futex: Handle futex_pi OWNER_DIED take over correctly
[pandora-kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63
64 #include <asm/futex.h>
65
66 #include "rtmutex_common.h"
67
68 int __read_mostly futex_cmpxchg_enabled;
69
70 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
71
72 /*
73  * Futex flags used to encode options to functions and preserve them across
74  * restarts.
75  */
76 #define FLAGS_SHARED            0x01
77 #define FLAGS_CLOCKRT           0x02
78 #define FLAGS_HAS_TIMEOUT       0x04
79
80 /*
81  * Priority Inheritance state:
82  */
83 struct futex_pi_state {
84         /*
85          * list of 'owned' pi_state instances - these have to be
86          * cleaned up in do_exit() if the task exits prematurely:
87          */
88         struct list_head list;
89
90         /*
91          * The PI object:
92          */
93         struct rt_mutex pi_mutex;
94
95         struct task_struct *owner;
96         atomic_t refcount;
97
98         union futex_key key;
99 };
100
101 /**
102  * struct futex_q - The hashed futex queue entry, one per waiting task
103  * @list:               priority-sorted list of tasks waiting on this futex
104  * @task:               the task waiting on the futex
105  * @lock_ptr:           the hash bucket lock
106  * @key:                the key the futex is hashed on
107  * @pi_state:           optional priority inheritance state
108  * @rt_waiter:          rt_waiter storage for use with requeue_pi
109  * @requeue_pi_key:     the requeue_pi target futex key
110  * @bitset:             bitset for the optional bitmasked wakeup
111  *
112  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
113  * we can wake only the relevant ones (hashed queues may be shared).
114  *
115  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
116  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
117  * The order of wakeup is always to make the first condition true, then
118  * the second.
119  *
120  * PI futexes are typically woken before they are removed from the hash list via
121  * the rt_mutex code. See unqueue_me_pi().
122  */
123 struct futex_q {
124         struct plist_node list;
125
126         struct task_struct *task;
127         spinlock_t *lock_ptr;
128         union futex_key key;
129         struct futex_pi_state *pi_state;
130         struct rt_mutex_waiter *rt_waiter;
131         union futex_key *requeue_pi_key;
132         u32 bitset;
133 };
134
135 static const struct futex_q futex_q_init = {
136         /* list gets initialized in queue_me()*/
137         .key = FUTEX_KEY_INIT,
138         .bitset = FUTEX_BITSET_MATCH_ANY
139 };
140
141 /*
142  * Hash buckets are shared by all the futex_keys that hash to the same
143  * location.  Each key may have multiple futex_q structures, one for each task
144  * waiting on a futex.
145  */
146 struct futex_hash_bucket {
147         spinlock_t lock;
148         struct plist_head chain;
149 };
150
151 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
152
153 /*
154  * We hash on the keys returned from get_futex_key (see below).
155  */
156 static struct futex_hash_bucket *hash_futex(union futex_key *key)
157 {
158         u32 hash = jhash2((u32*)&key->both.word,
159                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
160                           key->both.offset);
161         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
162 }
163
164 /*
165  * Return 1 if two futex_keys are equal, 0 otherwise.
166  */
167 static inline int match_futex(union futex_key *key1, union futex_key *key2)
168 {
169         return (key1 && key2
170                 && key1->both.word == key2->both.word
171                 && key1->both.ptr == key2->both.ptr
172                 && key1->both.offset == key2->both.offset);
173 }
174
175 /*
176  * Take a reference to the resource addressed by a key.
177  * Can be called while holding spinlocks.
178  *
179  */
180 static void get_futex_key_refs(union futex_key *key)
181 {
182         if (!key->both.ptr)
183                 return;
184
185         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
186         case FUT_OFF_INODE:
187                 ihold(key->shared.inode);
188                 break;
189         case FUT_OFF_MMSHARED:
190                 atomic_inc(&key->private.mm->mm_count);
191                 break;
192         }
193 }
194
195 /*
196  * Drop a reference to the resource addressed by a key.
197  * The hash bucket spinlock must not be held.
198  */
199 static void drop_futex_key_refs(union futex_key *key)
200 {
201         if (!key->both.ptr) {
202                 /* If we're here then we tried to put a key we failed to get */
203                 WARN_ON_ONCE(1);
204                 return;
205         }
206
207         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
208         case FUT_OFF_INODE:
209                 iput(key->shared.inode);
210                 break;
211         case FUT_OFF_MMSHARED:
212                 mmdrop(key->private.mm);
213                 break;
214         }
215 }
216
217 /**
218  * get_futex_key() - Get parameters which are the keys for a futex
219  * @uaddr:      virtual address of the futex
220  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
221  * @key:        address where result is stored.
222  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
223  *              VERIFY_WRITE)
224  *
225  * Returns a negative error code or 0
226  * The key words are stored in *key on success.
227  *
228  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
229  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
230  * We can usually work out the index without swapping in the page.
231  *
232  * lock_page() might sleep, the caller should not hold a spinlock.
233  */
234 static int
235 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
236 {
237         unsigned long address = (unsigned long)uaddr;
238         struct mm_struct *mm = current->mm;
239         struct page *page, *page_head;
240         int err, ro = 0;
241
242         /*
243          * The futex address must be "naturally" aligned.
244          */
245         key->both.offset = address % PAGE_SIZE;
246         if (unlikely((address % sizeof(u32)) != 0))
247                 return -EINVAL;
248         address -= key->both.offset;
249
250         /*
251          * PROCESS_PRIVATE futexes are fast.
252          * As the mm cannot disappear under us and the 'key' only needs
253          * virtual address, we dont even have to find the underlying vma.
254          * Note : We do have to check 'uaddr' is a valid user address,
255          *        but access_ok() should be faster than find_vma()
256          */
257         if (!fshared) {
258                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
259                         return -EFAULT;
260                 key->private.mm = mm;
261                 key->private.address = address;
262                 get_futex_key_refs(key);
263                 return 0;
264         }
265
266 again:
267         err = get_user_pages_fast(address, 1, 1, &page);
268         /*
269          * If write access is not required (eg. FUTEX_WAIT), try
270          * and get read-only access.
271          */
272         if (err == -EFAULT && rw == VERIFY_READ) {
273                 err = get_user_pages_fast(address, 1, 0, &page);
274                 ro = 1;
275         }
276         if (err < 0)
277                 return err;
278         else
279                 err = 0;
280
281 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
282         page_head = page;
283         if (unlikely(PageTail(page))) {
284                 put_page(page);
285                 /* serialize against __split_huge_page_splitting() */
286                 local_irq_disable();
287                 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
288                         page_head = compound_head(page);
289                         /*
290                          * page_head is valid pointer but we must pin
291                          * it before taking the PG_lock and/or
292                          * PG_compound_lock. The moment we re-enable
293                          * irqs __split_huge_page_splitting() can
294                          * return and the head page can be freed from
295                          * under us. We can't take the PG_lock and/or
296                          * PG_compound_lock on a page that could be
297                          * freed from under us.
298                          */
299                         if (page != page_head) {
300                                 get_page(page_head);
301                                 put_page(page);
302                         }
303                         local_irq_enable();
304                 } else {
305                         local_irq_enable();
306                         goto again;
307                 }
308         }
309 #else
310         page_head = compound_head(page);
311         if (page != page_head) {
312                 get_page(page_head);
313                 put_page(page);
314         }
315 #endif
316
317         lock_page(page_head);
318
319         /*
320          * If page_head->mapping is NULL, then it cannot be a PageAnon
321          * page; but it might be the ZERO_PAGE or in the gate area or
322          * in a special mapping (all cases which we are happy to fail);
323          * or it may have been a good file page when get_user_pages_fast
324          * found it, but truncated or holepunched or subjected to
325          * invalidate_complete_page2 before we got the page lock (also
326          * cases which we are happy to fail).  And we hold a reference,
327          * so refcount care in invalidate_complete_page's remove_mapping
328          * prevents drop_caches from setting mapping to NULL beneath us.
329          *
330          * The case we do have to guard against is when memory pressure made
331          * shmem_writepage move it from filecache to swapcache beneath us:
332          * an unlikely race, but we do need to retry for page_head->mapping.
333          */
334         if (!page_head->mapping) {
335                 int shmem_swizzled = PageSwapCache(page_head);
336                 unlock_page(page_head);
337                 put_page(page_head);
338                 if (shmem_swizzled)
339                         goto again;
340                 return -EFAULT;
341         }
342
343         /*
344          * Private mappings are handled in a simple way.
345          *
346          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
347          * it's a read-only handle, it's expected that futexes attach to
348          * the object not the particular process.
349          */
350         if (PageAnon(page_head)) {
351                 /*
352                  * A RO anonymous page will never change and thus doesn't make
353                  * sense for futex operations.
354                  */
355                 if (ro) {
356                         err = -EFAULT;
357                         goto out;
358                 }
359
360                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
361                 key->private.mm = mm;
362                 key->private.address = address;
363         } else {
364                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
365                 key->shared.inode = page_head->mapping->host;
366                 key->shared.pgoff = page_head->index;
367         }
368
369         get_futex_key_refs(key);
370
371 out:
372         unlock_page(page_head);
373         put_page(page_head);
374         return err;
375 }
376
377 static inline void put_futex_key(union futex_key *key)
378 {
379         drop_futex_key_refs(key);
380 }
381
382 /**
383  * fault_in_user_writeable() - Fault in user address and verify RW access
384  * @uaddr:      pointer to faulting user space address
385  *
386  * Slow path to fixup the fault we just took in the atomic write
387  * access to @uaddr.
388  *
389  * We have no generic implementation of a non-destructive write to the
390  * user address. We know that we faulted in the atomic pagefault
391  * disabled section so we can as well avoid the #PF overhead by
392  * calling get_user_pages() right away.
