Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[pandora-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
48
49 static struct workqueue_struct *xfslogd_workqueue;
50 struct workqueue_struct *xfsdatad_workqueue;
51 struct workqueue_struct *xfsconvertd_workqueue;
52
53 #ifdef XFS_BUF_LOCK_TRACKING
54 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
55 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
56 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
57 #else
58 # define XB_SET_OWNER(bp)       do { } while (0)
59 # define XB_CLEAR_OWNER(bp)     do { } while (0)
60 # define XB_GET_OWNER(bp)       do { } while (0)
61 #endif
62
63 #define xb_to_gfp(flags) \
64         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
66
67 #define xb_to_km(flags) \
68          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
69
70 #define xfs_buf_allocate(flags) \
71         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72 #define xfs_buf_deallocate(bp) \
73         kmem_zone_free(xfs_buf_zone, (bp));
74
75 static inline int
76 xfs_buf_is_vmapped(
77         struct xfs_buf  *bp)
78 {
79         /*
80          * Return true if the buffer is vmapped.
81          *
82          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83          * code is clever enough to know it doesn't have to map a single page,
84          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85          */
86         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
87 }
88
89 static inline int
90 xfs_buf_vmap_len(
91         struct xfs_buf  *bp)
92 {
93         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
94 }
95
96 /*
97  *      Page Region interfaces.
98  *
99  *      For pages in filesystems where the blocksize is smaller than the
100  *      pagesize, we use the page->private field (long) to hold a bitmap
101  *      of uptodate regions within the page.
102  *
103  *      Each such region is "bytes per page / bits per long" bytes long.
104  *
105  *      NBPPR == number-of-bytes-per-page-region
106  *      BTOPR == bytes-to-page-region (rounded up)
107  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
108  */
109 #if (BITS_PER_LONG == 32)
110 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
111 #elif (BITS_PER_LONG == 64)
112 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
113 #else
114 #error BITS_PER_LONG must be 32 or 64
115 #endif
116 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
117 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
118 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
119
120 STATIC unsigned long
121 page_region_mask(
122         size_t          offset,
123         size_t          length)
124 {
125         unsigned long   mask;
126         int             first, final;
127
128         first = BTOPR(offset);
129         final = BTOPRT(offset + length - 1);
130         first = min(first, final);
131
132         mask = ~0UL;
133         mask <<= BITS_PER_LONG - (final - first);
134         mask >>= BITS_PER_LONG - (final);
135
136         ASSERT(offset + length <= PAGE_CACHE_SIZE);
137         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
138
139         return mask;
140 }
141
142 STATIC void
143 set_page_region(
144         struct page     *page,
145         size_t          offset,
146         size_t          length)
147 {
148         set_page_private(page,
149                 page_private(page) | page_region_mask(offset, length));
150         if (page_private(page) == ~0UL)
151                 SetPageUptodate(page);
152 }
153
154 STATIC int
155 test_page_region(
156         struct page     *page,
157         size_t          offset,
158         size_t          length)
159 {
160         unsigned long   mask = page_region_mask(offset, length);
161
162         return (mask && (page_private(page) & mask) == mask);
163 }
164
165 /*
166  * xfs_buf_lru_add - add a buffer to the LRU.
167  *
168  * The LRU takes a new reference to the buffer so that it will only be freed
169  * once the shrinker takes the buffer off the LRU.
170  */
171 STATIC void
172 xfs_buf_lru_add(
173         struct xfs_buf  *bp)
174 {
175         struct xfs_buftarg *btp = bp->b_target;
176
177         spin_lock(&btp->bt_lru_lock);
178         if (list_empty(&bp->b_lru)) {
179                 atomic_inc(&bp->b_hold);
180                 list_add_tail(&bp->b_lru, &btp->bt_lru);
181                 btp->bt_lru_nr++;
182         }
183         spin_unlock(&btp->bt_lru_lock);
184 }
185
186 /*
187  * xfs_buf_lru_del - remove a buffer from the LRU
188  *
189  * The unlocked check is safe here because it only occurs when there are not
190  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
191  * to optimise the shrinker removing the buffer from the LRU and calling
192  * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
193  * bt_lru_lock.
194  */
195 STATIC void
196 xfs_buf_lru_del(
197         struct xfs_buf  *bp)
198 {
199         struct xfs_buftarg *btp = bp->b_target;
200
201         if (list_empty(&bp->b_lru))
202                 return;
203
204         spin_lock(&btp->bt_lru_lock);
205         if (!list_empty(&bp->b_lru)) {
206                 list_del_init(&bp->b_lru);
207                 btp->bt_lru_nr--;
208         }
209         spin_unlock(&btp->bt_lru_lock);
210 }
211
212 /*
213  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
214  * b_lru_ref count so that the buffer is freed immediately when the buffer
215  * reference count falls to zero. If the buffer is already on the LRU, we need
216  * to remove the reference that LRU holds on the buffer.
217  *
218  * This prevents build-up of stale buffers on the LRU.
219  */
220 void
221 xfs_buf_stale(
222         struct xfs_buf  *bp)
223 {
224         bp->b_flags |= XBF_STALE;
225         atomic_set(&(bp)->b_lru_ref, 0);
226         if (!list_empty(&bp->b_lru)) {
227                 struct xfs_buftarg *btp = bp->b_target;
228
229                 spin_lock(&btp->bt_lru_lock);
230                 if (!list_empty(&bp->b_lru)) {
231                         list_del_init(&bp->b_lru);
232                         btp->bt_lru_nr--;
233                         atomic_dec(&bp->b_hold);
234                 }
235                 spin_unlock(&btp->bt_lru_lock);
236         }
237         ASSERT(atomic_read(&bp->b_hold) >= 1);
238 }
239
240 STATIC void
241 _xfs_buf_initialize(
242         xfs_buf_t               *bp,
243         xfs_buftarg_t           *target,
244         xfs_off_t               range_base,
245         size_t                  range_length,
246         xfs_buf_flags_t         flags)
247 {
248         /*
249          * We don't want certain flags to appear in b_flags.
250          */
251         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
252
253         memset(bp, 0, sizeof(xfs_buf_t));
254         atomic_set(&bp->b_hold, 1);
255         atomic_set(&bp->b_lru_ref, 1);
256         init_completion(&bp->b_iowait);
257         INIT_LIST_HEAD(&bp->b_lru);
258         INIT_LIST_HEAD(&bp->b_list);
259         RB_CLEAR_NODE(&bp->b_rbnode);
260         sema_init(&bp->b_sema, 0); /* held, no waiters */
261         XB_SET_OWNER(bp);
262         bp->b_target = target;
263         bp->b_file_offset = range_base;
264         /*
265          * Set buffer_length and count_desired to the same value initially.
266          * I/O routines should use count_desired, which will be the same in
267          * most cases but may be reset (e.g. XFS recovery).
268          */
269         bp->b_buffer_length = bp->b_count_desired = range_length;
270         bp->b_flags = flags;
271         bp->b_bn = XFS_BUF_DADDR_NULL;
272         atomic_set(&bp->b_pin_count, 0);
273         init_waitqueue_head(&bp->b_waiters);
274
275         XFS_STATS_INC(xb_create);
276
277         trace_xfs_buf_init(bp, _RET_IP_);
278 }
279
280 /*
281  *      Allocate a page array capable of holding a specified number
282  *      of pages, and point the page buf at it.
283  */
284 STATIC int
285 _xfs_buf_get_pages(
286         xfs_buf_t               *bp,
287         int                     page_count,
288         xfs_buf_flags_t         flags)
289 {
290         /* Make sure that we have a page list */
291         if (bp->b_pages == NULL) {
292                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
293                 bp->b_page_count = page_count;
294                 if (page_count <= XB_PAGES) {
295                         bp->b_pages = bp->b_page_array;
296                 } else {
297                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
298                                         page_count, xb_to_km(flags));
299                         if (bp->b_pages == NULL)
300                                 return -ENOMEM;
301                 }
302                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
303         }
304         return 0;
305 }
306
307 /*
308  *      Frees b_pages if it was allocated.
