pandora: defconfig: update
[pandora-kernel.git] / include / net / red.h
1 #ifndef __NET_SCHED_RED_H
2 #define __NET_SCHED_RED_H
3
4 #include <linux/types.h>
5 #include <net/pkt_sched.h>
6 #include <net/inet_ecn.h>
7 #include <net/dsfield.h>
8
9 /*      Random Early Detection (RED) algorithm.
10         =======================================
11
12         Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
13         for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
14
15         This file codes a "divisionless" version of RED algorithm
16         as written down in Fig.17 of the paper.
17
18         Short description.
19         ------------------
20
21         When a new packet arrives we calculate the average queue length:
22
23         avg = (1-W)*avg + W*current_queue_len,
24
25         W is the filter time constant (chosen as 2^(-Wlog)), it controls
26         the inertia of the algorithm. To allow larger bursts, W should be
27         decreased.
28
29         if (avg > th_max) -> packet marked (dropped).
30         if (avg < th_min) -> packet passes.
31         if (th_min < avg < th_max) we calculate probability:
32
33         Pb = max_P * (avg - th_min)/(th_max-th_min)
34
35         and mark (drop) packet with this probability.
36         Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
37         max_P should be small (not 1), usually 0.01..0.02 is good value.
38
39         max_P is chosen as a number, so that max_P/(th_max-th_min)
40         is a negative power of two in order arithmetics to contain
41         only shifts.
42
43
44         Parameters, settable by user:
45         -----------------------------
46
47         qth_min         - bytes (should be < qth_max/2)
48         qth_max         - bytes (should be at least 2*qth_min and less limit)
49         Wlog            - bits (<32) log(1/W).
50         Plog            - bits (<32)
51
52         Plog is related to max_P by formula:
53
54         max_P = (qth_max-qth_min)/2^Plog;
55
56         F.e. if qth_max=128K and qth_min=32K, then Plog=22
57         corresponds to max_P=0.02
58
59         Scell_log
60         Stab
61
62         Lookup table for log((1-W)^(t/t_ave).
63
64
65         NOTES:
66
67         Upper bound on W.
68         -----------------
69
70         If you want to allow bursts of L packets of size S,
71         you should choose W:
72
73         L + 1 - th_min/S < (1-(1-W)^L)/W
74
75         th_min/S = 32         th_min/S = 4
76
77         log(W)  L
78         -1      33
79         -2      35
80         -3      39
81         -4      46
82         -5      57
83         -6      75
84         -7      101
85         -8      135
86         -9      190
87         etc.
88  */
89
90 #define RED_STAB_SIZE   256
91 #define RED_STAB_MASK   (RED_STAB_SIZE - 1)
92
93 struct red_stats {
94         u32             prob_drop;      /* Early probability drops */
95         u32             prob_mark;      /* Early probability marks */
96         u32             forced_drop;    /* Forced drops, qavg > max_thresh */
97         u32             forced_mark;    /* Forced marks, qavg > max_thresh */
98         u32             pdrop;          /* Drops due to queue limits */
99         u32             other;          /* Drops due to drop() calls */
100 };
101
102 struct red_parms {
103         /* Parameters */
104         u32             qth_min;        /* Min avg length threshold: A scaled */
105         u32             qth_max;        /* Max avg length threshold: A scaled */
106         u32             Scell_max;
107         u32             Rmask;          /* Cached random mask, see red_rmask */
108         u8              Scell_log;
109         u8              Wlog;           /* log(W)               */
110         u8              Plog;           /* random number bits   */
111         u8              Stab[RED_STAB_SIZE];
112
113         /* Variables */
114         int             qcount;         /* Number of packets since last random
115                                            number generation */
116         u32             qR;             /* Cached random number */
117
118         unsigned long   qavg;           /* Average queue length: A scaled */
119         ktime_t         qidlestart;     /* Start of current idle period */
120 };
121
122 static inline u32 red_rmask(u8 Plog)
123 {
124         return Plog < 32 ? ((1 << Plog) - 1) : ~0UL;
125 }
126
127 static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog)
128 {
129         if (fls(qth_min) + Wlog > 32)
130                 return false;
131         if (fls(qth_max) + Wlog > 32)
132                 return false;
133         if (qth_max < qth_min)
134                 return false;
135         return true;
136 }
137
138 static inline void red_set_parms(struct red_parms *p,
139                                  u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
140                                  u8 Scell_log, u8 *stab)
141 {
142         /* Reset average queue length, the value is strictly bound
143          * to the parameters below, reseting hurts a bit but leaving
144          * it might result in an unreasonable qavg for a while. --TGR
145          */
146         p->qavg         = 0;
147
148         p->qcount       = -1;
149         p->qth_min      = qth_min << Wlog;
150         p->qth_max      = qth_max << Wlog;
151         p->Wlog         = Wlog;
152         p->Plog         = Plog;
153         p->Rmask        = red_rmask(Plog);
154         p->Scell_log    = Scell_log;
155         p->Scell_max    = (255 << Scell_log);
156
157         memcpy(p->Stab, stab, sizeof(p->Stab));
158 }
159
160 static inline int red_is_idling(struct red_parms *p)
161 {
162         return p->qidlestart.tv64 != 0;
163 }
164
165 static inline void red_start_of_idle_period(struct red_parms *p)
166 {
167         p->qidlestart = ktime_get();
168 }
169
170 static inline void red_end_of_idle_period(struct red_parms *p)
171 {
172         p->qidlestart.tv64 = 0;
173 }
174
175 static inline void red_restart(struct red_parms *p)
176 {
177         red_end_of_idle_period(p);
178         p->qavg = 0;
179         p->qcount = -1;
180 }
181
182 static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p)
183 {
184         s64 delta = ktime_us_delta(ktime_get(), p->qidlestart);
185         long us_idle = min_t(s64, delta, p->Scell_max);
186         int  shift;
187
188         /*
189          * The problem: ideally, average length queue recalcultion should
190          * be done over constant clock intervals. This is too expensive, so
191          * that the calculation is driven by outgoing packets.
