mm: compaction: make isolate_lru_page() filter-aware again
[pandora-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE       3
43 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
44 #define MIGRATE_TYPES         5
45
46 #define for_each_migratetype_order(order, type) \
47         for (order = 0; order < MAX_ORDER; order++) \
48                 for (type = 0; type < MIGRATE_TYPES; type++)
49
50 extern int page_group_by_mobility_disabled;
51
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54         return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56
57 struct free_area {
58         struct list_head        free_list[MIGRATE_TYPES];
59         unsigned long           nr_free;
60 };
61
62 struct pglist_data;
63
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72         char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)      struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78
79 enum zone_stat_item {
80         /* First 128 byte cacheline (assuming 64 bit words) */
81         NR_FREE_PAGES,
82         NR_LRU_BASE,
83         NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84         NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
85         NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
86         NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
87         NR_UNEVICTABLE,         /*  "     "     "   "       "         */
88         NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
89         NR_ANON_PAGES,  /* Mapped anonymous pages */
90         NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
91                            only modified from process context */
92         NR_FILE_PAGES,
93         NR_FILE_DIRTY,
94         NR_WRITEBACK,
95         NR_SLAB_RECLAIMABLE,
96         NR_SLAB_UNRECLAIMABLE,
97         NR_PAGETABLE,           /* used for pagetables */
98         NR_KERNEL_STACK,
99         /* Second 128 byte cacheline */
100         NR_UNSTABLE_NFS,        /* NFS unstable pages */
101         NR_BOUNCE,
102         NR_VMSCAN_WRITE,
103         NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
104         NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
105         NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
106         NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
107         NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
108         NR_DIRTIED,             /* page dirtyings since bootup */
109         NR_WRITTEN,             /* page writings since bootup */
110 #ifdef CONFIG_NUMA
111         NUMA_HIT,               /* allocated in intended node */
112         NUMA_MISS,              /* allocated in non intended node */
113         NUMA_FOREIGN,           /* was intended here, hit elsewhere */
114         NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
115         NUMA_LOCAL,             /* allocation from local node */
116         NUMA_OTHER,             /* allocation from other node */
117 #endif
118         NR_ANON_TRANSPARENT_HUGEPAGES,
119         NR_VM_ZONE_STAT_ITEMS };
120
121 /*
122  * We do arithmetic on the LRU lists in various places in the code,
123  * so it is important to keep the active lists LRU_ACTIVE higher in
124  * the array than the corresponding inactive lists, and to keep
125  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
126  *
127  * This has to be kept in sync with the statistics in zone_stat_item
128  * above and the descriptions in vmstat_text in mm/vmstat.c
129  */
130 #define LRU_BASE 0
131 #define LRU_ACTIVE 1
132 #define LRU_FILE 2
133
134 enum lru_list {
135         LRU_INACTIVE_ANON = LRU_BASE,
136         LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
137         LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
138         LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
139         LRU_UNEVICTABLE,
140         NR_LRU_LISTS
141 };
142
143 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
144
145 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
146
147 static inline int is_file_lru(enum lru_list l)
148 {
149         return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
150 }
151
152 static inline int is_active_lru(enum lru_list l)
153 {
154         return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
155 }
156
157 static inline int is_unevictable_lru(enum lru_list l)
158 {
159         return (l == LRU_UNEVICTABLE);
160 }
161
162 struct lruvec {
163         struct list_head lists[NR_LRU_LISTS];
164 };
165
166 /* Mask used at gathering information at once (see memcontrol.c) */
167 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
168 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
169 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
170 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
171
172 /* Isolate inactive pages */
173 #define ISOLATE_INACTIVE        ((__force isolate_mode_t)0x1)
174 /* Isolate active pages */
175 #define ISOLATE_ACTIVE          ((__force isolate_mode_t)0x2)
176 /* Isolate clean file */
177 #define ISOLATE_CLEAN           ((__force isolate_mode_t)0x4)
178 /* Isolate unmapped file */
179 #define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x8)
180 /* Isolate for asynchronous migration */
181 #define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x10)
182
183 /* LRU Isolation modes. */
184 typedef unsigned __bitwise__ isolate_mode_t;
185
186 enum zone_watermarks {
187         WMARK_MIN,
188         WMARK_LOW,
189         WMARK_HIGH,
190         NR_WMARK
191 };
192
193 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
194 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
195 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
196
197 struct per_cpu_pages {
198         int count;              /* number of pages in the list */
199         int high;               /* high watermark, emptying needed */
200         int batch;              /* chunk size for buddy add/remove */
201
202         /* Lists of pages, one per migrate type stored on the pcp-lists */
203         struct list_head lists[MIGRATE_PCPTYPES];
204 };
205
206 struct per_cpu_pageset {
207         struct per_cpu_pages pcp;
208 #ifdef CONFIG_NUMA
209         s8 expire;
210 #endif
211 #ifdef CONFIG_SMP
212         s8 stat_threshold;
213         s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
214 #endif
215 };
216
217 #endif /* !__GENERATING_BOUNDS.H */
218
219 enum zone_type {
220 #ifdef CONFIG_ZONE_DMA
221         /*
222          * ZONE_DMA is used when there are devices that are not able
223          * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
224          * carve out the portion of memory that is needed for these devices.