309  */
310 STATIC void
311 _xfs_buf_free_pages(
312         xfs_buf_t       *bp)
313 {
314         if (bp->b_pages != bp->b_page_array) {
315                 kmem_free(bp->b_pages);
316                 bp->b_pages = NULL;
317         }
318 }
319
320 /*
321  *      Releases the specified buffer.
322  *
323  *      The modification state of any associated pages is left unchanged.
324  *      The buffer most not be on any hash - use xfs_buf_rele instead for
325  *      hashed and refcounted buffers
326  */
327 void
328 xfs_buf_free(
329         xfs_buf_t               *bp)
330 {
331         trace_xfs_buf_free(bp, _RET_IP_);
332
333         ASSERT(list_empty(&bp->b_lru));
334
335         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
336                 uint            i;
337
338                 if (xfs_buf_is_vmapped(bp))
339                         vm_unmap_ram(bp->b_addr - bp->b_offset,
340                                         bp->b_page_count);
341
342                 for (i = 0; i < bp->b_page_count; i++) {
343                         struct page     *page = bp->b_pages[i];
344
345                         if (bp->b_flags & _XBF_PAGE_CACHE)
346                                 ASSERT(!PagePrivate(page));
347                         page_cache_release(page);
348                 }
349         }
350         _xfs_buf_free_pages(bp);
351         xfs_buf_deallocate(bp);
352 }
353
354 /*
355  *      Finds all pages for buffer in question and builds it's page list.
356  */
357 STATIC int
358 _xfs_buf_lookup_pages(
359         xfs_buf_t               *bp,
360         uint                    flags)
361 {
362         struct address_space    *mapping = bp->b_target->bt_mapping;
363         size_t                  blocksize = bp->b_target->bt_bsize;
364         size_t                  size = bp->b_count_desired;
365         size_t                  nbytes, offset;
366         gfp_t                   gfp_mask = xb_to_gfp(flags);
367         unsigned short          page_count, i;
368         pgoff_t                 first;
369         xfs_off_t               end;
370         int                     error;
371
372         end = bp->b_file_offset + bp->b_buffer_length;
373         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
374
375         error = _xfs_buf_get_pages(bp, page_count, flags);
376         if (unlikely(error))
377                 return error;
378         bp->b_flags |= _XBF_PAGE_CACHE;
379
380         offset = bp->b_offset;
381         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
382
383         for (i = 0; i < bp->b_page_count; i++) {
384                 struct page     *page;
385                 uint            retries = 0;
386
387               retry:
388                 page = find_or_create_page(mapping, first + i, gfp_mask);
389                 if (unlikely(page == NULL)) {
390                         if (flags & XBF_READ_AHEAD) {
391                                 bp->b_page_count = i;
392                                 for (i = 0; i < bp->b_page_count; i++)
393                                         unlock_page(bp->b_pages[i]);
394                                 return -ENOMEM;
395                         }
396
397                         /*
398                          * This could deadlock.
399                          *
400                          * But until all the XFS lowlevel code is revamped to
401                          * handle buffer allocation failures we can't do much.
402                          */
403                         if (!(++retries % 100))
404                                 xfs_err(NULL,
405                 "possible memory allocation deadlock in %s (mode:0x%x)",
406                                         __func__, gfp_mask);
407
408                         XFS_STATS_INC(xb_page_retries);
409                         congestion_wait(BLK_RW_ASYNC, HZ/50);
410                         goto retry;
411                 }
412
413                 XFS_STATS_INC(xb_page_found);
414
415                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
416                 size -= nbytes;
417
418                 ASSERT(!PagePrivate(page));
419                 if (!PageUptodate(page)) {
420                         page_count--;
421                         if (blocksize >= PAGE_CACHE_SIZE) {
422                                 if (flags & XBF_READ)
423                                         bp->b_flags |= _XBF_PAGE_LOCKED;
424                         } else if (!PagePrivate(page)) {
425                                 if (test_page_region(page, offset, nbytes))
426                                         page_count++;
427                         }
428                 }
429
430                 bp->b_pages[i] = page;
431                 offset = 0;
432         }
433
434         if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
435                 for (i = 0; i < bp->b_page_count; i++)
436                         unlock_page(bp->b_pages[i]);
437         }
438
439         if (page_count == bp->b_page_count)
440                 bp->b_flags |= XBF_DONE;
441
442         return error;
443 }
444
445 /*
446  *      Map buffer into kernel address-space if nessecary.
447  */
448 STATIC int
449 _xfs_buf_map_pages(
450         xfs_buf_t               *bp,
451         uint                    flags)
452 {
453         /* A single page buffer is always mappable */
454         if (bp->b_page_count == 1) {
455                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456                 bp->b_flags |= XBF_MAPPED;
457         } else if (flags & XBF_MAPPED) {
458                 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
459                                         -1, PAGE_KERNEL);
460                 if (unlikely(bp->b_addr == NULL))
461                         return -ENOMEM;
462                 bp->b_addr += bp->b_offset;
463                 bp->b_flags |= XBF_MAPPED;
464         }
465
466         return 0;
467 }
468
469 /*
470  *      Finding and Reading Buffers
471  */
472
473 /*
474  *      Look up, and creates if absent, a lockable buffer for
475  *      a given range of an inode.  The buffer is returned
476  *      locked.  If other overlapping buffers exist, they are
477  *      released before the new buffer is created and locked,
478  *      which may imply that this call will block until those buffers
479  *      are unlocked.  No I/O is implied by this call.
480  */
481 xfs_buf_t *
482 _xfs_buf_find(
483         xfs_buftarg_t           *btp,   /* block device target          */
484         xfs_off_t               ioff,   /* starting offset of range     */
485         size_t                  isize,  /* length of range              */
486         xfs_buf_flags_t         flags,
487         xfs_buf_t               *new_bp)
488 {
489         xfs_off_t               range_base;
490         size_t                  range_length;
491         struct xfs_perag        *pag;
492         struct rb_node          **rbp;
493         struct rb_node          *parent;
494         xfs_buf_t               *bp;
495
496         range_base = (ioff << BBSHIFT);
497         range_length = (isize << BBSHIFT);
498
499         /* Check for IOs smaller than the sector size / not sector aligned */
500         ASSERT(!(range_length < (1 << btp->bt_sshift)));
501         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
502
503         /* get tree root */
504         pag = xfs_perag_get(btp->bt_mount,
505                                 xfs_daddr_to_agno(btp->bt_mount, ioff));
506
507         /* walk tree */
508         spin_lock(&pag->pag_buf_lock);
509         rbp = &pag->pag_buf_tree.rb_node;
510         parent = NULL;
511         bp = NULL;
512         while (*rbp) {
513                 parent = *rbp;
514                 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
515
516                 if (range_base < bp->b_file_offset)
517                         rbp = &(*rbp)->rb_left;
518                 else if (range_base > bp->b_file_offset)
519                         rbp = &(*rbp)->rb_right;
520                 else {
521                         /*
522                          * found a block offset match. If the range doesn't
523                          * match, the only way this is allowed is if the buffer
524                          * in the cache is stale and the transaction that made
525                          * it stale has not yet committed. i.e. we are
526                          * reallocating a busy extent. Skip this buffer and
527                          * continue searching to the right for an exact match.
