xfs: stop using the page cache to back the buffer cache
[pandora-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
48
49 static struct workqueue_struct *xfslogd_workqueue;
50 struct workqueue_struct *xfsdatad_workqueue;
51 struct workqueue_struct *xfsconvertd_workqueue;
52
53 #ifdef XFS_BUF_LOCK_TRACKING
54 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
55 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
56 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
57 #else
58 # define XB_SET_OWNER(bp)       do { } while (0)
59 # define XB_CLEAR_OWNER(bp)     do { } while (0)
60 # define XB_GET_OWNER(bp)       do { } while (0)
61 #endif
62
63 #define xb_to_gfp(flags) \
64         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
66
67 #define xb_to_km(flags) \
68          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
69
70 #define xfs_buf_allocate(flags) \
71         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72 #define xfs_buf_deallocate(bp) \
73         kmem_zone_free(xfs_buf_zone, (bp));
74
75 static inline int
76 xfs_buf_is_vmapped(
77         struct xfs_buf  *bp)
78 {
79         /*
80          * Return true if the buffer is vmapped.
81          *
82          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83          * code is clever enough to know it doesn't have to map a single page,
84          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85          */
86         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
87 }
88
89 static inline int
90 xfs_buf_vmap_len(
91         struct xfs_buf  *bp)
92 {
93         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
94 }
95
96 /*
97  * xfs_buf_lru_add - add a buffer to the LRU.
98  *
99  * The LRU takes a new reference to the buffer so that it will only be freed
100  * once the shrinker takes the buffer off the LRU.
101  */
102 STATIC void
103 xfs_buf_lru_add(
104         struct xfs_buf  *bp)
105 {
106         struct xfs_buftarg *btp = bp->b_target;
107
108         spin_lock(&btp->bt_lru_lock);
109         if (list_empty(&bp->b_lru)) {
110                 atomic_inc(&bp->b_hold);
111                 list_add_tail(&bp->b_lru, &btp->bt_lru);
112                 btp->bt_lru_nr++;
113         }
114         spin_unlock(&btp->bt_lru_lock);
115 }
116
117 /*
118  * xfs_buf_lru_del - remove a buffer from the LRU
119  *
120  * The unlocked check is safe here because it only occurs when there are not
121  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
122  * to optimise the shrinker removing the buffer from the LRU and calling
123  * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
124  * bt_lru_lock.
125  */
126 STATIC void
127 xfs_buf_lru_del(
128         struct xfs_buf  *bp)
129 {
130         struct xfs_buftarg *btp = bp->b_target;
131
132         if (list_empty(&bp->b_lru))
133                 return;
134
135         spin_lock(&btp->bt_lru_lock);
136         if (!list_empty(&bp->b_lru)) {
137                 list_del_init(&bp->b_lru);
138                 btp->bt_lru_nr--;
139         }
140         spin_unlock(&btp->bt_lru_lock);
141 }
142
143 /*
144  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
145  * b_lru_ref count so that the buffer is freed immediately when the buffer
146  * reference count falls to zero. If the buffer is already on the LRU, we need
147  * to remove the reference that LRU holds on the buffer.
148  *
149  * This prevents build-up of stale buffers on the LRU.
150  */
151 void
152 xfs_buf_stale(
153         struct xfs_buf  *bp)
154 {
155         bp->b_flags |= XBF_STALE;
156         atomic_set(&(bp)->b_lru_ref, 0);
157         if (!list_empty(&bp->b_lru)) {
158                 struct xfs_buftarg *btp = bp->b_target;
159
160                 spin_lock(&btp->bt_lru_lock);
161                 if (!list_empty(&bp->b_lru)) {
162                         list_del_init(&bp->b_lru);
163                         btp->bt_lru_nr--;
164                         atomic_dec(&bp->b_hold);
165                 }
166                 spin_unlock(&btp->bt_lru_lock);
167         }
168         ASSERT(atomic_read(&bp->b_hold) >= 1);
169 }
170
171 STATIC void
172 _xfs_buf_initialize(
173         xfs_buf_t               *bp,
174         xfs_buftarg_t           *target,
175         xfs_off_t               range_base,
176         size_t                  range_length,
177         xfs_buf_flags_t         flags)
178 {
179         /*
180          * We don't want certain flags to appear in b_flags.
