Merge branch 'kvm-updates/2.6.39' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[pandora-kernel.git] / include / linux / ktime.h
1 /*
2  *  include/linux/ktime.h
3  *
4  *  ktime_t - nanosecond-resolution time format.
5  *
6  *   Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7  *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8  *
9  *  data type definitions, declarations, prototypes and macros.
10  *
11  *  Started by: Thomas Gleixner and Ingo Molnar
12  *
13  *  Credits:
14  *
15  *      Roman Zippel provided the ideas and primary code snippets of
16  *      the ktime_t union and further simplifications of the original
17  *      code.
18  *
19  *  For licencing details see kernel-base/COPYING
20  */
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
23
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
26
27 /*
28  * ktime_t:
29  *
30  * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
31  * internal representation of time values in scalar nanoseconds. The
32  * design plays out best on 64-bit CPUs, where most conversions are
33  * NOPs and most arithmetic ktime_t operations are plain arithmetic
34  * operations.
35  *
36  * On 32-bit CPUs an optimized representation of the timespec structure
37  * is used to avoid expensive conversions from and to timespecs. The
38  * endian-aware order of the tv struct members is choosen to allow
39  * mathematical operations on the tv64 member of the union too, which
40  * for certain operations produces better code.
41  *
42  * For architectures with efficient support for 64/32-bit conversions the
43  * plain scalar nanosecond based representation can be selected by the
44  * config switch CONFIG_KTIME_SCALAR.
45  */
46 union ktime {
47         s64     tv64;
48 #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
49         struct {
50 # ifdef __BIG_ENDIAN
51         s32     sec, nsec;
52 # else
53         s32     nsec, sec;
54 # endif
55         } tv;
56 #endif
57 };
58
59 typedef union ktime ktime_t;            /* Kill this */
60
61 #define KTIME_MAX                       ((s64)~((u64)1 << 63))
62 #if (BITS_PER_LONG == 64)
63 # define KTIME_SEC_MAX                  (KTIME_MAX / NSEC_PER_SEC)
64 #else
65 # define KTIME_SEC_MAX                  LONG_MAX
66 #endif
67
68 /*
69  * ktime_t definitions when using the 64-bit scalar representation:
70  */
71
72 #if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
73
74 /**
75  * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
76  * @secs:       seconds to set
77  * @nsecs:      nanoseconds to set
78  *
79  * Return the ktime_t representation of the value
80  */
81 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
82 {
83 #if (BITS_PER_LONG == 64)
84         if (unlikely(secs >= KTIME_SEC_MAX))
85                 return (ktime_t){ .tv64 = KTIME_MAX };
86 #endif
87         return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
88 }
89
90 /* Subtract two ktime_t variables. rem = lhs -rhs: */
91 #define ktime_sub(lhs, rhs) \
92                 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
93
94 /* Add two ktime_t variables. res = lhs + rhs: */
95 #define ktime_add(lhs, rhs) \
96                 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
97
98 /*
99  * Add a ktime_t variable and a scalar nanosecond value.
100  * res = kt + nsval:
101  */
102 #define ktime_add_ns(kt, nsval) \
103                 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
104
105 /*
106  * Subtract a scalar nanosecod from a ktime_t variable
107  * res = kt - nsval:
108  */
109 #define ktime_sub_ns(kt, nsval) \
110                 ({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
111
112 /* convert a timespec to ktime_t format: */
113 static inline ktime_t timespec_to_ktime(struct timespec ts)
114 {
115         return ktime_set(ts.tv_sec, ts.tv_nsec);
116 }
117
118 /* convert a timeval to ktime_t format: */
119 static inline ktime_t timeval_to_ktime(struct timeval tv)
120 {
121         return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
122 }
123
124 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
125 #define ktime_to_timespec(kt)           ns_to_timespec((kt).tv64)
126
127 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
128 #define ktime_to_timeval(kt)            ns_to_timeval((kt).tv64)
129
130 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
131 #define ktime_to_ns(kt)                 ((kt).tv64)
132
133 #else   /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
134
135 /*
136  * Helper macros/inlines to get the ktime_t math right in the timespec
137  * representation. The macros are sometimes ugly - their actual use is
138  * pretty okay-ish, given the circumstances. We do all this for
139  * performance reasons. The pure scalar nsec_t based code was nice and
140  * simple, but created too many 64-bit / 32-bit conversions and divisions.
141  *
142  * Be especially aware that negative values are represented in a way
143  * that the tv.sec field is negative and the tv.nsec field is greater
144  * or equal to zero but less than nanoseconds per second. This is the
145  * same representation which is used by timespecs.
146  *
147  *   tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
148  */
149
150 /* Set a ktime_t variable to a value in sec/nsec representation: */
151 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
152 {
153         return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
154 }
155
156 /**
157  * ktime_sub - subtract two ktime_t variables
158  * @lhs:        minuend
159  * @rhs:        subtrahend
160  *
161  * Returns the remainder of the substraction
162  */
163 static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
164 {
165         ktime_t res;
166
167         res.tv64 = lhs.tv64 - rhs.tv64;
168         if (res.tv.nsec < 0)
169                 res.tv.nsec += NSEC_PER_SEC;
170
171         return res;
172 }
173
174 /**
175  * ktime_add - add two ktime_t variables
176  * @add1:       addend1
177  * @add2:       addend2
178  *
179  * Returns the sum of @add1 and @add2.