528                          */
529                         if (bp->b_buffer_length != range_length) {
530                                 ASSERT(bp->b_flags & XBF_STALE);
531                                 rbp = &(*rbp)->rb_right;
532                                 continue;
533                         }
534                         atomic_inc(&bp->b_hold);
535                         goto found;
536                 }
537         }
538
539         /* No match found */
540         if (new_bp) {
541                 _xfs_buf_initialize(new_bp, btp, range_base,
542                                 range_length, flags);
543                 rb_link_node(&new_bp->b_rbnode, parent, rbp);
544                 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
545                 /* the buffer keeps the perag reference until it is freed */
546                 new_bp->b_pag = pag;
547                 spin_unlock(&pag->pag_buf_lock);
548         } else {
549                 XFS_STATS_INC(xb_miss_locked);
550                 spin_unlock(&pag->pag_buf_lock);
551                 xfs_perag_put(pag);
552         }
553         return new_bp;
554
555 found:
556         spin_unlock(&pag->pag_buf_lock);
557         xfs_perag_put(pag);
558
559         if (xfs_buf_cond_lock(bp)) {
560                 /* failed, so wait for the lock if requested. */
561                 if (!(flags & XBF_TRYLOCK)) {
562                         xfs_buf_lock(bp);
563                         XFS_STATS_INC(xb_get_locked_waited);
564                 } else {
565                         xfs_buf_rele(bp);
566                         XFS_STATS_INC(xb_busy_locked);
567                         return NULL;
568                 }
569         }
570
571         if (bp->b_flags & XBF_STALE) {
572                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
573                 bp->b_flags &= XBF_MAPPED;
574         }
575
576         trace_xfs_buf_find(bp, flags, _RET_IP_);
577         XFS_STATS_INC(xb_get_locked);
578         return bp;
579 }
580
581 /*
582  *      Assembles a buffer covering the specified range.
583  *      Storage in memory for all portions of the buffer will be allocated,
584  *      although backing storage may not be.
585  */
586 xfs_buf_t *
587 xfs_buf_get(
588         xfs_buftarg_t           *target,/* target for buffer            */
589         xfs_off_t               ioff,   /* starting offset of range     */
590         size_t                  isize,  /* length of range              */
591         xfs_buf_flags_t         flags)
592 {
593         xfs_buf_t               *bp, *new_bp;
594         int                     error = 0, i;
595
596         new_bp = xfs_buf_allocate(flags);
597         if (unlikely(!new_bp))
598                 return NULL;
599
600         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
601         if (bp == new_bp) {
602                 error = _xfs_buf_lookup_pages(bp, flags);
603                 if (error)
604                         goto no_buffer;
605         } else {
606                 xfs_buf_deallocate(new_bp);
607                 if (unlikely(bp == NULL))
608                         return NULL;
609         }
610
611         for (i = 0; i < bp->b_page_count; i++)
612                 mark_page_accessed(bp->b_pages[i]);
613
614         if (!(bp->b_flags & XBF_MAPPED)) {
615                 error = _xfs_buf_map_pages(bp, flags);
616                 if (unlikely(error)) {
617                         xfs_warn(target->bt_mount,
618                                 "%s: failed to map pages\n", __func__);
619                         goto no_buffer;
620                 }
621         }
622
623         XFS_STATS_INC(xb_get);
624
625         /*
626          * Always fill in the block number now, the mapped cases can do
627          * their own overlay of this later.
628          */
629         bp->b_bn = ioff;
630         bp->b_count_desired = bp->b_buffer_length;
631
632         trace_xfs_buf_get(bp, flags, _RET_IP_);
633         return bp;
634
635  no_buffer:
636         if (flags & (XBF_LOCK | XBF_TRYLOCK))
637                 xfs_buf_unlock(bp);
638         xfs_buf_rele(bp);
639         return NULL;
640 }
641
642 STATIC int
643 _xfs_buf_read(
644         xfs_buf_t               *bp,
645         xfs_buf_flags_t         flags)
646 {
647         int                     status;
648
649         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
650         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
651
652         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
653                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
654         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
655                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
656
657         status = xfs_buf_iorequest(bp);
658         if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
659                 return status;
660         return xfs_buf_iowait(bp);
661 }
662
663 xfs_buf_t *
664 xfs_buf_read(
665         xfs_buftarg_t           *target,
666         xfs_off_t               ioff,
667         size_t                  isize,
668         xfs_buf_flags_t         flags)
669 {
670         xfs_buf_t               *bp;
671
672         flags |= XBF_READ;
673
674         bp = xfs_buf_get(target, ioff, isize, flags);
675         if (bp) {
676                 trace_xfs_buf_read(bp, flags, _RET_IP_);
677
678                 if (!XFS_BUF_ISDONE(bp)) {
679                         XFS_STATS_INC(xb_get_read);
680                         _xfs_buf_read(bp, flags);
681                 } else if (flags & XBF_ASYNC) {
682                         /*
683                          * Read ahead call which is already satisfied,
684                          * drop the buffer
685                          */
686                         goto no_buffer;
687                 } else {
688                         /* We do not want read in the flags */
689                         bp->b_flags &= ~XBF_READ;
690                 }
691         }
692
693         return bp;
694
695  no_buffer:
696         if (flags & (XBF_LOCK | XBF_TRYLOCK))
697                 xfs_buf_unlock(bp);
698         xfs_buf_rele(bp);
699         return NULL;
700 }
701
702 /*
703  *      If we are not low on memory then do the readahead in a deadlock
704  *      safe manner.
705  */
706 void
707 xfs_buf_readahead(
708         xfs_buftarg_t           *target,
709         xfs_off_t               ioff,
710         size_t                  isize)
711 {
712         struct backing_dev_info *bdi;
713
714         bdi = target->bt_mapping->backing_dev_info;
715         if (bdi_read_congested(bdi))
716                 return;
717
718         xfs_buf_read(target, ioff, isize,
719                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
720 }
721
722 /*
723  * Read an uncached buffer from disk. Allocates and returns a locked
724  * buffer containing the disk contents or nothing.
725  */
726 struct xfs_buf *
727 xfs_buf_read_uncached(
728         struct xfs_mount        *mp,
729         struct xfs_buftarg      *target,
730         xfs_daddr_t             daddr,
731         size_t                  length,
732         int                     flags)
733 {
734         xfs_buf_t               *bp;
735         int                     error;
736
737         bp = xfs_buf_get_uncached(target, length, flags);
738         if (!bp)
739                 return NULL;
740
741         /* set up the buffer for a read IO */
742         xfs_buf_lock(bp);
743         XFS_BUF_SET_ADDR(bp, daddr);
744         XFS_BUF_READ(bp);
745         XFS_BUF_BUSY(bp);
746
747         xfsbdstrat(mp, bp);
748         error = xfs_buf_iowait(bp);
749         if (error || bp->b_error) {
750                 xfs_buf_relse(bp);
751                 return NULL;
752         }
753         return bp;
754 }
755
756 xfs_buf_t *
757 xfs_buf_get_empty(
758         size_t                  len,
759         xfs_buftarg_t           *target)
760 {
761         xfs_buf_t               *bp;
762
763         bp = xfs_buf_allocate(0);
764         if (bp)
765                 _xfs_buf_initialize(bp, target, 0, len, 0);
766         return bp;
767 }
768
769 static inline struct page *
770 mem_to_page(
771         void                    *addr)
772 {
773         if ((!is_vmalloc_addr(addr))) {
774                 return virt_to_page(addr);
775         } else {
776                 return vmalloc_to_page(addr);
777         }
778 }
779
780 int
781 xfs_buf_associate_memory(
782         xfs_buf_t               *bp,
783         void                    *mem,
784         size_t                  len)
785 {
786         int                     rval;
787         int                     i = 0;
788         unsigned long           pageaddr;
789         unsigned long           offset;
790         size_t                  buflen;
791         int                     page_count;
792
793         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
794         offset = (unsigned long)mem - pageaddr;
795         buflen = PAGE_CACHE_ALIGN(len + offset);
796         page_count = buflen >> PAGE_CACHE_SHIFT;
797
798         /* Free any previous set of page pointers */
799         if (bp->b_pages)
800                 _xfs_buf_free_pages(bp);
801
802         bp->b_pages = NULL;
803         bp->b_addr = mem;
804
805         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
806         if (rval)
807                 return rval;
808
809         bp->b_offset = offset;
810
811         for (i = 0; i < bp->b_page_count; i++) {
812                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
813                 pageaddr += PAGE_CACHE_SIZE;
814         }
815
816         bp->b_count_desired = len;
817         bp->b_buffer_length = buflen;
818         bp->b_flags |= XBF_MAPPED;
819         bp->b_flags &= ~_XBF_PAGE_LOCKED;
820
821         return 0;
822 }
823
824 xfs_buf_t *
825 xfs_buf_get_uncached(
826         struct xfs_buftarg      *target,
827         size_t                  len,
828         int                     flags)
829 {
830         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
831         int                     error, i;
832         xfs_buf_t               *bp;
833
834         bp = xfs_buf_allocate(0);
835         if (unlikely(bp == NULL))
836                 goto fail;
837         _xfs_buf_initialize(bp, target, 0, len, 0);
838
839         error = _xfs_buf_get_pages(bp, page_count, 0);
840         if (error)
841                 goto fail_free_buf;
842
843         for (i = 0; i < page_count; i++) {
844                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
845                 if (!bp->b_pages[i])
846                         goto fail_free_mem;
847         }
848         bp->b_flags |= _XBF_PAGES;
849
850         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
851         if (unlikely(error)) {
852                 xfs_warn(target->bt_mount,
853                         "%s: failed to map pages\n", __func__);
854                 goto fail_free_mem;
855         }
856
857         xfs_buf_unlock(bp);
858
859         trace_xfs_buf_get_uncached(bp, _RET_IP_);
860         return bp;
861
862  fail_free_mem:
863         while (--i >= 0)
864                 __free_page(bp->b_pages[i]);
865         _xfs_buf_free_pages(bp);
866  fail_free_buf:
867         xfs_buf_deallocate(bp);
868  fail:
869         return NULL;
870 }
871
872 /*
873  *      Increment reference count on buffer, to hold the buffer concurrently
874  *      with another thread which may release (free) the buffer asynchronously.