192          * When the queue is idle we have to model this clock by hand.
193          *
194          * SF+VJ proposed to "generate":
195          *
196          *      m = idletime / (average_pkt_size / bandwidth)
197          *
198          * dummy packets as a burst after idle time, i.e.
199          *
200          *      p->qavg *= (1-W)^m
201          *
202          * This is an apparently overcomplicated solution (f.e. we have to
203          * precompute a table to make this calculation in reasonable time)
204          * I believe that a simpler model may be used here,
205          * but it is field for experiments.
206          */
207
208         shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
209
210         if (shift)
211                 return p->qavg >> shift;
212         else {
213                 /* Approximate initial part of exponent with linear function:
214                  *
215                  *      (1-W)^m ~= 1-mW + ...
216                  *
217                  * Seems, it is the best solution to
218                  * problem of too coarse exponent tabulation.
219                  */
220                 us_idle = (p->qavg * (u64)us_idle) >> p->Scell_log;
221
222                 if (us_idle < (p->qavg >> 1))
223                         return p->qavg - us_idle;
224                 else
225                         return p->qavg >> 1;
226         }
227 }
228
229 static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p,
230                                                        unsigned int backlog)
231 {
232         /*
233          * NOTE: p->qavg is fixed point number with point at Wlog.
234          * The formula below is equvalent to floating point
235          * version:
236          *
237          *      qavg = qavg*(1-W) + backlog*W;
238          *
239          * --ANK (980924)
240          */
241         return p->qavg + (backlog - (p->qavg >> p->Wlog));
242 }
243
244 static inline unsigned long red_calc_qavg(struct red_parms *p,
245                                           unsigned int backlog)
246 {
247         if (!red_is_idling(p))
248                 return red_calc_qavg_no_idle_time(p, backlog);
249         else
250                 return red_calc_qavg_from_idle_time(p);
251 }
252
253 static inline u32 red_random(struct red_parms *p)
254 {
255         return net_random() & p->Rmask;
256 }
257
258 static inline int red_mark_probability(struct red_parms *p, unsigned long qavg)
259 {
260         /* The formula used below causes questions.
261
262            OK. qR is random number in the interval 0..Rmask
263            i.e. 0..(2^Plog). If we used floating point
264            arithmetics, it would be: (2^Plog)*rnd_num,
265            where rnd_num is less 1.
266
267            Taking into account, that qavg have fixed
268            point at Wlog, and Plog is related to max_P by
269            max_P = (qth_max-qth_min)/2^Plog; two lines
270            below have the following floating point equivalent:
271
272            max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
273
274            Any questions? --ANK (980924)
275          */
276         return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR);
277 }
278
279 enum {
280         RED_BELOW_MIN_THRESH,
281         RED_BETWEEN_TRESH,
282         RED_ABOVE_MAX_TRESH,
283 };
284
285 static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg)
286 {
287         if (qavg < p->qth_min)
288                 return RED_BELOW_MIN_THRESH;
289         else if (qavg >= p->qth_max)
290                 return RED_ABOVE_MAX_TRESH;
291         else
292                 return RED_BETWEEN_TRESH;
293 }
294
295 enum {
296         RED_DONT_MARK,
297         RED_PROB_MARK,
298         RED_HARD_MARK,
299 };
300
301 static inline int red_action(struct red_parms *p, unsigned long qavg)
302 {
303         switch (red_cmp_thresh(p, qavg)) {
304                 case RED_BELOW_MIN_THRESH:
305                         p->qcount = -1;
306                         return RED_DONT_MARK;
307
308                 case RED_BETWEEN_TRESH:
309                         if (++p->qcount) {
310                                 if (red_mark_probability(p, qavg)) {
311                                         p->qcount = 0;
312                                         p->qR = red_random(p);
313                                         return RED_PROB_MARK;
314                                 }
315                         } else
316                                 p->qR = red_random(p);
317
318                         return RED_DONT_MARK;
319
320                 case RED_ABOVE_MAX_TRESH:
321                         p->qcount = -1;
322                         return RED_HARD_MARK;
323         }
324
325         BUG();
326         return RED_DONT_MARK;
327 }
328
329 #endif