Merge branch 'kvm-updates/2.6.39' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[pandora-kernel.git] / include / linux / percpu.h
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
3
4 #include <linux/preempt.h>
5 #include <linux/smp.h>
6 #include <linux/cpumask.h>
7 #include <linux/pfn.h>
8 #include <linux/init.h>
9
10 #include <asm/percpu.h>
11
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE           (8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE           0
17 #endif
18
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM                                              \
21         (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) +      \
22          PERCPU_MODULE_RESERVE)
23 #endif
24
25 /*
26  * Must be an lvalue. Since @var must be a simple identifier,
27  * we force a syntax error here if it isn't.
28  */
29 #define get_cpu_var(var) (*({                           \
30         preempt_disable();                              \
31         &__get_cpu_var(var); }))
32
33 /*
34  * The weird & is necessary because sparse considers (void)(var) to be
35  * a direct dereference of percpu variable (var).
36  */
37 #define put_cpu_var(var) do {                           \
38         (void)&(var);                                   \
39         preempt_enable();                               \
40 } while (0)
41
42 #define get_cpu_ptr(var) ({                             \
43         preempt_disable();                              \
44         this_cpu_ptr(var); })
45
46 #define put_cpu_ptr(var) do {                           \
47         (void)(var);                                    \
48         preempt_enable();                               \
49 } while (0)
50
51 /* minimum unit size, also is the maximum supported allocation size */
52 #define PCPU_MIN_UNIT_SIZE              PFN_ALIGN(32 << 10)
53
54 /*
55  * Percpu allocator can serve percpu allocations before slab is
56  * initialized which allows slab to depend on the percpu allocator.
57  * The following two parameters decide how much resource to
58  * preallocate for this.  Keep PERCPU_DYNAMIC_RESERVE equal to or
59  * larger than PERCPU_DYNAMIC_EARLY_SIZE.
60  */
61 #define PERCPU_DYNAMIC_EARLY_SLOTS      128
62 #define PERCPU_DYNAMIC_EARLY_SIZE       (12 << 10)
63
64 /*
65  * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
66  * back on the first chunk for dynamic percpu allocation if arch is
67  * manually allocating and mapping it for faster access (as a part of
68  * large page mapping for example).
69  *
70  * The following values give between one and two pages of free space
71  * after typical minimal boot (2-way SMP, single disk and NIC) with
72  * both defconfig and a distro config on x86_64 and 32.  More
73  * intelligent way to determine this would be nice.
74  */
75 #if BITS_PER_LONG > 32
76 #define PERCPU_DYNAMIC_RESERVE          (20 << 10)
77 #else
78 #define PERCPU_DYNAMIC_RESERVE          (12 << 10)
79 #endif
80
81 extern void *pcpu_base_addr;
82 extern const unsigned long *pcpu_unit_offsets;
83
84 struct pcpu_group_info {
85         int                     nr_units;       /* aligned # of units */
86         unsigned long           base_offset;    /* base address offset */
87         unsigned int            *cpu_map;       /* unit->cpu map, empty
88                                                  * entries contain NR_CPUS */
89 };
90
91 struct pcpu_alloc_info {
92         size_t                  static_size;
93         size_t                  reserved_size;
94         size_t                  dyn_size;
95         size_t                  unit_size;
96         size_t                  atom_size;
97         size_t                  alloc_size;
98         size_t                  __ai_size;      /* internal, don't use */
99         int                     nr_groups;      /* 0 if grouping unnecessary */
100         struct pcpu_group_info  groups[];
101 };
102
103 enum pcpu_fc {
104         PCPU_FC_AUTO,
105         PCPU_FC_EMBED,
106         PCPU_FC_PAGE,
107
108         PCPU_FC_NR,
109 };
110 extern const char *pcpu_fc_names[PCPU_FC_NR];
111
112 extern enum pcpu_fc pcpu_chosen_fc;
113
114 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
115                                      size_t align);
116 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
117 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
118 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
119
120 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
121                                                              int nr_units);
122 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
123
124 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
125                                          void *base_addr);
126
127 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
128 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
129                                 size_t atom_size,
130                                 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
131                                 pcpu_fc_alloc_fn_t alloc_fn,
132                                 pcpu_fc_free_fn_t free_fn);
133 #endif
134
135 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
136 extern int __init pcpu_page_first_chunk(size_t reserved_size,
137                                 pcpu_fc_alloc_fn_t alloc_fn,
138                                 pcpu_fc_free_fn_t free_fn,
139                                 pcpu_fc_populate_pte_fn_t populate_pte_fn);
140 #endif
141
142 /*
143  * Use this to get to a cpu's version of the per-cpu object
144  * dynamically allocated. Non-atomic access to the current CPU's
145  * version should probably be combined with get_cpu()/put_cpu().
