * @hb:         the hash_bucket futex_q was original enqueued on
2239  * @q:          the futex_q woken while waiting to be requeued
2240  * @key2:       the futex_key of the requeue target futex
2241  * @timeout:    the timeout associated with the wait (NULL if none)
2242  *
2243  * Detect if the task was woken on the initial futex as opposed to the requeue
2244  * target futex.  If so, determine if it was a timeout or a signal that caused
2245  * the wakeup and return the appropriate error code to the caller.  Must be
2246  * called with the hb lock held.
2247  *
2248  * Returns
2249  *  0 - no early wakeup detected
2250  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2251  */
2252 static inline
2253 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2254                                    struct futex_q *q, union futex_key *key2,
2255                                    struct hrtimer_sleeper *timeout)
2256 {
2257         int ret = 0;
2258
2259         /*
2260          * With the hb lock held, we avoid races while we process the wakeup.
2261          * We only need to hold hb (and not hb2) to ensure atomicity as the
2262          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2263          * It can't be requeued from uaddr2 to something else since we don't
2264          * support a PI aware source futex for requeue.
2265          */
2266         if (!match_futex(&q->key, key2)) {
2267                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2268                 /*
2269                  * We were woken prior to requeue by a timeout or a signal.
2270                  * Unqueue the futex_q and determine which it was.
2271                  */
2272                 plist_del(&q->list, &hb->chain);
2273
2274                 /* Handle spurious wakeups gracefully */
2275                 ret = -EWOULDBLOCK;
2276                 if (timeout && !timeout->task)
2277                         ret = -ETIMEDOUT;
2278                 else if (signal_pending(current))
2279                         ret = -ERESTARTNOINTR;
2280         }
2281         return ret;
2282 }
2283
2284 /**
2285  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2286  * @uaddr:      the futex we initially wait on (non-pi)
2287  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2288  *              the same type, no requeueing from private to shared, etc.
2289  * @val:        the expected value of uaddr
2290  * @abs_time:   absolute timeout
2291  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2292  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2293  * @uaddr2:     the pi futex we will take prior to returning to user-space
2294  *
2295  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2296  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2297  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2298  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2299  * without one, the pi logic would not know which task to boost/deboost, if
2300  * there was a need to.
2301  *
2302  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2303  * via the following:
2304  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2305  * 2) wakeup on uaddr2 after a requeue
2306  * 3) signal
2307  * 4) timeout
2308  *
2309  * If 3, cleanup and return -ERESTARTNOINTR.
2310  *
2311  * If 2, we may then block on trying to take the rt_mutex and return via:
2312  * 5) successful lock
2313  * 6) signal
2314  * 7) timeout
2315  * 8) other lock acquisition failure
2316  *
2317  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2318  *
2319  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2320  *
2321  * Returns:
2322  *  0 - On success
2323  * <0 - On error
2324  */
2325 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2326                                  u32 val, ktime_t *abs_time, u32 bitset,
2327                                  u32 __user *uaddr2)
2328 {
2329         struct hrtimer_sleeper timeout, *to = NULL;
2330         struct rt_mutex_waiter rt_waiter;
2331         struct rt_mutex *pi_mutex = NULL;
2332         struct futex_hash_bucket *hb;
2333         union futex_key key2 = FUTEX_KEY_INIT;
2334         struct futex_q q = futex_q_init;
2335         int res, ret;
2336
2337         if (uaddr == uaddr2)
2338                 return -EINVAL;
2339
2340         if (!bitset)
2341                 return -EINVAL;
2342
2343         if (abs_time) {
2344                 to = &timeout;
2345                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2346                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2347                                       HRTIMER_MODE_ABS);
2348                 hrtimer_init_sleeper(to, current);
2349                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2350                                              current->timer_slack_ns);
2351         }
2352
2353         /*
2354          * The waiter is allocated on our stack, manipulated by the requeue
2355          * code while we sleep on uaddr.
2356          */
2357         debug_rt_mutex_init_waiter(&rt_waiter);
2358         rt_waiter.task = NULL;
2359
2360         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2361         if (unlikely(ret != 0))
2362                 goto out;
2363
2364         q.bitset = bitset;
2365         q.rt_waiter = &rt_waiter;
2366         q.requeue_pi_key = &key2;
2367
2368         /*
2369          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2370          * count.