225          * The range is arch specific.
226          *
227          * Some examples
228          *
229          * Architecture         Limit
230          * ---------------------------
231          * parisc, ia64, sparc  <4G
232          * s390                 <2G
233          * arm                  Various
234          * alpha                Unlimited or 0-16MB.
235          *
236          * i386, x86_64 and multiple other arches
237          *                      <16M.
238          */
239         ZONE_DMA,
240 #endif
241 #ifdef CONFIG_ZONE_DMA32
242         /*
243          * x86_64 needs two ZONE_DMAs because it supports devices that are
244          * only able to do DMA to the lower 16M but also 32 bit devices that
245          * can only do DMA areas below 4G.
246          */
247         ZONE_DMA32,
248 #endif
249         /*
250          * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
251          * performed on pages in ZONE_NORMAL if the DMA devices support
252          * transfers to all addressable memory.
253          */
254         ZONE_NORMAL,
255 #ifdef CONFIG_HIGHMEM
256         /*
257          * A memory area that is only addressable by the kernel through
258          * mapping portions into its own address space. This is for example
259          * used by i386 to allow the kernel to address the memory beyond
260          * 900MB. The kernel will set up special mappings (page
261          * table entries on i386) for each page that the kernel needs to
262          * access.
263          */
264         ZONE_HIGHMEM,
265 #endif
266         ZONE_MOVABLE,
267         __MAX_NR_ZONES
268 };
269
270 #ifndef __GENERATING_BOUNDS_H
271
272 /*
273  * When a memory allocation must conform to specific limitations (such
274  * as being suitable for DMA) the caller will pass in hints to the
275  * allocator in the gfp_mask, in the zone modifier bits.  These bits
276  * are used to select a priority ordered list of memory zones which
277  * match the requested limits. See gfp_zone() in include/linux/gfp.h
278  */
279
280 #if MAX_NR_ZONES < 2
281 #define ZONES_SHIFT 0
282 #elif MAX_NR_ZONES <= 2
283 #define ZONES_SHIFT 1
284 #elif MAX_NR_ZONES <= 4
285 #define ZONES_SHIFT 2
286 #else
287 #error ZONES_SHIFT -- too many zones configured adjust calculation
288 #endif
289
290 struct zone_reclaim_stat {
291         /*
292          * The pageout code in vmscan.c keeps track of how many of the
293          * mem/swap backed and file backed pages are refeferenced.
294          * The higher the rotated/scanned ratio, the more valuable
295          * that cache is.
296          *
297          * The anon LRU stats live in [0], file LRU stats in [1]
298          */
299         unsigned long           recent_rotated[2];
300         unsigned long           recent_scanned[2];
301 };
302
303 struct zone {
304         /* Fields commonly accessed by the page allocator */
305
306         /* zone watermarks, access with *_wmark_pages(zone) macros */
307         unsigned long watermark[NR_WMARK];
308
309         /*
310          * When free pages are below this point, additional steps are taken
311          * when reading the number of free pages to avoid per-cpu counter
312          * drift allowing watermarks to be breached
313          */
314         unsigned long percpu_drift_mark;
315
316         /*
317          * We don't know if the memory that we're going to allocate will be freeable
318          * or/and it will be released eventually, so to avoid totally wasting several
319          * GB of ram we must reserve some of the lower zone memory (otherwise we risk
320          * to run OOM on the lower zones despite there's tons of freeable ram
321          * on the higher zones). This array is recalculated at runtime if the
322          * sysctl_lowmem_reserve_ratio sysctl changes.