875  *      Must hold the buffer already to call this function.
876  */
877 void
878 xfs_buf_hold(
879         xfs_buf_t               *bp)
880 {
881         trace_xfs_buf_hold(bp, _RET_IP_);
882         atomic_inc(&bp->b_hold);
883 }
884
885 /*
886  *      Releases a hold on the specified buffer.  If the
887  *      the hold count is 1, calls xfs_buf_free.
888  */
889 void
890 xfs_buf_rele(
891         xfs_buf_t               *bp)
892 {
893         struct xfs_perag        *pag = bp->b_pag;
894
895         trace_xfs_buf_rele(bp, _RET_IP_);
896
897         if (!pag) {
898                 ASSERT(list_empty(&bp->b_lru));
899                 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
900                 if (atomic_dec_and_test(&bp->b_hold))
901                         xfs_buf_free(bp);
902                 return;
903         }
904
905         ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
906
907         ASSERT(atomic_read(&bp->b_hold) > 0);
908         if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
909                 if (!(bp->b_flags & XBF_STALE) &&
910                            atomic_read(&bp->b_lru_ref)) {
911                         xfs_buf_lru_add(bp);
912                         spin_unlock(&pag->pag_buf_lock);
913                 } else {
914                         xfs_buf_lru_del(bp);
915                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
916                         rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
917                         spin_unlock(&pag->pag_buf_lock);
918                         xfs_perag_put(pag);
919                         xfs_buf_free(bp);
920                 }
921         }
922 }
923
924
925 /*
926  *      Mutual exclusion on buffers.  Locking model:
927  *
928  *      Buffers associated with inodes for which buffer locking
929  *      is not enabled are not protected by semaphores, and are
930  *      assumed to be exclusively owned by the caller.  There is a
931  *      spinlock in the buffer, used by the caller when concurrent
932  *      access is possible.
933  */
934
935 /*
936  *      Locks a buffer object, if it is not already locked.  Note that this in
937  *      no way locks the underlying pages, so it is only useful for
938  *      synchronizing concurrent use of buffer objects, not for synchronizing
939  *      independent access to the underlying pages.
940  *
941  *      If we come across a stale, pinned, locked buffer, we know that we are
942  *      being asked to lock a buffer that has been reallocated. Because it is
943  *      pinned, we know that the log has not been pushed to disk and hence it
944  *      will still be locked.  Rather than continuing to have trylock attempts
945  *      fail until someone else pushes the log, push it ourselves before
946  *      returning.  This means that the xfsaild will not get stuck trying
947  *      to push on stale inode buffers.
948  */
949 int
950 xfs_buf_cond_lock(
951         xfs_buf_t               *bp)
952 {
953         int                     locked;
954
955         locked = down_trylock(&bp->b_sema) == 0;
956         if (locked)
957                 XB_SET_OWNER(bp);
958         else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
959                 xfs_log_force(bp->b_target->bt_mount, 0);
960
961         trace_xfs_buf_cond_lock(bp, _RET_IP_);
962         return locked ? 0 : -EBUSY;
963 }
964
965 int
966 xfs_buf_lock_value(
967         xfs_buf_t               *bp)
968 {
969         return bp->b_sema.count;
970 }
971
972 /*
973  *      Locks a buffer object.
974  *      Note that this in no way locks the underlying pages, so it is only
975  *      useful for synchronizing concurrent use of buffer objects, not for
976  *      synchronizing independent access to the underlying pages.
977  *
978  *      If we come across a stale, pinned, locked buffer, we know that we
979  *      are being asked to lock a buffer that has been reallocated. Because
980  *      it is pinned, we know that the log has not been pushed to disk and
981  *      hence it will still be locked. Rather than sleeping until someone
982  *      else pushes the log, push it ourselves before trying to get the lock.
983  */
984 void
985 xfs_buf_lock(
986         xfs_buf_t               *bp)
987 {
988         trace_xfs_buf_lock(bp, _RET_IP_);
989
990         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
991                 xfs_log_force(bp->b_target->bt_mount, 0);
992         if (atomic_read(&bp->b_io_remaining))
993                 blk_flush_plug(current);
994         down(&bp->b_sema);
995         XB_SET_OWNER(bp);
996
997         trace_xfs_buf_lock_done(bp, _RET_IP_);
998 }
999
1000 /*
1001  *      Releases the lock on the buffer object.
1002  *      If the buffer is marked delwri but is not queued, do so before we
1003  *      unlock the buffer as we need to set flags correctly.  We also need to
1004  *      take a reference for the delwri queue because the unlocker is going to
1005  *      drop their's and they don't know we just queued it.