146  */
147 #ifdef CONFIG_SMP
148 #define per_cpu_ptr(ptr, cpu)   SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
149 #else
150 #define per_cpu_ptr(ptr, cpu)   ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
151 #endif
152
153 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
154 extern bool is_kernel_percpu_address(unsigned long addr);
155
156 #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
157 extern void __init setup_per_cpu_areas(void);
158 #endif
159 extern void __init percpu_init_late(void);
160
161 extern void __percpu *__alloc_percpu(size_t size, size_t align);
162 extern void free_percpu(void __percpu *__pdata);
163 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
164
165 #define alloc_percpu(type)      \
166         (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
167
168 /*
169  * Optional methods for optimized non-lvalue per-cpu variable access.
170  *
171  * @var can be a percpu variable or a field of it and its size should
172  * equal char, int or long.  percpu_read() evaluates to a lvalue and
173  * all others to void.
174  *
175  * These operations are guaranteed to be atomic w.r.t. preemption.
176  * The generic versions use plain get/put_cpu_var().  Archs are
177  * encouraged to implement single-instruction alternatives which don't
178  * require preemption protection.
179  */
180 #ifndef percpu_read
181 # define percpu_read(var)                                               \
182   ({                                                                    \
183         typeof(var) *pr_ptr__ = &(var);                                 \
184         typeof(var) pr_ret__;                                           \
185         pr_ret__ = get_cpu_var(*pr_ptr__);                              \
186         put_cpu_var(*pr_ptr__);                                         \
187         pr_ret__;                                                       \
188   })
189 #endif
190
191 #define __percpu_generic_to_op(var, val, op)                            \
192 do {                                                                    \
193         typeof(var) *pgto_ptr__ = &(var);                               \
194         get_cpu_var(*pgto_ptr__) op val;                                \
195         put_cpu_var(*pgto_ptr__);                                       \
196 } while (0)
197
198 #ifndef percpu_write
199 # define percpu_write(var, val)         __percpu_generic_to_op(var, (val), =)
200 #endif
201
202 #ifndef percpu_add
203 # define percpu_add(var, val)           __percpu_generic_to_op(var, (val), +=)
204 #endif
205
206 #ifndef percpu_sub
207 # define percpu_sub(var, val)           __percpu_generic_to_op(var, (val), -=)
208 #endif
209
210 #ifndef percpu_and
211 # define percpu_and(var, val)           __percpu_generic_to_op(var, (val), &=)
212 #endif
213
214 #ifndef percpu_or
215 # define percpu_or(var, val)            __percpu_generic_to_op(var, (val), |=)
216 #endif
217
218 #ifndef percpu_xor
219 # define percpu_xor(var, val)           __percpu_generic_to_op(var, (val), ^=)
220 #endif
221
222 /*
223  * Branching function to split up a function into a set of functions that
224  * are called for different scalar sizes of the objects handled.
225  */
226
227 extern void __bad_size_call_parameter(void);
228
229 #define __pcpu_size_call_return(stem, variable)                         \
230 ({      typeof(variable) pscr_ret__;                                    \
231         __verify_pcpu_ptr(&(variable));                                 \
232         switch(sizeof(variable)) {                                      \
233         case 1: pscr_ret__ = stem##1(variable);break;                   \
234         case 2: pscr_ret__ = stem##2(variable);break;                   \
235         case 4: pscr_ret__ = stem##4(variable);break;                   \
236         case 8: pscr_ret__ = stem##8(variable);break;                   \
237         default:                                                        \
238                 __bad_size_call_parameter();break;                      \
239         }                                                               \
240         pscr_ret__;                                                     \
241 })
242
243 #define __pcpu_size_call_return2(stem, variable, ...)                   \
244 ({                                                                      \
245         typeof(variable) pscr2_ret__;                                   \
246         __verify_pcpu_ptr(&(variable));                                 \
247         switch(sizeof(variable)) {                                      \
248         case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;    \
249         case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;    \
250         case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;    \
251         case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;    \
252         default:                                                        \
253                 __bad_size_call_parameter(); break;                     \
254         }                                                               \
255         pscr2_ret__;                                                    \
256 })
257
258 /*
259  * Special handling for cmpxchg_double.  cmpxchg_double is passed two
260  * percpu variables.  The first has to be aligned to a double word
261  * boundary and the second has to follow directly thereafter.