181          */
182         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
183
184         memset(bp, 0, sizeof(xfs_buf_t));
185         atomic_set(&bp->b_hold, 1);
186         atomic_set(&bp->b_lru_ref, 1);
187         init_completion(&bp->b_iowait);
188         INIT_LIST_HEAD(&bp->b_lru);
189         INIT_LIST_HEAD(&bp->b_list);
190         RB_CLEAR_NODE(&bp->b_rbnode);
191         sema_init(&bp->b_sema, 0); /* held, no waiters */
192         XB_SET_OWNER(bp);
193         bp->b_target = target;
194         bp->b_file_offset = range_base;
195         /*
196          * Set buffer_length and count_desired to the same value initially.
197          * I/O routines should use count_desired, which will be the same in
198          * most cases but may be reset (e.g. XFS recovery).
199          */
200         bp->b_buffer_length = bp->b_count_desired = range_length;
201         bp->b_flags = flags;
202         bp->b_bn = XFS_BUF_DADDR_NULL;
203         atomic_set(&bp->b_pin_count, 0);
204         init_waitqueue_head(&bp->b_waiters);
205
206         XFS_STATS_INC(xb_create);
207
208         trace_xfs_buf_init(bp, _RET_IP_);
209 }
210
211 /*
212  *      Allocate a page array capable of holding a specified number
213  *      of pages, and point the page buf at it.
214  */
215 STATIC int
216 _xfs_buf_get_pages(
217         xfs_buf_t               *bp,
218         int                     page_count,
219         xfs_buf_flags_t         flags)
220 {
221         /* Make sure that we have a page list */
222         if (bp->b_pages == NULL) {
223                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
224                 bp->b_page_count = page_count;
225                 if (page_count <= XB_PAGES) {
226                         bp->b_pages = bp->b_page_array;
227                 } else {
228                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
229                                         page_count, xb_to_km(flags));
230                         if (bp->b_pages == NULL)
231                                 return -ENOMEM;
232                 }
233                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
234         }
235         return 0;
236 }
237
238 /*
239  *      Frees b_pages if it was allocated.
240  */
241 STATIC void
242 _xfs_buf_free_pages(
243         xfs_buf_t       *bp)
244 {
245         if (bp->b_pages != bp->b_page_array) {
246                 kmem_free(bp->b_pages);
247                 bp->b_pages = NULL;
248         }
249 }
250
251 /*
252  *      Releases the specified buffer.
253  *
254  *      The modification state of any associated pages is left unchanged.
255  *      The buffer most not be on any hash - use xfs_buf_rele instead for
256  *      hashed and refcounted buffers
257  */
258 void
259 xfs_buf_free(
260         xfs_buf_t               *bp)
261 {
262         trace_xfs_buf_free(bp, _RET_IP_);
263
264         ASSERT(list_empty(&bp->b_lru));
265
266         if (bp->b_flags & _XBF_PAGES) {
267                 uint            i;
268
269                 if (xfs_buf_is_vmapped(bp))
270                         vm_unmap_ram(bp->b_addr - bp->b_offset,
271                                         bp->b_page_count);
272
273                 for (i = 0; i < bp->b_page_count; i++) {
274                         struct page     *page = bp->b_pages[i];
275
276                         __free_page(page);
277                 }
278         } else if (bp->b_flags & _XBF_KMEM)
279                 kmem_free(bp->b_addr);
280         _xfs_buf_free_pages(bp);
281         xfs_buf_deallocate(bp);
282 }
283
284 /*
285  * Allocates all the pages for buffer in question and builds it's page list.
