Merge branch 'linus' into perf/core
[pandora-kernel.git] / include / linux / percpu.h
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
3
4 #include <linux/preempt.h>
5 #include <linux/smp.h>
6 #include <linux/cpumask.h>
7 #include <linux/pfn.h>
8 #include <linux/init.h>
9
10 #include <asm/percpu.h>
11
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE           (8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE           0
17 #endif
18
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM                                              \
21         (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) +      \
22          PERCPU_MODULE_RESERVE)
23 #endif
24
25 /*
26  * Must be an lvalue. Since @var must be a simple identifier,
27  * we force a syntax error here if it isn't.
28  */
29 #define get_cpu_var(var) (*({                           \
30         preempt_disable();                              \
31         &__get_cpu_var(var); }))
32
33 /*
34  * The weird & is necessary because sparse considers (void)(var) to be
35  * a direct dereference of percpu variable (var).
36  */
37 #define put_cpu_var(var) do {                           \
38         (void)&(var);                                   \
39         preempt_enable();                               \
40 } while (0)
41
42 #define get_cpu_ptr(var) ({                             \
43         preempt_disable();                              \
44         this_cpu_ptr(var); })
45
46 #define put_cpu_ptr(var) do {                           \
47         (void)(var);                                    \
48         preempt_enable();                               \
49 } while (0)
50
51 #ifdef CONFIG_SMP
52
53 /* minimum unit size, also is the maximum supported allocation size */
54 #define PCPU_MIN_UNIT_SIZE              PFN_ALIGN(64 << 10)
55
56 /*
57  * Percpu allocator can serve percpu allocations before slab is
58  * initialized which allows slab to depend on the percpu allocator.
59  * The following two parameters decide how much resource to
60  * preallocate for this.  Keep PERCPU_DYNAMIC_RESERVE equal to or
61  * larger than PERCPU_DYNAMIC_EARLY_SIZE.
62  */
63 #define PERCPU_DYNAMIC_EARLY_SLOTS      128
64 #define PERCPU_DYNAMIC_EARLY_SIZE       (12 << 10)
65
66 /*
67  * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
68  * back on the first chunk for dynamic percpu allocation if arch is
69  * manually allocating and mapping it for faster access (as a part of
70  * large page mapping for example).
71  *
72  * The following values give between one and two pages of free space
73  * after typical minimal boot (2-way SMP, single disk and NIC) with
74  * both defconfig and a distro config on x86_64 and 32.  More
75  * intelligent way to determine this would be nice.
76  */
77 #if BITS_PER_LONG > 32
78 #define PERCPU_DYNAMIC_RESERVE          (20 << 10)
79 #else
80 #define PERCPU_DYNAMIC_RESERVE          (12 << 10)
81 #endif
82
83 extern void *pcpu_base_addr;
84 extern const unsigned long *pcpu_unit_offsets;
85
86 struct pcpu_group_info {
87         int                     nr_units;       /* aligned # of units */
88         unsigned long           base_offset;    /* base address offset */
89         unsigned int            *cpu_map;       /* unit->cpu map, empty
90                                                  * entries contain NR_CPUS */
91 };
92
93 struct pcpu_alloc_info {
94         size_t                  static_size;
95         size_t                  reserved_size;
96         size_t                  dyn_size;
97         size_t                  unit_size;
98         size_t                  atom_size;
99         size_t                  alloc_size;
100         size_t                  __ai_size;      /* internal, don't use */
101         int                     nr_groups;      /* 0 if grouping unnecessary */
102         struct pcpu_group_info  groups[];
103 };
104
105 enum pcpu_fc {
106         PCPU_FC_AUTO,
107         PCPU_FC_EMBED,
108         PCPU_FC_PAGE,
109
110         PCPU_FC_NR,
111 };
112 extern const char *pcpu_fc_names[PCPU_FC_NR];
113
114 extern enum pcpu_fc pcpu_chosen_fc;
115
116 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
117                                      size_t align);
118 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
119 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
120 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
121
122 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
123                                                              int nr_units);
124 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
125
126 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
127                                          void *base_addr);
128
129 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
130 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
131                                 size_t atom_size,
132                                 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
133                                 pcpu_fc_alloc_fn_t alloc_fn,
134                                 pcpu_fc_free_fn_t free_fn);
135 #endif
136
137 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
138 extern int __init pcpu_page_first_chunk(size_t reserved_size,
139                                 pcpu_fc_alloc_fn_t alloc_fn,
140                                 pcpu_fc_free_fn_t free_fn,
141                                 pcpu_fc_populate_pte_fn_t populate_pte_fn);
142 #endif
143
144 /*
145  * Use this to get to a cpu's version of the per-cpu object
146  * dynamically allocated. Non-atomic access to the current CPU's
147  * version should probably be combined with get_cpu()/put_cpu().