262  */
263 #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...)           \
264 ({                                                                      \
265         bool pdcrb_ret__;                                               \
266         __verify_pcpu_ptr(&pcp1);                                       \
267         BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2));                     \
268         VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1)));         \
269         VM_BUG_ON((unsigned long)(&pcp2) !=                             \
270                   (unsigned long)(&pcp1) + sizeof(pcp1));               \
271         switch(sizeof(pcp1)) {                                          \
272         case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break;  \
273         case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break;  \
274         case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break;  \
275         case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break;  \
276         default:                                                        \
277                 __bad_size_call_parameter(); break;                     \
278         }                                                               \
279         pdcrb_ret__;                                                    \
280 })
281
282 #define __pcpu_size_call(stem, variable, ...)                           \
283 do {                                                                    \
284         __verify_pcpu_ptr(&(variable));                                 \
285         switch(sizeof(variable)) {                                      \
286                 case 1: stem##1(variable, __VA_ARGS__);break;           \
287                 case 2: stem##2(variable, __VA_ARGS__);break;           \
288                 case 4: stem##4(variable, __VA_ARGS__);break;           \
289                 case 8: stem##8(variable, __VA_ARGS__);break;           \
290                 default:                                                \
291                         __bad_size_call_parameter();break;              \
292         }                                                               \
293 } while (0)
294
295 /*
296  * Optimized manipulation for memory allocated through the per cpu
297  * allocator or for addresses of per cpu variables.
298  *
299  * These operation guarantee exclusivity of access for other operations
300  * on the *same* processor. The assumption is that per cpu data is only
301  * accessed by a single processor instance (the current one).
302  *
303  * The first group is used for accesses that must be done in a
304  * preemption safe way since we know that the context is not preempt
305  * safe. Interrupts may occur. If the interrupt modifies the variable
306  * too then RMW actions will not be reliable.
307  *
308  * The arch code can provide optimized functions in two ways:
309  *
310  * 1. Override the function completely. F.e. define this_cpu_add().
311  *    The arch must then ensure that the various scalar format passed
312  *    are handled correctly.
313  *
314  * 2. Provide functions for certain scalar sizes. F.e. provide
315  *    this_cpu_add_2() to provide per cpu atomic operations for 2 byte
316  *    sized RMW actions. If arch code does not provide operations for
317  *    a scalar size then the fallback in the generic code will be
318  *    used.
319  */
320
321 #define _this_cpu_generic_read(pcp)                                     \
322 ({      typeof(pcp) ret__;                                              \
323         preempt_disable();                                              \
324         ret__ = *this_cpu_ptr(&(pcp));                                  \
325         preempt_enable();                                               \
326         ret__;                                                          \
327 })
328
329 #ifndef this_cpu_read
330 # ifndef this_cpu_read_1
331 #  define this_cpu_read_1(pcp)  _this_cpu_generic_read(pcp)
332 # endif
333 # ifndef this_cpu_read_2
334 #  define this_cpu_read_2(pcp)  _this_cpu_generic_read(pcp)
335 # endif
336 # ifndef this_cpu_read_4
337 #  define this_cpu_read_4(pcp)  _this_cpu_generic_read(pcp)
338 # endif
339 # ifndef this_cpu_read_8
340 #  define this_cpu_read_8(pcp)  _this_cpu_generic_read(pcp)
341 # endif
342 # define this_cpu_read(pcp)     __pcpu_size_call_return(this_cpu_read_, (pcp))
343 #endif
344
345 #define _this_cpu_generic_to_op(pcp, val, op)                           \
346 do {                                                                    \
347         preempt_disable();                                              \
348         *__this_cpu_ptr(&(pcp)) op val;                                 \
349         preempt_enable();                                               \
350 } while (0)
351
352 #ifndef this_cpu_write
353 # ifndef this_cpu_write_1
354 #  define this_cpu_write_1(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
355 # endif
