cpuset: PF_SPREAD_PAGE and PF_SPREAD_SLAB should be atomic flags
[pandora-kernel.git] / include / linux / uwb.h
1 /*
2  * Ultra Wide Band
3  * UWB API
4  *
5  * Copyright (C) 2005-2006 Intel Corporation
6  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20  * 02110-1301, USA.
21  *
22  *
23  * FIXME: doc: overview of the API, different parts and pointers
24  */
25
26 #ifndef __LINUX__UWB_H__
27 #define __LINUX__UWB_H__
28
29 #include <linux/limits.h>
30 #include <linux/device.h>
31 #include <linux/mutex.h>
32 #include <linux/timer.h>
33 #include <linux/wait.h>
34 #include <linux/workqueue.h>
35 #include <linux/uwb/spec.h>
36 #include <asm/page.h>
37
38 struct uwb_dev;
39 struct uwb_beca_e;
40 struct uwb_rc;
41 struct uwb_rsv;
42 struct uwb_dbg;
43
44 /**
45  * struct uwb_dev - a UWB Device
46  * @rc: UWB Radio Controller that discovered the device (kind of its
47  *     parent).
48  * @bce: a beacon cache entry for this device; or NULL if the device
49  *     is a local radio controller.
50  * @mac_addr: the EUI-48 address of this device.
51  * @dev_addr: the current DevAddr used by this device.
52  * @beacon_slot: the slot number the beacon is using.
53  * @streams: bitmap of streams allocated to reservations targeted at
54  *     this device.  For an RC, this is the streams allocated for
55  *     reservations targeted at DevAddrs.
56  *
57  * A UWB device may either by a neighbor or part of a local radio
58  * controller.
59  */
60 struct uwb_dev {
61         struct mutex mutex;
62         struct list_head list_node;
63         struct device dev;
64         struct uwb_rc *rc;              /* radio controller */
65         struct uwb_beca_e *bce;         /* Beacon Cache Entry */
66
67         struct uwb_mac_addr mac_addr;
68         struct uwb_dev_addr dev_addr;
69         int beacon_slot;
70         DECLARE_BITMAP(streams, UWB_NUM_STREAMS);
71         DECLARE_BITMAP(last_availability_bm, UWB_NUM_MAS);
72 };
73 #define to_uwb_dev(d) container_of(d, struct uwb_dev, dev)
74
75 /**
76  * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs
77  *
78  * RC[CE]Bs have a 'context ID' field that matches the command with
79  * the event received to confirm it.
80  *
81  * Maximum number of context IDs
82  */
83 enum { UWB_RC_CTX_MAX = 256 };
84
85
86 /** Notification chain head for UWB generated events to listeners */
87 struct uwb_notifs_chain {
88         struct list_head list;
89         struct mutex mutex;
90 };
91
92 /* Beacon cache list */
93 struct uwb_beca {
94         struct list_head list;
95         size_t entries;
96         struct mutex mutex;
97 };
98
99 /* Event handling thread. */
100 struct uwbd {
101         int pid;
102         struct task_struct *task;
103         wait_queue_head_t wq;
104         struct list_head event_list;
105         spinlock_t event_list_lock;
106 };
107
108 /**
109  * struct uwb_mas_bm - a bitmap of all MAS in a superframe
110  * @bm: a bitmap of length #UWB_NUM_MAS
111  */
112 struct uwb_mas_bm {
113         DECLARE_BITMAP(bm, UWB_NUM_MAS);
114         DECLARE_BITMAP(unsafe_bm, UWB_NUM_MAS);
115         int safe;
116         int unsafe;
117 };
118
119 /**
120  * uwb_rsv_state - UWB Reservation state.
121  *
122  * NONE - reservation is not active (no DRP IE being transmitted).
123  *
124  * Owner reservation states:
125  *
126  * INITIATED - owner has sent an initial DRP request.
127  * PENDING - target responded with pending Reason Code.
128  * MODIFIED - reservation manager is modifying an established
129  * reservation with a different MAS allocation.