323          */
324         unsigned long           lowmem_reserve[MAX_NR_ZONES];
325
326         /*
327          * This is a per-zone reserve of pages that should not be
328          * considered dirtyable memory.
329          */
330         unsigned long           dirty_balance_reserve;
331
332 #ifdef CONFIG_NUMA
333         int node;
334         /*
335          * zone reclaim becomes active if more unmapped pages exist.
336          */
337         unsigned long           min_unmapped_pages;
338         unsigned long           min_slab_pages;
339 #endif
340         struct per_cpu_pageset __percpu *pageset;
341         /*
342          * free areas of different sizes
343          */
344         spinlock_t              lock;
345         int                     all_unreclaimable; /* All pages pinned */
346 #ifdef CONFIG_MEMORY_HOTPLUG
347         /* see spanned/present_pages for more description */
348         seqlock_t               span_seqlock;
349 #endif
350         struct free_area        free_area[MAX_ORDER];
351
352 #ifndef CONFIG_SPARSEMEM
353         /*
354          * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
355          * In SPARSEMEM, this map is stored in struct mem_section
356          */
357         unsigned long           *pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
359
360 #ifdef CONFIG_COMPACTION
361         /*
362          * On compaction failure, 1<<compact_defer_shift compactions
363          * are skipped before trying again. The number attempted since
364          * last failure is tracked with compact_considered.
365          */
366         unsigned int            compact_considered;
367         unsigned int            compact_defer_shift;
368 #endif
369
370         ZONE_PADDING(_pad1_)
371
372         /* Fields commonly accessed by the page reclaim scanner */
373         spinlock_t              lru_lock;
374         struct lruvec           lruvec;
375
376         struct zone_reclaim_stat reclaim_stat;
377
378         unsigned long           pages_scanned;     /* since last reclaim */
379         unsigned long           flags;             /* zone flags, see below */
380
381         /* Zone statistics */
382         atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
383
384         /*
385          * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
386          * this zone's LRU.  Maintained by the pageout code.
387          */
388         unsigned int inactive_ratio;
389
390
391         ZONE_PADDING(_pad2_)
392         /* Rarely used or read-mostly fields */
393
394         /*
395          * wait_table           -- the array holding the hash table
396          * wait_table_hash_nr_entries   -- the size of the hash table array
397          * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
398          *
399          * The purpose of all these is to keep track of the people
400          * waiting for a page to become available and make them
401          * runnable again when possible. The trouble is that this
402          * consumes a lot of space, especially when so few things
403          * wait on pages at a given time. So instead of using
404          * per-page waitqueues, we use a waitqueue hash table.
405          *
406          * The bucket discipline is to sleep on the same queue when
407          * colliding and wake all in that wait queue when removing.
408          * When something wakes, it must check to be sure its page is
409          * truly available, a la thundering herd. The cost of a
410          * collision is great, but given the expected load of the
411          * table, they should be so rare as to be outweighed by the
412          * benefits from the saved space.
413          *
414          * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
415          * primary users of these fields, and in mm/page_alloc.c
416          * free_area_init_core() performs the initialization of them.
417          */
418         wait_queue_head_t       * wait_table;
419         unsigned long           wait_table_hash_nr_entries;
420         unsigned long           wait_table_bits;
421
422         /*
423          * Discontig memory support fields.
424          */
425         struct pglist_data      *zone_pgdat;
426         /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
427         unsigned long           zone_start_pfn;
428
429         /*
430          * zone_start_pfn, spanned_pages and present_pages are all
431          * protected by span_seqlock.  It is a seqlock because it has
432          * to be read outside of zone->lock, and it is done in the main
433          * allocator path.  But, it is written quite infrequently.
434          *
435          * The lock is declared along with zone->lock because it is
436          * frequently read in proximity to zone->lock.  It's good to
437          * give them a chance of being in the same cacheline.