148  */
149 #define per_cpu_ptr(ptr, cpu)   SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
150
151 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
152 extern bool is_kernel_percpu_address(unsigned long addr);
153
154 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
155 extern void __init setup_per_cpu_areas(void);
156 #endif
157 extern void __init percpu_init_late(void);
158
159 #else /* CONFIG_SMP */
160
161 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
162
163 /* can't distinguish from other static vars, always false */
164 static inline bool is_kernel_percpu_address(unsigned long addr)
165 {
166         return false;
167 }
168
169 static inline void __init setup_per_cpu_areas(void) { }
170
171 static inline void __init percpu_init_late(void) { }
172
173 static inline void *pcpu_lpage_remapped(void *kaddr)
174 {
175         return NULL;
176 }
177
178 #endif /* CONFIG_SMP */
179
180 extern void __percpu *__alloc_percpu(size_t size, size_t align);
181 extern void free_percpu(void __percpu *__pdata);
182 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
183
184 #define alloc_percpu(type)      \
185         (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
186
187 /*
188  * Optional methods for optimized non-lvalue per-cpu variable access.
189  *
190  * @var can be a percpu variable or a field of it and its size should
191  * equal char, int or long.  percpu_read() evaluates to a lvalue and
192  * all others to void.
193  *
194  * These operations are guaranteed to be atomic w.r.t. preemption.
195  * The generic versions use plain get/put_cpu_var().  Archs are
196  * encouraged to implement single-instruction alternatives which don't
197  * require preemption protection.
198  */
199 #ifndef percpu_read
200 # define percpu_read(var)                                               \
201   ({                                                                    \
202         typeof(var) *pr_ptr__ = &(var);                                 \
203         typeof(var) pr_ret__;                                           \
204         pr_ret__ = get_cpu_var(*pr_ptr__);                              \
205         put_cpu_var(*pr_ptr__);                                         \
206         pr_ret__;                                                       \
207   })
208 #endif
209
210 #define __percpu_generic_to_op(var, val, op)                            \
211 do {                                                                    \
212         typeof(var) *pgto_ptr__ = &(var);                               \
213         get_cpu_var(*pgto_ptr__) op val;                                \
214         put_cpu_var(*pgto_ptr__);                                       \
215 } while (0)
216
217 #ifndef percpu_write
218 # define percpu_write(var, val)         __percpu_generic_to_op(var, (val), =)
219 #endif
220
221 #ifndef percpu_add
222 # define percpu_add(var, val)           __percpu_generic_to_op(var, (val), +=)
223 #endif
224
225 #ifndef percpu_sub
226 # define percpu_sub(var, val)           __percpu_generic_to_op(var, (val), -=)
227 #endif
228
229 #ifndef percpu_and
230 # define percpu_and(var, val)           __percpu_generic_to_op(var, (val), &=)
231 #endif
232
233 #ifndef percpu_or
234 # define percpu_or(var, val)            __percpu_generic_to_op(var, (val), |=)
235 #endif
236
237 #ifndef percpu_xor
238 # define percpu_xor(var, val)           __percpu_generic_to_op(var, (val), ^=)
239 #endif
240
241 /*
242  * Branching function to split up a function into a set of functions that
243  * are called for different scalar sizes of the objects handled.
244  */
245
246 extern void __bad_size_call_parameter(void);
247
248 #define __pcpu_size_call_return(stem, variable)                         \
249 ({      typeof(variable) pscr_ret__;                                    \
250         __verify_pcpu_ptr(&(variable));                                 \
251         switch(sizeof(variable)) {                                      \
252         case 1: pscr_ret__ = stem##1(variable);break;                   \
253         case 2: pscr_ret__ = stem##2(variable);break;                   \
254         case 4: pscr_ret__ = stem##4(variable);break;                   \
255         case 8: pscr_ret__ = stem##8(variable);break;                   \
256         default:                                                        \
257                 __bad_size_call_parameter();break;                      \
258         }                                                               \
259         pscr_ret__;                                                     \
260 })
261
262 #define __pcpu_size_call(stem, variable, ...)                           \
263 do {                                                                    \
264         __verify_pcpu_ptr(&(variable));                                 \
265         switch(sizeof(variable)) {                                      \
266                 case 1: stem##1(variable, __VA_ARGS__);break;           \
267                 case 2: stem##2(variable, __VA_ARGS__);break;           \
268                 case 4: stem##4(variable, __VA_ARGS__);break;           \
269                 case 8: stem##8(variable, __VA_ARGS__);break;           \
270                 default:                                                \
271                         __bad_size_call_parameter();break;              \
272         }                                                               \
273 } while (0)
274
275 /*
276  * Optimized manipulation for memory allocated through the per cpu
277  * allocator or for addresses of per cpu variables.