130  * ESTABLISHED - the reservation has been successfully negotiated.
131  *
132  * Target reservation states:
133  *
134  * DENIED - request is denied.
135  * ACCEPTED - request is accepted.
136  * PENDING - PAL has yet to make a decision to whether to accept or
137  * deny.
138  *
139  * FIXME: further target states TBD.
140  */
141 enum uwb_rsv_state {
142         UWB_RSV_STATE_NONE = 0,
143         UWB_RSV_STATE_O_INITIATED,
144         UWB_RSV_STATE_O_PENDING,
145         UWB_RSV_STATE_O_MODIFIED,
146         UWB_RSV_STATE_O_ESTABLISHED,
147         UWB_RSV_STATE_O_TO_BE_MOVED,
148         UWB_RSV_STATE_O_MOVE_EXPANDING,
149         UWB_RSV_STATE_O_MOVE_COMBINING,
150         UWB_RSV_STATE_O_MOVE_REDUCING,
151         UWB_RSV_STATE_T_ACCEPTED,
152         UWB_RSV_STATE_T_DENIED,
153         UWB_RSV_STATE_T_CONFLICT,
154         UWB_RSV_STATE_T_PENDING,
155         UWB_RSV_STATE_T_EXPANDING_ACCEPTED,
156         UWB_RSV_STATE_T_EXPANDING_CONFLICT,
157         UWB_RSV_STATE_T_EXPANDING_PENDING,
158         UWB_RSV_STATE_T_EXPANDING_DENIED,
159         UWB_RSV_STATE_T_RESIZED,
160
161         UWB_RSV_STATE_LAST,
162 };
163
164 enum uwb_rsv_target_type {
165         UWB_RSV_TARGET_DEV,
166         UWB_RSV_TARGET_DEVADDR,
167 };
168
169 /**
170  * struct uwb_rsv_target - the target of a reservation.
171  *
172  * Reservations unicast and targeted at a single device
173  * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a
174  * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR).
175  */
176 struct uwb_rsv_target {
177         enum uwb_rsv_target_type type;
178         union {
179                 struct uwb_dev *dev;
180                 struct uwb_dev_addr devaddr;
181         };
182 };
183
184 struct uwb_rsv_move {
185         struct uwb_mas_bm final_mas;
186         struct uwb_ie_drp *companion_drp_ie;
187         struct uwb_mas_bm companion_mas;
188 };
189
190 /*
191  * Number of streams reserved for reservations targeted at DevAddrs.
192  */
193 #define UWB_NUM_GLOBAL_STREAMS 1
194
195 typedef void (*uwb_rsv_cb_f)(struct uwb_rsv *rsv);
196
197 /**
198  * struct uwb_rsv - a DRP reservation
199  *
200  * Data structure management:
201  *
202  * @rc:             the radio controller this reservation is for
203  *                  (as target or owner)
204  * @rc_node:        a list node for the RC
205  * @pal_node:       a list node for the PAL
206  *
207  * Owner and target parameters:
208  *
209  * @owner:          the UWB device owning this reservation
210  * @target:         the target UWB device
211  * @type:           reservation type
212  *
213  * Owner parameters:
214  *
215  * @max_mas:        maxiumum number of MAS
216  * @min_mas:        minimum number of MAS
217  * @sparsity:       owner selected sparsity
218  * @is_multicast:   true iff multicast
219  *
220  * @callback:       callback function when the reservation completes
221  * @pal_priv:       private data for the PAL making the reservation
222  *
223  * Reservation status:
224  *
225  * @status:         negotiation status
226  * @stream:         stream index allocated for this reservation
227  * @tiebreaker:     conflict tiebreaker for this reservation
228  * @mas:            reserved MAS
229  * @drp_ie:         the DRP IE
230  * @ie_valid:       true iff the DRP IE matches the reservation parameters
231  *
232  * DRP reservations are uniquely identified by the owner, target and
233  * stream index.  However, when using a DevAddr as a target (e.g., for
234  * a WUSB cluster reservation) the responses may be received from
235  * devices with different DevAddrs.  In this case, reservations are
236  * uniquely identified by just the stream index.  A number of stream
237  * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this.