393  */
394 static int fault_in_user_writeable(u32 __user *uaddr)
395 {
396         struct mm_struct *mm = current->mm;
397         int ret;
398
399         down_read(&mm->mmap_sem);
400         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
401                                FAULT_FLAG_WRITE);
402         up_read(&mm->mmap_sem);
403
404         return ret < 0 ? ret : 0;
405 }
406
407 /**
408  * futex_top_waiter() - Return the highest priority waiter on a futex
409  * @hb:         the hash bucket the futex_q's reside in
410  * @key:        the futex key (to distinguish it from other futex futex_q's)
411  *
412  * Must be called with the hb lock held.
413  */
414 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
415                                         union futex_key *key)
416 {
417         struct futex_q *this;
418
419         plist_for_each_entry(this, &hb->chain, list) {
420                 if (match_futex(&this->key, key))
421                         return this;
422         }
423         return NULL;
424 }
425
426 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
427                                       u32 uval, u32 newval)
428 {
429         int ret;
430
431         pagefault_disable();
432         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
433         pagefault_enable();
434
435         return ret;
436 }
437
438 static int get_futex_value_locked(u32 *dest, u32 __user *from)
439 {
440         int ret;
441
442         pagefault_disable();
443         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
444         pagefault_enable();
445
446         return ret ? -EFAULT : 0;
447 }
448
449
450 /*
451  * PI code:
452  */
453 static int refill_pi_state_cache(void)
454 {
455         struct futex_pi_state *pi_state;
456
457         if (likely(current->pi_state_cache))
458                 return 0;
459
460         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
461
462         if (!pi_state)
463                 return -ENOMEM;
464
465         INIT_LIST_HEAD(&pi_state->list);
466         /* pi_mutex gets initialized later */
467         pi_state->owner = NULL;
468         atomic_set(&pi_state->refcount, 1);
469         pi_state->key = FUTEX_KEY_INIT;
470
471         current->pi_state_cache = pi_state;
472
473         return 0;
474 }
475
476 static struct futex_pi_state * alloc_pi_state(void)
477 {
478         struct futex_pi_state *pi_state = current->pi_state_cache;
479
480         WARN_ON(!pi_state);
481         current->pi_state_cache = NULL;
482
483         return pi_state;
484 }
485
486 static void free_pi_state(struct futex_pi_state *pi_state)
487 {
488         if (!atomic_dec_and_test(&pi_state->refcount))
489                 return;
490
491         /*
492          * If pi_state->owner is NULL, the owner is most probably dying
493          * and has cleaned up the pi_state already
494          */
495         if (pi_state->owner) {
496                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
497                 list_del_init(&pi_state->list);
498                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
499
500                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
501         }
502
503         if (current->pi_state_cache)
504                 kfree(pi_state);
505         else {
506                 /*
507                  * pi_state->list is already empty.
508                  * clear pi_state->owner.
509                  * refcount is at 0 - put it back to 1.
510                  */
511                 pi_state->owner = NULL;
512                 atomic_set(&pi_state->refcount, 1);
513                 current->pi_state_cache = pi_state;
514         }
515 }
516
517 /*
518  * Look up the task based on what TID userspace gave us.
519  * We dont trust it.
520  */
521 static struct task_struct * futex_find_get_task(pid_t pid)
522 {
523         struct task_struct *p;
524
525         rcu_read_lock();
526         p = find_task_by_vpid(pid);
527         if (p)
528                 get_task_struct(p);
529
530         rcu_read_unlock();
531
532         return p;
533 }
534
535 /*
536  * This task is holding PI mutexes at exit time => bad.
537  * Kernel cleans up PI-state, but userspace is likely hosed.
538  * (Robust-futex cleanup is separate and might save the day for userspace.)
539  */
540 void exit_pi_state_list(struct task_struct *curr)
541 {
542         struct list_head *next, *head = &curr->pi_state_list;
543         struct futex_pi_state *pi_state;
544         struct futex_hash_bucket *hb;
545         union futex_key key = FUTEX_KEY_INIT;
546
547         if (!futex_cmpxchg_enabled)
548                 return;
549         /*
550          * We are a ZOMBIE and nobody can enqueue itself on
551          * pi_state_list anymore, but we have to be careful
552          * versus waiters unqueueing themselves:
553          */
554         raw_spin_lock_irq(&curr->pi_lock);
555         while (!list_empty(head)) {
556
557                 next = head->next;
558                 pi_state = list_entry(next, struct futex_pi_state, list);
559                 key = pi_state->key;
560                 hb = hash_futex(&key);
561                 raw_spin_unlock_irq(&curr->pi_lock);
562
563                 spin_lock(&hb->lock);
564
565                 raw_spin_lock_irq(&curr->pi_lock);
566                 /*
567                  * We dropped the pi-lock, so re-check whether this
568                  * task still owns the PI-state:
569                  */
570                 if (head->next != next) {
571                         spin_unlock(&hb->lock);
572                         continue;
573                 }
574
575                 WARN_ON(pi_state->owner != curr);
576                 WARN_ON(list_empty(&pi_state->list));
577                 list_del_init(&pi_state->list);
578                 pi_state->owner = NULL;
579                 raw_spin_unlock_irq(&curr->pi_lock);
580
581                 rt_mutex_unlock(&pi_state->pi_mutex);
582
583                 spin_unlock(&hb->lock);
584
585                 raw_spin_lock_irq(&curr->pi_lock);
586         }
587         raw_spin_unlock_irq(&curr->pi_lock);
588 }
589
590 static int
591 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
592                 union futex_key *key, struct futex_pi_state **ps)
593 {
594         struct futex_pi_state *pi_state = NULL;
595         struct futex_q *this, *next;
596         struct plist_head *head;
597         struct task_struct *p;
598         pid_t pid = uval & FUTEX_TID_MASK;
599
600         head = &hb->chain;
601
602         plist_for_each_entry_safe(this, next, head, list) {
603                 if (match_futex(&this->key, key)) {
604                         /*
605                          * Another waiter already exists - bump up
606                          * the refcount and return its pi_state:
607                          */
608                         pi_state = this->pi_state;
609                         /*
610                          * Userspace might have messed up non-PI and PI futexes
611                          */
612                         if (unlikely(!pi_state))
613                                 return -EINVAL;
614
615                         WARN_ON(!atomic_read(&pi_state->refcount));
616
617                         /*
618                          * When pi_state->owner is NULL then the owner died
619                          * and another waiter is on the fly. pi_state->owner
620                          * is fixed up by the task which acquires
621                          * pi_state->rt_mutex.
622                          *
623                          * We do not check for pid == 0 which can happen when
624                          * the owner died and robust_list_exit() cleared the
625                          * TID.
626                          */
627                         if (pid && pi_state->owner) {
628                                 /*
629                                  * Bail out if user space manipulated the
630                                  * futex value.
631                                  */
632                                 if (pid != task_pid_vnr(pi_state->owner))
633                                         return -EINVAL;
634                         }
635
636                         atomic_inc(&pi_state->refcount);
637                         *ps = pi_state;
638
639                         return 0;
640                 }
641         }
642
643         /*
644          * We are the first waiter - try to look up the real owner and attach
645          * the new pi_state to it, but bail out when TID = 0
646          */
647         if (!pid)
648                 return -ESRCH;
649         p = futex_find_get_task(pid);
650         if (!p)
651                 return -ESRCH;
652
653         /*
654          * We need to look at the task state flags to figure out,
655          * whether the task is exiting. To protect against the do_exit
656          * change of the task flags, we do this protected by
657          * p->pi_lock:
658          */
659         raw_spin_lock_irq(&p->pi_lock);
660         if (unlikely(p->flags & PF_EXITING)) {
661                 /*
662                  * The task is on the way out. When PF_EXITPIDONE is
663                  * set, we know that the task has finished the
664                  * cleanup:
665                  */
666                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
667
668                 raw_spin_unlock_irq(&p->pi_lock);
669                 put_task_struct(p);
670                 return ret;
671         }
672
673         pi_state = alloc_pi_state();
674
675         /*
676          * Initialize the pi_mutex in locked state and make 'p'
677          * the owner of it:
678          */
679         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
680
681         /* Store the key for possible exit cleanups: */
682         pi_state->key = *key;
683
684         WARN_ON(!list_empty(&pi_state->list));
685         list_add(&pi_state->list, &p->pi_state_list);
686         pi_state->owner = p;
687         raw_spin_unlock_irq(&p->pi_lock);
688
689         put_task_struct(p);
690
691         *ps = pi_state;
692
693         return 0;
694 }
695
696 /**
697  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
698  * @uaddr:              the pi futex user address
699  * @hb:                 the pi futex hash bucket
700  * @key:                the futex key associated with uaddr and hb
701  * @ps:                 the pi_state pointer where we store the result of the
702  *                      lookup
703  * @task:               the task to perform the atomic lock work for.  This will
704  *                      be "current" except in the case of requeue pi.
705  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
706  *
707  * Returns:
708  *  0 - ready to wait
709  *  1 - acquired the lock
710  * <0 - error
711  *
712  * The hb->lock and futex_key refs shall be held by the caller.
713  */
714 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
715                                 union futex_key *key,
716                                 struct futex_pi_state **ps,
717                                 struct task_struct *task, int set_waiters)
718 {
719         int lock_taken, ret, force_take = 0;
720         u32 uval, newval, curval, vpid = task_pid_vnr(task);
721
722 retry:
723         ret = lock_taken = 0;
724
725         /*
726          * To avoid races, we attempt to take the lock here again
727          * (by doing a 0 -> TID atomic cmpxchg), while holding all
728          * the locks. It will most likely not succeed.
729          */
730         newval = vpid;
731         if (set_waiters)
732                 newval |= FUTEX_WAITERS;
733
734         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
735                 return -EFAULT;
736
737         /*
738          * Detect deadlocks.
739          */
740         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
741                 return -EDEADLK;
742
743         /*
744          * Surprise - we got the lock. Just return to userspace:
745          */
746         if (unlikely(!curval))
747                 return 1;
748
749         uval = curval;
750
751         /*
752          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
753          * to wake at the next unlock.
754          */
755         newval = curval | FUTEX_WAITERS;
756
757         /*
758          * Should we force take the futex? See below.