438          */
439         unsigned long           spanned_pages;  /* total size, including holes */
440         unsigned long           present_pages;  /* amount of memory (excluding holes) */
441
442         /*
443          * rarely used fields:
444          */
445         const char              *name;
446 } ____cacheline_internodealigned_in_smp;
447
448 typedef enum {
449         ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
450         ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
451         ZONE_CONGESTED,                 /* zone has many dirty pages backed by
452                                          * a congested BDI
453                                          */
454 } zone_flags_t;
455
456 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
457 {
458         set_bit(flag, &zone->flags);
459 }
460
461 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
462 {
463         return test_and_set_bit(flag, &zone->flags);
464 }
465
466 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
467 {
468         clear_bit(flag, &zone->flags);
469 }
470
471 static inline int zone_is_reclaim_congested(const struct zone *zone)
472 {
473         return test_bit(ZONE_CONGESTED, &zone->flags);
474 }
475
476 static inline int zone_is_reclaim_locked(const struct zone *zone)
477 {
478         return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
479 }
480
481 static inline int zone_is_oom_locked(const struct zone *zone)
482 {
483         return test_bit(ZONE_OOM_LOCKED, &zone->flags);
484 }
485
486 /*
487  * The "priority" of VM scanning is how much of the queues we will scan in one
488  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
489  * queues ("queue_length >> 12") during an aging round.
490  */
491 #define DEF_PRIORITY 12
492
493 /* Maximum number of zones on a zonelist */
494 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
495
496 #ifdef CONFIG_NUMA
497
498 /*
499  * The NUMA zonelists are doubled because we need zonelists that restrict the
500  * allocations to a single node for GFP_THISNODE.
501  *
502  * [0]  : Zonelist with fallback
503  * [1]  : No fallback (GFP_THISNODE)
504  */
505 #define MAX_ZONELISTS 2
506
507
508 /*
509  * We cache key information from each zonelist for smaller cache
510  * footprint when scanning for free pages in get_page_from_freelist().
511  *
512  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
513  *    up short of free memory since the last time (last_fullzone_zap)
514  *    we zero'd fullzones.
515  * 2) The array z_to_n[] maps each zone in the zonelist to its node
516  *    id, so that we can efficiently evaluate whether that node is
517  *    set in the current tasks mems_allowed.
518  *
519  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
520  * indexed by a zones offset in the zonelist zones[] array.
521  *
522  * The get_page_from_freelist() routine does two scans.  During the
523  * first scan, we skip zones whose corresponding bit in 'fullzones'
524  * is set or whose corresponding node in current->mems_allowed (which
525  * comes from cpusets) is not set.  During the second scan, we bypass
526  * this zonelist_cache, to ensure we look methodically at each zone.
527  *
528  * Once per second, we zero out (zap) fullzones, forcing us to
529  * reconsider nodes that might have regained more free memory.
530  * The field last_full_zap is the time we last zapped fullzones.
531  *
532  * This mechanism reduces the amount of time we waste repeatedly
533  * reexaming zones for free memory when they just came up low on
534  * memory momentarilly ago.
535  *
536  * The zonelist_cache struct members logically belong in struct
537  * zonelist.  However, the mempolicy zonelists constructed for
538  * MPOL_BIND are intentionally variable length (and usually much
539  * shorter).  A general purpose mechanism for handling structs with
540  * multiple variable length members is more mechanism than we want
541  * here.  We resort to some special case hackery instead.
542  *
543  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
544  * part because they are shorter), so we put the fixed length stuff
545  * at the front of the zonelist struct, ending in a variable length
546  * zones[], as is needed by MPOL_BIND.
547  *
548  * Then we put the optional zonelist cache on the end of the zonelist
549  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
550  * the fixed length portion at the front of the struct.  This pointer
551  * both enables us to find the zonelist cache, and in the case of
552  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
553  * to know that the zonelist cache is not there.
554  *
555  * The end result is that struct zonelists come in two flavors:
556  *  1) The full, fixed length version, shown below, and
557  *  2) The custom zonelists for MPOL_BIND.
558  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
559  *
560  * Even though there may be multiple CPU cores on a node modifying
561  * fullzones or last_full_zap in the same zonelist_cache at the same
562  * time, we don't lock it.  This is just hint data - if it is wrong now
563  * and then, the allocator will still function, perhaps a bit slower.
564  */
565
566
567 struct zonelist_cache {
568         unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];          /* zone->nid */
569         DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);      /* zone full? */
570         unsigned long last_full_zap;            /* when last zap'd (jiffies) */
571 };
572 #else
573 #define MAX_ZONELISTS 1
574 struct zonelist_cache;
575 #endif
576
577 /*
578  * This struct contains information about a zone in a zonelist. It is stored
579  * here to avoid dereferences into large structures and lookups of tables
580  */
581 struct zoneref {
582         struct zone *zone;      /* Pointer to actual zone */
583         int zone_idx;           /* zone_idx(zoneref->zone) */
584 };
585
586 /*
587  * One allocation request operates on a zonelist. A zonelist
588  * is a list of zones, the first one is the 'goal' of the
589  * allocation, the other zones are fallback zones, in decreasing
590  * priority.