286  */
287 STATIC int
288 xfs_buf_allocate_memory(
289         xfs_buf_t               *bp,
290         uint                    flags)
291 {
292         size_t                  size = bp->b_count_desired;
293         size_t                  nbytes, offset;
294         gfp_t                   gfp_mask = xb_to_gfp(flags);
295         unsigned short          page_count, i;
296         pgoff_t                 first;
297         xfs_off_t               end;
298         int                     error;
299
300         /*
301          * for buffers that are contained within a single page, just allocate
302          * the memory from the heap - there's no need for the complexity of
303          * page arrays to keep allocation down to order 0.
304          */
305         if (bp->b_buffer_length < PAGE_SIZE) {
306                 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
307                 if (!bp->b_addr) {
308                         /* low memory - use alloc_page loop instead */
309                         goto use_alloc_page;
310                 }
311
312                 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
313                                                                 PAGE_MASK) !=
314                     ((unsigned long)bp->b_addr & PAGE_MASK)) {
315                         /* b_addr spans two pages - use alloc_page instead */
316                         kmem_free(bp->b_addr);
317                         bp->b_addr = NULL;
318                         goto use_alloc_page;
319                 }
320                 bp->b_offset = offset_in_page(bp->b_addr);
321                 bp->b_pages = bp->b_page_array;
322                 bp->b_pages[0] = virt_to_page(bp->b_addr);
323                 bp->b_page_count = 1;
324                 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
325                 return 0;
326         }
327
328 use_alloc_page:
329         end = bp->b_file_offset + bp->b_buffer_length;
330         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
331         error = _xfs_buf_get_pages(bp, page_count, flags);
332         if (unlikely(error))
333                 return error;
334
335         offset = bp->b_offset;
336         first = bp->b_file_offset >> PAGE_SHIFT;
337         bp->b_flags |= _XBF_PAGES;
338
339         for (i = 0; i < bp->b_page_count; i++) {
340                 struct page     *page;
341                 uint            retries = 0;
342 retry:
343                 page = alloc_page(gfp_mask);
344                 if (unlikely(page == NULL)) {
345                         if (flags & XBF_READ_AHEAD) {
346                                 bp->b_page_count = i;
347                                 error = ENOMEM;
348                                 goto out_free_pages;
349                         }
350
351                         /*
352                          * This could deadlock.
353                          *
354                          * But until all the XFS lowlevel code is revamped to
355                          * handle buffer allocation failures we can't do much.
356                          */
357                         if (!(++retries % 100))
358                                 xfs_err(NULL,
359                 "possible memory allocation deadlock in %s (mode:0x%x)",
360                                         __func__, gfp_mask);
361
362                         XFS_STATS_INC(xb_page_retries);
363                         congestion_wait(BLK_RW_ASYNC, HZ/50);
364                         goto retry;
365                 }
366
367                 XFS_STATS_INC(xb_page_found);
368
369                 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
370                 size -= nbytes;
371                 bp->b_pages[i] = page;
372                 offset = 0;
373         }
374         return 0;
375
376 out_free_pages:
377         for (i = 0; i < bp->b_page_count; i++)
378                 __free_page(bp->b_pages[i]);
379         return error;
380 }
381
382 /*
383  *      Map buffer into kernel address-space if nessecary.