356 # ifndef this_cpu_write_2
357 #  define this_cpu_write_2(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
358 # endif
359 # ifndef this_cpu_write_4
360 #  define this_cpu_write_4(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
361 # endif
362 # ifndef this_cpu_write_8
363 #  define this_cpu_write_8(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
364 # endif
365 # define this_cpu_write(pcp, val)       __pcpu_size_call(this_cpu_write_, (pcp), (val))
366 #endif
367
368 #ifndef this_cpu_add
369 # ifndef this_cpu_add_1
370 #  define this_cpu_add_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
371 # endif
372 # ifndef this_cpu_add_2
373 #  define this_cpu_add_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
374 # endif
375 # ifndef this_cpu_add_4
376 #  define this_cpu_add_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
377 # endif
378 # ifndef this_cpu_add_8
379 #  define this_cpu_add_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
380 # endif
381 # define this_cpu_add(pcp, val)         __pcpu_size_call(this_cpu_add_, (pcp), (val))
382 #endif
383
384 #ifndef this_cpu_sub
385 # define this_cpu_sub(pcp, val)         this_cpu_add((pcp), -(val))
386 #endif
387
388 #ifndef this_cpu_inc
389 # define this_cpu_inc(pcp)              this_cpu_add((pcp), 1)
390 #endif
391
392 #ifndef this_cpu_dec
393 # define this_cpu_dec(pcp)              this_cpu_sub((pcp), 1)
394 #endif
395
396 #ifndef this_cpu_and
397 # ifndef this_cpu_and_1
398 #  define this_cpu_and_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
399 # endif
400 # ifndef this_cpu_and_2
401 #  define this_cpu_and_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
402 # endif
403 # ifndef this_cpu_and_4
404 #  define this_cpu_and_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
405 # endif
406 # ifndef this_cpu_and_8
407 #  define this_cpu_and_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
408 # endif
409 # define this_cpu_and(pcp, val)         __pcpu_size_call(this_cpu_and_, (pcp), (val))
410 #endif
411
412 #ifndef this_cpu_or
413 # ifndef this_cpu_or_1
414 #  define this_cpu_or_1(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
415 # endif
416 # ifndef this_cpu_or_2
417 #  define this_cpu_or_2(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
418 # endif
419 # ifndef this_cpu_or_4
420 #  define this_cpu_or_4(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
421 # endif
422 # ifndef this_cpu_or_8
423 #  define this_cpu_or_8(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
424 # endif
425 # define this_cpu_or(pcp, val)          __pcpu_size_call(this_cpu_or_, (pcp), (val))
426 #endif
427
428 #ifndef this_cpu_xor
429 # ifndef this_cpu_xor_1
430 #  define this_cpu_xor_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
431 # endif
432 # ifndef this_cpu_xor_2
433 #  define this_cpu_xor_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
434 # endif
435 # ifndef this_cpu_xor_4
436 #  define this_cpu_xor_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
437 # endif
438 # ifndef this_cpu_xor_8
439 #  define this_cpu_xor_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
440 # endif
441 # define this_cpu_xor(pcp, val)         __pcpu_size_call(this_cpu_or_, (pcp), (val))
442 #endif
443
444 #define _this_cpu_generic_add_return(pcp, val)                          \
445 ({                                                                      \
446         typeof(pcp) ret__;                                              \
447         preempt_disable();                                              \
448         __this_cpu_add(pcp, val);                                       \
449         ret__ = __this_cpu_read(pcp);                                   \
450         preempt_enable();                                               \
451         ret__;                                                          \
452 })
453
454 #ifndef this_cpu_add_return
455 # ifndef this_cpu_add_return_1
456 #  define this_cpu_add_return_1(pcp, val)       _this_cpu_generic_add_return(pcp, val)
457 # endif
458 # ifndef this_cpu_add_return_2
459 #  define this_cpu_add_return_2(pcp, val)       _this_cpu_generic_add_return(pcp, val)
460 # endif
461 # ifndef this_cpu_add_return_4
462 #  define this_cpu_add_return_4(pcp, val)       _this_cpu_generic_add_return(pcp, val)
463 # endif
464 # ifndef this_cpu_add_return_8
465 #  define this_cpu_add_return_8(pcp, val)       _this_cpu_generic_add_return(pcp, val)
466 # endif
467 # define this_cpu_add_return(pcp, val)  __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
468 #endif
469
470 #define this_cpu_sub_return(pcp, val)   this_cpu_add_return(pcp, -(val))
471 #define this_cpu_inc_return(pcp)        this_cpu_add_return(pcp, 1)
472 #define this_cpu_dec_return(pcp)        this_cpu_add_return(pcp, -1)
473
474 #define _this_cpu_generic_xchg(pcp, nval)                               \
475 ({      typeof(pcp) ret__;                                              \
476         preempt_disable();                                              \