759          */
760         if (unlikely(force_take)) {
761                 /*
762                  * Keep the OWNER_DIED and the WAITERS bit and set the
763                  * new TID value.
764                  */
765                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
766                 force_take = 0;
767                 lock_taken = 1;
768         }
769
770         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
771                 return -EFAULT;
772         if (unlikely(curval != uval))
773                 goto retry;
774
775         /*
776          * We took the lock due to forced take over.
777          */
778         if (unlikely(lock_taken))
779                 return 1;
780
781         /*
782          * We dont have the lock. Look up the PI state (or create it if
783          * we are the first waiter):
784          */
785         ret = lookup_pi_state(uval, hb, key, ps);
786
787         if (unlikely(ret)) {
788                 switch (ret) {
789                 case -ESRCH:
790                         /*
791                          * We failed to find an owner for this
792                          * futex. So we have no pi_state to block
793                          * on. This can happen in two cases:
794                          *
795                          * 1) The owner died
796                          * 2) A stale FUTEX_WAITERS bit
797                          *
798                          * Re-read the futex value.
799                          */
800                         if (get_futex_value_locked(&curval, uaddr))
801                                 return -EFAULT;
802
803                         /*
804                          * If the owner died or we have a stale
805                          * WAITERS bit the owner TID in the user space
806                          * futex is 0.
807                          */
808                         if (!(curval & FUTEX_TID_MASK)) {
809                                 force_take = 1;
810                                 goto retry;
811                         }
812                 default:
813                         break;
814                 }
815         }
816
817         return ret;
818 }
819
820 /**
821  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
822  * @q:  The futex_q to unqueue
823  *
824  * The q->lock_ptr must not be NULL and must be held by the caller.
825  */
826 static void __unqueue_futex(struct futex_q *q)
827 {
828         struct futex_hash_bucket *hb;
829
830         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
831             || WARN_ON(plist_node_empty(&q->list)))
832                 return;
833
834         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
835         plist_del(&q->list, &hb->chain);
836 }
837
838 /*
839  * The hash bucket lock must be held when this is called.
840  * Afterwards, the futex_q must not be accessed.
841  */
842 static void wake_futex(struct futex_q *q)
843 {
844         struct task_struct *p = q->task;
845
846         /*
847          * We set q->lock_ptr = NULL _before_ we wake up the task. If
848          * a non-futex wake up happens on another CPU then the task
849          * might exit and p would dereference a non-existing task
850          * struct. Prevent this by holding a reference on p across the
851          * wake up.
852          */
853         get_task_struct(p);
854
855         __unqueue_futex(q);
856         /*
857          * The waiting task can free the futex_q as soon as
858          * q->lock_ptr = NULL is written, without taking any locks. A
859          * memory barrier is required here to prevent the following
860          * store to lock_ptr from getting ahead of the plist_del.
861          */
862         smp_wmb();
863         q->lock_ptr = NULL;
864
865         wake_up_state(p, TASK_NORMAL);
866         put_task_struct(p);
867 }
868
869 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
870 {
871         struct task_struct *new_owner;
872         struct futex_pi_state *pi_state = this->pi_state;
873         u32 uninitialized_var(curval), newval;
874
875         if (!pi_state)
876                 return -EINVAL;
877
878         /*
879          * If current does not own the pi_state then the futex is
880          * inconsistent and user space fiddled with the futex value.
881          */
882         if (pi_state->owner != current)
883                 return -EINVAL;
884
885         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
886         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
887
888         /*
889          * It is possible that the next waiter (the one that brought
890          * this owner to the kernel) timed out and is no longer
891          * waiting on the lock.
892          */
893         if (!new_owner)
894                 new_owner = this->task;
895
896         /*
897          * We pass it to the next owner. (The WAITERS bit is always
898          * kept enabled while there is PI state around. We must also
899          * preserve the owner died bit.)
900          */
901         if (!(uval & FUTEX_OWNER_DIED)) {
902                 int ret = 0;
903
904                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
905
906                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
907                         ret = -EFAULT;
908                 else if (curval != uval)
909                         ret = -EINVAL;
910                 if (ret) {
911                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
912                         return ret;
913                 }
914         }
915
916         raw_spin_lock_irq(&pi_state->owner->pi_lock);
917         WARN_ON(list_empty(&pi_state->list));
918         list_del_init(&pi_state->list);
919         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
920
921         raw_spin_lock_irq(&new_owner->pi_lock);
922         WARN_ON(!list_empty(&pi_state->list));
923         list_add(&pi_state->list, &new_owner->pi_state_list);
924         pi_state->owner = new_owner;
925         raw_spin_unlock_irq(&new_owner->pi_lock);
926
927         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
928         rt_mutex_unlock(&pi_state->pi_mutex);
929
930         return 0;
931 }
932
933 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
934 {
935         u32 uninitialized_var(oldval);
936
937         /*
938          * There is no waiter, so we unlock the futex. The owner died
939          * bit has not to be preserved here. We are the owner:
940          */
941         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
942                 return -EFAULT;
943         if (oldval != uval)
944                 return -EAGAIN;
945
946         return 0;
947 }
948
949 /*
950  * Express the locking dependencies for lockdep:
951  */
952 static inline void
953 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
954 {
955         if (hb1 <= hb2) {
956                 spin_lock(&hb1->lock);
957                 if (hb1 < hb2)
958                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
959         } else { /* hb1 > hb2 */
960                 spin_lock(&hb2->lock);
961                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
962         }
963 }
964
965 static inline void
966 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
967 {
968         spin_unlock(&hb1->lock);
969         if (hb1 != hb2)
970                 spin_unlock(&hb2->lock);
971 }
972
973 /*
974  * Wake up waiters matching bitset queued on this futex (uaddr).
975  */
976 static int
977 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
978 {
979         struct futex_hash_bucket *hb;
980         struct futex_q *this, *next;
981         struct plist_head *head;
982         union futex_key key = FUTEX_KEY_INIT;
983         int ret;
984
985         if (!bitset)
986                 return -EINVAL;
987
988         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
989         if (unlikely(ret != 0))
990                 goto out;
991
992         hb = hash_futex(&key);
993         spin_lock(&hb->lock);
994         head = &hb->chain;
995
996         plist_for_each_entry_safe(this, next, head, list) {
997                 if (match_futex (&this->key, &key)) {
998                         if (this->pi_state || this->rt_waiter) {
999                                 ret = -EINVAL;
1000                                 break;
1001                         }
1002
1003                         /* Check if one of the bits is set in both bitsets */
1004                         if (!(this->bitset & bitset))
1005                                 continue;
1006
1007                         wake_futex(this);
1008                         if (++ret >= nr_wake)
1009                                 break;
1010                 }
1011         }
1012
1013         spin_unlock(&hb->lock);
1014         put_futex_key(&key);
1015 out:
1016         return ret;
1017 }
1018
1019 /*
1020  * Wake up all waiters hashed on the physical page that is mapped
1021  * to this virtual address:
1022  */
1023 static int
1024 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1025               int nr_wake, int nr_wake2, int op)
1026 {
1027         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1028         struct futex_hash_bucket *hb1, *hb2;
1029         struct plist_head *head;
1030         struct futex_q *this, *next;
1031         int ret, op_ret;
1032
1033 retry:
1034         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1035         if (unlikely(ret != 0))
1036                 goto out;
1037         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1038         if (unlikely(ret != 0))
1039                 goto out_put_key1;
1040
1041         hb1 = hash_futex(&key1);
1042         hb2 = hash_futex(&key2);
1043
1044 retry_private:
1045         double_lock_hb(hb1, hb2);
1046         op_ret = futex_atomic_op_inuser(op, uaddr2);
1047         if (unlikely(op_ret < 0)) {
1048
1049                 double_unlock_hb(hb1, hb2);
1050
1051 #ifndef CONFIG_MMU
1052                 /*
1053                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1054                  * but we might get them from range checking
1055                  */
1056                 ret = op_ret;
1057                 goto out_put_keys;
1058 #endif
1059
1060                 if (unlikely(op_ret != -EFAULT)) {
1061                         ret = op_ret;
1062                         goto out_put_keys;
1063                 }
1064
1065                 ret = fault_in_user_writeable(uaddr2);
1066                 if (ret)
1067                         goto out_put_keys;
1068
1069                 if (!(flags & FLAGS_SHARED))
1070                         goto retry_private;
1071
1072                 put_futex_key(&key2);
1073                 put_futex_key(&key1);
1074                 goto retry;
1075         }
1076
1077         head = &hb1->chain;
1078
1079         plist_for_each_entry_safe(this, next, head, list) {
1080                 if (match_futex (&this->key, &key1)) {
1081                         wake_futex(this);
1082                         if (++ret >= nr_wake)
1083                                 break;
1084                 }
1085         }
1086
1087         if (op_ret > 0) {
1088                 head = &hb2->chain;
1089
1090                 op_ret = 0;
1091                 plist_for_each_entry_safe(this, next, head, list) {
1092                         if (match_futex (&this->key, &key2)) {
1093                                 wake_futex(this);
1094                                 if (++op_ret >= nr_wake2)
1095                                         break;
1096                         }
1097                 }
1098                 ret += op_ret;
1099         }
1100
1101         double_unlock_hb(hb1, hb2);
1102 out_put_keys:
1103         put_futex_key(&key2);
1104 out_put_key1:
1105         put_futex_key(&key1);
1106 out:
1107         return ret;
1108 }
1109
1110 /**
1111  * requeue_futex() - Requeue a futex_q from one hb to another
1112  * @q:          the futex_q to requeue
1113  * @hb1:        the source hash_bucket
1114  * @hb2:        the target hash_bucket
1115  * @key2:       the new key for the requeued futex_q
1116  */
1117 static inline
1118 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1119                    struct futex_hash_bucket *hb2, union futex_key *key2)
1120 {
1121
1122         /*
1123          * If key1 and key2 hash to the same bucket, no need to
1124          * requeue.