384  */
385 STATIC int
386 _xfs_buf_map_pages(
387         xfs_buf_t               *bp,
388         uint                    flags)
389 {
390         ASSERT(bp->b_flags & _XBF_PAGES);
391         if (bp->b_page_count == 1) {
392                 /* A single page buffer is always mappable */
393                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
394                 bp->b_flags |= XBF_MAPPED;
395         } else if (flags & XBF_MAPPED) {
396                 int retried = 0;
397
398                 do {
399                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
400                                                 -1, PAGE_KERNEL);
401                         if (bp->b_addr)
402                                 break;
403                         vm_unmap_aliases();
404                 } while (retried++ <= 1);
405
406                 if (!bp->b_addr)
407                         return -ENOMEM;
408                 bp->b_addr += bp->b_offset;
409                 bp->b_flags |= XBF_MAPPED;
410         }
411
412         return 0;
413 }
414
415 /*
416  *      Finding and Reading Buffers
417  */
418
419 /*
420  *      Look up, and creates if absent, a lockable buffer for
421  *      a given range of an inode.  The buffer is returned
422  *      locked.  If other overlapping buffers exist, they are
423  *      released before the new buffer is created and locked,
424  *      which may imply that this call will block until those buffers
425  *      are unlocked.  No I/O is implied by this call.
426  */
427 xfs_buf_t *
428 _xfs_buf_find(
429         xfs_buftarg_t           *btp,   /* block device target          */
430         xfs_off_t               ioff,   /* starting offset of range     */
431         size_t                  isize,  /* length of range              */
432         xfs_buf_flags_t         flags,
433         xfs_buf_t               *new_bp)
434 {
435         xfs_off_t               range_base;
436         size_t                  range_length;
437         struct xfs_perag        *pag;
438         struct rb_node          **rbp;
439         struct rb_node          *parent;
440         xfs_buf_t               *bp;
441
442         range_base = (ioff << BBSHIFT);
443         range_length = (isize << BBSHIFT);
444
445         /* Check for IOs smaller than the sector size / not sector aligned */
446         ASSERT(!(range_length < (1 << btp->bt_sshift)));
447         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
448
449         /* get tree root */
450         pag = xfs_perag_get(btp->bt_mount,
451                                 xfs_daddr_to_agno(btp->bt_mount, ioff));
452
453         /* walk tree */
454         spin_lock(&pag->pag_buf_lock);
455         rbp = &pag->pag_buf_tree.rb_node;
456         parent = NULL;
457         bp = NULL;
458         while (*rbp) {
459                 parent = *rbp;
460                 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
461
462                 if (range_base < bp->b_file_offset)
463                         rbp = &(*rbp)->rb_left;
464                 else if (range_base > bp->b_file_offset)
465                         rbp = &(*rbp)->rb_right;
466                 else {
467                         /*
468                          * found a block offset match. If the range doesn't
469                          * match, the only way this is allowed is if the buffer
470                          * in the cache is stale and the transaction that made
471                          * it stale has not yet committed. i.e. we are
472                          * reallocating a busy extent. Skip this buffer and
473                          * continue searching to the right for an exact match.
474                          */
475                         if (bp->b_buffer_length != range_length) {
476                                 ASSERT(bp->b_flags & XBF_STALE);
477                                 rbp = &(*rbp)->rb_right;
478                                 continue;
479                         }
480                         atomic_inc(&bp->b_hold);
481                         goto found;
482                 }
483         }
484
485         /* No match found */
486         if (new_bp) {
487                 _xfs_buf_initialize(new_bp, btp, range_base,
488                                 range_length, flags);
489                 rb_link_node(&new_bp->b_rbnode, parent, rbp);
490                 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
491                 /* the buffer keeps the perag reference until it is freed */
492                 new_bp->b_pag = pag;
493                 spin_unlock(&pag->pag_buf_lock);
494         } else {
495                 XFS_STATS_INC(xb_miss_locked);
496                 spin_unlock(&pag->pag_buf_lock);
497                 xfs_perag_put(pag);
498         }
499         return new_bp;
500
501 found:
502         spin_unlock(&pag->pag_buf_lock);
503         xfs_perag_put(pag);
504
505         if (xfs_buf_cond_lock(bp)) {
506                 /* failed, so wait for the lock if requested. */
507                 if (!(flags & XBF_TRYLOCK)) {
508                         xfs_buf_lock(bp);
509                         XFS_STATS_INC(xb_get_locked_waited);
510                 } else {
511                         xfs_buf_rele(bp);
512                         XFS_STATS_INC(xb_busy_locked);
513                         return NULL;
514                 }
515         }
516
517         /*
518          * if the buffer is stale, clear all the external state associated with
519          * it. We need to keep flags such as how we allocated the buffer memory
520          * intact here.
