Merge remote branch 'linus' into drm-intel-fixes
[pandora-kernel.git] / include / linux / percpu.h
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
3
4 #include <linux/preempt.h>
5 #include <linux/smp.h>
6 #include <linux/cpumask.h>
7 #include <linux/pfn.h>
8 #include <linux/init.h>
9
10 #include <asm/percpu.h>
11
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE           (8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE           0
17 #endif
18
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM                                              \
21         (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) +      \
22          PERCPU_MODULE_RESERVE)
23 #endif
24
25 /*
26  * Must be an lvalue. Since @var must be a simple identifier,
27  * we force a syntax error here if it isn't.
28  */
29 #define get_cpu_var(var) (*({                           \
30         preempt_disable();                              \
31         &__get_cpu_var(var); }))
32
33 /*
34  * The weird & is necessary because sparse considers (void)(var) to be
35  * a direct dereference of percpu variable (var).
36  */
37 #define put_cpu_var(var) do {                           \
38         (void)&(var);                                   \
39         preempt_enable();                               \
40 } while (0)
41
42 #ifdef CONFIG_SMP
43
44 /* minimum unit size, also is the maximum supported allocation size */
45 #define PCPU_MIN_UNIT_SIZE              PFN_ALIGN(64 << 10)
46
47 /*
48  * Percpu allocator can serve percpu allocations before slab is
49  * initialized which allows slab to depend on the percpu allocator.
50  * The following two parameters decide how much resource to
51  * preallocate for this.  Keep PERCPU_DYNAMIC_RESERVE equal to or
52  * larger than PERCPU_DYNAMIC_EARLY_SIZE.
53  */
54 #define PERCPU_DYNAMIC_EARLY_SLOTS      128
55 #define PERCPU_DYNAMIC_EARLY_SIZE       (12 << 10)
56
57 /*
58  * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
59  * back on the first chunk for dynamic percpu allocation if arch is
60  * manually allocating and mapping it for faster access (as a part of
61  * large page mapping for example).
62  *
63  * The following values give between one and two pages of free space
64  * after typical minimal boot (2-way SMP, single disk and NIC) with
65  * both defconfig and a distro config on x86_64 and 32.  More
66  * intelligent way to determine this would be nice.
67  */
68 #if BITS_PER_LONG > 32
69 #define PERCPU_DYNAMIC_RESERVE          (20 << 10)
70 #else
71 #define PERCPU_DYNAMIC_RESERVE          (12 << 10)
72 #endif
73
74 extern void *pcpu_base_addr;
75 extern const unsigned long *pcpu_unit_offsets;
76
77 struct pcpu_group_info {
78         int                     nr_units;       /* aligned # of units */
79         unsigned long           base_offset;    /* base address offset */
80         unsigned int            *cpu_map;       /* unit->cpu map, empty
81                                                  * entries contain NR_CPUS */
82 };
83
84 struct pcpu_alloc_info {
85         size_t                  static_size;
86         size_t                  reserved_size;
87         size_t                  dyn_size;
88         size_t                  unit_size;
89         size_t                  atom_size;
90         size_t                  alloc_size;
91         size_t                  __ai_size;      /* internal, don't use */
92         int                     nr_groups;      /* 0 if grouping unnecessary */
93         struct pcpu_group_info  groups[];
94 };
95
96 enum pcpu_fc {
97         PCPU_FC_AUTO,
98         PCPU_FC_EMBED,
99         PCPU_FC_PAGE,
100
101         PCPU_FC_NR,
102 };
103 extern const char *pcpu_fc_names[PCPU_FC_NR];
104
105 extern enum pcpu_fc pcpu_chosen_fc;
106
107 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
108                                      size_t align);
109 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
110 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
111 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
112
113 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
114                                                              int nr_units);
115 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
116
117 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
118                                          void *base_addr);
119
120 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
121 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
122                                 size_t atom_size,
123                                 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
124                                 pcpu_fc_alloc_fn_t alloc_fn,
125                                 pcpu_fc_free_fn_t free_fn);
126 #endif
127
128 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
129 extern int __init pcpu_page_first_chunk(size_t reserved_size,
130                                 pcpu_fc_alloc_fn_t alloc_fn,
131                                 pcpu_fc_free_fn_t free_fn,
132                                 pcpu_fc_populate_pte_fn_t populate_pte_fn);
133 #endif
134
135 /*
136  * Use this to get to a cpu's version of the per-cpu object
137  * dynamically allocated. Non-atomic access to the current CPU's
138  * version should probably be combined with get_cpu()/put_cpu().