1006  */
1007 void
1008 xfs_buf_unlock(
1009         xfs_buf_t               *bp)
1010 {
1011         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
1012                 atomic_inc(&bp->b_hold);
1013                 bp->b_flags |= XBF_ASYNC;
1014                 xfs_buf_delwri_queue(bp, 0);
1015         }
1016
1017         XB_CLEAR_OWNER(bp);
1018         up(&bp->b_sema);
1019
1020         trace_xfs_buf_unlock(bp, _RET_IP_);
1021 }
1022
1023 STATIC void
1024 xfs_buf_wait_unpin(
1025         xfs_buf_t               *bp)
1026 {
1027         DECLARE_WAITQUEUE       (wait, current);
1028
1029         if (atomic_read(&bp->b_pin_count) == 0)
1030                 return;
1031
1032         add_wait_queue(&bp->b_waiters, &wait);
1033         for (;;) {
1034                 set_current_state(TASK_UNINTERRUPTIBLE);
1035                 if (atomic_read(&bp->b_pin_count) == 0)
1036                         break;
1037                 io_schedule();
1038         }
1039         remove_wait_queue(&bp->b_waiters, &wait);
1040         set_current_state(TASK_RUNNING);
1041 }
1042
1043 /*
1044  *      Buffer Utility Routines
1045  */
1046
1047 STATIC void
1048 xfs_buf_iodone_work(
1049         struct work_struct      *work)
1050 {
1051         xfs_buf_t               *bp =
1052                 container_of(work, xfs_buf_t, b_iodone_work);
1053
1054         if (bp->b_iodone)
1055                 (*(bp->b_iodone))(bp);
1056         else if (bp->b_flags & XBF_ASYNC)
1057                 xfs_buf_relse(bp);
1058 }
1059
1060 void
1061 xfs_buf_ioend(
1062         xfs_buf_t               *bp,
1063         int                     schedule)
1064 {
1065         trace_xfs_buf_iodone(bp, _RET_IP_);
1066
1067         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1068         if (bp->b_error == 0)
1069                 bp->b_flags |= XBF_DONE;
1070
1071         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1072                 if (schedule) {
1073                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1074                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1075                 } else {
1076                         xfs_buf_iodone_work(&bp->b_iodone_work);
1077                 }
1078         } else {
1079                 complete(&bp->b_iowait);
1080         }
1081 }
1082
1083 void
1084 xfs_buf_ioerror(
1085         xfs_buf_t               *bp,
1086         int                     error)
1087 {
1088         ASSERT(error >= 0 && error <= 0xffff);
1089         bp->b_error = (unsigned short)error;
1090         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1091 }
1092
1093 int
1094 xfs_bwrite(
1095         struct xfs_mount        *mp,
1096         struct xfs_buf          *bp)
1097 {
1098         int                     error;
1099
1100         bp->b_flags |= XBF_WRITE;
1101         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1102
1103         xfs_buf_delwri_dequeue(bp);
1104         xfs_bdstrat_cb(bp);
1105
1106         error = xfs_buf_iowait(bp);
1107         if (error)
1108                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1109         xfs_buf_relse(bp);
1110         return error;
1111 }
1112
1113 void
1114 xfs_bdwrite(
1115         void                    *mp,
1116         struct xfs_buf          *bp)
1117 {
1118         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1119
1120         bp->b_flags &= ~XBF_READ;
1121         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1122
1123         xfs_buf_delwri_queue(bp, 1);
1124 }
1125
1126 /*
1127  * Called when we want to stop a buffer from getting written or read.
1128  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1129  * so that the proper iodone callbacks get called.
1130  */
1131 STATIC int
1132 xfs_bioerror(
1133         xfs_buf_t *bp)
1134 {
1135 #ifdef XFSERRORDEBUG
1136         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1137 #endif
1138
1139         /*
1140          * No need to wait until the buffer is unpinned, we aren't flushing it.
1141          */
1142         XFS_BUF_ERROR(bp, EIO);
1143
1144         /*
1145          * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1146          */
1147         XFS_BUF_UNREAD(bp);
1148         XFS_BUF_UNDELAYWRITE(bp);
1149         XFS_BUF_UNDONE(bp);
1150         XFS_BUF_STALE(bp);
1151
1152         xfs_buf_ioend(bp, 0);
1153
1154         return EIO;
1155 }
1156
1157 /*
1158  * Same as xfs_bioerror, except that we are releasing the buffer
1159  * here ourselves, and avoiding the xfs_buf_ioend call.
1160  * This is meant for userdata errors; metadata bufs come with
1161  * iodone functions attached, so that we can track down errors.
1162  */
1163 STATIC int
1164 xfs_bioerror_relse(
1165         struct xfs_buf  *bp)
1166 {
1167         int64_t         fl = XFS_BUF_BFLAGS(bp);
1168         /*
1169          * No need to wait until the buffer is unpinned.
1170          * We aren't flushing it.
1171          *
1172          * chunkhold expects B_DONE to be set, whether
1173          * we actually finish the I/O or not. We don't want to
1174          * change that interface.
1175          */
1176         XFS_BUF_UNREAD(bp);
1177         XFS_BUF_UNDELAYWRITE(bp);
1178         XFS_BUF_DONE(bp);
1179         XFS_BUF_STALE(bp);
1180         XFS_BUF_CLR_IODONE_FUNC(bp);
1181         if (!(fl & XBF_ASYNC)) {
1182                 /*
1183                  * Mark b_error and B_ERROR _both_.
1184                  * Lot's of chunkcache code assumes that.
1185                  * There's no reason to mark error for
1186                  * ASYNC buffers.
1187                  */
1188                 XFS_BUF_ERROR(bp, EIO);
1189                 XFS_BUF_FINISH_IOWAIT(bp);
1190         } else {
1191                 xfs_buf_relse(bp);
1192         }
1193
1194         return EIO;
1195 }
1196
1197
1198 /*
1199  * All xfs metadata buffers except log state machine buffers
1200  * get this attached as their b_bdstrat callback function.
1201  * This is so that we can catch a buffer
1202  * after prematurely unpinning it to forcibly shutdown the filesystem.
1203  */
1204 int
1205 xfs_bdstrat_cb(
1206         struct xfs_buf  *bp)
1207 {
1208         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1209                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1210                 /*
1211                  * Metadata write that didn't get logged but
1212                  * written delayed anyway. These aren't associated
1213                  * with a transaction, and can be ignored.
1214                  */
1215                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1216                         return xfs_bioerror_relse(bp);
1217                 else
1218                         return xfs_bioerror(bp);
1219         }
1220
1221         xfs_buf_iorequest(bp);
1222         return 0;
1223 }
1224
1225 /*
1226  * Wrapper around bdstrat so that we can stop data from going to disk in case
1227  * we are shutting down the filesystem.  Typically user data goes thru this
1228  * path; one of the exceptions is the superblock.
1229  */
1230 void
1231 xfsbdstrat(
1232         struct xfs_mount        *mp,
1233         struct xfs_buf          *bp)
1234 {
1235         if (XFS_FORCED_SHUTDOWN(mp)) {
1236                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1237                 xfs_bioerror_relse(bp);
1238                 return;
1239         }
1240
1241         xfs_buf_iorequest(bp);
1242 }
1243
1244 STATIC void
1245 _xfs_buf_ioend(
1246         xfs_buf_t               *bp,
1247         int                     schedule)
1248 {
1249         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1250                 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1251                 xfs_buf_ioend(bp, schedule);
1252         }
1253 }
1254
1255 STATIC void
1256 xfs_buf_bio_end_io(
1257         struct bio              *bio,
1258         int                     error)
1259 {
1260         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1261         unsigned int            blocksize = bp->b_target->bt_bsize;
1262         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1263
1264         xfs_buf_ioerror(bp, -error);
1265
1266         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1267                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1268
1269         do {
1270                 struct page     *page = bvec->bv_page;
1271
1272                 ASSERT(!PagePrivate(page));
1273                 if (unlikely(bp->b_error)) {
1274                         if (bp->b_flags & XBF_READ)
1275                                 ClearPageUptodate(page);
1276                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1277                         SetPageUptodate(page);
1278                 } else if (!PagePrivate(page) &&
1279                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1280                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1281                 }
1282
1283                 if (--bvec >= bio->bi_io_vec)
1284                         prefetchw(&bvec->bv_page->flags);
1285
1286                 if (bp->b_flags & _XBF_PAGE_LOCKED)
1287                         unlock_page(page);
1288         } while (bvec >= bio->bi_io_vec);
1289
1290         _xfs_buf_ioend(bp, 1);
1291         bio_put(bio);
1292 }
1293
1294 STATIC void
1295 _xfs_buf_ioapply(
1296         xfs_buf_t               *bp)
1297 {
1298         int                     rw, map_i, total_nr_pages, nr_pages;
1299         struct bio              *bio;
1300         int                     offset = bp->b_offset;
1301         int                     size = bp->b_count_desired;
1302         sector_t                sector = bp->b_bn;
1303         unsigned int            blocksize = bp->b_target->bt_bsize;
1304
1305         total_nr_pages = bp->b_page_count;
1306         map_i = 0;
1307
1308         if (bp->b_flags & XBF_ORDERED) {
1309                 ASSERT(!(bp->b_flags & XBF_READ));
1310                 rw = WRITE_FLUSH_FUA;
1311         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1312                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1313                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1314                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1315         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1316                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1317                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1318                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1319         } else {
1320                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1321                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1322         }
1323
1324         /* Special code path for reading a sub page size buffer in --
1325          * we populate up the whole page, and hence the other metadata
1326          * in the same page.  This optimization is only valid when the
1327          * filesystem block size is not smaller than the page size.