521          */
522         if (bp->b_flags & XBF_STALE) {
523                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
524                 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
525         }
526
527         trace_xfs_buf_find(bp, flags, _RET_IP_);
528         XFS_STATS_INC(xb_get_locked);
529         return bp;
530 }
531
532 /*
533  *      Assembles a buffer covering the specified range.
534  *      Storage in memory for all portions of the buffer will be allocated,
535  *      although backing storage may not be.
536  */
537 xfs_buf_t *
538 xfs_buf_get(
539         xfs_buftarg_t           *target,/* target for buffer            */
540         xfs_off_t               ioff,   /* starting offset of range     */
541         size_t                  isize,  /* length of range              */
542         xfs_buf_flags_t         flags)
543 {
544         xfs_buf_t               *bp, *new_bp;
545         int                     error = 0;
546
547         new_bp = xfs_buf_allocate(flags);
548         if (unlikely(!new_bp))
549                 return NULL;
550
551         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
552         if (bp == new_bp) {
553                 error = xfs_buf_allocate_memory(bp, flags);
554                 if (error)
555                         goto no_buffer;
556         } else {
557                 xfs_buf_deallocate(new_bp);
558                 if (unlikely(bp == NULL))
559                         return NULL;
560         }
561
562         if (!(bp->b_flags & XBF_MAPPED)) {
563                 error = _xfs_buf_map_pages(bp, flags);
564                 if (unlikely(error)) {
565                         xfs_warn(target->bt_mount,
566                                 "%s: failed to map pages\n", __func__);
567                         goto no_buffer;
568                 }
569         }
570
571         XFS_STATS_INC(xb_get);
572
573         /*
574          * Always fill in the block number now, the mapped cases can do
575          * their own overlay of this later.
576          */
577         bp->b_bn = ioff;
578         bp->b_count_desired = bp->b_buffer_length;
579
580         trace_xfs_buf_get(bp, flags, _RET_IP_);
581         return bp;
582
583  no_buffer:
584         if (flags & (XBF_LOCK | XBF_TRYLOCK))
585                 xfs_buf_unlock(bp);
586         xfs_buf_rele(bp);
587         return NULL;
588 }
589
590 STATIC int
591 _xfs_buf_read(
592         xfs_buf_t               *bp,
593         xfs_buf_flags_t         flags)
594 {
595         int                     status;
596
597         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
598         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
599
600         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
601                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
602         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
603                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
604
605         status = xfs_buf_iorequest(bp);
606         if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
607                 return status;
608         return xfs_buf_iowait(bp);
609 }
610
611 xfs_buf_t *
612 xfs_buf_read(
613         xfs_buftarg_t           *target,
614         xfs_off_t               ioff,
615         size_t                  isize,
616         xfs_buf_flags_t         flags)
617 {
618         xfs_buf_t               *bp;
619
620         flags |= XBF_READ;
621
622         bp = xfs_buf_get(target, ioff, isize, flags);
623         if (bp) {
624                 trace_xfs_buf_read(bp, flags, _RET_IP_);
625
626                 if (!XFS_BUF_ISDONE(bp)) {
627                         XFS_STATS_INC(xb_get_read);
628                         _xfs_buf_read(bp, flags);
629                 } else if (flags & XBF_ASYNC) {
630                         /*
631                          * Read ahead call which is already satisfied,
632                          * drop the buffer
633                          */
634                         goto no_buffer;
635                 } else {
636                         /* We do not want read in the flags */
637                         bp->b_flags &= ~XBF_READ;
638                 }
639         }
640
641         return bp;
642
643  no_buffer:
644         if (flags & (XBF_LOCK | XBF_TRYLOCK))
645                 xfs_buf_unlock(bp);
646         xfs_buf_rele(bp);
647         return NULL;
648 }
649
650 /*
651  *      If we are not low on memory then do the readahead in a deadlock
652  *      safe manner.