139  */
140 #define per_cpu_ptr(ptr, cpu)   SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
141
142 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
143 extern bool is_kernel_percpu_address(unsigned long addr);
144
145 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
146 extern void __init setup_per_cpu_areas(void);
147 #endif
148 extern void __init percpu_init_late(void);
149
150 #else /* CONFIG_SMP */
151
152 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
153
154 /* can't distinguish from other static vars, always false */
155 static inline bool is_kernel_percpu_address(unsigned long addr)
156 {
157         return false;
158 }
159
160 static inline void __init setup_per_cpu_areas(void) { }
161
162 static inline void __init percpu_init_late(void) { }
163
164 static inline void *pcpu_lpage_remapped(void *kaddr)
165 {
166         return NULL;
167 }
168
169 #endif /* CONFIG_SMP */
170
171 extern void __percpu *__alloc_percpu(size_t size, size_t align);
172 extern void free_percpu(void __percpu *__pdata);
173 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
174
175 #define alloc_percpu(type)      \
176         (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
177
178 /*
179  * Optional methods for optimized non-lvalue per-cpu variable access.
180  *
181  * @var can be a percpu variable or a field of it and its size should
182  * equal char, int or long.  percpu_read() evaluates to a lvalue and
183  * all others to void.
184  *
185  * These operations are guaranteed to be atomic w.r.t. preemption.
186  * The generic versions use plain get/put_cpu_var().  Archs are
187  * encouraged to implement single-instruction alternatives which don't
188  * require preemption protection.
189  */
190 #ifndef percpu_read
191 # define percpu_read(var)                                               \
192   ({                                                                    \
193         typeof(var) *pr_ptr__ = &(var);                                 \
194         typeof(var) pr_ret__;                                           \
195         pr_ret__ = get_cpu_var(*pr_ptr__);                              \
196         put_cpu_var(*pr_ptr__);                                         \
197         pr_ret__;                                                       \
198   })
199 #endif
200
201 #define __percpu_generic_to_op(var, val, op)                            \
202 do {                                                                    \
203         typeof(var) *pgto_ptr__ = &(var);                               \
204         get_cpu_var(*pgto_ptr__) op val;                                \
205         put_cpu_var(*pgto_ptr__);                                       \
206 } while (0)
207
208 #ifndef percpu_write
209 # define percpu_write(var, val)         __percpu_generic_to_op(var, (val), =)
210 #endif
211
212 #ifndef percpu_add
213 # define percpu_add(var, val)           __percpu_generic_to_op(var, (val), +=)
214 #endif
215
216 #ifndef percpu_sub
217 # define percpu_sub(var, val)           __percpu_generic_to_op(var, (val), -=)
218 #endif
219
220 #ifndef percpu_and
221 # define percpu_and(var, val)           __percpu_generic_to_op(var, (val), &=)
222 #endif
223
224 #ifndef percpu_or
225 # define percpu_or(var, val)            __percpu_generic_to_op(var, (val), |=)
226 #endif
227
228 #ifndef percpu_xor
229 # define percpu_xor(var, val)           __percpu_generic_to_op(var, (val), ^=)
230 #endif
231
232 /*
233  * Branching function to split up a function into a set of functions that
234  * are called for different scalar sizes of the objects handled.
235  */
236
237 extern void __bad_size_call_parameter(void);
238
239 #define __pcpu_size_call_return(stem, variable)                         \
240 ({      typeof(variable) pscr_ret__;                                    \
241         __verify_pcpu_ptr(&(variable));                                 \
242         switch(sizeof(variable)) {                                      \
243         case 1: pscr_ret__ = stem##1(variable);break;                   \
244         case 2: pscr_ret__ = stem##2(variable);break;                   \
245         case 4: pscr_ret__ = stem##4(variable);break;                   \
246         case 8: pscr_ret__ = stem##8(variable);break;                   \
247         default:                                                        \
248                 __bad_size_call_parameter();break;                      \
249         }                                                               \
250         pscr_ret__;                                                     \
251 })
252
253 #define __pcpu_size_call(stem, variable, ...)                           \
254 do {                                                                    \
255         __verify_pcpu_ptr(&(variable));                                 \
256         switch(sizeof(variable)) {                                      \
257                 case 1: stem##1(variable, __VA_ARGS__);break;           \
258                 case 2: stem##2(variable, __VA_ARGS__);break;           \
259                 case 4: stem##4(variable, __VA_ARGS__);break;           \
260                 case 8: stem##8(variable, __VA_ARGS__);break;           \
261                 default:                                                \
262                         __bad_size_call_parameter();break;              \
263         }                                                               \
264 } while (0)
265
266 /*
267  * Optimized manipulation for memory allocated through the per cpu
268  * allocator or for addresses of per cpu variables.