238  */
239 struct uwb_rsv {
240         struct uwb_rc *rc;
241         struct list_head rc_node;
242         struct list_head pal_node;
243         struct kref kref;
244
245         struct uwb_dev *owner;
246         struct uwb_rsv_target target;
247         enum uwb_drp_type type;
248         int max_mas;
249         int min_mas;
250         int max_interval;
251         bool is_multicast;
252
253         uwb_rsv_cb_f callback;
254         void *pal_priv;
255
256         enum uwb_rsv_state state;
257         bool needs_release_companion_mas;
258         u8 stream;
259         u8 tiebreaker;
260         struct uwb_mas_bm mas;
261         struct uwb_ie_drp *drp_ie;
262         struct uwb_rsv_move mv;
263         bool ie_valid;
264         struct timer_list timer;
265         struct work_struct handle_timeout_work;
266 };
267
268 static const
269 struct uwb_mas_bm uwb_mas_bm_zero = { .bm = { 0 } };
270
271 static inline void uwb_mas_bm_copy_le(void *dst, const struct uwb_mas_bm *mas)
272 {
273         bitmap_copy_le(dst, mas->bm, UWB_NUM_MAS);
274 }
275
276 /**
277  * struct uwb_drp_avail - a radio controller's view of MAS usage
278  * @global:   MAS unused by neighbors (excluding reservations targeted
279  *            or owned by the local radio controller) or the beaon period
280  * @local:    MAS unused by local established reservations
281  * @pending:  MAS unused by local pending reservations
282  * @ie:       DRP Availability IE to be included in the beacon
283  * @ie_valid: true iff @ie is valid and does not need to regenerated from
284  *            @global and @local
285  *
286  * Each radio controller maintains a view of MAS usage or
287  * availability. MAS available for a new reservation are determined
288  * from the intersection of @global, @local, and @pending.
289  *
290  * The radio controller must transmit a DRP Availability IE that's the
291  * intersection of @global and @local.
292  *
293  * A set bit indicates the MAS is unused and available.
294  *
295  * rc->rsvs_mutex should be held before accessing this data structure.
296  *
297  * [ECMA-368] section 17.4.3.
298  */
299 struct uwb_drp_avail {
300         DECLARE_BITMAP(global, UWB_NUM_MAS);
301         DECLARE_BITMAP(local, UWB_NUM_MAS);
302         DECLARE_BITMAP(pending, UWB_NUM_MAS);
303         struct uwb_ie_drp_avail ie;
304         bool ie_valid;
305 };
306
307 struct uwb_drp_backoff_win {
308         u8 window;
309         u8 n;
310         int total_expired;
311         struct timer_list timer;
312         bool can_reserve_extra_mases;
313 };
314
315 const char *uwb_rsv_state_str(enum uwb_rsv_state state);
316 const char *uwb_rsv_type_str(enum uwb_drp_type type);
317
318 struct uwb_rsv *uwb_rsv_create(struct uwb_rc *rc, uwb_rsv_cb_f cb,
319                                void *pal_priv);
320 void uwb_rsv_destroy(struct uwb_rsv *rsv);
321
322 int uwb_rsv_establish(struct uwb_rsv *rsv);
323 int uwb_rsv_modify(struct uwb_rsv *rsv,
324                    int max_mas, int min_mas, int sparsity);
325 void uwb_rsv_terminate(struct uwb_rsv *rsv);
326
327 void uwb_rsv_accept(struct uwb_rsv *rsv, uwb_rsv_cb_f cb, void *pal_priv);
328
329 void uwb_rsv_get_usable_mas(struct uwb_rsv *orig_rsv, struct uwb_mas_bm *mas);
330
331 /**
332  * Radio Control Interface instance
333  *
334  *
335  * Life cycle rules: those of the UWB Device.
336  *
337  * @index:    an index number for this radio controller, as used in the
338  *            device name.