477         ret__ = __this_cpu_read(pcp);                                   \
478         __this_cpu_write(pcp, nval);                                    \
479         preempt_enable();                                               \
480         ret__;                                                          \
481 })
482
483 #ifndef this_cpu_xchg
484 # ifndef this_cpu_xchg_1
485 #  define this_cpu_xchg_1(pcp, nval)    _this_cpu_generic_xchg(pcp, nval)
486 # endif
487 # ifndef this_cpu_xchg_2
488 #  define this_cpu_xchg_2(pcp, nval)    _this_cpu_generic_xchg(pcp, nval)
489 # endif
490 # ifndef this_cpu_xchg_4
491 #  define this_cpu_xchg_4(pcp, nval)    _this_cpu_generic_xchg(pcp, nval)
492 # endif
493 # ifndef this_cpu_xchg_8
494 #  define this_cpu_xchg_8(pcp, nval)    _this_cpu_generic_xchg(pcp, nval)
495 # endif
496 # define this_cpu_xchg(pcp, nval)       \
497         __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
498 #endif
499
500 #define _this_cpu_generic_cmpxchg(pcp, oval, nval)                      \
501 ({      typeof(pcp) ret__;                                              \
502         preempt_disable();                                              \
503         ret__ = __this_cpu_read(pcp);                                   \
504         if (ret__ == (oval))                                            \
505                 __this_cpu_write(pcp, nval);                            \
506         preempt_enable();                                               \
507         ret__;                                                          \
508 })
509
510 #ifndef this_cpu_cmpxchg
511 # ifndef this_cpu_cmpxchg_1
512 #  define this_cpu_cmpxchg_1(pcp, oval, nval)   _this_cpu_generic_cmpxchg(pcp, oval, nval)
513 # endif
514 # ifndef this_cpu_cmpxchg_2
515 #  define this_cpu_cmpxchg_2(pcp, oval, nval)   _this_cpu_generic_cmpxchg(pcp, oval, nval)
516 # endif
517 # ifndef this_cpu_cmpxchg_4
518 #  define this_cpu_cmpxchg_4(pcp, oval, nval)   _this_cpu_generic_cmpxchg(pcp, oval, nval)
519 # endif
520 # ifndef this_cpu_cmpxchg_8
521 #  define this_cpu_cmpxchg_8(pcp, oval, nval)   _this_cpu_generic_cmpxchg(pcp, oval, nval)
522 # endif
523 # define this_cpu_cmpxchg(pcp, oval, nval)      \
524         __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
525 #endif
526
527 /*
528  * cmpxchg_double replaces two adjacent scalars at once.  The first
529  * two parameters are per cpu variables which have to be of the same
530  * size.  A truth value is returned to indicate success or failure
531  * (since a double register result is difficult to handle).  There is
532  * very limited hardware support for these operations, so only certain
533  * sizes may work.
534  */
535 #define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)        \
536 ({                                                                      \
537         int ret__;                                                      \
538         preempt_disable();                                              \
539         ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2,           \
540                         oval1, oval2, nval1, nval2);                    \
541         preempt_enable();                                               \
542         ret__;                                                          \
543 })
544
545 #ifndef this_cpu_cmpxchg_double
546 # ifndef this_cpu_cmpxchg_double_1
547 #  define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)     \
548         _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
549 # endif
550 # ifndef this_cpu_cmpxchg_double_2
551 #  define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)     \
552         _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
553 # endif
554 # ifndef this_cpu_cmpxchg_double_4
555 #  define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)     \
556         _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
557 # endif
558 # ifndef this_cpu_cmpxchg_double_8
559 #  define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)     \
560         _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
561 # endif
562 # define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)        \
563         __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
564 #endif
565
566 /*
567  * Generic percpu operations that do not require preemption handling.
568  * Either we do not care about races or the caller has the
569  * responsibility of handling preemptions issues. Arch code can still
570  * override these instructions since the arch per cpu code may be more
571  * efficient and may actually get race freeness for free (that is the
572  * case for x86 for example).
573  *
574  * If there is no other protection through preempt disable and/or
575  * disabling interupts then one of these RMW operations can show unexpected
576  * behavior because the execution thread was rescheduled on another processor
577  * or an interrupt occurred and the same percpu variable was modified from
578  * the interrupt context.