591  *
592  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
593  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
594  * *
595  * To speed the reading of the zonelist, the zonerefs contain the zone index
596  * of the entry being read. Helper functions to access information given
597  * a struct zoneref are
598  *
599  * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
600  * zonelist_zone_idx()  - Return the index of the zone for an entry
601  * zonelist_node_idx()  - Return the index of the node for an entry
602  */
603 struct zonelist {
604         struct zonelist_cache *zlcache_ptr;                  // NULL or &zlcache
605         struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
606 #ifdef CONFIG_NUMA
607         struct zonelist_cache zlcache;                       // optional ...
608 #endif
609 };
610
611 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
612 struct node_active_region {
613         unsigned long start_pfn;
614         unsigned long end_pfn;
615         int nid;
616 };
617 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
618
619 #ifndef CONFIG_DISCONTIGMEM
620 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
621 extern struct page *mem_map;
622 #endif
623
624 /*
625  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
626  * (mostly NUMA machines?) to denote a higher-level memory zone than the
627  * zone denotes.
628  *
629  * On NUMA machines, each NUMA node would have a pg_data_t to describe
630  * it's memory layout.
631  *
632  * Memory statistics and page replacement data structures are maintained on a
633  * per-zone basis.
634  */
635 struct bootmem_data;
636 typedef struct pglist_data {
637         struct zone node_zones[MAX_NR_ZONES];
638         struct zonelist node_zonelists[MAX_ZONELISTS];
639         int nr_zones;
640 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
641         struct page *node_mem_map;
642 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
643         struct page_cgroup *node_page_cgroup;
644 #endif
645 #endif
646 #ifndef CONFIG_NO_BOOTMEM
647         struct bootmem_data *bdata;
648 #endif
649 #ifdef CONFIG_MEMORY_HOTPLUG
650         /*
651          * Must be held any time you expect node_start_pfn, node_present_pages
652          * or node_spanned_pages stay constant.  Holding this will also
653          * guarantee that any pfn_valid() stays that way.
654          *
655          * Nests above zone->lock and zone->size_seqlock.
656          */
657         spinlock_t node_size_lock;
658 #endif
659         unsigned long node_start_pfn;
660         unsigned long node_present_pages; /* total number of physical pages */
661         unsigned long node_spanned_pages; /* total size of physical page
662                                              range, including holes */
663         int node_id;
664         wait_queue_head_t kswapd_wait;
665         struct task_struct *kswapd;
666         int kswapd_max_order;
667         enum zone_type classzone_idx;
668 } pg_data_t;
669
670 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
671 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
672 #ifdef CONFIG_FLAT_NODE_MEM_MAP
673 #define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
674 #else
675 #define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
676 #endif
677 #define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
678
679 #define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
680
681 #define node_end_pfn(nid) ({\
682         pg_data_t *__pgdat = NODE_DATA(nid);\
683         __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
684 })
685
686 #include <linux/memory_hotplug.h>
687
688 extern struct mutex zonelists_mutex;
689 void build_all_zonelists(void *data);
690 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
691 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
692                 int classzone_idx, int alloc_flags);
693 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
694                 int classzone_idx, int alloc_flags);
695 enum memmap_context {
696         MEMMAP_EARLY,
697         MEMMAP_HOTPLUG,
698 };
699 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
700                                      unsigned long size,
701                                      enum memmap_context context);
702
703 #ifdef CONFIG_HAVE_MEMORY_PRESENT
704 void memory_present(int nid, unsigned long start, unsigned long end);
705 #else
706 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
707 #endif
708
709 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
710 int local_memory_node(int node_id);
711 #else
712 static inline int local_memory_node(int node_id) { return node_id; };
713 #endif
714
715 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
716 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
717 #endif
718
719 /*
720  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
721  */
722 #define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
723
724 static inline int populated_zone(struct zone *zone)
725 {
726         return (!!zone->present_pages);
727 }
728
729 extern int movable_zone;
730
731 static inline int zone_movable_is_highmem(void)
732 {
733 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
734         return movable_zone == ZONE_HIGHMEM;
735 #else
736         return 0;
737 #endif
738 }
739
740 static inline int is_highmem_idx(enum zone_type idx)
741 {
742 #ifdef CONFIG_HIGHMEM
743         return (idx == ZONE_HIGHMEM ||