278  *
279  * These operation guarantee exclusivity of access for other operations
280  * on the *same* processor. The assumption is that per cpu data is only
281  * accessed by a single processor instance (the current one).
282  *
283  * The first group is used for accesses that must be done in a
284  * preemption safe way since we know that the context is not preempt
285  * safe. Interrupts may occur. If the interrupt modifies the variable
286  * too then RMW actions will not be reliable.
287  *
288  * The arch code can provide optimized functions in two ways:
289  *
290  * 1. Override the function completely. F.e. define this_cpu_add().
291  *    The arch must then ensure that the various scalar format passed
292  *    are handled correctly.
293  *
294  * 2. Provide functions for certain scalar sizes. F.e. provide
295  *    this_cpu_add_2() to provide per cpu atomic operations for 2 byte
296  *    sized RMW actions. If arch code does not provide operations for
297  *    a scalar size then the fallback in the generic code will be
298  *    used.
299  */
300
301 #define _this_cpu_generic_read(pcp)                                     \
302 ({      typeof(pcp) ret__;                                              \
303         preempt_disable();                                              \
304         ret__ = *this_cpu_ptr(&(pcp));                                  \
305         preempt_enable();                                               \
306         ret__;                                                          \
307 })
308
309 #ifndef this_cpu_read
310 # ifndef this_cpu_read_1
311 #  define this_cpu_read_1(pcp)  _this_cpu_generic_read(pcp)
312 # endif
313 # ifndef this_cpu_read_2
314 #  define this_cpu_read_2(pcp)  _this_cpu_generic_read(pcp)
315 # endif
316 # ifndef this_cpu_read_4
317 #  define this_cpu_read_4(pcp)  _this_cpu_generic_read(pcp)
318 # endif
319 # ifndef this_cpu_read_8
320 #  define this_cpu_read_8(pcp)  _this_cpu_generic_read(pcp)
321 # endif
322 # define this_cpu_read(pcp)     __pcpu_size_call_return(this_cpu_read_, (pcp))
323 #endif
324
325 #define _this_cpu_generic_to_op(pcp, val, op)                           \
326 do {                                                                    \
327         preempt_disable();                                              \
328         *__this_cpu_ptr(&(pcp)) op val;                                 \
329         preempt_enable();                                               \
330 } while (0)
331
332 #ifndef this_cpu_write
333 # ifndef this_cpu_write_1
334 #  define this_cpu_write_1(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
335 # endif
336 # ifndef this_cpu_write_2
337 #  define this_cpu_write_2(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
338 # endif
339 # ifndef this_cpu_write_4
340 #  define this_cpu_write_4(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
341 # endif
342 # ifndef this_cpu_write_8
343 #  define this_cpu_write_8(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
344 # endif
345 # define this_cpu_write(pcp, val)       __pcpu_size_call(this_cpu_write_, (pcp), (val))
346 #endif
347
348 #ifndef this_cpu_add
349 # ifndef this_cpu_add_1
350 #  define this_cpu_add_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
351 # endif
352 # ifndef this_cpu_add_2
353 #  define this_cpu_add_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
354 # endif
355 # ifndef this_cpu_add_4
356 #  define this_cpu_add_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
357 # endif
358 # ifndef this_cpu_add_8
359 #  define this_cpu_add_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
360 # endif
361 # define this_cpu_add(pcp, val)         __pcpu_size_call(this_cpu_add_, (pcp), (val))
362 #endif
363
364 #ifndef this_cpu_sub
365 # define this_cpu_sub(pcp, val)         this_cpu_add((pcp), -(val))
366 #endif
367
368 #ifndef this_cpu_inc
369 # define this_cpu_inc(pcp)              this_cpu_add((pcp), 1)
370 #endif
371
372 #ifndef this_cpu_dec
373 # define this_cpu_dec(pcp)              this_cpu_sub((pcp), 1)
374 #endif
375
376 #ifndef this_cpu_and
377 # ifndef this_cpu_and_1
378 #  define this_cpu_and_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
379 # endif
380 # ifndef this_cpu_and_2
381 #  define this_cpu_and_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
382 # endif
383 # ifndef this_cpu_and_4
384 #  define this_cpu_and_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
385 # endif
386 # ifndef this_cpu_and_8
387 #  define this_cpu_and_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
388 # endif
389 # define this_cpu_and(pcp, val)         __pcpu_size_call(this_cpu_and_, (pcp), (val))
390 #endif
391
392 #ifndef this_cpu_or
393 # ifndef this_cpu_or_1
394 #  define this_cpu_or_1(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
395 # endif
396 # ifndef this_cpu_or_2
397 #  define this_cpu_or_2(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
398 # endif
399 # ifndef this_cpu_or_4
400 #  define this_cpu_or_4(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
401 # endif
402 # ifndef this_cpu_or_8
403 #  define this_cpu_or_8(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
404 # endif
405 # define this_cpu_or(pcp, val)          __pcpu_size_call(this_cpu_or_, (pcp), (val))
406 #endif
407
408 #ifndef this_cpu_xor
409 # ifndef this_cpu_xor_1
410 #  define this_cpu_xor_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
411 # endif
412 # ifndef this_cpu_xor_2
413 #  define this_cpu_xor_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
414 # endif
415 # ifndef this_cpu_xor_4
416 #  define this_cpu_xor_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
417 # endif
418 # ifndef this_cpu_xor_8
419 #  define this_cpu_xor_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
420 # endif
421 # define this_cpu_xor(pcp, val)         __pcpu_size_call(this_cpu_or_, (pcp), (val))
422 #endif
423
424 /*
425  * Generic percpu operations that do not require preemption handling.