1125          */
1126         if (likely(&hb1->chain != &hb2->chain)) {
1127                 plist_del(&q->list, &hb1->chain);
1128                 plist_add(&q->list, &hb2->chain);
1129                 q->lock_ptr = &hb2->lock;
1130         }
1131         get_futex_key_refs(key2);
1132         q->key = *key2;
1133 }
1134
1135 /**
1136  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1137  * @q:          the futex_q
1138  * @key:        the key of the requeue target futex
1139  * @hb:         the hash_bucket of the requeue target futex
1140  *
1141  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1142  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1143  * to the requeue target futex so the waiter can detect the wakeup on the right
1144  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1145  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1146  * to protect access to the pi_state to fixup the owner later.  Must be called
1147  * with both q->lock_ptr and hb->lock held.
1148  */
1149 static inline
1150 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1151                            struct futex_hash_bucket *hb)
1152 {
1153         get_futex_key_refs(key);
1154         q->key = *key;
1155
1156         __unqueue_futex(q);
1157
1158         WARN_ON(!q->rt_waiter);
1159         q->rt_waiter = NULL;
1160
1161         q->lock_ptr = &hb->lock;
1162
1163         wake_up_state(q->task, TASK_NORMAL);
1164 }
1165
1166 /**
1167  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1168  * @pifutex:            the user address of the to futex
1169  * @hb1:                the from futex hash bucket, must be locked by the caller
1170  * @hb2:                the to futex hash bucket, must be locked by the caller
1171  * @key1:               the from futex key
1172  * @key2:               the to futex key
1173  * @ps:                 address to store the pi_state pointer
1174  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1175  *
1176  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1177  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1178  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1179  * hb1 and hb2 must be held by the caller.
1180  *
1181  * Returns:
1182  *  0 - failed to acquire the lock atomicly
1183  *  1 - acquired the lock
1184  * <0 - error
1185  */
1186 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1187                                  struct futex_hash_bucket *hb1,
1188                                  struct futex_hash_bucket *hb2,
1189                                  union futex_key *key1, union futex_key *key2,
1190                                  struct futex_pi_state **ps, int set_waiters)
1191 {
1192         struct futex_q *top_waiter = NULL;
1193         u32 curval;
1194         int ret;
1195
1196         if (get_futex_value_locked(&curval, pifutex))
1197                 return -EFAULT;
1198
1199         /*
1200          * Find the top_waiter and determine if there are additional waiters.
1201          * If the caller intends to requeue more than 1 waiter to pifutex,
1202          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1203          * as we have means to handle the possible fault.  If not, don't set
1204          * the bit unecessarily as it will force the subsequent unlock to enter
1205          * the kernel.
1206          */
1207         top_waiter = futex_top_waiter(hb1, key1);
1208
1209         /* There are no waiters, nothing for us to do. */
1210         if (!top_waiter)
1211                 return 0;
1212
1213         /* Ensure we requeue to the expected futex. */
1214         if (!match_futex(top_waiter->requeue_pi_key, key2))
1215                 return -EINVAL;
1216
1217         /*
1218          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1219          * the contended case or if set_waiters is 1.  The pi_state is returned
1220          * in ps in contended cases.
1221          */
1222         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1223                                    set_waiters);
1224         if (ret == 1)
1225                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1226
1227         return ret;
1228 }
1229
1230 /**
1231  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1232  * @uaddr1:     source futex user address
1233  * @flags:      futex flags (FLAGS_SHARED, etc.)
1234  * @uaddr2:     target futex user address
1235  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1236  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1237  * @cmpval:     @uaddr1 expected value (or %NULL)
1238  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1239  *              pi futex (pi to pi requeue is not supported)
1240  *
1241  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1242  * uaddr2 atomically on behalf of the top waiter.
1243  *
1244  * Returns:
1245  * >=0 - on success, the number of tasks requeued or woken
1246  *  <0 - on error
1247  */
1248 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1249                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1250                          u32 *cmpval, int requeue_pi)
1251 {
1252         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1253         int drop_count = 0, task_count = 0, ret;
1254         struct futex_pi_state *pi_state = NULL;
1255         struct futex_hash_bucket *hb1, *hb2;
1256         struct plist_head *head1;
1257         struct futex_q *this, *next;
1258         u32 curval2;
1259
1260         if (requeue_pi) {
1261                 /*
1262                  * requeue_pi requires a pi_state, try to allocate it now
1263                  * without any locks in case it fails.
1264                  */
1265                 if (refill_pi_state_cache())
1266                         return -ENOMEM;
1267                 /*
1268                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1269                  * + nr_requeue, since it acquires the rt_mutex prior to
1270                  * returning to userspace, so as to not leave the rt_mutex with
1271                  * waiters and no owner.  However, second and third wake-ups
1272                  * cannot be predicted as they involve race conditions with the
1273                  * first wake and a fault while looking up the pi_state.  Both
1274                  * pthread_cond_signal() and pthread_cond_broadcast() should
1275                  * use nr_wake=1.
1276                  */
1277                 if (nr_wake != 1)
1278                         return -EINVAL;
1279         }
1280
1281 retry:
1282         if (pi_state != NULL) {
1283                 /*
1284                  * We will have to lookup the pi_state again, so free this one
1285                  * to keep the accounting correct.
1286                  */
1287                 free_pi_state(pi_state);
1288                 pi_state = NULL;
1289         }
1290
1291         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1292         if (unlikely(ret != 0))
1293                 goto out;
1294         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1295                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1296         if (unlikely(ret != 0))
1297                 goto out_put_key1;
1298
1299         hb1 = hash_futex(&key1);
1300         hb2 = hash_futex(&key2);
1301
1302 retry_private:
1303         double_lock_hb(hb1, hb2);
1304
1305         if (likely(cmpval != NULL)) {
1306                 u32 curval;
1307
1308                 ret = get_futex_value_locked(&curval, uaddr1);
1309
1310                 if (unlikely(ret)) {
1311                         double_unlock_hb(hb1, hb2);
1312
1313                         ret = get_user(curval, uaddr1);
1314                         if (ret)
1315                                 goto out_put_keys;
1316
1317                         if (!(flags & FLAGS_SHARED))
1318                                 goto retry_private;
1319
1320                         put_futex_key(&key2);
1321                         put_futex_key(&key1);
1322                         goto retry;
1323                 }
1324                 if (curval != *cmpval) {
1325                         ret = -EAGAIN;
1326                         goto out_unlock;
1327                 }
1328         }
1329
1330         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1331                 /*
1332                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1333                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1334                  * bit.  We force this here where we are able to easily handle
1335                  * faults rather in the requeue loop below.
1336                  */
1337                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1338                                                  &key2, &pi_state, nr_requeue);
1339
1340                 /*
1341                  * At this point the top_waiter has either taken uaddr2 or is
1342                  * waiting on it.  If the former, then the pi_state will not
1343                  * exist yet, look it up one more time to ensure we have a
1344                  * reference to it.
1345                  */
1346                 if (ret == 1) {
1347                         WARN_ON(pi_state);
1348                         drop_count++;
1349                         task_count++;
1350                         ret = get_futex_value_locked(&curval2, uaddr2);
1351                         if (!ret)
1352                                 ret = lookup_pi_state(curval2, hb2, &key2,
1353                                                       &pi_state);
1354                 }
1355
1356                 switch (ret) {
1357                 case 0:
1358                         break;
1359                 case -EFAULT:
1360                         double_unlock_hb(hb1, hb2);
1361                         put_futex_key(&key2);
1362                         put_futex_key(&key1);
1363                         ret = fault_in_user_writeable(uaddr2);
1364                         if (!ret)
1365                                 goto retry;
1366                         goto out;
1367                 case -EAGAIN:
1368                         /* The owner was exiting, try again. */
1369                         double_unlock_hb(hb1, hb2);
1370                         put_futex_key(&key2);
1371                         put_futex_key(&key1);
1372                         cond_resched();
1373                         goto retry;
1374                 default:
1375                         goto out_unlock;
1376                 }
1377         }
1378
1379         head1 = &hb1->chain;
1380         plist_for_each_entry_safe(this, next, head1, list) {
1381                 if (task_count - nr_wake >= nr_requeue)
1382                         break;
1383
1384                 if (!match_futex(&this->key, &key1))
1385                         continue;
1386
1387                 /*
1388                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1389                  * be paired with each other and no other futex ops.
1390                  */
1391                 if ((requeue_pi && !this->rt_waiter) ||
1392                     (!requeue_pi && this->rt_waiter)) {
1393                         ret = -EINVAL;
1394                         break;
1395                 }
1396
1397                 /*
1398                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1399                  * lock, we already woke the top_waiter.  If not, it will be
1400                  * woken by futex_unlock_pi().
1401                  */
1402                 if (++task_count <= nr_wake && !requeue_pi) {
1403                         wake_futex(this);
1404                         continue;
1405                 }
1406
1407                 /* Ensure we requeue to the expected futex for requeue_pi. */
1408                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1409                         ret = -EINVAL;
1410                         break;
1411                 }
1412
1413                 /*
1414                  * Requeue nr_requeue waiters and possibly one more in the case
1415                  * of requeue_pi if we couldn't acquire the lock atomically.
1416                  */
1417                 if (requeue_pi) {
1418                         /* Prepare the waiter to take the rt_mutex. */
1419                         atomic_inc(&pi_state->refcount);
1420                         this->pi_state = pi_state;
1421                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1422                                                         this->rt_waiter,
1423                                                         this->task, 1);
1424                         if (ret == 1) {
1425                                 /* We got the lock. */
1426                                 requeue_pi_wake_futex(this, &key2, hb2);
1427                                 drop_count++;
1428                                 continue;
1429                         } else if (ret) {
1430                                 /* -EDEADLK */
1431                                 this->pi_state = NULL;
1432                                 free_pi_state(pi_state);
1433                                 goto out_unlock;
1434                         }
1435                 }
1436                 requeue_futex(this, hb1, hb2, &key2);
1437                 drop_count++;
1438         }
1439
1440 out_unlock:
1441         double_unlock_hb(hb1, hb2);
1442
1443         /*
1444          * drop_futex_key_refs() must be called outside the spinlocks. During
1445          * the requeue we moved futex_q's from the hash bucket at key1 to the
1446          * one at key2 and updated their key pointer.  We no longer need to
1447          * hold the references to key1.