579  */
580 #ifndef __this_cpu_read
581 # ifndef __this_cpu_read_1
582 #  define __this_cpu_read_1(pcp)        (*__this_cpu_ptr(&(pcp)))
583 # endif
584 # ifndef __this_cpu_read_2
585 #  define __this_cpu_read_2(pcp)        (*__this_cpu_ptr(&(pcp)))
586 # endif
587 # ifndef __this_cpu_read_4
588 #  define __this_cpu_read_4(pcp)        (*__this_cpu_ptr(&(pcp)))
589 # endif
590 # ifndef __this_cpu_read_8
591 #  define __this_cpu_read_8(pcp)        (*__this_cpu_ptr(&(pcp)))
592 # endif
593 # define __this_cpu_read(pcp)   __pcpu_size_call_return(__this_cpu_read_, (pcp))
594 #endif
595
596 #define __this_cpu_generic_to_op(pcp, val, op)                          \
597 do {                                                                    \
598         *__this_cpu_ptr(&(pcp)) op val;                                 \
599 } while (0)
600
601 #ifndef __this_cpu_write
602 # ifndef __this_cpu_write_1
603 #  define __this_cpu_write_1(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
604 # endif
605 # ifndef __this_cpu_write_2
606 #  define __this_cpu_write_2(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
607 # endif
608 # ifndef __this_cpu_write_4
609 #  define __this_cpu_write_4(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
610 # endif
611 # ifndef __this_cpu_write_8
612 #  define __this_cpu_write_8(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
613 # endif
614 # define __this_cpu_write(pcp, val)     __pcpu_size_call(__this_cpu_write_, (pcp), (val))
615 #endif
616
617 #ifndef __this_cpu_add
618 # ifndef __this_cpu_add_1
619 #  define __this_cpu_add_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
620 # endif
621 # ifndef __this_cpu_add_2
622 #  define __this_cpu_add_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
623 # endif
624 # ifndef __this_cpu_add_4
625 #  define __this_cpu_add_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
626 # endif
627 # ifndef __this_cpu_add_8
628 #  define __this_cpu_add_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
629 # endif
630 # define __this_cpu_add(pcp, val)       __pcpu_size_call(__this_cpu_add_, (pcp), (val))
631 #endif
632
633 #ifndef __this_cpu_sub
634 # define __this_cpu_sub(pcp, val)       __this_cpu_add((pcp), -(val))
635 #endif
636
637 #ifndef __this_cpu_inc
638 # define __this_cpu_inc(pcp)            __this_cpu_add((pcp), 1)
639 #endif
640
641 #ifndef __this_cpu_dec
642 # define __this_cpu_dec(pcp)            __this_cpu_sub((pcp), 1)
643 #endif
644
645 #ifndef __this_cpu_and
646 # ifndef __this_cpu_and_1
647 #  define __this_cpu_and_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
648 # endif
649 # ifndef __this_cpu_and_2
650 #  define __this_cpu_and_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
651 # endif
652 # ifndef __this_cpu_and_4
653 #  define __this_cpu_and_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
654 # endif
655 # ifndef __this_cpu_and_8
656 #  define __this_cpu_and_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
657 # endif
658 # define __this_cpu_and(pcp, val)       __pcpu_size_call(__this_cpu_and_, (pcp), (val))
659 #endif
660
661 #ifndef __this_cpu_or
662 # ifndef __this_cpu_or_1
663 #  define __this_cpu_or_1(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
664 # endif
665 # ifndef __this_cpu_or_2
666 #  define __this_cpu_or_2(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
667 # endif
668 # ifndef __this_cpu_or_4
669 #  define __this_cpu_or_4(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
670 # endif
671 # ifndef __this_cpu_or_8
672 #  define __this_cpu_or_8(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
673 # endif
674 # define __this_cpu_or(pcp, val)        __pcpu_size_call(__this_cpu_or_, (pcp), (val))
675 #endif
676
677 #ifndef __this_cpu_xor
678 # ifndef __this_cpu_xor_1
679 #  define __this_cpu_xor_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
680 # endif
681 # ifndef __this_cpu_xor_2
682 #  define __this_cpu_xor_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
683 # endif
684 # ifndef __this_cpu_xor_4
685 #  define __this_cpu_xor_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
686 # endif
687 # ifndef __this_cpu_xor_8
688 #  define __this_cpu_xor_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
689 # endif
690 # define __this_cpu_xor(pcp, val)       __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
691 #endif
692
693 #define __this_cpu_generic_add_return(pcp, val)                         \
694 ({                                                                      \
695         __this_cpu_add(pcp, val);                                       \
696         __this_cpu_read(pcp);                                           \
697 })
698
699 #ifndef __this_cpu_add_return
700 # ifndef __this_cpu_add_return_1
701 #  define __this_cpu_add_return_1(pcp, val)     __this_cpu_generic_add_return(pcp, val)
702 # endif
703 # ifndef __this_cpu_add_return_2
704 #  define __this_cpu_add_return_2(pcp, val)     __this_cpu_generic_add_return(pcp, val)