653  */
654 void
655 xfs_buf_readahead(
656         xfs_buftarg_t           *target,
657         xfs_off_t               ioff,
658         size_t                  isize)
659 {
660         struct backing_dev_info *bdi;
661
662         if (bdi_read_congested(target->bt_bdi))
663                 return;
664
665         xfs_buf_read(target, ioff, isize,
666                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
667 }
668
669 /*
670  * Read an uncached buffer from disk. Allocates and returns a locked
671  * buffer containing the disk contents or nothing.
672  */
673 struct xfs_buf *
674 xfs_buf_read_uncached(
675         struct xfs_mount        *mp,
676         struct xfs_buftarg      *target,
677         xfs_daddr_t             daddr,
678         size_t                  length,
679         int                     flags)
680 {
681         xfs_buf_t               *bp;
682         int                     error;
683
684         bp = xfs_buf_get_uncached(target, length, flags);
685         if (!bp)
686                 return NULL;
687
688         /* set up the buffer for a read IO */
689         xfs_buf_lock(bp);
690         XFS_BUF_SET_ADDR(bp, daddr);
691         XFS_BUF_READ(bp);
692         XFS_BUF_BUSY(bp);
693
694         xfsbdstrat(mp, bp);
695         error = xfs_buf_iowait(bp);
696         if (error || bp->b_error) {
697                 xfs_buf_relse(bp);
698                 return NULL;
699         }
700         return bp;
701 }
702
703 xfs_buf_t *
704 xfs_buf_get_empty(
705         size_t                  len,
706         xfs_buftarg_t           *target)
707 {
708         xfs_buf_t               *bp;
709
710         bp = xfs_buf_allocate(0);
711         if (bp)
712                 _xfs_buf_initialize(bp, target, 0, len, 0);
713         return bp;
714 }
715
716 static inline struct page *
717 mem_to_page(
718         void                    *addr)
719 {
720         if ((!is_vmalloc_addr(addr))) {
721                 return virt_to_page(addr);
722         } else {
723                 return vmalloc_to_page(addr);
724         }
725 }
726
727 int
728 xfs_buf_associate_memory(
729         xfs_buf_t               *bp,
730         void                    *mem,
731         size_t                  len)
732 {
733         int                     rval;
734         int                     i = 0;
735         unsigned long           pageaddr;
736         unsigned long           offset;
737         size_t                  buflen;
738         int                     page_count;
739
740         pageaddr = (unsigned long)mem & PAGE_MASK;
741         offset = (unsigned long)mem - pageaddr;
742         buflen = PAGE_ALIGN(len + offset);
743         page_count = buflen >> PAGE_SHIFT;
744
745         /* Free any previous set of page pointers */
746         if (bp->b_pages)
747                 _xfs_buf_free_pages(bp);
748
749         bp->b_pages = NULL;
750         bp->b_addr = mem;
751
752         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
753         if (rval)
754                 return rval;
755
756         bp->b_offset = offset;
757
758         for (i = 0; i < bp->b_page_count; i++) {
759                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
760                 pageaddr += PAGE_SIZE;
761         }
762
763         bp->b_count_desired = len;
764         bp->b_buffer_length = buflen;
765         bp->b_flags |= XBF_MAPPED;
766
767         return 0;
768 }
769
770 xfs_buf_t *
771 xfs_buf_get_uncached(
772         struct xfs_buftarg      *target,
773         size_t                  len,
774         int                     flags)
775 {
776         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
777         int                     error, i;
778         xfs_buf_t               *bp;
779
780         bp = xfs_buf_allocate(0);
781         if (unlikely(bp == NULL))
782                 goto fail;
783         _xfs_buf_initialize(bp, target, 0, len, 0);
784
785         error = _xfs_buf_get_pages(bp, page_count, 0);
786         if (error)
787                 goto fail_free_buf;
788
789         for (i = 0; i < page_count; i++) {
790                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
791                 if (!bp->b_pages[i])
792                         goto fail_free_mem;
793         }
794         bp->b_flags |= _XBF_PAGES;
795
796         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
797         if (unlikely(error)) {
798                 xfs_warn(target->bt_mount,
799                         "%s: failed to map pages\n", __func__);
800                 goto fail_free_mem;
801         }
802
803         xfs_buf_unlock(bp);
804
805         trace_xfs_buf_get_uncached(bp, _RET_IP_);
806         return bp;
807
808  fail_free_mem:
809         while (--i >= 0)
810                 __free_page(bp->b_pages[i]);
811         _xfs_buf_free_pages(bp);
812  fail_free_buf:
813         xfs_buf_deallocate(bp);
814  fail:
815         return NULL;
816 }
817
818 /*
819  *      Increment reference count on buffer, to hold the buffer concurrently
820  *      with another thread which may release (free) the buffer asynchronously.