1448          */
1449         while (--drop_count >= 0)
1450                 drop_futex_key_refs(&key1);
1451
1452 out_put_keys:
1453         put_futex_key(&key2);
1454 out_put_key1:
1455         put_futex_key(&key1);
1456 out:
1457         if (pi_state != NULL)
1458                 free_pi_state(pi_state);
1459         return ret ? ret : task_count;
1460 }
1461
1462 /* The key must be already stored in q->key. */
1463 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1464         __acquires(&hb->lock)
1465 {
1466         struct futex_hash_bucket *hb;
1467
1468         hb = hash_futex(&q->key);
1469         q->lock_ptr = &hb->lock;
1470
1471         spin_lock(&hb->lock);
1472         return hb;
1473 }
1474
1475 static inline void
1476 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1477         __releases(&hb->lock)
1478 {
1479         spin_unlock(&hb->lock);
1480 }
1481
1482 /**
1483  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1484  * @q:  The futex_q to enqueue
1485  * @hb: The destination hash bucket
1486  *
1487  * The hb->lock must be held by the caller, and is released here. A call to
1488  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1489  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1490  * or nothing if the unqueue is done as part of the wake process and the unqueue
1491  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1492  * an example).
1493  */
1494 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1495         __releases(&hb->lock)
1496 {
1497         int prio;
1498
1499         /*
1500          * The priority used to register this element is
1501          * - either the real thread-priority for the real-time threads
1502          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1503          * - or MAX_RT_PRIO for non-RT threads.
1504          * Thus, all RT-threads are woken first in priority order, and
1505          * the others are woken last, in FIFO order.
1506          */
1507         prio = min(current->normal_prio, MAX_RT_PRIO);
1508
1509         plist_node_init(&q->list, prio);
1510         plist_add(&q->list, &hb->chain);
1511         q->task = current;
1512         spin_unlock(&hb->lock);
1513 }
1514
1515 /**
1516  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1517  * @q:  The futex_q to unqueue
1518  *
1519  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1520  * be paired with exactly one earlier call to queue_me().
1521  *
1522  * Returns:
1523  *   1 - if the futex_q was still queued (and we removed unqueued it)
1524  *   0 - if the futex_q was already removed by the waking thread
1525  */
1526 static int unqueue_me(struct futex_q *q)
1527 {
1528         spinlock_t *lock_ptr;
1529         int ret = 0;
1530
1531         /* In the common case we don't take the spinlock, which is nice. */
1532 retry:
1533         lock_ptr = q->lock_ptr;
1534         barrier();
1535         if (lock_ptr != NULL) {
1536                 spin_lock(lock_ptr);
1537                 /*
1538                  * q->lock_ptr can change between reading it and
1539                  * spin_lock(), causing us to take the wrong lock.  This
1540                  * corrects the race condition.
1541                  *
1542                  * Reasoning goes like this: if we have the wrong lock,
1543                  * q->lock_ptr must have changed (maybe several times)
1544                  * between reading it and the spin_lock().  It can
1545                  * change again after the spin_lock() but only if it was
1546                  * already changed before the spin_lock().  It cannot,
1547                  * however, change back to the original value.  Therefore
1548                  * we can detect whether we acquired the correct lock.
1549                  */
1550                 if (unlikely(lock_ptr != q->lock_ptr)) {
1551                         spin_unlock(lock_ptr);
1552                         goto retry;
1553                 }
1554                 __unqueue_futex(q);
1555
1556                 BUG_ON(q->pi_state);
1557
1558                 spin_unlock(lock_ptr);
1559                 ret = 1;
1560         }
1561
1562         drop_futex_key_refs(&q->key);
1563         return ret;
1564 }
1565
1566 /*
1567  * PI futexes can not be requeued and must remove themself from the
1568  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1569  * and dropped here.
1570  */
1571 static void unqueue_me_pi(struct futex_q *q)
1572         __releases(q->lock_ptr)
1573 {
1574         __unqueue_futex(q);
1575
1576         BUG_ON(!q->pi_state);
1577         free_pi_state(q->pi_state);
1578         q->pi_state = NULL;
1579
1580         spin_unlock(q->lock_ptr);
1581 }
1582
1583 /*
1584  * Fixup the pi_state owner with the new owner.
1585  *
1586  * Must be called with hash bucket lock held and mm->sem held for non
1587  * private futexes.
1588  */
1589 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1590                                 struct task_struct *newowner)
1591 {
1592         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1593         struct futex_pi_state *pi_state = q->pi_state;
1594         struct task_struct *oldowner = pi_state->owner;
1595         u32 uval, uninitialized_var(curval), newval;
1596         int ret;
1597
1598         /* Owner died? */
1599         if (!pi_state->owner)
1600                 newtid |= FUTEX_OWNER_DIED;
1601
1602         /*
1603          * We are here either because we stole the rtmutex from the
1604          * previous highest priority waiter or we are the highest priority
1605          * waiter but failed to get the rtmutex the first time.
1606          * We have to replace the newowner TID in the user space variable.
1607          * This must be atomic as we have to preserve the owner died bit here.
1608          *
1609          * Note: We write the user space value _before_ changing the pi_state
1610          * because we can fault here. Imagine swapped out pages or a fork
1611          * that marked all the anonymous memory readonly for cow.
1612          *
1613          * Modifying pi_state _before_ the user space value would
1614          * leave the pi_state in an inconsistent state when we fault
1615          * here, because we need to drop the hash bucket lock to
1616          * handle the fault. This might be observed in the PID check
1617          * in lookup_pi_state.
1618          */
1619 retry:
1620         if (get_futex_value_locked(&uval, uaddr))
1621                 goto handle_fault;
1622
1623         while (1) {
1624                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1625
1626                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1627                         goto handle_fault;
1628                 if (curval == uval)
1629                         break;
1630                 uval = curval;
1631         }
1632
1633         /*
1634          * We fixed up user space. Now we need to fix the pi_state
1635          * itself.
1636          */
1637         if (pi_state->owner != NULL) {
1638                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1639                 WARN_ON(list_empty(&pi_state->list));
1640                 list_del_init(&pi_state->list);
1641                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1642         }
1643
1644         pi_state->owner = newowner;
1645
1646         raw_spin_lock_irq(&newowner->pi_lock);
1647         WARN_ON(!list_empty(&pi_state->list));
1648         list_add(&pi_state->list, &newowner->pi_state_list);
1649         raw_spin_unlock_irq(&newowner->pi_lock);
1650         return 0;
1651
1652         /*
1653          * To handle the page fault we need to drop the hash bucket
1654          * lock here. That gives the other task (either the highest priority
1655          * waiter itself or the task which stole the rtmutex) the
1656          * chance to try the fixup of the pi_state. So once we are
1657          * back from handling the fault we need to check the pi_state
1658          * after reacquiring the hash bucket lock and before trying to
1659          * do another fixup. When the fixup has been done already we
1660          * simply return.
1661          */
1662 handle_fault:
1663         spin_unlock(q->lock_ptr);
1664
1665         ret = fault_in_user_writeable(uaddr);
1666
1667         spin_lock(q->lock_ptr);
1668
1669         /*
1670          * Check if someone else fixed it for us:
1671          */
1672         if (pi_state->owner != oldowner)
1673                 return 0;
1674
1675         if (ret)
1676                 return ret;
1677
1678         goto retry;
1679 }
1680
1681 static long futex_wait_restart(struct restart_block *restart);
1682
1683 /**
1684  * fixup_owner() - Post lock pi_state and corner case management
1685  * @uaddr:      user address of the futex
1686  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1687  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1688  *
1689  * After attempting to lock an rt_mutex, this function is called to cleanup
1690  * the pi_state owner as well as handle race conditions that may allow us to
1691  * acquire the lock. Must be called with the hb lock held.
1692  *
1693  * Returns:
1694  *  1 - success, lock taken
1695  *  0 - success, lock not taken
1696  * <0 - on error (-EFAULT)
1697  */
1698 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1699 {
1700         struct task_struct *owner;
1701         int ret = 0;
1702
1703         if (locked) {
1704                 /*
1705                  * Got the lock. We might not be the anticipated owner if we
1706                  * did a lock-steal - fix up the PI-state in that case:
1707                  */
1708                 if (q->pi_state->owner != current)
1709                         ret = fixup_pi_state_owner(uaddr, q, current);
1710                 goto out;
1711         }
1712
1713         /*
1714          * Catch the rare case, where the lock was released when we were on the
1715          * way back before we locked the hash bucket.
1716          */
1717         if (q->pi_state->owner == current) {
1718                 /*
1719                  * Try to get the rt_mutex now. This might fail as some other
1720                  * task acquired the rt_mutex after we removed ourself from the
1721                  * rt_mutex waiters list.
1722                  */
1723                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1724                         locked = 1;
1725                         goto out;
1726                 }
1727
1728                 /*
1729                  * pi_state is incorrect, some other task did a lock steal and
1730                  * we returned due to timeout or signal without taking the
1731                  * rt_mutex. Too late.
1732                  */
1733                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1734                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1735                 if (!owner)
1736                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1737                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1738                 ret = fixup_pi_state_owner(uaddr, q, owner);
1739                 goto out;
1740         }
1741
1742         /*
1743          * Paranoia check. If we did not take the lock, then we should not be
1744          * the owner of the rt_mutex.
1745          */
1746         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1747                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1748                                 "pi-state %p\n", ret,
1749                                 q->pi_state->pi_mutex.owner,
1750                                 q->pi_state->owner);
1751
1752 out:
1753         return ret ? ret : locked;
1754 }
1755
1756 /**
1757  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1758  * @hb:         the futex hash bucket, must be locked by the caller
1759  * @q:          the futex_q to queue up on
1760  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1761  */
1762 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1763                                 struct hrtimer_sleeper *timeout)
1764 {
1765         /*
1766          * The task state is guaranteed to be set before another task can
1767          * wake it. set_current_state() is implemented using set_mb() and
1768          * queue_me() calls spin_unlock() upon completion, both serializing
1769          * access to the hash list and forcing another memory barrier.