705 # endif
706 # ifndef __this_cpu_add_return_4
707 #  define __this_cpu_add_return_4(pcp, val)     __this_cpu_generic_add_return(pcp, val)
708 # endif
709 # ifndef __this_cpu_add_return_8
710 #  define __this_cpu_add_return_8(pcp, val)     __this_cpu_generic_add_return(pcp, val)
711 # endif
712 # define __this_cpu_add_return(pcp, val)        __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
713 #endif
714
715 #define __this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
716 #define __this_cpu_inc_return(pcp)      this_cpu_add_return(pcp, 1)
717 #define __this_cpu_dec_return(pcp)      this_cpu_add_return(pcp, -1)
718
719 #define __this_cpu_generic_xchg(pcp, nval)                              \
720 ({      typeof(pcp) ret__;                                              \
721         ret__ = __this_cpu_read(pcp);                                   \
722         __this_cpu_write(pcp, nval);                                    \
723         ret__;                                                          \
724 })
725
726 #ifndef __this_cpu_xchg
727 # ifndef __this_cpu_xchg_1
728 #  define __this_cpu_xchg_1(pcp, nval)  __this_cpu_generic_xchg(pcp, nval)
729 # endif
730 # ifndef __this_cpu_xchg_2
731 #  define __this_cpu_xchg_2(pcp, nval)  __this_cpu_generic_xchg(pcp, nval)
732 # endif
733 # ifndef __this_cpu_xchg_4
734 #  define __this_cpu_xchg_4(pcp, nval)  __this_cpu_generic_xchg(pcp, nval)
735 # endif
736 # ifndef __this_cpu_xchg_8
737 #  define __this_cpu_xchg_8(pcp, nval)  __this_cpu_generic_xchg(pcp, nval)
738 # endif
739 # define __this_cpu_xchg(pcp, nval)     \
740         __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
741 #endif
742
743 #define __this_cpu_generic_cmpxchg(pcp, oval, nval)                     \
744 ({                                                                      \
745         typeof(pcp) ret__;                                              \
746         ret__ = __this_cpu_read(pcp);                                   \
747         if (ret__ == (oval))                                            \
748                 __this_cpu_write(pcp, nval);                            \
749         ret__;                                                          \
750 })
751
752 #ifndef __this_cpu_cmpxchg
753 # ifndef __this_cpu_cmpxchg_1
754 #  define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
755 # endif
756 # ifndef __this_cpu_cmpxchg_2
757 #  define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
758 # endif
759 # ifndef __this_cpu_cmpxchg_4
760 #  define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
761 # endif
762 # ifndef __this_cpu_cmpxchg_8
763 #  define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
764 # endif
765 # define __this_cpu_cmpxchg(pcp, oval, nval)    \
766         __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
767 #endif
768
769 #define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)       \
770 ({                                                                      \
771         int __ret = 0;                                                  \
772         if (__this_cpu_read(pcp1) == (oval1) &&                         \
773                          __this_cpu_read(pcp2)  == (oval2)) {           \
774                 __this_cpu_write(pcp1, (nval1));                        \
775                 __this_cpu_write(pcp2, (nval2));                        \
776                 __ret = 1;                                              \
777         }                                                               \
778         (__ret);                                                        \
779 })
780
781 #ifndef __this_cpu_cmpxchg_double
782 # ifndef __this_cpu_cmpxchg_double_1
783 #  define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)   \
784         __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
785 # endif
786 # ifndef __this_cpu_cmpxchg_double_2
787 #  define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)   \
788         __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
789 # endif
790 # ifndef __this_cpu_cmpxchg_double_4
791 #  define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)   \
792         __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
793 # endif
794 # ifndef __this_cpu_cmpxchg_double_8
795 #  define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)   \
796         __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
797 # endif
798 # define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)      \
799         __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
800 #endif
801
802 /*
803  * IRQ safe versions of the per cpu RMW operations. Note that these operations
804  * are *not* safe against modification of the same variable from another
805  * processors (which one gets when using regular atomic operations)
806  * They are guaranteed to be atomic vs. local interrupts and
807  * preemption only.