821  *      Must hold the buffer already to call this function.
822  */
823 void
824 xfs_buf_hold(
825         xfs_buf_t               *bp)
826 {
827         trace_xfs_buf_hold(bp, _RET_IP_);
828         atomic_inc(&bp->b_hold);
829 }
830
831 /*
832  *      Releases a hold on the specified buffer.  If the
833  *      the hold count is 1, calls xfs_buf_free.
834  */
835 void
836 xfs_buf_rele(
837         xfs_buf_t               *bp)
838 {
839         struct xfs_perag        *pag = bp->b_pag;
840
841         trace_xfs_buf_rele(bp, _RET_IP_);
842
843         if (!pag) {
844                 ASSERT(list_empty(&bp->b_lru));
845                 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
846                 if (atomic_dec_and_test(&bp->b_hold))
847                         xfs_buf_free(bp);
848                 return;
849         }
850
851         ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
852
853         ASSERT(atomic_read(&bp->b_hold) > 0);
854         if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
855                 if (!(bp->b_flags & XBF_STALE) &&
856                            atomic_read(&bp->b_lru_ref)) {
857                         xfs_buf_lru_add(bp);
858                         spin_unlock(&pag->pag_buf_lock);
859                 } else {
860                         xfs_buf_lru_del(bp);
861                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
862                         rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
863                         spin_unlock(&pag->pag_buf_lock);
864                         xfs_perag_put(pag);
865                         xfs_buf_free(bp);
866                 }
867         }
868 }
869
870
871 /*
872  *      Lock a buffer object, if it is not already locked.
873  *
874  *      If we come across a stale, pinned, locked buffer, we know that we are
875  *      being asked to lock a buffer that has been reallocated. Because it is
876  *      pinned, we know that the log has not been pushed to disk and hence it
877  *      will still be locked.  Rather than continuing to have trylock attempts
878  *      fail until someone else pushes the log, push it ourselves before
879  *      returning.  This means that the xfsaild will not get stuck trying
880  *      to push on stale inode buffers.
881  */
882 int
883 xfs_buf_cond_lock(
884         xfs_buf_t               *bp)
885 {
886         int                     locked;
887
888         locked = down_trylock(&bp->b_sema) == 0;
889         if (locked)
890                 XB_SET_OWNER(bp);
891         else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
892                 xfs_log_force(bp->b_target->bt_mount, 0);
893
894         trace_xfs_buf_cond_lock(bp, _RET_IP_);
895         return locked ? 0 : -EBUSY;
896 }
897
898 int
899 xfs_buf_lock_value(
900         xfs_buf_t               *bp)
901 {
902         return bp->b_sema.count;
903 }
904
905 /*
906  *      Lock a buffer object.