1770          */
1771         set_current_state(TASK_INTERRUPTIBLE);
1772         queue_me(q, hb);
1773
1774         /* Arm the timer */
1775         if (timeout) {
1776                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1777                 if (!hrtimer_active(&timeout->timer))
1778                         timeout->task = NULL;
1779         }
1780
1781         /*
1782          * If we have been removed from the hash list, then another task
1783          * has tried to wake us, and we can skip the call to schedule().
1784          */
1785         if (likely(!plist_node_empty(&q->list))) {
1786                 /*
1787                  * If the timer has already expired, current will already be
1788                  * flagged for rescheduling. Only call schedule if there
1789                  * is no timeout, or if it has yet to expire.
1790                  */
1791                 if (!timeout || timeout->task)
1792                         schedule();
1793         }
1794         __set_current_state(TASK_RUNNING);
1795 }
1796
1797 /**
1798  * futex_wait_setup() - Prepare to wait on a futex
1799  * @uaddr:      the futex userspace address
1800  * @val:        the expected value
1801  * @flags:      futex flags (FLAGS_SHARED, etc.)
1802  * @q:          the associated futex_q
1803  * @hb:         storage for hash_bucket pointer to be returned to caller
1804  *
1805  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1806  * compare it with the expected value.  Handle atomic faults internally.
1807  * Return with the hb lock held and a q.key reference on success, and unlocked
1808  * with no q.key reference on failure.
1809  *
1810  * Returns:
1811  *  0 - uaddr contains val and hb has been locked
1812  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1813  */
1814 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1815                            struct futex_q *q, struct futex_hash_bucket **hb)
1816 {
1817         u32 uval;
1818         int ret;
1819
1820         /*
1821          * Access the page AFTER the hash-bucket is locked.
1822          * Order is important:
1823          *
1824          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1825          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1826          *
1827          * The basic logical guarantee of a futex is that it blocks ONLY
1828          * if cond(var) is known to be true at the time of blocking, for
1829          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1830          * would open a race condition where we could block indefinitely with
1831          * cond(var) false, which would violate the guarantee.
1832          *
1833          * On the other hand, we insert q and release the hash-bucket only
1834          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1835          * absorb a wakeup if *uaddr does not match the desired values
1836          * while the syscall executes.
1837          */
1838 retry:
1839         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1840         if (unlikely(ret != 0))
1841                 return ret;
1842
1843 retry_private:
1844         *hb = queue_lock(q);
1845
1846         ret = get_futex_value_locked(&uval, uaddr);
1847
1848         if (ret) {
1849                 queue_unlock(q, *hb);
1850
1851                 ret = get_user(uval, uaddr);
1852                 if (ret)
1853                         goto out;
1854
1855                 if (!(flags & FLAGS_SHARED))
1856                         goto retry_private;
1857
1858                 put_futex_key(&q->key);
1859                 goto retry;
1860         }
1861
1862         if (uval != val) {
1863                 queue_unlock(q, *hb);
1864                 ret = -EWOULDBLOCK;
1865         }
1866
1867 out:
1868         if (ret)
1869                 put_futex_key(&q->key);
1870         return ret;
1871 }
1872
1873 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1874                       ktime_t *abs_time, u32 bitset)
1875 {
1876         struct hrtimer_sleeper timeout, *to = NULL;
1877         struct restart_block *restart;
1878         struct futex_hash_bucket *hb;
1879         struct futex_q q = futex_q_init;
1880         int ret;
1881
1882         if (!bitset)
1883                 return -EINVAL;
1884         q.bitset = bitset;
1885
1886         if (abs_time) {
1887                 to = &timeout;
1888
1889                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1890                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
1891                                       HRTIMER_MODE_ABS);
1892                 hrtimer_init_sleeper(to, current);
1893                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1894                                              current->timer_slack_ns);
1895         }
1896
1897 retry:
1898         /*
1899          * Prepare to wait on uaddr. On success, holds hb lock and increments
1900          * q.key refs.
1901          */
1902         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1903         if (ret)
1904                 goto out;
1905
1906         /* queue_me and wait for wakeup, timeout, or a signal. */
1907         futex_wait_queue_me(hb, &q, to);
1908
1909         /* If we were woken (and unqueued), we succeeded, whatever. */
1910         ret = 0;
1911         /* unqueue_me() drops q.key ref */
1912         if (!unqueue_me(&q))
1913                 goto out;
1914         ret = -ETIMEDOUT;
1915         if (to && !to->task)
1916                 goto out;
1917
1918         /*
1919          * We expect signal_pending(current), but we might be the
1920          * victim of a spurious wakeup as well.
1921          */
1922         if (!signal_pending(current))
1923                 goto retry;
1924
1925         ret = -ERESTARTSYS;
1926         if (!abs_time)
1927                 goto out;
1928
1929         restart = &current_thread_info()->restart_block;
1930         restart->fn = futex_wait_restart;
1931         restart->futex.uaddr = uaddr;
1932         restart->futex.val = val;
1933         restart->futex.time = abs_time->tv64;
1934         restart->futex.bitset = bitset;
1935         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1936
1937         ret = -ERESTART_RESTARTBLOCK;
1938
1939 out:
1940         if (to) {
1941                 hrtimer_cancel(&to->timer);
1942                 destroy_hrtimer_on_stack(&to->timer);
1943         }
1944         return ret;
1945 }
1946
1947
1948 static long futex_wait_restart(struct restart_block *restart)
1949 {
1950         u32 __user *uaddr = restart->futex.uaddr;
1951         ktime_t t, *tp = NULL;
1952
1953         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1954                 t.tv64 = restart->futex.time;
1955                 tp = &t;
1956         }
1957         restart->fn = do_no_restart_syscall;
1958
1959         return (long)futex_wait(uaddr, restart->futex.flags,
1960                                 restart->futex.val, tp, restart->futex.bitset);
1961 }
1962
1963
1964 /*
1965  * Userspace tried a 0 -> TID atomic transition of the futex value
1966  * and failed. The kernel side here does the whole locking operation:
1967  * if there are waiters then it will block, it does PI, etc. (Due to
1968  * races the kernel might see a 0 value of the futex too.)
1969  */
1970 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1971                          ktime_t *time, int trylock)
1972 {
1973         struct hrtimer_sleeper timeout, *to = NULL;
1974         struct futex_hash_bucket *hb;
1975         struct futex_q q = futex_q_init;
1976         int res, ret;
1977
1978         if (refill_pi_state_cache())
1979                 return -ENOMEM;
1980
1981         if (time) {
1982                 to = &timeout;
1983                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1984                                       HRTIMER_MODE_ABS);
1985                 hrtimer_init_sleeper(to, current);
1986                 hrtimer_set_expires(&to->timer, *time);
1987         }
1988
1989 retry:
1990         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
1991         if (unlikely(ret != 0))
1992                 goto out;
1993
1994 retry_private:
1995         hb = queue_lock(&q);
1996
1997         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1998         if (unlikely(ret)) {
1999                 switch (ret) {
2000                 case 1:
2001                         /* We got the lock. */
2002                         ret = 0;
2003                         goto out_unlock_put_key;
2004                 case -EFAULT:
2005                         goto uaddr_faulted;
2006                 case -EAGAIN:
2007                         /*
2008                          * Task is exiting and we just wait for the
2009                          * exit to complete.
2010                          */
2011                         queue_unlock(&q, hb);
2012                         put_futex_key(&q.key);
2013                         cond_resched();
2014                         goto retry;
2015                 default:
2016                         goto out_unlock_put_key;
2017                 }
2018         }
2019
2020         /*
2021          * Only actually queue now that the atomic ops are done:
2022          */
2023         queue_me(&q, hb);
2024
2025         WARN_ON(!q.pi_state);
2026         /*
2027          * Block on the PI mutex:
2028          */
2029         if (!trylock)
2030                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2031         else {
2032                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2033                 /* Fixup the trylock return value: */
2034                 ret = ret ? 0 : -EWOULDBLOCK;
2035         }
2036
2037         spin_lock(q.lock_ptr);
2038         /*
2039          * Fixup the pi_state owner and possibly acquire the lock if we
2040          * haven't already.
2041          */
2042         res = fixup_owner(uaddr, &q, !ret);
2043         /*
2044          * If fixup_owner() returned an error, proprogate that.  If it acquired
2045          * the lock, clear our -ETIMEDOUT or -EINTR.
2046          */
2047         if (res)
2048                 ret = (res < 0) ? res : 0;
2049
2050         /*
2051          * If fixup_owner() faulted and was unable to handle the fault, unlock
2052          * it and return the fault to userspace.
2053          */
2054         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2055                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2056
2057         /* Unqueue and drop the lock */
2058         unqueue_me_pi(&q);
2059
2060         goto out_put_key;
2061
2062 out_unlock_put_key:
2063         queue_unlock(&q, hb);
2064
2065 out_put_key:
2066         put_futex_key(&q.key);
2067 out:
2068         if (to)
2069                 destroy_hrtimer_on_stack(&to->timer);
2070         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2071
2072 uaddr_faulted:
2073         queue_unlock(&q, hb);
2074
2075         ret = fault_in_user_writeable(uaddr);
2076         if (ret)
2077                 goto out_put_key;
2078
2079         if (!(flags & FLAGS_SHARED))
2080                 goto retry_private;
2081
2082         put_futex_key(&q.key);
2083         goto retry;
2084 }
2085
2086 /*
2087  * Userspace attempted a TID -> 0 atomic transition, and failed.
2088  * This is the in-kernel slowpath: we look up the PI state (if any),
2089  * and do the rt-mutex unlock.
