Merge branch 'rmobile-fixes-for-linus' of git://github.com/pmundt/linux-sh
[pandora-kernel.git] / include / net / red.h
1 #ifndef __NET_SCHED_RED_H
2 #define __NET_SCHED_RED_H
3
4 #include <linux/types.h>
5 #include <net/pkt_sched.h>
6 #include <net/inet_ecn.h>
7 #include <net/dsfield.h>
8
9 /*      Random Early Detection (RED) algorithm.
10         =======================================
11
12         Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
13         for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
14
15         This file codes a "divisionless" version of RED algorithm
16         as written down in Fig.17 of the paper.
17
18         Short description.
19         ------------------
20
21         When a new packet arrives we calculate the average queue length:
22
23         avg = (1-W)*avg + W*current_queue_len,
24
25         W is the filter time constant (chosen as 2^(-Wlog)), it controls
26         the inertia of the algorithm. To allow larger bursts, W should be
27         decreased.
28
29         if (avg > th_max) -> packet marked (dropped).
30         if (avg < th_min) -> packet passes.
31         if (th_min < avg < th_max) we calculate probability:
32
33         Pb = max_P * (avg - th_min)/(th_max-th_min)
34
35         and mark (drop) packet with this probability.
36         Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
37         max_P should be small (not 1), usually 0.01..0.02 is good value.
38
39         max_P is chosen as a number, so that max_P/(th_max-th_min)
40         is a negative power of two in order arithmetics to contain
41         only shifts.
42
43
44         Parameters, settable by user:
45         -----------------------------
46
47         qth_min         - bytes (should be < qth_max/2)
48         qth_max         - bytes (should be at least 2*qth_min and less limit)
49         Wlog            - bits (<32) log(1/W).
50         Plog            - bits (<32)
51
52         Plog is related to max_P by formula:
53
54         max_P = (qth_max-qth_min)/2^Plog;
55
56         F.e. if qth_max=128K and qth_min=32K, then Plog=22
57         corresponds to max_P=0.02
58
59         Scell_log
60         Stab
61
62         Lookup table for log((1-W)^(t/t_ave).
63
64
65         NOTES:
66
67         Upper bound on W.
68         -----------------
69
70         If you want to allow bursts of L packets of size S,
71         you should choose W:
72
73         L + 1 - th_min/S < (1-(1-W)^L)/W
74
75         th_min/S = 32         th_min/S = 4
76
77         log(W)  L
78         -1      33
79         -2      35
80         -3      39
81         -4      46
82         -5      57
83         -6      75
84         -7      101
85         -8      135
86         -9      190
87         etc.
88  */
89
90 #define RED_STAB_SIZE   256
91 #define RED_STAB_MASK   (RED_STAB_SIZE - 1)
92
93 struct red_stats {
94         u32             prob_drop;      /* Early probability drops */
95         u32             prob_mark;      /* Early probability marks */
96         u32             forced_drop;    /* Forced drops, qavg > max_thresh */
97         u32             forced_mark;    /* Forced marks, qavg > max_thresh */
98         u32             pdrop;          /* Drops due to queue limits */
99         u32             other;          /* Drops due to drop() calls */
100 };
101
102 struct red_parms {
103         /* Parameters */
104         u32             qth_min;        /* Min avg length threshold: A scaled */
105         u32             qth_max;        /* Max avg length threshold: A scaled */
106         u32             Scell_max;
107         u32             Rmask;          /* Cached random mask, see red_rmask */
108         u8              Scell_log;
109         u8              Wlog;           /* log(W)               */
110         u8              Plog;           /* random number bits   */
111         u8              Stab[RED_STAB_SIZE];
112
113         /* Variables */
114         int             qcount;         /* Number of packets since last random
115                                            number generation */
116         u32             qR;             /* Cached random number */
117
118         unsigned long   qavg;           /* Average queue length: A scaled */
119         ktime_t         qidlestart;     /* Start of current idle period */
120 };
121
122 static inline u32 red_rmask(u8 Plog)
123 {
124         return Plog < 32 ? ((1 << Plog) - 1) : ~0UL;
125 }
126
127 static inline void red_set_parms(struct red_parms *p,
128                                  u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
129                                  u8 Scell_log, u8 *stab)
130 {
131         /* Reset average queue length, the value is strictly bound
132          * to the parameters below, reseting hurts a bit but leaving
133          * it might result in an unreasonable qavg for a while. --TGR
134          */
135         p->qavg         = 0;
136
137         p->qcount       = -1;
138         p->qth_min      = qth_min << Wlog;
139         p->qth_max      = qth_max << Wlog;
140         p->Wlog         = Wlog;
141         p->Plog         = Plog;
142         p->Rmask        = red_rmask(Plog);
143         p->Scell_log    = Scell_log;
144         p->Scell_max    = (255 << Scell_log);
145
146         memcpy(p->Stab, stab, sizeof(p->Stab));
147 }
148
149 static inline int red_is_idling(struct red_parms *p)
150 {
151         return p->qidlestart.tv64 != 0;
152 }
153
154 static inline void red_start_of_idle_period(struct red_parms *p)
155 {
156         p->qidlestart = ktime_get();
157 }
158
159 static inline void red_end_of_idle_period(struct red_parms *p)
160 {
161         p->qidlestart.tv64 = 0;
162 }
163
164 static inline void red_restart(struct red_parms *p)
165 {
166         red_end_of_idle_period(p);
167         p->qavg = 0;
168         p->qcount = -1;
169 }
170
171 static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p)
172 {
173         s64 delta = ktime_us_delta(ktime_get(), p->qidlestart);
174         long us_idle = min_t(s64, delta, p->Scell_max);
175         int  shift;
176
177         /*
178          * The problem: ideally, average length queue recalcultion should
179          * be done over constant clock intervals. This is too expensive, so
180          * that the calculation is driven by outgoing packets.