426  * Either we do not care about races or the caller has the
427  * responsibility of handling preemptions issues. Arch code can still
428  * override these instructions since the arch per cpu code may be more
429  * efficient and may actually get race freeness for free (that is the
430  * case for x86 for example).
431  *
432  * If there is no other protection through preempt disable and/or
433  * disabling interupts then one of these RMW operations can show unexpected
434  * behavior because the execution thread was rescheduled on another processor
435  * or an interrupt occurred and the same percpu variable was modified from
436  * the interrupt context.
437  */
438 #ifndef __this_cpu_read
439 # ifndef __this_cpu_read_1
440 #  define __this_cpu_read_1(pcp)        (*__this_cpu_ptr(&(pcp)))
441 # endif
442 # ifndef __this_cpu_read_2
443 #  define __this_cpu_read_2(pcp)        (*__this_cpu_ptr(&(pcp)))
444 # endif
445 # ifndef __this_cpu_read_4
446 #  define __this_cpu_read_4(pcp)        (*__this_cpu_ptr(&(pcp)))
447 # endif
448 # ifndef __this_cpu_read_8
449 #  define __this_cpu_read_8(pcp)        (*__this_cpu_ptr(&(pcp)))
450 # endif
451 # define __this_cpu_read(pcp)   __pcpu_size_call_return(__this_cpu_read_, (pcp))
452 #endif
453
454 #define __this_cpu_generic_to_op(pcp, val, op)                          \
455 do {                                                                    \
456         *__this_cpu_ptr(&(pcp)) op val;                                 \
457 } while (0)
458
459 #ifndef __this_cpu_write
460 # ifndef __this_cpu_write_1
461 #  define __this_cpu_write_1(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
462 # endif
463 # ifndef __this_cpu_write_2
464 #  define __this_cpu_write_2(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
465 # endif
466 # ifndef __this_cpu_write_4
467 #  define __this_cpu_write_4(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
468 # endif
469 # ifndef __this_cpu_write_8
470 #  define __this_cpu_write_8(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
471 # endif
472 # define __this_cpu_write(pcp, val)     __pcpu_size_call(__this_cpu_write_, (pcp), (val))
473 #endif
474
475 #ifndef __this_cpu_add
476 # ifndef __this_cpu_add_1
477 #  define __this_cpu_add_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
478 # endif
479 # ifndef __this_cpu_add_2
480 #  define __this_cpu_add_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
481 # endif
482 # ifndef __this_cpu_add_4
483 #  define __this_cpu_add_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
484 # endif
485 # ifndef __this_cpu_add_8
486 #  define __this_cpu_add_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
487 # endif
488 # define __this_cpu_add(pcp, val)       __pcpu_size_call(__this_cpu_add_, (pcp), (val))
489 #endif
490
491 #ifndef __this_cpu_sub
492 # define __this_cpu_sub(pcp, val)       __this_cpu_add((pcp), -(val))
493 #endif
494
495 #ifndef __this_cpu_inc
496 # define __this_cpu_inc(pcp)            __this_cpu_add((pcp), 1)
497 #endif
498
499 #ifndef __this_cpu_dec
500 # define __this_cpu_dec(pcp)            __this_cpu_sub((pcp), 1)
501 #endif
502
503 #ifndef __this_cpu_and
504 # ifndef __this_cpu_and_1
505 #  define __this_cpu_and_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
506 # endif
507 # ifndef __this_cpu_and_2
508 #  define __this_cpu_and_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
509 # endif
510 # ifndef __this_cpu_and_4
511 #  define __this_cpu_and_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
512 # endif
513 # ifndef __this_cpu_and_8
514 #  define __this_cpu_and_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
515 # endif
516 # define __this_cpu_and(pcp, val)       __pcpu_size_call(__this_cpu_and_, (pcp), (val))
517 #endif
518
519 #ifndef __this_cpu_or
520 # ifndef __this_cpu_or_1
521 #  define __this_cpu_or_1(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
522 # endif
523 # ifndef __this_cpu_or_2
524 #  define __this_cpu_or_2(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
525 # endif
526 # ifndef __this_cpu_or_4
527 #  define __this_cpu_or_4(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
528 # endif
529 # ifndef __this_cpu_or_8