339  * @version:  version of protocol supported by this device
340  * @priv:     Backend implementation; rw with uwb_dev.dev.sem taken.
341  * @cmd:      Backend implementation to execute commands; rw and call
342  *            only  with uwb_dev.dev.sem taken.
343  * @reset:    Hardware reset of radio controller and any PAL controllers.
344  * @filter:   Backend implementation to manipulate data to and from device
345  *            to be compliant to specification assumed by driver (WHCI
346  *            0.95).
347  *
348  *            uwb_dev.dev.mutex is used to execute commands and update
349  *            the corresponding structures; can't use a spinlock
350  *            because rc->cmd() can sleep.
351  * @ies:         This is a dynamically allocated array cacheing the
352  *               IEs (settable by the host) that the beacon of this
353  *               radio controller is currently sending.
354  *
355  *               In reality, we store here the full command we set to
356  *               the radio controller (which is basically a command
357  *               prefix followed by all the IEs the beacon currently
358  *               contains). This way we don't have to realloc and
359  *               memcpy when setting it.
360  *
361  *               We set this up in uwb_rc_ie_setup(), where we alloc
362  *               this struct, call get_ie() [so we know which IEs are
363  *               currently being sent, if any].
364  *
365  * @ies_capacity:Amount of space (in bytes) allocated in @ies. The
366  *               amount used is given by sizeof(*ies) plus ies->wIELength
367  *               (which is a little endian quantity all the time).
368  * @ies_mutex:   protect the IE cache
369  * @dbg:         information for the debug interface
370  */
371 struct uwb_rc {
372         struct uwb_dev uwb_dev;
373         int index;
374         u16 version;
375
376         struct module *owner;
377         void *priv;
378         int (*start)(struct uwb_rc *rc);
379         void (*stop)(struct uwb_rc *rc);
380         int (*cmd)(struct uwb_rc *, const struct uwb_rccb *, size_t);
381         int (*reset)(struct uwb_rc *rc);
382         int (*filter_cmd)(struct uwb_rc *, struct uwb_rccb **, size_t *);
383         int (*filter_event)(struct uwb_rc *, struct uwb_rceb **, const size_t,
384                             size_t *, size_t *);
385
386         spinlock_t neh_lock;            /* protects neh_* and ctx_* */
387         struct list_head neh_list;      /* Open NE handles */
388         unsigned long ctx_bm[UWB_RC_CTX_MAX / 8 / sizeof(unsigned long)];
389         u8 ctx_roll;
390
391         int beaconing;                  /* Beaconing state [channel number] */
392         int beaconing_forced;
393         int scanning;
394         enum uwb_scan_type scan_type:3;
395         unsigned ready:1;
396         struct uwb_notifs_chain notifs_chain;
397         struct uwb_beca uwb_beca;
398
399         struct uwbd uwbd;
400
401         struct uwb_drp_backoff_win bow;
402         struct uwb_drp_avail drp_avail;
403         struct list_head reservations;
404         struct list_head cnflt_alien_list;
405         struct uwb_mas_bm cnflt_alien_bitmap;
406         struct mutex rsvs_mutex;
407         spinlock_t rsvs_lock;
408         struct workqueue_struct *rsv_workq;
409
410         struct delayed_work rsv_update_work;
411         struct delayed_work rsv_alien_bp_work;
412         int set_drp_ie_pending;
413         struct mutex ies_mutex;
414         struct uwb_rc_cmd_set_ie *ies;
415         size_t ies_capacity;
416
417         struct list_head pals;
418         int active_pals;
419
420         struct uwb_dbg *dbg;
421 };
422
423
424 /**
425  * struct uwb_pal - a UWB PAL
426  * @name:    descriptive name for this PAL (wusbhc, wlp, etc.).
427  * @device:  a device for the PAL.  Used to link the PAL and the radio
428  *           controller in sysfs.
429  * @rc:      the radio controller the PAL uses.
430  * @channel_changed: called when the channel used by the radio changes.