269  *
270  * These operation guarantee exclusivity of access for other operations
271  * on the *same* processor. The assumption is that per cpu data is only
272  * accessed by a single processor instance (the current one).
273  *
274  * The first group is used for accesses that must be done in a
275  * preemption safe way since we know that the context is not preempt
276  * safe. Interrupts may occur. If the interrupt modifies the variable
277  * too then RMW actions will not be reliable.
278  *
279  * The arch code can provide optimized functions in two ways:
280  *
281  * 1. Override the function completely. F.e. define this_cpu_add().
282  *    The arch must then ensure that the various scalar format passed
283  *    are handled correctly.
284  *
285  * 2. Provide functions for certain scalar sizes. F.e. provide
286  *    this_cpu_add_2() to provide per cpu atomic operations for 2 byte
287  *    sized RMW actions. If arch code does not provide operations for
288  *    a scalar size then the fallback in the generic code will be
289  *    used.
290  */
291
292 #define _this_cpu_generic_read(pcp)                                     \
293 ({      typeof(pcp) ret__;                                              \
294         preempt_disable();                                              \
295         ret__ = *this_cpu_ptr(&(pcp));                                  \
296         preempt_enable();                                               \
297         ret__;                                                          \
298 })
299
300 #ifndef this_cpu_read
301 # ifndef this_cpu_read_1
302 #  define this_cpu_read_1(pcp)  _this_cpu_generic_read(pcp)
303 # endif
304 # ifndef this_cpu_read_2
305 #  define this_cpu_read_2(pcp)  _this_cpu_generic_read(pcp)
306 # endif
307 # ifndef this_cpu_read_4
308 #  define this_cpu_read_4(pcp)  _this_cpu_generic_read(pcp)
309 # endif
310 # ifndef this_cpu_read_8
311 #  define this_cpu_read_8(pcp)  _this_cpu_generic_read(pcp)
312 # endif
313 # define this_cpu_read(pcp)     __pcpu_size_call_return(this_cpu_read_, (pcp))
314 #endif
315
316 #define _this_cpu_generic_to_op(pcp, val, op)                           \
317 do {                                                                    \
318         preempt_disable();                                              \
319         *__this_cpu_ptr(&(pcp)) op val;                                 \
320         preempt_enable();                                               \
321 } while (0)
322
323 #ifndef this_cpu_write
324 # ifndef this_cpu_write_1
325 #  define this_cpu_write_1(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
326 # endif
327 # ifndef this_cpu_write_2
328 #  define this_cpu_write_2(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
329 # endif
330 # ifndef this_cpu_write_4
331 #  define this_cpu_write_4(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
332 # endif
333 # ifndef this_cpu_write_8
334 #  define this_cpu_write_8(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
335 # endif
336 # define this_cpu_write(pcp, val)       __pcpu_size_call(this_cpu_write_, (pcp), (val))
337 #endif
338
339 #ifndef this_cpu_add
340 # ifndef this_cpu_add_1
341 #  define this_cpu_add_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
342 # endif
343 # ifndef this_cpu_add_2
344 #  define this_cpu_add_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
345 # endif
346 # ifndef this_cpu_add_4
347 #  define this_cpu_add_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
348 # endif
349 # ifndef this_cpu_add_8
350 #  define this_cpu_add_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
351 # endif
352 # define this_cpu_add(pcp, val)         __pcpu_size_call(this_cpu_add_, (pcp), (val))
353 #endif
354
355 #ifndef this_cpu_sub
356 # define this_cpu_sub(pcp, val)         this_cpu_add((pcp), -(val))
357 #endif
358
359 #ifndef this_cpu_inc
360 # define this_cpu_inc(pcp)              this_cpu_add((pcp), 1)
361 #endif
362
363 #ifndef this_cpu_dec
364 # define this_cpu_dec(pcp)              this_cpu_sub((pcp), 1)
365 #endif
366
367 #ifndef this_cpu_and
368 # ifndef this_cpu_and_1
369 #  define this_cpu_and_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
370 # endif
371 # ifndef this_cpu_and_2
372 #  define this_cpu_and_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
373 # endif
374 # ifndef this_cpu_and_4
375 #  define this_cpu_and_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
376 # endif
377 # ifndef this_cpu_and_8
378 #  define this_cpu_and_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
379 # endif
380 # define this_cpu_and(pcp, val)         __pcpu_size_call(this_cpu_and_, (pcp), (val))
381 #endif
382
383 #ifndef this_cpu_or
384 # ifndef this_cpu_or_1
385 #  define this_cpu_or_1(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
386 # endif
387 # ifndef this_cpu_or_2
388 #  define this_cpu_or_2(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
389 # endif
390 # ifndef this_cpu_or_4
391 #  define this_cpu_or_4(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
392 # endif
393 # ifndef this_cpu_or_8
394 #  define this_cpu_or_8(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
395 # endif
396 # define this_cpu_or(pcp, val)          __pcpu_size_call(this_cpu_or_, (pcp), (val))
397 #endif
398
399 #ifndef this_cpu_xor
400 # ifndef this_cpu_xor_1
401 #  define this_cpu_xor_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
402 # endif
403 # ifndef this_cpu_xor_2
404 #  define this_cpu_xor_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
405 # endif
406 # ifndef this_cpu_xor_4
407 #  define this_cpu_xor_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
408 # endif
409 # ifndef this_cpu_xor_8
410 #  define this_cpu_xor_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
411 # endif
412 # define this_cpu_xor(pcp, val)         __pcpu_size_call(this_cpu_or_, (pcp), (val))
413 #endif
414
415 /*
416  * Generic percpu operations that do not require preemption handling.