2090  */
2091 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2092 {
2093         struct futex_hash_bucket *hb;
2094         struct futex_q *this, *next;
2095         struct plist_head *head;
2096         union futex_key key = FUTEX_KEY_INIT;
2097         u32 uval, vpid = task_pid_vnr(current);
2098         int ret;
2099
2100 retry:
2101         if (get_user(uval, uaddr))
2102                 return -EFAULT;
2103         /*
2104          * We release only a lock we actually own:
2105          */
2106         if ((uval & FUTEX_TID_MASK) != vpid)
2107                 return -EPERM;
2108
2109         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2110         if (unlikely(ret != 0))
2111                 goto out;
2112
2113         hb = hash_futex(&key);
2114         spin_lock(&hb->lock);
2115
2116         /*
2117          * To avoid races, try to do the TID -> 0 atomic transition
2118          * again. If it succeeds then we can return without waking
2119          * anyone else up:
2120          */
2121         if (!(uval & FUTEX_OWNER_DIED) &&
2122             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2123                 goto pi_faulted;
2124         /*
2125          * Rare case: we managed to release the lock atomically,
2126          * no need to wake anyone else up:
2127          */
2128         if (unlikely(uval == vpid))
2129                 goto out_unlock;
2130
2131         /*
2132          * Ok, other tasks may need to be woken up - check waiters
2133          * and do the wakeup if necessary:
2134          */
2135         head = &hb->chain;
2136
2137         plist_for_each_entry_safe(this, next, head, list) {
2138                 if (!match_futex (&this->key, &key))
2139                         continue;
2140                 ret = wake_futex_pi(uaddr, uval, this);
2141                 /*
2142                  * The atomic access to the futex value
2143                  * generated a pagefault, so retry the
2144                  * user-access and the wakeup:
2145                  */
2146                 if (ret == -EFAULT)
2147                         goto pi_faulted;
2148                 goto out_unlock;
2149         }
2150         /*
2151          * No waiters - kernel unlocks the futex:
2152          */
2153         if (!(uval & FUTEX_OWNER_DIED)) {
2154                 ret = unlock_futex_pi(uaddr, uval);
2155                 if (ret == -EFAULT)
2156                         goto pi_faulted;
2157         }
2158
2159 out_unlock:
2160         spin_unlock(&hb->lock);
2161         put_futex_key(&key);
2162
2163 out:
2164         return ret;
2165
2166 pi_faulted:
2167         spin_unlock(&hb->lock);
2168         put_futex_key(&key);
2169
2170         ret = fault_in_user_writeable(uaddr);
2171         if (!ret)
2172                 goto retry;
2173
2174         return ret;
2175 }
2176
2177 /**
2178  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2179  * @hb:         the hash_bucket futex_q was original enqueued on
2180  * @q:          the futex_q woken while waiting to be requeued
2181  * @key2:       the futex_key of the requeue target futex
2182  * @timeout:    the timeout associated with the wait (NULL if none)
2183  *
2184  * Detect if the task was woken on the initial futex as opposed to the requeue
2185  * target futex.  If so, determine if it was a timeout or a signal that caused
2186  * the wakeup and return the appropriate error code to the caller.  Must be
2187  * called with the hb lock held.
2188  *
2189  * Returns
2190  *  0 - no early wakeup detected
2191  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2192  */
2193 static inline
2194 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2195                                    struct futex_q *q, union futex_key *key2,
2196                                    struct hrtimer_sleeper *timeout)
2197 {
2198         int ret = 0;
2199
2200         /*
2201          * With the hb lock held, we avoid races while we process the wakeup.
2202          * We only need to hold hb (and not hb2) to ensure atomicity as the
2203          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2204          * It can't be requeued from uaddr2 to something else since we don't
2205          * support a PI aware source futex for requeue.
2206          */
2207         if (!match_futex(&q->key, key2)) {
2208                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2209                 /*
2210                  * We were woken prior to requeue by a timeout or a signal.
2211                  * Unqueue the futex_q and determine which it was.
2212                  */
2213                 plist_del(&q->list, &hb->chain);
2214
2215                 /* Handle spurious wakeups gracefully */
2216                 ret = -EWOULDBLOCK;
2217                 if (timeout && !timeout->task)
2218                         ret = -ETIMEDOUT;
2219                 else if (signal_pending(current))
2220                         ret = -ERESTARTNOINTR;
2221         }
2222         return ret;
2223 }
2224
2225 /**
2226  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2227  * @uaddr:      the futex we initially wait on (non-pi)
2228  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2229  *              the same type, no requeueing from private to shared, etc.
2230  * @val:        the expected value of uaddr
2231  * @abs_time:   absolute timeout
2232  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2233  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2234  * @uaddr2:     the pi futex we will take prior to returning to user-space
2235  *
2236  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2237  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2238  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2239  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2240  * without one, the pi logic would not know which task to boost/deboost, if
2241  * there was a need to.
2242  *
2243  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2244  * via the following:
2245  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2246  * 2) wakeup on uaddr2 after a requeue
2247  * 3) signal
2248  * 4) timeout
2249  *
2250  * If 3, cleanup and return -ERESTARTNOINTR.
2251  *
2252  * If 2, we may then block on trying to take the rt_mutex and return via:
2253  * 5) successful lock
2254  * 6) signal
2255  * 7) timeout
2256  * 8) other lock acquisition failure
2257  *
2258  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2259  *
2260  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2261  *
2262  * Returns:
2263  *  0 - On success
2264  * <0 - On error
2265  */
2266 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2267                                  u32 val, ktime_t *abs_time, u32 bitset,
2268                                  u32 __user *uaddr2)
2269 {
2270         struct hrtimer_sleeper timeout, *to = NULL;
2271         struct rt_mutex_waiter rt_waiter;
2272         struct rt_mutex *pi_mutex = NULL;
2273         struct futex_hash_bucket *hb;
2274         union futex_key key2 = FUTEX_KEY_INIT;
2275         struct futex_q q = futex_q_init;
2276         int res, ret;
2277
2278         if (uaddr == uaddr2)
2279                 return -EINVAL;
2280
2281         if (!bitset)
2282                 return -EINVAL;
2283
2284         if (abs_time) {
2285                 to = &timeout;
2286                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2287                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2288                                       HRTIMER_MODE_ABS);
2289                 hrtimer_init_sleeper(to, current);
2290                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2291                                              current->timer_slack_ns);
2292         }
2293
2294         /*
2295          * The waiter is allocated on our stack, manipulated by the requeue
2296          * code while we sleep on uaddr.
2297          */
2298         debug_rt_mutex_init_waiter(&rt_waiter);
2299         rt_waiter.task = NULL;
2300
2301         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2302         if (unlikely(ret != 0))
2303                 goto out;
2304
2305         q.bitset = bitset;
2306         q.rt_waiter = &rt_waiter;
2307         q.requeue_pi_key = &key2;
2308
2309         /*
2310          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2311          * count.
2312          */
2313         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2314         if (ret)
2315                 goto out_key2;
2316
2317         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2318         futex_wait_queue_me(hb, &q, to);
2319
2320         spin_lock(&hb->lock);
2321         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2322         spin_unlock(&hb->lock);
2323         if (ret)
2324                 goto out_put_keys;
2325
2326         /*
2327          * In order for us to be here, we know our q.key == key2, and since
2328          * we took the hb->lock above, we also know that futex_requeue() has
2329          * completed and we no longer have to concern ourselves with a wakeup
2330          * race with the atomic proxy lock acquisition by the requeue code. The
2331          * futex_requeue dropped our key1 reference and incremented our key2
2332          * reference count.
2333          */
2334
2335         /* Check if the requeue code acquired the second futex for us. */
2336         if (!q.rt_waiter) {
2337                 /*
2338                  * Got the lock. We might not be the anticipated owner if we
2339                  * did a lock-steal - fix up the PI-state in that case.
2340                  */
2341                 if (q.pi_state && (q.pi_state->owner != current)) {
2342                         spin_lock(q.lock_ptr);
2343                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2344                         spin_unlock(q.lock_ptr);
2345                 }
2346         } else {
2347                 /*
2348                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2349                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2350                  * the pi_state.
2351                  */
2352                 WARN_ON(!q.pi_state);
2353                 pi_mutex = &q.pi_state->pi_mutex;
2354                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2355                 debug_rt_mutex_free_waiter(&rt_waiter);
2356
2357                 spin_lock(q.lock_ptr);
2358                 /*
2359                  * Fixup the pi_state owner and possibly acquire the lock if we
2360                  * haven't already.
2361                  */
2362                 res = fixup_owner(uaddr2, &q, !ret);
2363                 /*
2364                  * If fixup_owner() returned an error, proprogate that.  If it
2365                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2366                  */
2367                 if (res)
2368                         ret = (res < 0) ? res : 0;
2369
2370                 /* Unqueue and drop the lock. */
2371                 unqueue_me_pi(&q);
2372         }
2373
2374         /*
2375          * If fixup_pi_state_owner() faulted and was unable to handle the
2376          * fault, unlock the rt_mutex and return the fault to userspace.
2377          */
2378         if (ret == -EFAULT) {
2379                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2380                         rt_mutex_unlock(pi_mutex);
2381         } else if (ret == -EINTR) {
2382                 /*
2383                  * We've already been requeued, but cannot restart by calling
2384                  * futex_lock_pi() directly. We could restart this syscall, but
2385                  * it would detect that the user space "val" changed and return
2386                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2387                  * -EWOULDBLOCK directly.
2388                  */
2389                 ret = -EWOULDBLOCK;
2390         }
2391
2392 out_put_keys:
2393         put_futex_key(&q.key);
2394 out_key2:
2395         put_futex_key(&key2);
2396
2397 out:
2398         if (to) {
2399                 hrtimer_cancel(&to->timer);
2400                 destroy_hrtimer_on_stack(&to->timer);
2401         }
2402         return ret;
2403 }
2404
2405 /*
2406  * Support for robust futexes: the kernel cleans up held futexes at
2407  * thread exit time.
2408  *
2409  * Implementation: user-space maintains a per-thread list of locks it
2410  * is holding. Upon do_exit(), the kernel carefully walks this list,
2411  * and marks all locks that are owned by this thread with the
2412  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2413  * always manipulated with the lock held, so the list is private and
2414  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2415  * field, to allow the kernel to clean up if the thread dies after
2416  * acquiring the lock, but just before it could have added itself to
2417  * the list. There can only be one such pending lock.