1328          */
1329         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1330             ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1331               (XBF_READ|_XBF_PAGE_LOCKED)) &&
1332             (blocksize >= PAGE_CACHE_SIZE)) {
1333                 bio = bio_alloc(GFP_NOIO, 1);
1334
1335                 bio->bi_bdev = bp->b_target->bt_bdev;
1336                 bio->bi_sector = sector - (offset >> BBSHIFT);
1337                 bio->bi_end_io = xfs_buf_bio_end_io;
1338                 bio->bi_private = bp;
1339
1340                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1341                 size = 0;
1342
1343                 atomic_inc(&bp->b_io_remaining);
1344
1345                 goto submit_io;
1346         }
1347
1348 next_chunk:
1349         atomic_inc(&bp->b_io_remaining);
1350         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1351         if (nr_pages > total_nr_pages)
1352                 nr_pages = total_nr_pages;
1353
1354         bio = bio_alloc(GFP_NOIO, nr_pages);
1355         bio->bi_bdev = bp->b_target->bt_bdev;
1356         bio->bi_sector = sector;
1357         bio->bi_end_io = xfs_buf_bio_end_io;
1358         bio->bi_private = bp;
1359
1360         for (; size && nr_pages; nr_pages--, map_i++) {
1361                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1362
1363                 if (nbytes > size)
1364                         nbytes = size;
1365
1366                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1367                 if (rbytes < nbytes)
1368                         break;
1369
1370                 offset = 0;
1371                 sector += nbytes >> BBSHIFT;
1372                 size -= nbytes;
1373                 total_nr_pages--;
1374         }
1375
1376 submit_io:
1377         if (likely(bio->bi_size)) {
1378                 if (xfs_buf_is_vmapped(bp)) {
1379                         flush_kernel_vmap_range(bp->b_addr,
1380                                                 xfs_buf_vmap_len(bp));
1381                 }
1382                 submit_bio(rw, bio);
1383                 if (size)
1384                         goto next_chunk;
1385         } else {
1386                 /*
1387                  * if we get here, no pages were added to the bio. However,
1388                  * we can't just error out here - if the pages are locked then
1389                  * we have to unlock them otherwise we can hang on a later
1390                  * access to the page.
1391                  */
1392                 xfs_buf_ioerror(bp, EIO);
1393                 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1394                         int i;
1395                         for (i = 0; i < bp->b_page_count; i++)
1396                                 unlock_page(bp->b_pages[i]);
1397                 }
1398                 bio_put(bio);
1399         }
1400 }
1401
1402 int
1403 xfs_buf_iorequest(
1404         xfs_buf_t               *bp)
1405 {
1406         trace_xfs_buf_iorequest(bp, _RET_IP_);
1407
1408         if (bp->b_flags & XBF_DELWRI) {
1409                 xfs_buf_delwri_queue(bp, 1);
1410                 return 0;
1411         }
1412
1413         if (bp->b_flags & XBF_WRITE) {
1414                 xfs_buf_wait_unpin(bp);
1415         }
1416
1417         xfs_buf_hold(bp);
1418
1419         /* Set the count to 1 initially, this will stop an I/O
1420          * completion callout which happens before we have started
1421          * all the I/O from calling xfs_buf_ioend too early.
1422          */
1423         atomic_set(&bp->b_io_remaining, 1);
1424         _xfs_buf_ioapply(bp);
1425         _xfs_buf_ioend(bp, 0);
1426
1427         xfs_buf_rele(bp);
1428         return 0;
1429 }
1430
1431 /*
1432  *      Waits for I/O to complete on the buffer supplied.
1433  *      It returns immediately if no I/O is pending.
1434  *      It returns the I/O error code, if any, or 0 if there was no error.
1435  */
1436 int
1437 xfs_buf_iowait(
1438         xfs_buf_t               *bp)
1439 {
1440         trace_xfs_buf_iowait(bp, _RET_IP_);
1441
1442         if (atomic_read(&bp->b_io_remaining))
1443                 blk_flush_plug(current);
1444         wait_for_completion(&bp->b_iowait);
1445
1446         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1447         return bp->b_error;
1448 }
1449
1450 xfs_caddr_t
1451 xfs_buf_offset(
1452         xfs_buf_t               *bp,
1453         size_t                  offset)
1454 {
1455         struct page             *page;
1456
1457         if (bp->b_flags & XBF_MAPPED)
1458                 return XFS_BUF_PTR(bp) + offset;
1459
1460         offset += bp->b_offset;
1461         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1462         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1463 }
1464
1465 /*
1466  *      Move data into or out of a buffer.
1467  */
1468 void
1469 xfs_buf_iomove(
1470         xfs_buf_t               *bp,    /* buffer to process            */
1471         size_t                  boff,   /* starting buffer offset       */
1472         size_t                  bsize,  /* length to copy               */
1473         void                    *data,  /* data address                 */
1474         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1475 {
1476         size_t                  bend, cpoff, csize;
1477         struct page             *page;
1478
1479         bend = boff + bsize;
1480         while (boff < bend) {
1481                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1482                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1483                 csize = min_t(size_t,
1484                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1485
1486                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1487
1488                 switch (mode) {
1489                 case XBRW_ZERO:
1490                         memset(page_address(page) + cpoff, 0, csize);
1491                         break;
1492                 case XBRW_READ:
1493                         memcpy(data, page_address(page) + cpoff, csize);
1494                         break;
1495                 case XBRW_WRITE:
1496                         memcpy(page_address(page) + cpoff, data, csize);
1497                 }
1498
1499                 boff += csize;
1500                 data += csize;
1501         }
1502 }
1503
1504 /*
1505  *      Handling of buffer targets (buftargs).
1506  */
1507
1508 /*
1509  * Wait for any bufs with callbacks that have been submitted but have not yet
1510  * returned. These buffers will have an elevated hold count, so wait on those
1511  * while freeing all the buffers only held by the LRU.
1512  */
1513 void
1514 xfs_wait_buftarg(
1515         struct xfs_buftarg      *btp)
1516 {
1517         struct xfs_buf          *bp;
1518
1519 restart:
1520         spin_lock(&btp->bt_lru_lock);
1521         while (!list_empty(&btp->bt_lru)) {
1522                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1523                 if (atomic_read(&bp->b_hold) > 1) {
1524                         spin_unlock(&btp->bt_lru_lock);
1525                         delay(100);
1526                         goto restart;
1527                 }
1528                 /*
1529                  * clear the LRU reference count so the bufer doesn't get
1530                  * ignored in xfs_buf_rele().
1531                  */
1532                 atomic_set(&bp->b_lru_ref, 0);
1533                 spin_unlock(&btp->bt_lru_lock);
1534                 xfs_buf_rele(bp);
1535                 spin_lock(&btp->bt_lru_lock);
1536         }
1537         spin_unlock(&btp->bt_lru_lock);
1538 }
1539
1540 int
1541 xfs_buftarg_shrink(
1542         struct shrinker         *shrink,
1543         int                     nr_to_scan,
1544         gfp_t                   mask)
1545 {
1546         struct xfs_buftarg      *btp = container_of(shrink,
1547                                         struct xfs_buftarg, bt_shrinker);
1548         struct xfs_buf          *bp;
1549         LIST_HEAD(dispose);
1550
1551         if (!nr_to_scan)
1552                 return btp->bt_lru_nr;
1553
1554         spin_lock(&btp->bt_lru_lock);
1555         while (!list_empty(&btp->bt_lru)) {
1556                 if (nr_to_scan-- <= 0)
1557                         break;
1558
1559                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1560
1561                 /*
1562                  * Decrement the b_lru_ref count unless the value is already
1563                  * zero. If the value is already zero, we need to reclaim the
1564                  * buffer, otherwise it gets another trip through the LRU.