431  *           A channel of -1 means the channel has been stopped.
432  * @new_rsv: called when a peer requests a reservation (may be NULL if
433  *           the PAL cannot accept reservation requests).
434  * @channel: channel being used by the PAL; 0 if the PAL isn't using
435  *           the radio; -1 if the PAL wishes to use the radio but
436  *           cannot.
437  * @debugfs_dir: a debugfs directory which the PAL can use for its own
438  *           debugfs files.
439  *
440  * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB
441  * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP).
442  *
443  * The PALs using a radio controller must register themselves to
444  * permit the UWB stack to coordinate usage of the radio between the
445  * various PALs or to allow PALs to response to certain requests from
446  * peers.
447  *
448  * A struct uwb_pal should be embedded in a containing structure
449  * belonging to the PAL and initialized with uwb_pal_init()).  Fields
450  * should be set appropriately by the PAL before registering the PAL
451  * with uwb_pal_register().
452  */
453 struct uwb_pal {
454         struct list_head node;
455         const char *name;
456         struct device *device;
457         struct uwb_rc *rc;
458
459         void (*channel_changed)(struct uwb_pal *pal, int channel);
460         void (*new_rsv)(struct uwb_pal *pal, struct uwb_rsv *rsv);
461
462         int channel;
463         struct dentry *debugfs_dir;
464 };
465
466 void uwb_pal_init(struct uwb_pal *pal);
467 int uwb_pal_register(struct uwb_pal *pal);
468 void uwb_pal_unregister(struct uwb_pal *pal);
469
470 int uwb_radio_start(struct uwb_pal *pal);
471 void uwb_radio_stop(struct uwb_pal *pal);
472
473 /*
474  * General public API
475  *
476  * This API can be used by UWB device drivers or by those implementing
477  * UWB Radio Controllers
478  */
479 struct uwb_dev *uwb_dev_get_by_devaddr(struct uwb_rc *rc,
480                                        const struct uwb_dev_addr *devaddr);
481 struct uwb_dev *uwb_dev_get_by_rc(struct uwb_dev *, struct uwb_rc *);
482 static inline void uwb_dev_get(struct uwb_dev *uwb_dev)
483 {
484         get_device(&uwb_dev->dev);
485 }
486 static inline void uwb_dev_put(struct uwb_dev *uwb_dev)
487 {
488         put_device(&uwb_dev->dev);
489 }
490 struct uwb_dev *uwb_dev_try_get(struct uwb_rc *rc, struct uwb_dev *uwb_dev);
491
492 /**
493  * Callback function for 'uwb_{dev,rc}_foreach()'.
494  *
495  * @dev:  Linux device instance
496  *        'uwb_dev = container_of(dev, struct uwb_dev, dev)'
497  * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'.
498  *
499  * @returns: 0 to continue the iterations, any other val to stop
500  *           iterating and return the value to the caller of
501  *           _foreach().