808  */
809 #define irqsafe_cpu_generic_to_op(pcp, val, op)                         \
810 do {                                                                    \
811         unsigned long flags;                                            \
812         local_irq_save(flags);                                          \
813         *__this_cpu_ptr(&(pcp)) op val;                                 \
814         local_irq_restore(flags);                                       \
815 } while (0)
816
817 #ifndef irqsafe_cpu_add
818 # ifndef irqsafe_cpu_add_1
819 #  define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
820 # endif
821 # ifndef irqsafe_cpu_add_2
822 #  define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
823 # endif
824 # ifndef irqsafe_cpu_add_4
825 #  define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
826 # endif
827 # ifndef irqsafe_cpu_add_8
828 #  define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
829 # endif
830 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
831 #endif
832
833 #ifndef irqsafe_cpu_sub
834 # define irqsafe_cpu_sub(pcp, val)      irqsafe_cpu_add((pcp), -(val))
835 #endif
836
837 #ifndef irqsafe_cpu_inc
838 # define irqsafe_cpu_inc(pcp)   irqsafe_cpu_add((pcp), 1)
839 #endif
840
841 #ifndef irqsafe_cpu_dec
842 # define irqsafe_cpu_dec(pcp)   irqsafe_cpu_sub((pcp), 1)
843 #endif
844
845 #ifndef irqsafe_cpu_and
846 # ifndef irqsafe_cpu_and_1
847 #  define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
848 # endif
849 # ifndef irqsafe_cpu_and_2
850 #  define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
851 # endif
852 # ifndef irqsafe_cpu_and_4
853 #  define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
854 # endif
855 # ifndef irqsafe_cpu_and_8
856 #  define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
857 # endif
858 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
859 #endif
860
861 #ifndef irqsafe_cpu_or
862 # ifndef irqsafe_cpu_or_1
863 #  define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
864 # endif
865 # ifndef irqsafe_cpu_or_2
866 #  define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
867 # endif
868 # ifndef irqsafe_cpu_or_4
869 #  define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
870 # endif
871 # ifndef irqsafe_cpu_or_8
872 #  define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
873 # endif
874 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
875 #endif
876
877 #ifndef irqsafe_cpu_xor
878 # ifndef irqsafe_cpu_xor_1
879 #  define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
880 # endif
881 # ifndef irqsafe_cpu_xor_2
882 #  define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
883 # endif
884 # ifndef irqsafe_cpu_xor_4
885 #  define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
886 # endif
887 # ifndef irqsafe_cpu_xor_8
888 #  define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
889 # endif
890 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
891 #endif
892
893 #define irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)                    \
894 ({                                                                      \
895         typeof(pcp) ret__;                                              \
896         unsigned long flags;                                            \
897         local_irq_save(flags);                                          \
898         ret__ = __this_cpu_read(pcp);                                   \
899         if (ret__ == (oval))                                            \
900                 __this_cpu_write(pcp, nval);                            \
901         local_irq_restore(flags);                                       \
902         ret__;                                                          \
903 })
904
905 #ifndef irqsafe_cpu_cmpxchg
906 # ifndef irqsafe_cpu_cmpxchg_1
907 #  define irqsafe_cpu_cmpxchg_1(pcp, oval, nval)        irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
908 # endif
909 # ifndef irqsafe_cpu_cmpxchg_2
910 #  define irqsafe_cpu_cmpxchg_2(pcp, oval, nval)        irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
911 # endif
912 # ifndef irqsafe_cpu_cmpxchg_4
913 #  define irqsafe_cpu_cmpxchg_4(pcp, oval, nval)        irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
914 # endif
915 # ifndef irqsafe_cpu_cmpxchg_8
916 #  define irqsafe_cpu_cmpxchg_8(pcp, oval, nval)        irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
917 # endif
918 # define irqsafe_cpu_cmpxchg(pcp, oval, nval)           \
919         __pcpu_size_call_return2(irqsafe_cpu_cmpxchg_, (pcp), oval, nval)
920 #endif
921
922 #define irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)      \
923 ({                                                                      \
924         int ret__;                                                      \
925         unsigned long flags;                                            \
926         local_irq_save(flags);                                          \
927         ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2,           \
928                         oval1, oval2, nval1, nval2);                    \
929         local_irq_restore(flags);                                       \
930         ret__;                                                          \
931 })
932
933 #ifndef irqsafe_cpu_cmpxchg_double
934 # ifndef irqsafe_cpu_cmpxchg_double_1
935 #  define irqsafe_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)  \
936         irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
937 # endif
938 # ifndef irqsafe_cpu_cmpxchg_double_2
939 #  define irqsafe_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)  \
940         irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
941 # endif
942 # ifndef irqsafe_cpu_cmpxchg_double_4
943 #  define irqsafe_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)  \
944         irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
945 # endif
946 # ifndef irqsafe_cpu_cmpxchg_double_8
947 #  define irqsafe_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)  \
948         irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
949 # endif
950 # define irqsafe_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)     \
951         __pcpu_double_call_return_int(irqsafe_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
952 #endif
953
954 #endif /* __LINUX_PERCPU_H */