530 #  define __this_cpu_or_8(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
531 # endif
532 # define __this_cpu_or(pcp, val)        __pcpu_size_call(__this_cpu_or_, (pcp), (val))
533 #endif
534
535 #ifndef __this_cpu_xor
536 # ifndef __this_cpu_xor_1
537 #  define __this_cpu_xor_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
538 # endif
539 # ifndef __this_cpu_xor_2
540 #  define __this_cpu_xor_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
541 # endif
542 # ifndef __this_cpu_xor_4
543 #  define __this_cpu_xor_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
544 # endif
545 # ifndef __this_cpu_xor_8
546 #  define __this_cpu_xor_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
547 # endif
548 # define __this_cpu_xor(pcp, val)       __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
549 #endif
550
551 /*
552  * IRQ safe versions of the per cpu RMW operations. Note that these operations
553  * are *not* safe against modification of the same variable from another
554  * processors (which one gets when using regular atomic operations)
555  . They are guaranteed to be atomic vs. local interrupts and
556  * preemption only.
557  */
558 #define irqsafe_cpu_generic_to_op(pcp, val, op)                         \
559 do {                                                                    \
560         unsigned long flags;                                            \
561         local_irq_save(flags);                                          \
562         *__this_cpu_ptr(&(pcp)) op val;                                 \
563         local_irq_restore(flags);                                       \
564 } while (0)
565
566 #ifndef irqsafe_cpu_add
567 # ifndef irqsafe_cpu_add_1
568 #  define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
569 # endif
570 # ifndef irqsafe_cpu_add_2
571 #  define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
572 # endif
573 # ifndef irqsafe_cpu_add_4
574 #  define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
575 # endif
576 # ifndef irqsafe_cpu_add_8
577 #  define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
578 # endif
579 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
580 #endif
581
582 #ifndef irqsafe_cpu_sub
583 # define irqsafe_cpu_sub(pcp, val)      irqsafe_cpu_add((pcp), -(val))
584 #endif
585
586 #ifndef irqsafe_cpu_inc
587 # define irqsafe_cpu_inc(pcp)   irqsafe_cpu_add((pcp), 1)
588 #endif
589
590 #ifndef irqsafe_cpu_dec
591 # define irqsafe_cpu_dec(pcp)   irqsafe_cpu_sub((pcp), 1)
592 #endif
593
594 #ifndef irqsafe_cpu_and
595 # ifndef irqsafe_cpu_and_1
596 #  define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
597 # endif
598 # ifndef irqsafe_cpu_and_2
599 #  define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
600 # endif
601 # ifndef irqsafe_cpu_and_4
602 #  define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
603 # endif
604 # ifndef irqsafe_cpu_and_8
605 #  define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
606 # endif
607 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
608 #endif
609
610 #ifndef irqsafe_cpu_or
611 # ifndef irqsafe_cpu_or_1
612 #  define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
613 # endif
614 # ifndef irqsafe_cpu_or_2
615 #  define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
616 # endif
617 # ifndef irqsafe_cpu_or_4
618 #  define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
619 # endif
620 # ifndef irqsafe_cpu_or_8
621 #  define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
622 # endif
623 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
624 #endif
625
626 #ifndef irqsafe_cpu_xor
627 # ifndef irqsafe_cpu_xor_1
628 #  define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
629 # endif
630 # ifndef irqsafe_cpu_xor_2
631 #  define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
632 # endif
633 # ifndef irqsafe_cpu_xor_4
634 #  define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
635 # endif
636 # ifndef irqsafe_cpu_xor_8
637 #  define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
638 # endif
639 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
640 #endif
641
642 #endif /* __LINUX_PERCPU_H */