744                 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
745 #else
746         return 0;
747 #endif
748 }
749
750 static inline int is_normal_idx(enum zone_type idx)
751 {
752         return (idx == ZONE_NORMAL);
753 }
754
755 /**
756  * is_highmem - helper function to quickly check if a struct zone is a 
757  *              highmem zone or not.  This is an attempt to keep references
758  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
759  * @zone - pointer to struct zone variable
760  */
761 static inline int is_highmem(struct zone *zone)
762 {
763 #ifdef CONFIG_HIGHMEM
764         int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
765         return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
766                (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
767                 zone_movable_is_highmem());
768 #else
769         return 0;
770 #endif
771 }
772
773 static inline int is_normal(struct zone *zone)
774 {
775         return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
776 }
777
778 static inline int is_dma32(struct zone *zone)
779 {
780 #ifdef CONFIG_ZONE_DMA32
781         return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
782 #else
783         return 0;
784 #endif
785 }
786
787 static inline int is_dma(struct zone *zone)
788 {
789 #ifdef CONFIG_ZONE_DMA
790         return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
791 #else
792         return 0;
793 #endif
794 }
795
796 /* These two functions are used to setup the per zone pages min values */
797 struct ctl_table;
798 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
799                                         void __user *, size_t *, loff_t *);
800 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
801 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
802                                         void __user *, size_t *, loff_t *);
803 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
804                                         void __user *, size_t *, loff_t *);
805 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
806                         void __user *, size_t *, loff_t *);
807 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
808                         void __user *, size_t *, loff_t *);
809
810 extern int numa_zonelist_order_handler(struct ctl_table *, int,
811                         void __user *, size_t *, loff_t *);
812 extern char numa_zonelist_order[];
813 #define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
814
815 #ifndef CONFIG_NEED_MULTIPLE_NODES
816
817 extern struct pglist_data contig_page_data;
818 #define NODE_DATA(nid)          (&contig_page_data)
819 #define NODE_MEM_MAP(nid)       mem_map
820
821 #else /* CONFIG_NEED_MULTIPLE_NODES */
822
823 #include <asm/mmzone.h>
824
825 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
826
827 extern struct pglist_data *first_online_pgdat(void);
828 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
829 extern struct zone *next_zone(struct zone *zone);
830
831 /**
832  * for_each_online_pgdat - helper macro to iterate over all online nodes
833  * @pgdat - pointer to a pg_data_t variable
834  */
835 #define for_each_online_pgdat(pgdat)                    \
836         for (pgdat = first_online_pgdat();              \
837              pgdat;                                     \
838              pgdat = next_online_pgdat(pgdat))
839 /**
840  * for_each_zone - helper macro to iterate over all memory zones
841  * @zone - pointer to struct zone variable
842  *
843  * The user only needs to declare the zone variable, for_each_zone
844  * fills it in.
845  */
846 #define for_each_zone(zone)                             \
847         for (zone = (first_online_pgdat())->node_zones; \
848              zone;                                      \
849              zone = next_zone(zone))
850
851 #define for_each_populated_zone(zone)                   \
852         for (zone = (first_online_pgdat())->node_zones; \
853              zone;                                      \
854              zone = next_zone(zone))                    \
855                 if (!populated_zone(zone))              \
856                         ; /* do nothing */              \
857                 else
858
859 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
860 {
861         return zoneref->zone;
862 }
863
864 static inline int zonelist_zone_idx(struct zoneref *zoneref)
865 {
866         return zoneref->zone_idx;
867 }
868
869 static inline int zonelist_node_idx(struct zoneref *zoneref)
870 {
871 #ifdef CONFIG_NUMA
872         /* zone_to_nid not available in this context */
873         return zoneref->zone->node;
874 #else
875         return 0;
876 #endif /* CONFIG_NUMA */
877 }
878
879 /**
880  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
881  * @z - The cursor used as a starting point for the search
882  * @highest_zoneidx - The zone index of the highest zone to return
883  * @nodes - An optional nodemask to filter the zonelist with
884  * @zone - The first suitable zone found is returned via this parameter
885  *
886  * This function returns the next zone at or below a given zone index that is
887  * within the allowed nodemask using a cursor as the starting point for the
888  * search. The zoneref returned is a cursor that represents the current zone
889  * being examined. It should be advanced by one before calling
890  * next_zones_zonelist again.