1565                  */
1566                 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1567                         list_move_tail(&bp->b_lru, &btp->bt_lru);
1568                         continue;
1569                 }
1570
1571                 /*
1572                  * remove the buffer from the LRU now to avoid needing another
1573                  * lock round trip inside xfs_buf_rele().
1574                  */
1575                 list_move(&bp->b_lru, &dispose);
1576                 btp->bt_lru_nr--;
1577         }
1578         spin_unlock(&btp->bt_lru_lock);
1579
1580         while (!list_empty(&dispose)) {
1581                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1582                 list_del_init(&bp->b_lru);
1583                 xfs_buf_rele(bp);
1584         }
1585
1586         return btp->bt_lru_nr;
1587 }
1588
1589 void
1590 xfs_free_buftarg(
1591         struct xfs_mount        *mp,
1592         struct xfs_buftarg      *btp)
1593 {
1594         unregister_shrinker(&btp->bt_shrinker);
1595
1596         xfs_flush_buftarg(btp, 1);
1597         if (mp->m_flags & XFS_MOUNT_BARRIER)
1598                 xfs_blkdev_issue_flush(btp);
1599         iput(btp->bt_mapping->host);
1600
1601         kthread_stop(btp->bt_task);
1602         kmem_free(btp);
1603 }
1604
1605 STATIC int
1606 xfs_setsize_buftarg_flags(
1607         xfs_buftarg_t           *btp,
1608         unsigned int            blocksize,
1609         unsigned int            sectorsize,
1610         int                     verbose)
1611 {
1612         btp->bt_bsize = blocksize;
1613         btp->bt_sshift = ffs(sectorsize) - 1;
1614         btp->bt_smask = sectorsize - 1;
1615
1616         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1617                 xfs_warn(btp->bt_mount,
1618                         "Cannot set_blocksize to %u on device %s\n",
1619                         sectorsize, XFS_BUFTARG_NAME(btp));
1620                 return EINVAL;
1621         }
1622
1623         if (verbose &&
1624             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1625                 printk(KERN_WARNING
1626                         "XFS: %u byte sectors in use on device %s.  "
1627                         "This is suboptimal; %u or greater is ideal.\n",
1628                         sectorsize, XFS_BUFTARG_NAME(btp),
1629                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1630         }
1631
1632         return 0;
1633 }
1634
1635 /*
1636  *      When allocating the initial buffer target we have not yet
1637  *      read in the superblock, so don't know what sized sectors
1638  *      are being used is at this early stage.  Play safe.
1639  */
1640 STATIC int
1641 xfs_setsize_buftarg_early(
1642         xfs_buftarg_t           *btp,
1643         struct block_device     *bdev)
1644 {
1645         return xfs_setsize_buftarg_flags(btp,
1646                         PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1647 }
1648
1649 int
1650 xfs_setsize_buftarg(
1651         xfs_buftarg_t           *btp,
1652         unsigned int            blocksize,
1653         unsigned int            sectorsize)
1654 {
1655         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1656 }
1657
1658 STATIC int
1659 xfs_mapping_buftarg(
1660         xfs_buftarg_t           *btp,
1661         struct block_device     *bdev)
1662 {
1663         struct backing_dev_info *bdi;
1664         struct inode            *inode;
1665         struct address_space    *mapping;
1666         static const struct address_space_operations mapping_aops = {
1667                 .migratepage = fail_migrate_page,
1668         };
1669
1670         inode = new_inode(bdev->bd_inode->i_sb);
1671         if (!inode) {
1672                 printk(KERN_WARNING
1673                         "XFS: Cannot allocate mapping inode for device %s\n",
1674                         XFS_BUFTARG_NAME(btp));
1675                 return ENOMEM;
1676         }
1677         inode->i_ino = get_next_ino();
1678         inode->i_mode = S_IFBLK;
1679         inode->i_bdev = bdev;
1680         inode->i_rdev = bdev->bd_dev;
1681         bdi = blk_get_backing_dev_info(bdev);
1682         if (!bdi)
1683                 bdi = &default_backing_dev_info;
1684         mapping = &inode->i_data;
1685         mapping->a_ops = &mapping_aops;
1686         mapping->backing_dev_info = bdi;
1687         mapping_set_gfp_mask(mapping, GFP_NOFS);
1688         btp->bt_mapping = mapping;
1689         return 0;
1690 }
1691
1692 STATIC int
1693 xfs_alloc_delwrite_queue(
1694         xfs_buftarg_t           *btp,
1695         const char              *fsname)
1696 {
1697         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1698         spin_lock_init(&btp->bt_delwrite_lock);
1699         btp->bt_flags = 0;
1700         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1701         if (IS_ERR(btp->bt_task))
1702                 return PTR_ERR(btp->bt_task);
1703         return 0;
1704 }
1705
1706 xfs_buftarg_t *
1707 xfs_alloc_buftarg(
1708         struct xfs_mount        *mp,
1709         struct block_device     *bdev,
1710         int                     external,
1711         const char              *fsname)
1712 {
1713         xfs_buftarg_t           *btp;
1714
1715         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1716
1717         btp->bt_mount = mp;
1718         btp->bt_dev =  bdev->bd_dev;
1719         btp->bt_bdev = bdev;
1720         INIT_LIST_HEAD(&btp->bt_lru);
1721         spin_lock_init(&btp->bt_lru_lock);
1722         if (xfs_setsize_buftarg_early(btp, bdev))
1723                 goto error;
1724         if (xfs_mapping_buftarg(btp, bdev))
1725                 goto error;
1726         if (xfs_alloc_delwrite_queue(btp, fsname))
1727                 goto error;
1728         btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1729         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1730         register_shrinker(&btp->bt_shrinker);
1731         return btp;
1732
1733 error:
1734         kmem_free(btp);
1735         return NULL;
1736 }
1737
1738
1739 /*
1740  *      Delayed write buffer handling
1741  */
1742 STATIC void
1743 xfs_buf_delwri_queue(
1744         xfs_buf_t               *bp,
1745         int                     unlock)
1746 {
1747         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1748         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1749
1750         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1751
1752         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1753
1754         spin_lock(dwlk);
1755         /* If already in the queue, dequeue and place at tail */
1756         if (!list_empty(&bp->b_list)) {
1757                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1758                 if (unlock)
1759                         atomic_dec(&bp->b_hold);
1760                 list_del(&bp->b_list);
1761         }
1762
1763         if (list_empty(dwq)) {
1764                 /* start xfsbufd as it is about to have something to do */
1765                 wake_up_process(bp->b_target->bt_task);
1766         }
1767
1768         bp->b_flags |= _XBF_DELWRI_Q;
1769         list_add_tail(&bp->b_list, dwq);
1770         bp->b_queuetime = jiffies;
1771         spin_unlock(dwlk);
1772
1773         if (unlock)
1774                 xfs_buf_unlock(bp);
1775 }
1776
1777 void
1778 xfs_buf_delwri_dequeue(
1779         xfs_buf_t               *bp)
1780 {
1781         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1782         int                     dequeued = 0;
1783
1784         spin_lock(dwlk);
1785         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1786                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1787                 list_del_init(&bp->b_list);
1788                 dequeued = 1;
1789         }
1790         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1791         spin_unlock(dwlk);
1792
1793         if (dequeued)
1794                 xfs_buf_rele(bp);
1795
1796         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1797 }
1798
1799 /*
1800  * If a delwri buffer needs to be pushed before it has aged out, then promote
1801  * it to the head of the delwri queue so that it will be flushed on the next
1802  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1803  * than the age currently needed to flush the buffer. Hence the next time the
1804  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1805  */
1806 void
1807 xfs_buf_delwri_promote(
1808         struct xfs_buf  *bp)
1809 {
1810         struct xfs_buftarg *btp = bp->b_target;
1811         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1812
1813         ASSERT(bp->b_flags & XBF_DELWRI);
1814         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1815
1816         /*
1817          * Check the buffer age before locking the delayed write queue as we
1818          * don't need to promote buffers that are already past the flush age.