502  */
503 typedef int (*uwb_dev_for_each_f)(struct device *dev, void *priv);
504 int uwb_dev_for_each(struct uwb_rc *rc, uwb_dev_for_each_f func, void *priv);
505
506 struct uwb_rc *uwb_rc_alloc(void);
507 struct uwb_rc *uwb_rc_get_by_dev(const struct uwb_dev_addr *);
508 struct uwb_rc *uwb_rc_get_by_grandpa(const struct device *);
509 void uwb_rc_put(struct uwb_rc *rc);
510
511 typedef void (*uwb_rc_cmd_cb_f)(struct uwb_rc *rc, void *arg,
512                                 struct uwb_rceb *reply, ssize_t reply_size);
513
514 int uwb_rc_cmd_async(struct uwb_rc *rc, const char *cmd_name,
515                      struct uwb_rccb *cmd, size_t cmd_size,
516                      u8 expected_type, u16 expected_event,
517                      uwb_rc_cmd_cb_f cb, void *arg);
518 ssize_t uwb_rc_cmd(struct uwb_rc *rc, const char *cmd_name,
519                    struct uwb_rccb *cmd, size_t cmd_size,
520                    struct uwb_rceb *reply, size_t reply_size);
521 ssize_t uwb_rc_vcmd(struct uwb_rc *rc, const char *cmd_name,
522                     struct uwb_rccb *cmd, size_t cmd_size,
523                     u8 expected_type, u16 expected_event,
524                     struct uwb_rceb **preply);
525
526 size_t __uwb_addr_print(char *, size_t, const unsigned char *, int);
527
528 int uwb_rc_dev_addr_set(struct uwb_rc *, const struct uwb_dev_addr *);
529 int uwb_rc_dev_addr_get(struct uwb_rc *, struct uwb_dev_addr *);
530 int uwb_rc_mac_addr_set(struct uwb_rc *, const struct uwb_mac_addr *);
531 int uwb_rc_mac_addr_get(struct uwb_rc *, struct uwb_mac_addr *);
532 int __uwb_mac_addr_assigned_check(struct device *, void *);
533 int __uwb_dev_addr_assigned_check(struct device *, void *);
534
535 /* Print in @buf a pretty repr of @addr */
536 static inline size_t uwb_dev_addr_print(char *buf, size_t buf_size,
537                                         const struct uwb_dev_addr *addr)
538 {
539         return __uwb_addr_print(buf, buf_size, addr->data, 0);
540 }
541
542 /* Print in @buf a pretty repr of @addr */
543 static inline size_t uwb_mac_addr_print(char *buf, size_t buf_size,
544                                         const struct uwb_mac_addr *addr)
545 {
546         return __uwb_addr_print(buf, buf_size, addr->data, 1);
547 }
548
549 /* @returns 0 if device addresses @addr2 and @addr1 are equal */
550 static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr *addr1,
551                                    const struct uwb_dev_addr *addr2)
552 {
553         return memcmp(addr1, addr2, sizeof(*addr1));
554 }
555
556 /* @returns 0 if MAC addresses @addr2 and @addr1 are equal */
557 static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr *addr1,
558                                    const struct uwb_mac_addr *addr2)
559 {
560         return memcmp(addr1, addr2, sizeof(*addr1));
561 }
562
563 /* @returns !0 if a MAC @addr is a broadcast address */
564 static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr *addr)
565 {
566         struct uwb_mac_addr bcast = {
567                 .data = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
568         };
569         return !uwb_mac_addr_cmp(addr, &bcast);
570 }
571
572 /* @returns !0 if a MAC @addr is all zeroes*/
573 static inline int uwb_mac_addr_unset(const struct uwb_mac_addr *addr)
574 {
575         struct uwb_mac_addr unset = {
576                 .data = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
577         };
578         return !uwb_mac_addr_cmp(addr, &unset);
579 }
580
581 /* @returns !0 if the address is in use. */
582 static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc *rc,
583                                                struct uwb_dev_addr *addr)
584 {
585         return uwb_dev_for_each(rc, __uwb_dev_addr_assigned_check, addr);
586 }
587
588 /*
589  * UWB Radio Controller API
590  *
591  * This API is used (in addition to the general API) to implement UWB
592  * Radio Controllers.
593  */
594 void uwb_rc_init(struct uwb_rc *);
595 int uwb_rc_add(struct uwb_rc *, struct device *dev, void *rc_priv);
596 void uwb_rc_rm(struct uwb_rc *);
597 void uwb_rc_neh_grok(struct uwb_rc *, void *, size_t);
598 void uwb_rc_neh_error(struct uwb_rc *, int);
599 void uwb_rc_reset_all(struct uwb_rc *rc);
600 void uwb_rc_pre_reset(struct uwb_rc *rc);
601 int uwb_rc_post_reset(struct uwb_rc *rc);
602
603 /**
604  * uwb_rsv_is_owner - is the owner of this reservation the RC?