891  */
892 struct zoneref *next_zones_zonelist(struct zoneref *z,
893                                         enum zone_type highest_zoneidx,
894                                         nodemask_t *nodes,
895                                         struct zone **zone);
896
897 /**
898  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
899  * @zonelist - The zonelist to search for a suitable zone
900  * @highest_zoneidx - The zone index of the highest zone to return
901  * @nodes - An optional nodemask to filter the zonelist with
902  * @zone - The first suitable zone found is returned via this parameter
903  *
904  * This function returns the first zone at or below a given zone index that is
905  * within the allowed nodemask. The zoneref returned is a cursor that can be
906  * used to iterate the zonelist with next_zones_zonelist by advancing it by
907  * one before calling.
908  */
909 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
910                                         enum zone_type highest_zoneidx,
911                                         nodemask_t *nodes,
912                                         struct zone **zone)
913 {
914         return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
915                                                                 zone);
916 }
917
918 /**
919  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
920  * @zone - The current zone in the iterator
921  * @z - The current pointer within zonelist->zones being iterated
922  * @zlist - The zonelist being iterated
923  * @highidx - The zone index of the highest zone to return
924  * @nodemask - Nodemask allowed by the allocator
925  *
926  * This iterator iterates though all zones at or below a given zone index and
927  * within a given nodemask
928  */
929 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
930         for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
931                 zone;                                                   \
932                 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
933
934 /**
935  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
936  * @zone - The current zone in the iterator
937  * @z - The current pointer within zonelist->zones being iterated
938  * @zlist - The zonelist being iterated
939  * @highidx - The zone index of the highest zone to return
940  *
941  * This iterator iterates though all zones at or below a given zone index.
942  */
943 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
944         for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
945
946 #ifdef CONFIG_SPARSEMEM
947 #include <asm/sparsemem.h>
948 #endif
949
950 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
951         !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
952 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
953 {
954         return 0;
955 }
956 #endif
957
958 #ifdef CONFIG_FLATMEM
959 #define pfn_to_nid(pfn)         (0)
960 #endif
961
962 #ifdef CONFIG_SPARSEMEM
963
964 /*
965  * SECTION_SHIFT                #bits space required to store a section #
966  *
967  * PA_SECTION_SHIFT             physical address to/from section number
968  * PFN_SECTION_SHIFT            pfn to/from section number
969  */
970 #define SECTIONS_SHIFT          (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
971
972 #define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
973 #define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
974
975 #define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
976
977 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
978 #define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
979
980 #define SECTION_BLOCKFLAGS_BITS \
981         ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
982
983 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
984 #error Allocator MAX_ORDER exceeds SECTION_SIZE
985 #endif
986
987 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
988 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
989
990 #define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
991 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
992
993 struct page;
994 struct page_cgroup;
995 struct mem_section {
996         /*
997          * This is, logically, a pointer to an array of struct
998          * pages.  However, it is stored with some other magic.
999          * (see sparse.c::sparse_init_one_section())
1000          *
1001          * Additionally during early boot we encode node id of
1002          * the location of the section here to guide allocation.
1003          * (see sparse.c::memory_present())
1004          *
1005          * Making it a UL at least makes someone do a cast
1006          * before using it wrong.
1007          */
1008         unsigned long section_mem_map;
1009
1010         /* See declaration of similar field in struct zone */
1011         unsigned long *pageblock_flags;
1012 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1013         /*
1014          * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1015          * section. (see memcontrol.h/page_cgroup.h about this.)
1016          */
1017         struct page_cgroup *page_cgroup;
1018         unsigned long pad;
1019 #endif
1020 };
1021
1022 #ifdef CONFIG_SPARSEMEM_EXTREME
1023 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1024 #else
1025 #define SECTIONS_PER_ROOT       1
1026 #endif
1027
1028 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1029 #define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1030 #define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1031
1032 #ifdef CONFIG_SPARSEMEM_EXTREME
1033 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1034 #else
1035 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1036 #endif
1037
1038 static inline struct mem_section *__nr_to_section(unsigned long nr)
1039 {
1040         if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1041                 return NULL;
1042         return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1043 }
1044 extern int __section_nr(struct mem_section* ms);
1045 extern unsigned long usemap_size(void);
1046
1047 /*
1048  * We use the lower bits of the mem_map pointer to store
1049  * a little bit of information.  There should be at least
1050  * 3 bits here due to 32-bit alignment.