2371          */
2372         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2373         if (ret)
2374                 goto out_key2;
2375
2376         /*
2377          * The check above which compares uaddrs is not sufficient for
2378          * shared futexes. We need to compare the keys:
2379          */
2380         if (match_futex(&q.key, &key2)) {
2381                 ret = -EINVAL;
2382                 goto out_put_keys;
2383         }
2384
2385         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2386         futex_wait_queue_me(hb, &q, to);
2387
2388         spin_lock(&hb->lock);
2389         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2390         spin_unlock(&hb->lock);
2391         if (ret)
2392                 goto out_put_keys;
2393
2394         /*
2395          * In order for us to be here, we know our q.key == key2, and since
2396          * we took the hb->lock above, we also know that futex_requeue() has
2397          * completed and we no longer have to concern ourselves with a wakeup
2398          * race with the atomic proxy lock acquisition by the requeue code. The
2399          * futex_requeue dropped our key1 reference and incremented our key2
2400          * reference count.
2401          */
2402
2403         /* Check if the requeue code acquired the second futex for us. */
2404         if (!q.rt_waiter) {
2405                 /*
2406                  * Got the lock. We might not be the anticipated owner if we
2407                  * did a lock-steal - fix up the PI-state in that case.
2408                  */
2409                 if (q.pi_state && (q.pi_state->owner != current)) {
2410                         spin_lock(q.lock_ptr);
2411                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2412                         spin_unlock(q.lock_ptr);
2413                 }
2414         } else {
2415                 /*
2416                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2417                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2418                  * the pi_state.
2419                  */
2420                 WARN_ON(!q.pi_state);
2421                 pi_mutex = &q.pi_state->pi_mutex;
2422                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2423                 debug_rt_mutex_free_waiter(&rt_waiter);
2424
2425                 spin_lock(q.lock_ptr);
2426                 /*
2427                  * Fixup the pi_state owner and possibly acquire the lock if we
2428                  * haven't already.
2429                  */
2430                 res = fixup_owner(uaddr2, &q, !ret);
2431                 /*
2432                  * If fixup_owner() returned an error, proprogate that.  If it
2433                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2434                  */
2435                 if (res)
2436                         ret = (res < 0) ? res : 0;
2437
2438                 /* Unqueue and drop the lock. */
2439                 unqueue_me_pi(&q);
2440         }
2441
2442         /*
2443          * If fixup_pi_state_owner() faulted and was unable to handle the
2444          * fault, unlock the rt_mutex and return the fault to userspace.
2445          */
2446         if (ret == -EFAULT) {
2447                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2448                         rt_mutex_unlock(pi_mutex);
2449         } else if (ret == -EINTR) {
2450                 /*
2451                  * We've already been requeued, but cannot restart by calling
2452                  * futex_lock_pi() directly. We could restart this syscall, but
2453                  * it would detect that the user space "val" changed and return
2454                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2455                  * -EWOULDBLOCK directly.
2456                  */
2457                 ret = -EWOULDBLOCK;
2458         }
2459
2460 out_put_keys:
2461         put_futex_key(&q.key);
2462 out_key2:
2463         put_futex_key(&key2);
2464
2465 out:
2466         if (to) {
2467                 hrtimer_cancel(&to->timer);
2468                 destroy_hrtimer_on_stack(&to->timer);
2469         }
2470         return ret;
2471 }
2472
2473 /*
2474  * Support for robust futexes: the kernel cleans up held futexes at
2475  * thread exit time.
2476  *
2477  * Implementation: user-space maintains a per-thread list of locks it
2478  * is holding. Upon do_exit(), the kernel carefully walks this list,
2479  * and marks all locks that are owned by this thread with the
2480  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2481  * always manipulated with the lock held, so the list is private and
2482  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2483  * field, to allow the kernel to clean up if the thread dies after
2484  * acquiring the lock, but just before it could have added itself to
2485  * the list. There can only be one such pending lock.