605  * @rsv: the reservation
606  */
607 static inline bool uwb_rsv_is_owner(struct uwb_rsv *rsv)
608 {
609         return rsv->owner == &rsv->rc->uwb_dev;
610 }
611
612 /**
613  * enum uwb_notifs - UWB events that can be passed to any listeners
614  * @UWB_NOTIF_ONAIR: a new neighbour has joined the beacon group.
615  * @UWB_NOTIF_OFFAIR: a neighbour has left the beacon group.
616  *
617  * Higher layers can register callback functions with the radio
618  * controller using uwb_notifs_register(). The radio controller
619  * maintains a list of all registered handlers and will notify all
620  * nodes when an event occurs.
621  */
622 enum uwb_notifs {
623         UWB_NOTIF_ONAIR,
624         UWB_NOTIF_OFFAIR,
625 };
626
627 /* Callback function registered with UWB */
628 struct uwb_notifs_handler {
629         struct list_head list_node;
630         void (*cb)(void *, struct uwb_dev *, enum uwb_notifs);
631         void *data;
632 };
633
634 int uwb_notifs_register(struct uwb_rc *, struct uwb_notifs_handler *);
635 int uwb_notifs_deregister(struct uwb_rc *, struct uwb_notifs_handler *);
636
637
638 /**
639  * UWB radio controller Event Size Entry (for creating entry tables)
640  *
641  * WUSB and WHCI define events and notifications, and they might have
642  * fixed or variable size.
643  *
644  * Each event/notification has a size which is not necessarily known
645  * in advance based on the event code. As well, vendor specific
646  * events/notifications will have a size impossible to determine
647  * unless we know about the device's specific details.
648  *
649  * It was way too smart of the spec writers not to think that it would
650  * be impossible for a generic driver to skip over vendor specific
651  * events/notifications if there are no LENGTH fields in the HEADER of
652  * each message...the transaction size cannot be counted on as the
653  * spec does not forbid to pack more than one event in a single
654  * transaction.
655  *
656  * Thus, we guess sizes with tables (or for events, when you know the
657  * size ahead of time you can use uwb_rc_neh_extra_size*()). We
658  * register tables with the known events and their sizes, and then we
659  * traverse those tables. For those with variable length, we provide a
660  * way to lookup the size inside the event/notification's
661  * payload. This allows device-specific event size tables to be
662  * registered.
663  *
664  * @size:   Size of the payload
665  *
666  * @offset: if != 0, at offset @offset-1 starts a field with a length
667  *          that has to be added to @size. The format of the field is
668  *          given by @type.
669  *
670  * @type:   Type and length of the offset field. Most common is LE 16
671  *          bits (that's why that is zero); others are there mostly to
672  *          cover for bugs and weirdos.
673  */
674 struct uwb_est_entry {
675         size_t size;
676         unsigned offset;
677         enum { UWB_EST_16 = 0, UWB_EST_8 = 1 } type;
678 };
679
680 int uwb_est_register(u8 type, u8 code_high, u16 vendor, u16 product,
681                      const struct uwb_est_entry *, size_t entries);
682 int uwb_est_unregister(u8 type, u8 code_high, u16 vendor, u16 product,
683                        const struct uwb_est_entry *, size_t entries);
684 ssize_t uwb_est_find_size(struct uwb_rc *rc, const struct uwb_rceb *rceb,
685                           size_t len);
686
687 /* -- Misc */
688
689 enum {
690         EDC_MAX_ERRORS = 10,
691         EDC_ERROR_TIMEFRAME = HZ,
692 };
693
694 /* error density counter */
695 struct edc {
696         unsigned long timestart;
697         u16 errorcount;
698 };
699
700 static inline
701 void edc_init(struct edc *edc)
702 {
703         edc->timestart = jiffies;
704 }
705
706 /* Called when an error occurred.
707  * This is way to determine if the number of acceptable errors per time
708  * period has been exceeded. It is not accurate as there are cases in which
709  * this scheme will not work, for example if there are periodic occurrences
710  * of errors that straddle updates to the start time. This scheme is
711  * sufficient for our usage.
712  *
713  * @returns 1 if maximum acceptable errors per timeframe has been exceeded.