417  * Either we do not care about races or the caller has the
418  * responsibility of handling preemptions issues. Arch code can still
419  * override these instructions since the arch per cpu code may be more
420  * efficient and may actually get race freeness for free (that is the
421  * case for x86 for example).
422  *
423  * If there is no other protection through preempt disable and/or
424  * disabling interupts then one of these RMW operations can show unexpected
425  * behavior because the execution thread was rescheduled on another processor
426  * or an interrupt occurred and the same percpu variable was modified from
427  * the interrupt context.
428  */
429 #ifndef __this_cpu_read
430 # ifndef __this_cpu_read_1
431 #  define __this_cpu_read_1(pcp)        (*__this_cpu_ptr(&(pcp)))
432 # endif
433 # ifndef __this_cpu_read_2
434 #  define __this_cpu_read_2(pcp)        (*__this_cpu_ptr(&(pcp)))
435 # endif
436 # ifndef __this_cpu_read_4
437 #  define __this_cpu_read_4(pcp)        (*__this_cpu_ptr(&(pcp)))
438 # endif
439 # ifndef __this_cpu_read_8
440 #  define __this_cpu_read_8(pcp)        (*__this_cpu_ptr(&(pcp)))
441 # endif
442 # define __this_cpu_read(pcp)   __pcpu_size_call_return(__this_cpu_read_, (pcp))
443 #endif
444
445 #define __this_cpu_generic_to_op(pcp, val, op)                          \
446 do {                                                                    \
447         *__this_cpu_ptr(&(pcp)) op val;                                 \
448 } while (0)
449
450 #ifndef __this_cpu_write
451 # ifndef __this_cpu_write_1
452 #  define __this_cpu_write_1(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
453 # endif
454 # ifndef __this_cpu_write_2
455 #  define __this_cpu_write_2(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
456 # endif
457 # ifndef __this_cpu_write_4
458 #  define __this_cpu_write_4(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
459 # endif
460 # ifndef __this_cpu_write_8
461 #  define __this_cpu_write_8(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
462 # endif
463 # define __this_cpu_write(pcp, val)     __pcpu_size_call(__this_cpu_write_, (pcp), (val))
464 #endif
465
466 #ifndef __this_cpu_add
467 # ifndef __this_cpu_add_1
468 #  define __this_cpu_add_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
469 # endif
470 # ifndef __this_cpu_add_2
471 #  define __this_cpu_add_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
472 # endif
473 # ifndef __this_cpu_add_4
474 #  define __this_cpu_add_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
475 # endif
476 # ifndef __this_cpu_add_8
477 #  define __this_cpu_add_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
478 # endif
479 # define __this_cpu_add(pcp, val)       __pcpu_size_call(__this_cpu_add_, (pcp), (val))
480 #endif
481
482 #ifndef __this_cpu_sub
483 # define __this_cpu_sub(pcp, val)       __this_cpu_add((pcp), -(val))
484 #endif
485
486 #ifndef __this_cpu_inc
487 # define __this_cpu_inc(pcp)            __this_cpu_add((pcp), 1)
488 #endif
489
490 #ifndef __this_cpu_dec
491 # define __this_cpu_dec(pcp)            __this_cpu_sub((pcp), 1)
492 #endif
493
494 #ifndef __this_cpu_and
495 # ifndef __this_cpu_and_1
496 #  define __this_cpu_and_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
497 # endif
498 # ifndef __this_cpu_and_2
499 #  define __this_cpu_and_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
500 # endif
501 # ifndef __this_cpu_and_4
502 #  define __this_cpu_and_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
503 # endif
504 # ifndef __this_cpu_and_8
505 #  define __this_cpu_and_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
506 # endif
507 # define __this_cpu_and(pcp, val)       __pcpu_size_call(__this_cpu_and_, (pcp), (val))
508 #endif
509
510 #ifndef __this_cpu_or
511 # ifndef __this_cpu_or_1
512 #  define __this_cpu_or_1(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
513 # endif
514 # ifndef __this_cpu_or_2
515 #  define __this_cpu_or_2(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
516 # endif
517 # ifndef __this_cpu_or_4
518 #  define __this_cpu_or_4(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
519 # endif
520 # ifndef __this_cpu_or_8