1819          */
1820         if (bp->b_queuetime < jiffies - age)
1821                 return;
1822         bp->b_queuetime = jiffies - age;
1823         spin_lock(&btp->bt_delwrite_lock);
1824         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1825         spin_unlock(&btp->bt_delwrite_lock);
1826 }
1827
1828 STATIC void
1829 xfs_buf_runall_queues(
1830         struct workqueue_struct *queue)
1831 {
1832         flush_workqueue(queue);
1833 }
1834
1835 /*
1836  * Move as many buffers as specified to the supplied list
1837  * idicating if we skipped any buffers to prevent deadlocks.
1838  */
1839 STATIC int
1840 xfs_buf_delwri_split(
1841         xfs_buftarg_t   *target,
1842         struct list_head *list,
1843         unsigned long   age)
1844 {
1845         xfs_buf_t       *bp, *n;
1846         struct list_head *dwq = &target->bt_delwrite_queue;
1847         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1848         int             skipped = 0;
1849         int             force;
1850
1851         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1852         INIT_LIST_HEAD(list);
1853         spin_lock(dwlk);
1854         list_for_each_entry_safe(bp, n, dwq, b_list) {
1855                 ASSERT(bp->b_flags & XBF_DELWRI);
1856
1857                 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1858                         if (!force &&
1859                             time_before(jiffies, bp->b_queuetime + age)) {
1860                                 xfs_buf_unlock(bp);
1861                                 break;
1862                         }
1863
1864                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1865                                          _XBF_RUN_QUEUES);
1866                         bp->b_flags |= XBF_WRITE;
1867                         list_move_tail(&bp->b_list, list);
1868                         trace_xfs_buf_delwri_split(bp, _RET_IP_);
1869                 } else
1870                         skipped++;
1871         }
1872         spin_unlock(dwlk);
1873
1874         return skipped;
1875
1876 }
1877
1878 /*
1879  * Compare function is more complex than it needs to be because
1880  * the return value is only 32 bits and we are doing comparisons
1881  * on 64 bit values
1882  */
1883 static int
1884 xfs_buf_cmp(
1885         void            *priv,
1886         struct list_head *a,
1887         struct list_head *b)
1888 {
1889         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1890         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1891         xfs_daddr_t             diff;
1892
1893         diff = ap->b_bn - bp->b_bn;
1894         if (diff < 0)
1895                 return -1;
1896         if (diff > 0)
1897                 return 1;
1898         return 0;
1899 }
1900
1901 void
1902 xfs_buf_delwri_sort(
1903         xfs_buftarg_t   *target,
1904         struct list_head *list)
1905 {
1906         list_sort(NULL, list, xfs_buf_cmp);
1907 }
1908
1909 STATIC int
1910 xfsbufd(
1911         void            *data)
1912 {
1913         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1914
1915         current->flags |= PF_MEMALLOC;
1916
1917         set_freezable();
1918
1919         do {
1920                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1921                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1922                 int     count = 0;
1923                 struct list_head tmp;
1924
1925                 if (unlikely(freezing(current))) {
1926                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1927                         refrigerator();
1928                 } else {
1929                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1930                 }
1931
1932                 /* sleep for a long time if there is nothing to do. */
1933                 if (list_empty(&target->bt_delwrite_queue))
1934                         tout = MAX_SCHEDULE_TIMEOUT;
1935                 schedule_timeout_interruptible(tout);
1936
1937                 xfs_buf_delwri_split(target, &tmp, age);
1938                 list_sort(NULL, &tmp, xfs_buf_cmp);
1939                 while (!list_empty(&tmp)) {
1940                         struct xfs_buf *bp;
1941                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1942                         list_del_init(&bp->b_list);
1943                         xfs_bdstrat_cb(bp);
1944                         count++;
1945                 }
1946                 if (count)
1947                         blk_flush_plug(current);
1948
1949         } while (!kthread_should_stop());
1950
1951         return 0;
1952 }
1953
1954 /*
1955  *      Go through all incore buffers, and release buffers if they belong to
1956  *      the given device. This is used in filesystem error handling to
1957  *      preserve the consistency of its metadata.
1958  */
1959 int
1960 xfs_flush_buftarg(
1961         xfs_buftarg_t   *target,
1962         int             wait)
1963 {
1964         xfs_buf_t       *bp;
1965         int             pincount = 0;
1966         LIST_HEAD(tmp_list);
1967         LIST_HEAD(wait_list);
1968
1969         xfs_buf_runall_queues(xfsconvertd_workqueue);
1970         xfs_buf_runall_queues(xfsdatad_workqueue);
1971         xfs_buf_runall_queues(xfslogd_workqueue);
1972
1973         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1974         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1975
1976         /*
1977          * Dropped the delayed write list lock, now walk the temporary list.
1978          * All I/O is issued async and then if we need to wait for completion
1979          * we do that after issuing all the IO.
1980          */
1981         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1982         while (!list_empty(&tmp_list)) {
1983                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1984                 ASSERT(target == bp->b_target);
1985                 list_del_init(&bp->b_list);
1986                 if (wait) {
1987                         bp->b_flags &= ~XBF_ASYNC;
1988                         list_add(&bp->b_list, &wait_list);
1989                 }
1990                 xfs_bdstrat_cb(bp);
1991         }
1992
1993         if (wait) {
1994                 /* Expedite and wait for IO to complete. */
1995                 blk_flush_plug(current);
1996                 while (!list_empty(&wait_list)) {
1997                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1998
1999                         list_del_init(&bp->b_list);
2000                         xfs_buf_iowait(bp);
2001                         xfs_buf_relse(bp);
2002                 }
2003         }
2004
2005         return pincount;
2006 }
2007
2008 int __init
2009 xfs_buf_init(void)
2010 {
2011         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2012                                                 KM_ZONE_HWALIGN, NULL);
2013         if (!xfs_buf_zone)
2014                 goto out;
2015
2016         xfslogd_workqueue = alloc_workqueue("xfslogd",
2017                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
2018         if (!xfslogd_workqueue)
2019                 goto out_free_buf_zone;
2020
2021         xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
2022         if (!xfsdatad_workqueue)
2023                 goto out_destroy_xfslogd_workqueue;
2024
2025         xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
2026                                                 WQ_MEM_RECLAIM, 1);
2027         if (!xfsconvertd_workqueue)
2028                 goto out_destroy_xfsdatad_workqueue;
2029
2030         return 0;
2031
2032  out_destroy_xfsdatad_workqueue:
2033         destroy_workqueue(xfsdatad_workqueue);
2034  out_destroy_xfslogd_workqueue:
2035         destroy_workqueue(xfslogd_workqueue);
2036  out_free_buf_zone:
2037         kmem_zone_destroy(xfs_buf_zone);
2038  out:
2039         return -ENOMEM;
2040 }
2041
2042 void
2043 xfs_buf_terminate(void)
2044 {
2045         destroy_workqueue(xfsconvertd_workqueue);
2046         destroy_workqueue(xfsdatad_workqueue);
2047         destroy_workqueue(xfslogd_workqueue);
2048         kmem_zone_destroy(xfs_buf_zone);
2049 }
2050
2051 #ifdef CONFIG_KDB_MODULES
2052 struct list_head *
2053 xfs_get_buftarg_list(void)
2054 {
2055         return &xfs_buftarg_list;
2056 }
2057 #endif