2486  */
2487
2488 /**
2489  * sys_set_robust_list() - Set the robust-futex list head of a task
2490  * @head:       pointer to the list-head
2491  * @len:        length of the list-head, as userspace expects
2492  */
2493 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2494                 size_t, len)
2495 {
2496         if (!futex_cmpxchg_enabled)
2497                 return -ENOSYS;
2498         /*
2499          * The kernel knows only one size for now:
2500          */
2501         if (unlikely(len != sizeof(*head)))
2502                 return -EINVAL;
2503
2504         current->robust_list = head;
2505
2506         return 0;
2507 }
2508
2509 /**
2510  * sys_get_robust_list() - Get the robust-futex list head of a task
2511  * @pid:        pid of the process [zero for current task]
2512  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2513  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2514  */
2515 SYSCALL_DEFINE3(get_robust_list, int, pid,
2516                 struct robust_list_head __user * __user *, head_ptr,
2517                 size_t __user *, len_ptr)
2518 {
2519         struct robust_list_head __user *head;
2520         unsigned long ret;
2521         struct task_struct *p;
2522
2523         if (!futex_cmpxchg_enabled)
2524                 return -ENOSYS;
2525
2526         rcu_read_lock();
2527
2528         ret = -ESRCH;
2529         if (!pid)
2530                 p = current;
2531         else {
2532                 p = find_task_by_vpid(pid);
2533                 if (!p)
2534                         goto err_unlock;
2535         }
2536
2537         ret = -EPERM;
2538         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2539                 goto err_unlock;
2540
2541         head = p->robust_list;
2542         rcu_read_unlock();
2543
2544         if (put_user(sizeof(*head), len_ptr))
2545                 return -EFAULT;
2546         return put_user(head, head_ptr);
2547
2548 err_unlock:
2549         rcu_read_unlock();
2550
2551         return ret;
2552 }
2553
2554 /*
2555  * Process a futex-list entry, check whether it's owned by the
2556  * dying task, and do notification if so:
2557  */
2558 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2559 {
2560         u32 uval, uninitialized_var(nval), mval;
2561
2562 retry:
2563         if (get_user(uval, uaddr))
2564                 return -1;
2565
2566         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2567                 /*
2568                  * Ok, this dying thread is truly holding a futex
2569                  * of interest. Set the OWNER_DIED bit atomically
2570                  * via cmpxchg, and if the value had FUTEX_WAITERS
2571                  * set, wake up a waiter (if any). (We have to do a
2572                  * futex_wake() even if OWNER_DIED is already set -
2573                  * to handle the rare but possible case of recursive
2574                  * thread-death.) The rest of the cleanup is done in
2575                  * userspace.
2576                  */
2577                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2578                 /*
2579                  * We are not holding a lock here, but we want to have
2580                  * the pagefault_disable/enable() protection because
2581                  * we want to handle the fault gracefully. If the
2582                  * access fails we try to fault in the futex with R/W
2583                  * verification via get_user_pages. get_user() above
2584                  * does not guarantee R/W access. If that fails we
2585                  * give up and leave the futex locked.
2586                  */
2587                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2588                         if (fault_in_user_writeable(uaddr))
2589                                 return -1;
2590                         goto retry;
2591                 }
2592                 if (nval != uval)
2593                         goto retry;
2594
2595                 /*
2596                  * Wake robust non-PI futexes here. The wakeup of
2597                  * PI futexes happens in exit_pi_state():
2598                  */
2599                 if (!pi && (uval & FUTEX_WAITERS))
2600                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2601         }
2602         return 0;
2603 }
2604
2605 /*
2606  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2607  */
2608 static inline int fetch_robust_entry(struct robust_list __user **entry,
2609                                      struct robust_list __user * __user *head,
2610                                      unsigned int *pi)
2611 {
2612         unsigned long uentry;
2613
2614         if (get_user(uentry, (unsigned long __user *)head))
2615                 return -EFAULT;
2616
2617         *entry = (void __user *)(uentry & ~1UL);
2618         *pi = uentry & 1;
2619
2620         return 0;
2621 }
2622
2623 /*
2624  * Walk curr->robust_list (very carefully, it's a userspace list!)
2625  * and mark any locks found there dead, and notify any waiters.
2626  *
2627  * We silently return on any sign of list-walking problem.