180  */
181 static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
182 {
183         ktime_t res;
184
185         res.tv64 = add1.tv64 + add2.tv64;
186         /*
187          * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
188          * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
189          *
190          * it's equivalent to:
191          *   tv.nsec -= NSEC_PER_SEC
192          *   tv.sec ++;
193          */
194         if (res.tv.nsec >= NSEC_PER_SEC)
195                 res.tv64 += (u32)-NSEC_PER_SEC;
196
197         return res;
198 }
199
200 /**
201  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
202  * @kt:         addend
203  * @nsec:       the scalar nsec value to add
204  *
205  * Returns the sum of @kt and @nsec in ktime_t format
206  */
207 extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
208
209 /**
210  * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
211  * @kt:         minuend
212  * @nsec:       the scalar nsec value to subtract
213  *
214  * Returns the subtraction of @nsec from @kt in ktime_t format
215  */
216 extern ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec);
217
218 /**
219  * timespec_to_ktime - convert a timespec to ktime_t format
220  * @ts:         the timespec variable to convert
221  *
222  * Returns a ktime_t variable with the converted timespec value
223  */
224 static inline ktime_t timespec_to_ktime(const struct timespec ts)
225 {
226         return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
227                                    .nsec = (s32)ts.tv_nsec } };
228 }
229
230 /**
231  * timeval_to_ktime - convert a timeval to ktime_t format
232  * @tv:         the timeval variable to convert
233  *
234  * Returns a ktime_t variable with the converted timeval value
235  */
236 static inline ktime_t timeval_to_ktime(const struct timeval tv)
237 {
238         return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
239                                    .nsec = (s32)tv.tv_usec * 1000 } };
240 }
241
242 /**
243  * ktime_to_timespec - convert a ktime_t variable to timespec format
244  * @kt:         the ktime_t variable to convert
245  *
246  * Returns the timespec representation of the ktime value
247  */
248 static inline struct timespec ktime_to_timespec(const ktime_t kt)
249 {
250         return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
251                                    .tv_nsec = (long) kt.tv.nsec };
252 }
253
254 /**
255  * ktime_to_timeval - convert a ktime_t variable to timeval format
256  * @kt:         the ktime_t variable to convert
257  *
258  * Returns the timeval representation of the ktime value
259  */
260 static inline struct timeval ktime_to_timeval(const ktime_t kt)
261 {
262         return (struct timeval) {
263                 .tv_sec = (time_t) kt.tv.sec,
264                 .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
265 }
266
267 /**
268  * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
269  * @kt:         the ktime_t variable to convert
270  *
271  * Returns the scalar nanoseconds representation of @kt
272  */
273 static inline s64 ktime_to_ns(const ktime_t kt)
274 {
275         return (s64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
276 }
277
278 #endif  /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
279
280 /**
281  * ktime_equal - Compares two ktime_t variables to see if they are equal
282  * @cmp1:       comparable1
283  * @cmp2:       comparable2
284  *
285  * Compare two ktime_t variables, returns 1 if equal
286  */
287 static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
288 {
289         return cmp1.tv64 == cmp2.tv64;
290 }
291
292 static inline s64 ktime_to_us(const ktime_t kt)
293 {
294         struct timeval tv = ktime_to_timeval(kt);
295         return (s64) tv.tv_sec * USEC_PER_SEC + tv.tv_usec;
296 }
297
298 static inline s64 ktime_to_ms(const ktime_t kt)
299 {
300         struct timeval tv = ktime_to_timeval(kt);
301         return (s64) tv.tv_sec * MSEC_PER_SEC + tv.tv_usec / USEC_PER_MSEC;
302 }
303
304 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
305 {
306        return ktime_to_us(ktime_sub(later, earlier));
307 }
308
309 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
310 {
311         return ktime_add_ns(kt, usec * 1000);
312 }
313
314 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
315 {
316         return ktime_sub_ns(kt, usec * 1000);
317 }
318
319 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
320
321 /*
322  * The resolution of the clocks. The resolution value is returned in
323  * the clock_getres() system call to give application programmers an
324  * idea of the (in)accuracy of timers. Timer values are rounded up to
325  * this resolution values.
326  */
327 #define LOW_RES_NSEC            TICK_NSEC
328 #define KTIME_LOW_RES           (ktime_t){ .tv64 = LOW_RES_NSEC }
329
330 /* Get the monotonic time in timespec format: */
331 extern void ktime_get_ts(struct timespec *ts);
332
333 /* Get the real (wall-) time in timespec format: */
334 #define ktime_get_real_ts(ts)   getnstimeofday(ts)
335
336 static inline ktime_t ns_to_ktime(u64 ns)
337 {
338         static const ktime_t ktime_zero = { .tv64 = 0 };
339         return ktime_add_ns(ktime_zero, ns);
340 }
341
342 #endif