Merge mulgrave-w:git/scsi-misc-2.6
[pandora-kernel.git] / include / linux / ktime.h
1 /*
2  *  include/linux/ktime.h
3  *
4  *  ktime_t - nanosecond-resolution time format.
5  *
6  *   Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7  *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8  *
9  *  data type definitions, declarations, prototypes and macros.
10  *
11  *  Started by: Thomas Gleixner and Ingo Molnar
12  *
13  *  Credits:
14  *
15  *      Roman Zippel provided the ideas and primary code snippets of
16  *      the ktime_t union and further simplifications of the original
17  *      code.
18  *
19  *  For licencing details see kernel-base/COPYING
20  */
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
23
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
26
27 /*
28  * ktime_t:
29  *
30  * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
31  * internal representation of time values in scalar nanoseconds. The
32  * design plays out best on 64-bit CPUs, where most conversions are
33  * NOPs and most arithmetic ktime_t operations are plain arithmetic
34  * operations.
35  *
36  * On 32-bit CPUs an optimized representation of the timespec structure
37  * is used to avoid expensive conversions from and to timespecs. The
38  * endian-aware order of the tv struct members is choosen to allow
39  * mathematical operations on the tv64 member of the union too, which
40  * for certain operations produces better code.
41  *
42  * For architectures with efficient support for 64/32-bit conversions the
43  * plain scalar nanosecond based representation can be selected by the
44  * config switch CONFIG_KTIME_SCALAR.
45  */
46 typedef union {
47         s64     tv64;
48 #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
49         struct {
50 # ifdef __BIG_ENDIAN
51         s32     sec, nsec;
52 # else
53         s32     nsec, sec;
54 # endif
55         } tv;
56 #endif
57 } ktime_t;
58
59 #define KTIME_MAX                       ((s64)~((u64)1 << 63))
60 #define KTIME_SEC_MAX                   (KTIME_MAX / NSEC_PER_SEC)
61
62 /*
63  * ktime_t definitions when using the 64-bit scalar representation:
64  */
65
66 #if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
67
68 /**
69  * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
70  * @secs:       seconds to set
71  * @nsecs:      nanoseconds to set
72  *
73  * Return the ktime_t representation of the value
74  */
75 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
76 {
77 #if (BITS_PER_LONG == 64)
78         if (unlikely(secs >= KTIME_SEC_MAX))
79                 return (ktime_t){ .tv64 = KTIME_MAX };
80 #endif
81         return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
82 }
83
84 /* Subtract two ktime_t variables. rem = lhs -rhs: */
85 #define ktime_sub(lhs, rhs) \
86                 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
87
88 /* Add two ktime_t variables. res = lhs + rhs: */
89 #define ktime_add(lhs, rhs) \
90                 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
91
92 /*
93  * Add a ktime_t variable and a scalar nanosecond value.
94  * res = kt + nsval:
95  */
96 #define ktime_add_ns(kt, nsval) \
97                 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
98
99 /* convert a timespec to ktime_t format: */
100 static inline ktime_t timespec_to_ktime(struct timespec ts)
101 {
102         return ktime_set(ts.tv_sec, ts.tv_nsec);
103 }
104
105 /* convert a timeval to ktime_t format: */
106 static inline ktime_t timeval_to_ktime(struct timeval tv)
107 {
108         return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
109 }
110
111 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
112 #define ktime_to_timespec(kt)           ns_to_timespec((kt).tv64)
113
114 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
115 #define ktime_to_timeval(kt)            ns_to_timeval((kt).tv64)
116
117 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
118 #define ktime_to_ns(kt)                 ((kt).tv64)
119
120 #else
121
122 /*
123  * Helper macros/inlines to get the ktime_t math right in the timespec
124  * representation. The macros are sometimes ugly - their actual use is
125  * pretty okay-ish, given the circumstances. We do all this for
126  * performance reasons. The pure scalar nsec_t based code was nice and
127  * simple, but created too many 64-bit / 32-bit conversions and divisions.
128  *
129  * Be especially aware that negative values are represented in a way
130  * that the tv.sec field is negative and the tv.nsec field is greater
131  * or equal to zero but less than nanoseconds per second. This is the
132  * same representation which is used by timespecs.