714  */
715 static inline int edc_inc(struct edc *err_hist, u16 max_err, u16 timeframe)
716 {
717         unsigned long now;
718
719         now = jiffies;
720         if (now - err_hist->timestart > timeframe) {
721                 err_hist->errorcount = 1;
722                 err_hist->timestart = now;
723         } else if (++err_hist->errorcount > max_err) {
724                         err_hist->errorcount = 0;
725                         err_hist->timestart = now;
726                         return 1;
727         }
728         return 0;
729 }
730
731
732 /* Information Element handling */
733
734 struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len);
735 int uwb_rc_ie_add(struct uwb_rc *uwb_rc, const struct uwb_ie_hdr *ies, size_t size);
736 int uwb_rc_ie_rm(struct uwb_rc *uwb_rc, enum uwb_ie element_id);
737
738 /*
739  * Transmission statistics
740  *
741  * UWB uses LQI and RSSI (one byte values) for reporting radio signal
742  * strength and line quality indication. We do quick and dirty
743  * averages of those. They are signed values, btw.
744  *
745  * For 8 bit quantities, we keep the min, the max, an accumulator
746  * (@sigma) and a # of samples. When @samples gets to 255, we compute
747  * the average (@sigma / @samples), place it in @sigma and reset
748  * @samples to 1 (so we use it as the first sample).
749  *
750  * Now, statistically speaking, probably I am kicking the kidneys of
751  * some books I have in my shelves collecting dust, but I just want to
752  * get an approx, not the Nobel.
753  *
754  * LOCKING: there is no locking per se, but we try to keep a lockless
755  * schema. Only _add_samples() modifies the values--as long as you
756  * have other locking on top that makes sure that no two calls of
757  * _add_sample() happen at the same time, then we are fine. Now, for
758  * resetting the values we just set @samples to 0 and that makes the
759  * next _add_sample() to start with defaults. Reading the values in
760  * _show() currently can race, so you need to make sure the calls are
761  * under the same lock that protects calls to _add_sample(). FIXME:
762  * currently unlocked (It is not ultraprecise but does the trick. Bite
763  * me).
764  */
765 struct stats {
766         s8 min, max;
767         s16 sigma;
768         atomic_t samples;
769 };
770
771 static inline
772 void stats_init(struct stats *stats)
773 {
774         atomic_set(&stats->samples, 0);
775         wmb();
776 }
777
778 static inline
779 void stats_add_sample(struct stats *stats, s8 sample)
780 {
781         s8 min, max;
782         s16 sigma;
783         unsigned samples = atomic_read(&stats->samples);
784         if (samples == 0) {     /* it was zero before, so we initialize */
785                 min = 127;
786                 max = -128;
787                 sigma = 0;
788         } else {
789                 min = stats->min;
790                 max = stats->max;
791                 sigma = stats->sigma;
792         }
793
794         if (sample < min)       /* compute new values */
795                 min = sample;
796         else if (sample > max)
797                 max = sample;
798         sigma += sample;
799
800         stats->min = min;       /* commit */
801         stats->max = max;
802         stats->sigma = sigma;
803         if (atomic_add_return(1, &stats->samples) > 255) {
804                 /* wrapped around! reset */
805                 stats->sigma = sigma / 256;
806                 atomic_set(&stats->samples, 1);
807         }
808 }
809
810 static inline ssize_t stats_show(struct stats *stats, char *buf)
811 {
812         int min, max, avg;
813         int samples = atomic_read(&stats->samples);
814         if (samples == 0)
815                 min = max = avg = 0;
816         else {
817                 min = stats->min;
818                 max = stats->max;
819                 avg = stats->sigma / samples;
820         }
821         return scnprintf(buf, PAGE_SIZE, "%d %d %d\n", min, max, avg);
822 }
823
824 static inline ssize_t stats_store(struct stats *stats, const char *buf,
825                                   size_t size)
826 {
827         stats_init(stats);
828         return size;
829 }
830
831 #endif /* #ifndef __LINUX__UWB_H__ */