2628  */
2629 void exit_robust_list(struct task_struct *curr)
2630 {
2631         struct robust_list_head __user *head = curr->robust_list;
2632         struct robust_list __user *entry, *next_entry, *pending;
2633         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2634         unsigned int uninitialized_var(next_pi);
2635         unsigned long futex_offset;
2636         int rc;
2637
2638         if (!futex_cmpxchg_enabled)
2639                 return;
2640
2641         /*
2642          * Fetch the list head (which was registered earlier, via
2643          * sys_set_robust_list()):
2644          */
2645         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2646                 return;
2647         /*
2648          * Fetch the relative futex offset:
2649          */
2650         if (get_user(futex_offset, &head->futex_offset))
2651                 return;
2652         /*
2653          * Fetch any possibly pending lock-add first, and handle it
2654          * if it exists:
2655          */
2656         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2657                 return;
2658
2659         next_entry = NULL;      /* avoid warning with gcc */
2660         while (entry != &head->list) {
2661                 /*
2662                  * Fetch the next entry in the list before calling
2663                  * handle_futex_death:
2664                  */
2665                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2666                 /*
2667                  * A pending lock might already be on the list, so
2668                  * don't process it twice:
2669                  */
2670                 if (entry != pending)
2671                         if (handle_futex_death((void __user *)entry + futex_offset,
2672                                                 curr, pi))
2673                                 return;
2674                 if (rc)
2675                         return;
2676                 entry = next_entry;
2677                 pi = next_pi;
2678                 /*
2679                  * Avoid excessively long or circular lists:
2680                  */
2681                 if (!--limit)
2682                         break;
2683
2684                 cond_resched();
2685         }
2686
2687         if (pending)
2688                 handle_futex_death((void __user *)pending + futex_offset,
2689                                    curr, pip);
2690 }
2691
2692 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2693                 u32 __user *uaddr2, u32 val2, u32 val3)
2694 {
2695         int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2696         unsigned int flags = 0;
2697
2698         if (!(op & FUTEX_PRIVATE_FLAG))
2699                 flags |= FLAGS_SHARED;
2700
2701         if (op & FUTEX_CLOCK_REALTIME) {
2702                 flags |= FLAGS_CLOCKRT;
2703                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2704                         return -ENOSYS;
2705         }
2706
2707         switch (cmd) {
2708         case FUTEX_LOCK_PI:
2709         case FUTEX_UNLOCK_PI:
2710         case FUTEX_TRYLOCK_PI:
2711         case FUTEX_WAIT_REQUEUE_PI:
2712         case FUTEX_CMP_REQUEUE_PI:
2713                 if (!futex_cmpxchg_enabled)
2714                         return -ENOSYS;
2715         }
2716
2717         switch (cmd) {
2718         case FUTEX_WAIT:
2719                 val3 = FUTEX_BITSET_MATCH_ANY;
2720         case FUTEX_WAIT_BITSET:
2721                 ret = futex_wait(uaddr, flags, val, timeout, val3);
2722                 break;
2723         case FUTEX_WAKE:
2724                 val3 = FUTEX_BITSET_MATCH_ANY;
2725         case FUTEX_WAKE_BITSET:
2726                 ret = futex_wake(uaddr, flags, val, val3);
2727                 break;
2728         case FUTEX_REQUEUE:
2729                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2730                 break;
2731         case FUTEX_CMP_REQUEUE:
2732                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2733                 break;
2734         case FUTEX_WAKE_OP:
2735                 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2736                 break;
2737         case FUTEX_LOCK_PI:
2738                 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2739                 break;
2740         case FUTEX_UNLOCK_PI:
2741                 ret = futex_unlock_pi(uaddr, flags);
2742                 break;
2743         case FUTEX_TRYLOCK_PI:
2744                 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2745                 break;
2746         case FUTEX_WAIT_REQUEUE_PI:
2747                 val3 = FUTEX_BITSET_MATCH_ANY;
2748                 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2749                                             uaddr2);
2750                 break;
2751         case FUTEX_CMP_REQUEUE_PI:
2752                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2753                 break;
2754         default:
2755                 ret = -ENOSYS;
2756         }
2757         return ret;
2758 }
2759
2760
2761 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2762                 struct timespec __user *, utime, u32 __user *, uaddr2,
2763                 u32, val3)
2764 {
2765         struct timespec ts;
2766         ktime_t t, *tp = NULL;
2767         u32 val2 = 0;
2768         int cmd = op & FUTEX_CMD_MASK;
2769
2770         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2771                       cmd == FUTEX_WAIT_BITSET ||
2772                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2773                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2774                         return -EFAULT;
2775                 if (!timespec_valid(&ts))
2776                         return -EINVAL;
2777
2778                 t = timespec_to_ktime(ts);
2779                 if (cmd == FUTEX_WAIT)
2780                         t = ktime_add_safe(ktime_get(), t);
2781                 tp = &t;
2782         }
2783         /*
2784          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2785          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2786          */
2787         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2788             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2789                 val2 = (u32) (unsigned long) utime;
2790
2791         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2792 }
2793
2794 static int __init futex_init(void)
2795 {
2796         u32 curval;
2797         int i;
2798
2799         /*
2800          * This will fail and we want it. Some arch implementations do
2801          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2802          * functionality. We want to know that before we call in any
2803          * of the complex code paths. Also we want to prevent
2804          * registration of robust lists in that case. NULL is
2805          * guaranteed to fault and we get -EFAULT on functional
2806          * implementation, the non-functional ones will return
2807          * -ENOSYS.
2808          */
2809         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2810                 futex_cmpxchg_enabled = 1;
2811
2812         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2813                 plist_head_init(&futex_queues[i].chain);
2814                 spin_lock_init(&futex_queues[i].lock);
2815         }
2816
2817         return 0;
2818 }
2819 __initcall(futex_init);