133  *
134  *   tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
135  */
136
137 /* Set a ktime_t variable to a value in sec/nsec representation: */
138 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
139 {
140         return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
141 }
142
143 /**
144  * ktime_sub - subtract two ktime_t variables
145  * @lhs:        minuend
146  * @rhs:        subtrahend
147  *
148  * Returns the remainder of the substraction
149  */
150 static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
151 {
152         ktime_t res;
153
154         res.tv64 = lhs.tv64 - rhs.tv64;
155         if (res.tv.nsec < 0)
156                 res.tv.nsec += NSEC_PER_SEC;
157
158         return res;
159 }
160
161 /**
162  * ktime_add - add two ktime_t variables
163  * @add1:       addend1
164  * @add2:       addend2
165  *
166  * Returns the sum of addend1 and addend2
167  */
168 static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
169 {
170         ktime_t res;
171
172         res.tv64 = add1.tv64 + add2.tv64;
173         /*
174          * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
175          * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
176          *
177          * it's equivalent to:
178          *   tv.nsec -= NSEC_PER_SEC
179          *   tv.sec ++;
180          */
181         if (res.tv.nsec >= NSEC_PER_SEC)
182                 res.tv64 += (u32)-NSEC_PER_SEC;
183
184         return res;
185 }
186
187 /**
188  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
189  * @kt:         addend
190  * @nsec:       the scalar nsec value to add
191  *
192  * Returns the sum of kt and nsec in ktime_t format
193  */
194 extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
195
196 /**
197  * timespec_to_ktime - convert a timespec to ktime_t format
198  * @ts:         the timespec variable to convert
199  *
200  * Returns a ktime_t variable with the converted timespec value
201  */
202 static inline ktime_t timespec_to_ktime(const struct timespec ts)
203 {
204         return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
205                                    .nsec = (s32)ts.tv_nsec } };
206 }
207
208 /**
209  * timeval_to_ktime - convert a timeval to ktime_t format
210  * @tv:         the timeval variable to convert
211  *
212  * Returns a ktime_t variable with the converted timeval value
213  */
214 static inline ktime_t timeval_to_ktime(const struct timeval tv)
215 {
216         return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
217                                    .nsec = (s32)tv.tv_usec * 1000 } };
218 }
219
220 /**
221  * ktime_to_timespec - convert a ktime_t variable to timespec format
222  * @kt:         the ktime_t variable to convert
223  *
224  * Returns the timespec representation of the ktime value
225  */
226 static inline struct timespec ktime_to_timespec(const ktime_t kt)
227 {
228         return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
229                                    .tv_nsec = (long) kt.tv.nsec };
230 }
231
232 /**
233  * ktime_to_timeval - convert a ktime_t variable to timeval format
234  * @kt:         the ktime_t variable to convert
235  *
236  * Returns the timeval representation of the ktime value
237  */
238 static inline struct timeval ktime_to_timeval(const ktime_t kt)
239 {
240         return (struct timeval) {
241                 .tv_sec = (time_t) kt.tv.sec,
242                 .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
243 }
244
245 /**
246  * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
247  * @kt:         the ktime_t variable to convert
248  *
249  * Returns the scalar nanoseconds representation of kt
250  */
251 static inline u64 ktime_to_ns(const ktime_t kt)
252 {
253         return (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
254 }
255
256 #endif
257
258 /*
259  * The resolution of the clocks. The resolution value is returned in
260  * the clock_getres() system call to give application programmers an
261  * idea of the (in)accuracy of timers. Timer values are rounded up to
262  * this resolution values.
263  */
264 #define KTIME_REALTIME_RES      (ktime_t){ .tv64 = TICK_NSEC }
265 #define KTIME_MONOTONIC_RES     (ktime_t){ .tv64 = TICK_NSEC }
266
267 /* Get the monotonic time in timespec format: */
268 extern void ktime_get_ts(struct timespec *ts);
269
270 /* Get the real (wall-) time in timespec format: */
271 #define ktime_get_real_ts(ts)   getnstimeofday(ts)
272
273 #endif