1051  */
1052 #define SECTION_MARKED_PRESENT  (1UL<<0)
1053 #define SECTION_HAS_MEM_MAP     (1UL<<1)
1054 #define SECTION_MAP_LAST_BIT    (1UL<<2)
1055 #define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1056 #define SECTION_NID_SHIFT       2
1057
1058 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1059 {
1060         unsigned long map = section->section_mem_map;
1061         map &= SECTION_MAP_MASK;
1062         return (struct page *)map;
1063 }
1064
1065 static inline int present_section(struct mem_section *section)
1066 {
1067         return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1068 }
1069
1070 static inline int present_section_nr(unsigned long nr)
1071 {
1072         return present_section(__nr_to_section(nr));
1073 }
1074
1075 static inline int valid_section(struct mem_section *section)
1076 {
1077         return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1078 }
1079
1080 static inline int valid_section_nr(unsigned long nr)
1081 {
1082         return valid_section(__nr_to_section(nr));
1083 }
1084
1085 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1086 {
1087         return __nr_to_section(pfn_to_section_nr(pfn));
1088 }
1089
1090 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1091 static inline int pfn_valid(unsigned long pfn)
1092 {
1093         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1094                 return 0;
1095         return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1096 }
1097 #endif
1098
1099 static inline int pfn_present(unsigned long pfn)
1100 {
1101         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1102                 return 0;
1103         return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1104 }
1105
1106 /*
1107  * These are _only_ used during initialisation, therefore they
1108  * can use __initdata ...  They could have names to indicate
1109  * this restriction.
1110  */
1111 #ifdef CONFIG_NUMA
1112 #define pfn_to_nid(pfn)                                                 \
1113 ({                                                                      \
1114         unsigned long __pfn_to_nid_pfn = (pfn);                         \
1115         page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1116 })
1117 #else
1118 #define pfn_to_nid(pfn)         (0)
1119 #endif
1120
1121 #define early_pfn_valid(pfn)    pfn_valid(pfn)
1122 void sparse_init(void);
1123 #else
1124 #define sparse_init()   do {} while (0)
1125 #define sparse_index_init(_sec, _nid)  do {} while (0)
1126 #endif /* CONFIG_SPARSEMEM */
1127
1128 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1129 bool early_pfn_in_nid(unsigned long pfn, int nid);
1130 #else
1131 #define early_pfn_in_nid(pfn, nid)      (1)
1132 #endif
1133
1134 #ifndef early_pfn_valid
1135 #define early_pfn_valid(pfn)    (1)
1136 #endif
1137
1138 void memory_present(int nid, unsigned long start, unsigned long end);
1139 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1140
1141 /*
1142  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1143  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1144  * pfn_valid_within() should be used in this case; we optimise this away
1145  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1146  */
1147 #ifdef CONFIG_HOLES_IN_ZONE
1148 #define pfn_valid_within(pfn) pfn_valid(pfn)
1149 #else
1150 #define pfn_valid_within(pfn) (1)
1151 #endif
1152
1153 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1154 /*
1155  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1156  * associated with it or not. In FLATMEM, it is expected that holes always
1157  * have valid memmap as long as there is valid PFNs either side of the hole.
1158  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1159  * entire section.
1160  *
1161  * However, an ARM, and maybe other embedded architectures in the future
1162  * free memmap backing holes to save memory on the assumption the memmap is
1163  * never used. The page_zone linkages are then broken even though pfn_valid()
1164  * returns true. A walker of the full memmap must then do this additional
1165  * check to ensure the memmap they are looking at is sane by making sure
1166  * the zone and PFN linkages are still valid. This is expensive, but walkers
1167  * of the full memmap are extremely rare.
1168  */
1169 int memmap_valid_within(unsigned long pfn,
1170                                         struct page *page, struct zone *zone);
1171 #else
1172 static inline int memmap_valid_within(unsigned long pfn,
1173                                         struct page *page, struct zone *zone)
1174 {
1175         return 1;
1176 }
1177 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1178
1179 #endif /* !__GENERATING_BOUNDS.H */
1180 #endif /* !__ASSEMBLY__ */
1181 #endif /* _LINUX_MMZONE_H */