521 #  define __this_cpu_or_8(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
522 # endif
523 # define __this_cpu_or(pcp, val)        __pcpu_size_call(__this_cpu_or_, (pcp), (val))
524 #endif
525
526 #ifndef __this_cpu_xor
527 # ifndef __this_cpu_xor_1
528 #  define __this_cpu_xor_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
529 # endif
530 # ifndef __this_cpu_xor_2
531 #  define __this_cpu_xor_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
532 # endif
533 # ifndef __this_cpu_xor_4
534 #  define __this_cpu_xor_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
535 # endif
536 # ifndef __this_cpu_xor_8
537 #  define __this_cpu_xor_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
538 # endif
539 # define __this_cpu_xor(pcp, val)       __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
540 #endif
541
542 /*
543  * IRQ safe versions of the per cpu RMW operations. Note that these operations
544  * are *not* safe against modification of the same variable from another
545  * processors (which one gets when using regular atomic operations)
546  . They are guaranteed to be atomic vs. local interrupts and
547  * preemption only.
548  */
549 #define irqsafe_cpu_generic_to_op(pcp, val, op)                         \
550 do {                                                                    \
551         unsigned long flags;                                            \
552         local_irq_save(flags);                                          \
553         *__this_cpu_ptr(&(pcp)) op val;                                 \
554         local_irq_restore(flags);                                       \
555 } while (0)
556
557 #ifndef irqsafe_cpu_add
558 # ifndef irqsafe_cpu_add_1
559 #  define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
560 # endif
561 # ifndef irqsafe_cpu_add_2
562 #  define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
563 # endif
564 # ifndef irqsafe_cpu_add_4
565 #  define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
566 # endif
567 # ifndef irqsafe_cpu_add_8
568 #  define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
569 # endif
570 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
571 #endif
572
573 #ifndef irqsafe_cpu_sub
574 # define irqsafe_cpu_sub(pcp, val)      irqsafe_cpu_add((pcp), -(val))
575 #endif
576
577 #ifndef irqsafe_cpu_inc
578 # define irqsafe_cpu_inc(pcp)   irqsafe_cpu_add((pcp), 1)
579 #endif
580
581 #ifndef irqsafe_cpu_dec
582 # define irqsafe_cpu_dec(pcp)   irqsafe_cpu_sub((pcp), 1)
583 #endif
584
585 #ifndef irqsafe_cpu_and
586 # ifndef irqsafe_cpu_and_1
587 #  define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
588 # endif
589 # ifndef irqsafe_cpu_and_2
590 #  define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
591 # endif
592 # ifndef irqsafe_cpu_and_4
593 #  define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
594 # endif
595 # ifndef irqsafe_cpu_and_8
596 #  define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
597 # endif
598 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
599 #endif
600
601 #ifndef irqsafe_cpu_or
602 # ifndef irqsafe_cpu_or_1
603 #  define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
604 # endif
605 # ifndef irqsafe_cpu_or_2
606 #  define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
607 # endif
608 # ifndef irqsafe_cpu_or_4
609 #  define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
610 # endif
611 # ifndef irqsafe_cpu_or_8
612 #  define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
613 # endif
614 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
615 #endif
616
617 #ifndef irqsafe_cpu_xor
618 # ifndef irqsafe_cpu_xor_1
619 #  define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
620 # endif
621 # ifndef irqsafe_cpu_xor_2
622 #  define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
623 # endif
624 # ifndef irqsafe_cpu_xor_4
625 #  define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
626 # endif
627 # ifndef irqsafe_cpu_xor_8
628 #  define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
629 # endif
630 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
631 #endif
632
633 #endif /* __LINUX_PERCPU_H */