181          * When the queue is idle we have to model this clock by hand.
182          *
183          * SF+VJ proposed to "generate":
184          *
185          *      m = idletime / (average_pkt_size / bandwidth)
186          *
187          * dummy packets as a burst after idle time, i.e.
188          *
189          *      p->qavg *= (1-W)^m
190          *
191          * This is an apparently overcomplicated solution (f.e. we have to
192          * precompute a table to make this calculation in reasonable time)
193          * I believe that a simpler model may be used here,
194          * but it is field for experiments.
195          */
196
197         shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
198
199         if (shift)
200                 return p->qavg >> shift;
201         else {
202                 /* Approximate initial part of exponent with linear function:
203                  *
204                  *      (1-W)^m ~= 1-mW + ...
205                  *
206                  * Seems, it is the best solution to
207                  * problem of too coarse exponent tabulation.
208                  */
209                 us_idle = (p->qavg * (u64)us_idle) >> p->Scell_log;
210
211                 if (us_idle < (p->qavg >> 1))
212                         return p->qavg - us_idle;
213                 else
214                         return p->qavg >> 1;
215         }
216 }
217
218 static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p,
219                                                        unsigned int backlog)
220 {
221         /*
222          * NOTE: p->qavg is fixed point number with point at Wlog.
223          * The formula below is equvalent to floating point
224          * version:
225          *
226          *      qavg = qavg*(1-W) + backlog*W;
227          *
228          * --ANK (980924)
229          */
230         return p->qavg + (backlog - (p->qavg >> p->Wlog));
231 }
232
233 static inline unsigned long red_calc_qavg(struct red_parms *p,
234                                           unsigned int backlog)
235 {
236         if (!red_is_idling(p))
237                 return red_calc_qavg_no_idle_time(p, backlog);
238         else
239                 return red_calc_qavg_from_idle_time(p);
240 }
241
242 static inline u32 red_random(struct red_parms *p)
243 {
244         return net_random() & p->Rmask;
245 }
246
247 static inline int red_mark_probability(struct red_parms *p, unsigned long qavg)
248 {
249         /* The formula used below causes questions.
250
251            OK. qR is random number in the interval 0..Rmask
252            i.e. 0..(2^Plog). If we used floating point
253            arithmetics, it would be: (2^Plog)*rnd_num,
254            where rnd_num is less 1.
255
256            Taking into account, that qavg have fixed
257            point at Wlog, and Plog is related to max_P by
258            max_P = (qth_max-qth_min)/2^Plog; two lines
259            below have the following floating point equivalent:
260
261            max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
262
263            Any questions? --ANK (980924)
264          */
265         return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR);
266 }
267
268 enum {
269         RED_BELOW_MIN_THRESH,
270         RED_BETWEEN_TRESH,
271         RED_ABOVE_MAX_TRESH,
272 };
273
274 static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg)
275 {
276         if (qavg < p->qth_min)
277                 return RED_BELOW_MIN_THRESH;
278         else if (qavg >= p->qth_max)
279                 return RED_ABOVE_MAX_TRESH;
280         else
281                 return RED_BETWEEN_TRESH;
282 }
283
284 enum {
285         RED_DONT_MARK,
286         RED_PROB_MARK,
287         RED_HARD_MARK,
288 };
289
290 static inline int red_action(struct red_parms *p, unsigned long qavg)
291 {
292         switch (red_cmp_thresh(p, qavg)) {
293                 case RED_BELOW_MIN_THRESH:
294                         p->qcount = -1;
295                         return RED_DONT_MARK;
296
297                 case RED_BETWEEN_TRESH:
298                         if (++p->qcount) {
299                                 if (red_mark_probability(p, qavg)) {
300                                         p->qcount = 0;
301                                         p->qR = red_random(p);
302                                         return RED_PROB_MARK;
303                                 }
304                         } else
305                                 p->qR = red_random(p);
306
307                         return RED_DONT_MARK;
308
309                 case RED_ABOVE_MAX_TRESH:
310                         p->qcount = -1;
311                         return RED_HARD_MARK;
312         }
313
314         BUG();
315         return RED_DONT_MARK;
316 }
317
318 #endif