2418  */
2419
2420 /**
2421  * sys_set_robust_list() - Set the robust-futex list head of a task
2422  * @head:       pointer to the list-head
2423  * @len:        length of the list-head, as userspace expects
2424  */
2425 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2426                 size_t, len)
2427 {
2428         if (!futex_cmpxchg_enabled)
2429                 return -ENOSYS;
2430         /*
2431          * The kernel knows only one size for now:
2432          */
2433         if (unlikely(len != sizeof(*head)))
2434                 return -EINVAL;
2435
2436         current->robust_list = head;
2437
2438         return 0;
2439 }
2440
2441 /**
2442  * sys_get_robust_list() - Get the robust-futex list head of a task
2443  * @pid:        pid of the process [zero for current task]
2444  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2445  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2446  */
2447 SYSCALL_DEFINE3(get_robust_list, int, pid,
2448                 struct robust_list_head __user * __user *, head_ptr,
2449                 size_t __user *, len_ptr)
2450 {
2451         struct robust_list_head __user *head;
2452         unsigned long ret;
2453         struct task_struct *p;
2454
2455         if (!futex_cmpxchg_enabled)
2456                 return -ENOSYS;
2457
2458         rcu_read_lock();
2459
2460         ret = -ESRCH;
2461         if (!pid)
2462                 p = current;
2463         else {
2464                 p = find_task_by_vpid(pid);
2465                 if (!p)
2466                         goto err_unlock;
2467         }
2468
2469         ret = -EPERM;
2470         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2471                 goto err_unlock;
2472
2473         head = p->robust_list;
2474         rcu_read_unlock();
2475
2476         if (put_user(sizeof(*head), len_ptr))
2477                 return -EFAULT;
2478         return put_user(head, head_ptr);
2479
2480 err_unlock:
2481         rcu_read_unlock();
2482
2483         return ret;
2484 }
2485
2486 /*
2487  * Process a futex-list entry, check whether it's owned by the
2488  * dying task, and do notification if so:
2489  */
2490 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2491 {
2492         u32 uval, uninitialized_var(nval), mval;
2493
2494 retry:
2495         if (get_user(uval, uaddr))
2496                 return -1;
2497
2498         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2499                 /*
2500                  * Ok, this dying thread is truly holding a futex
2501                  * of interest. Set the OWNER_DIED bit atomically
2502                  * via cmpxchg, and if the value had FUTEX_WAITERS
2503                  * set, wake up a waiter (if any). (We have to do a
2504                  * futex_wake() even if OWNER_DIED is already set -
2505                  * to handle the rare but possible case of recursive
2506                  * thread-death.) The rest of the cleanup is done in
2507                  * userspace.
2508                  */
2509                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2510                 /*
2511                  * We are not holding a lock here, but we want to have
2512                  * the pagefault_disable/enable() protection because
2513                  * we want to handle the fault gracefully. If the
2514                  * access fails we try to fault in the futex with R/W
2515                  * verification via get_user_pages. get_user() above
2516                  * does not guarantee R/W access. If that fails we
2517                  * give up and leave the futex locked.
2518                  */
2519                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2520                         if (fault_in_user_writeable(uaddr))
2521                                 return -1;
2522                         goto retry;
2523                 }
2524                 if (nval != uval)
2525                         goto retry;
2526
2527                 /*
2528                  * Wake robust non-PI futexes here. The wakeup of
2529                  * PI futexes happens in exit_pi_state():
2530                  */
2531                 if (!pi && (uval & FUTEX_WAITERS))
2532                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2533         }
2534         return 0;
2535 }
2536
2537 /*
2538  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2539  */
2540 static inline int fetch_robust_entry(struct robust_list __user **entry,
2541                                      struct robust_list __user * __user *head,
2542                                      unsigned int *pi)
2543 {
2544         unsigned long uentry;
2545
2546         if (get_user(uentry, (unsigned long __user *)head))
2547                 return -EFAULT;
2548
2549         *entry = (void __user *)(uentry & ~1UL);
2550         *pi = uentry & 1;
2551
2552         return 0;
2553 }
2554
2555 /*
2556  * Walk curr->robust_list (very carefully, it's a userspace list!)
2557  * and mark any locks found there dead, and notify any waiters.
2558  *
2559  * We silently return on any sign of list-walking problem.
2560  */
2561 void exit_robust_list(struct task_struct *curr)
2562 {
2563         struct robust_list_head __user *head = curr->robust_list;
2564         struct robust_list __user *entry, *next_entry, *pending;
2565         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2566         unsigned int uninitialized_var(next_pi);
2567         unsigned long futex_offset;
2568         int rc;
2569
2570         if (!futex_cmpxchg_enabled)
2571                 return;
2572
2573         /*
2574          * Fetch the list head (which was registered earlier, via
2575          * sys_set_robust_list()):
2576          */
2577         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2578                 return;
2579         /*
2580          * Fetch the relative futex offset:
2581          */
2582         if (get_user(futex_offset, &head->futex_offset))
2583                 return;
2584         /*
2585          * Fetch any possibly pending lock-add first, and handle it
2586          * if it exists:
2587          */
2588         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2589                 return;
2590
2591         next_entry = NULL;      /* avoid warning with gcc */
2592         while (entry != &head->list) {
2593                 /*
2594                  * Fetch the next entry in the list before calling
2595                  * handle_futex_death:
2596                  */
2597                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2598                 /*
2599                  * A pending lock might already be on the list, so
2600                  * don't process it twice:
2601                  */
2602                 if (entry != pending)
2603                         if (handle_futex_death((void __user *)entry + futex_offset,
2604                                                 curr, pi))
2605                                 return;
2606                 if (rc)
2607                         return;
2608                 entry = next_entry;
2609                 pi = next_pi;
2610                 /*
2611                  * Avoid excessively long or circular lists:
2612                  */
2613                 if (!--limit)
2614                         break;
2615
2616                 cond_resched();
2617         }
2618
2619         if (pending)
2620                 handle_futex_death((void __user *)pending + futex_offset,
2621                                    curr, pip);
2622 }
2623
2624 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2625                 u32 __user *uaddr2, u32 val2, u32 val3)
2626 {
2627         int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2628         unsigned int flags = 0;
2629
2630         if (!(op & FUTEX_PRIVATE_FLAG))
2631                 flags |= FLAGS_SHARED;
2632
2633         if (op & FUTEX_CLOCK_REALTIME) {
2634                 flags |= FLAGS_CLOCKRT;
2635                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2636                         return -ENOSYS;
2637         }
2638
2639         switch (cmd) {
2640         case FUTEX_LOCK_PI:
2641         case FUTEX_UNLOCK_PI:
2642         case FUTEX_TRYLOCK_PI:
2643         case FUTEX_WAIT_REQUEUE_PI:
2644         case FUTEX_CMP_REQUEUE_PI:
2645                 if (!futex_cmpxchg_enabled)
2646                         return -ENOSYS;
2647         }
2648
2649         switch (cmd) {
2650         case FUTEX_WAIT:
2651                 val3 = FUTEX_BITSET_MATCH_ANY;
2652         case FUTEX_WAIT_BITSET:
2653                 ret = futex_wait(uaddr, flags, val, timeout, val3);
2654                 break;
2655         case FUTEX_WAKE:
2656                 val3 = FUTEX_BITSET_MATCH_ANY;
2657         case FUTEX_WAKE_BITSET:
2658                 ret = futex_wake(uaddr, flags, val, val3);
2659                 break;
2660         case FUTEX_REQUEUE:
2661                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2662                 break;
2663         case FUTEX_CMP_REQUEUE:
2664                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2665                 break;
2666         case FUTEX_WAKE_OP:
2667                 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2668                 break;
2669         case FUTEX_LOCK_PI:
2670                 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2671                 break;
2672         case FUTEX_UNLOCK_PI:
2673                 ret = futex_unlock_pi(uaddr, flags);
2674                 break;
2675         case FUTEX_TRYLOCK_PI:
2676                 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2677                 break;
2678         case FUTEX_WAIT_REQUEUE_PI:
2679                 val3 = FUTEX_BITSET_MATCH_ANY;
2680                 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2681                                             uaddr2);
2682                 break;
2683         case FUTEX_CMP_REQUEUE_PI:
2684                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2685                 break;
2686         default:
2687                 ret = -ENOSYS;
2688         }
2689         return ret;
2690 }
2691
2692
2693 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2694                 struct timespec __user *, utime, u32 __user *, uaddr2,
2695                 u32, val3)
2696 {
2697         struct timespec ts;
2698         ktime_t t, *tp = NULL;
2699         u32 val2 = 0;
2700         int cmd = op & FUTEX_CMD_MASK;
2701
2702         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2703                       cmd == FUTEX_WAIT_BITSET ||
2704                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2705                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2706                         return -EFAULT;
2707                 if (!timespec_valid(&ts))
2708                         return -EINVAL;
2709
2710                 t = timespec_to_ktime(ts);
2711                 if (cmd == FUTEX_WAIT)
2712                         t = ktime_add_safe(ktime_get(), t);
2713                 tp = &t;
2714         }
2715         /*
2716          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2717          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2718          */
2719         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2720             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2721                 val2 = (u32) (unsigned long) utime;
2722
2723         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2724 }
2725
2726 static int __init futex_init(void)
2727 {
2728         u32 curval;
2729         int i;
2730
2731         /*
2732          * This will fail and we want it. Some arch implementations do
2733          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2734          * functionality. We want to know that before we call in any
2735          * of the complex code paths. Also we want to prevent
2736          * registration of robust lists in that case. NULL is
2737          * guaranteed to fault and we get -EFAULT on functional
2738          * implementation, the non-functional ones will return
2739          * -ENOSYS.
2740          */
2741         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2742                 futex_cmpxchg_enabled = 1;
2743
2744         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2745                 plist_head_init(&futex_queues[i].chain);
2746                 spin_lock_init(&futex_queues[i].lock);
2747         }
2748
2749         return 0;
2750 }
2751 __initcall(futex_init);