907  *
908  *      If we come across a stale, pinned, locked buffer, we know that we
909  *      are being asked to lock a buffer that has been reallocated. Because
910  *      it is pinned, we know that the log has not been pushed to disk and
911  *      hence it will still be locked. Rather than sleeping until someone
912  *      else pushes the log, push it ourselves before trying to get the lock.
913  */
914 void
915 xfs_buf_lock(
916         xfs_buf_t               *bp)
917 {
918         trace_xfs_buf_lock(bp, _RET_IP_);
919
920         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
921                 xfs_log_force(bp->b_target->bt_mount, 0);
922         if (atomic_read(&bp->b_io_remaining))
923                 blk_run_backing_dev(bp->b_target->bt_bdi, NULL);
924         down(&bp->b_sema);
925         XB_SET_OWNER(bp);
926
927         trace_xfs_buf_lock_done(bp, _RET_IP_);
928 }
929
930 /*
931  *      Releases the lock on the buffer object.
932  *      If the buffer is marked delwri but is not queued, do so before we
933  *      unlock the buffer as we need to set flags correctly.  We also need to
934  *      take a reference for the delwri queue because the unlocker is going to
935  *      drop their's and they don't know we just queued it.
936  */
937 void
938 xfs_buf_unlock(
939         xfs_buf_t               *bp)
940 {
941         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
942                 atomic_inc(&bp->b_hold);
943                 bp->b_flags |= XBF_ASYNC;
944                 xfs_buf_delwri_queue(bp, 0);
945         }
946
947         XB_CLEAR_OWNER(bp);
948         up(&bp->b_sema);
949
950         trace_xfs_buf_unlock(bp, _RET_IP_);
951 }
952
953 STATIC void
954 xfs_buf_wait_unpin(
955         xfs_buf_t               *bp)
956 {
957         DECLARE_WAITQUEUE       (wait, current);
958
959         if (atomic_read(&bp->b_pin_count) == 0)
960                 return;
961
962         add_wait_queue(&bp->b_waiters, &wait);
963         for (;;) {
964                 set_current_state(TASK_UNINTERRUPTIBLE);
965                 if (atomic_read(&bp->b_pin_count) == 0)
966                         break;
967                 if (atomic_read(&bp->b_io_remaining))
968                         blk_run_backing_dev(bp->b_target->bt_bdi, NULL);
969                 schedule();
970         }
971         remove_wait_queue(&bp->b_waiters, &wait);
972         set_current_state(TASK_RUNNING);
973 }
974
975 /*
976  *      Buffer Utility Routines
977  */
978
979 STATIC void
980 xfs_buf_iodone_work(
981         struct work_struct      *work)
982 {
983         xfs_buf_t               *bp =
984                 container_of(work, xfs_buf_t, b_iodone_work);
985
986         if (bp->b_iodone)
987                 (*(bp->b_iodone))(bp);
988         else if (bp->b_flags & XBF_ASYNC)
989                 xfs_buf_relse(bp);
990 }
991
992 void
993 xfs_buf_ioend(
994         xfs_buf_t               *bp,
995         int                     schedule)
996 {
997         trace_xfs_buf_iodone(bp, _RET_IP_);
998
999         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1000         if (bp->b_error == 0)
1001                 bp->b_flags |= XBF_DONE;
1002
1003         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1004                 if (schedule) {
1005                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1006                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1007                 } else {
1008                         xfs_buf_iodone_work(&bp->b_iodone_work);
1009                 }
1010         } else {
1011                 complete(&bp->b_iowait);
1012         }
1013 }
1014
1015 void
1016 xfs_buf_ioerror(
1017         xfs_buf_t               *bp,
1018         int                     error)
1019 {
1020         ASSERT(error >= 0 && error <= 0xffff);
1021         bp->b_error = (unsigned short)error;
1022         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1023 }
1024
1025 int
1026 xfs_bwrite(
1027         struct xfs_mount        *mp,
1028         struct xfs_buf          *bp)
1029 {
1030         int                     error;
1031
1032         bp->b_flags |= XBF_WRITE;
1033         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1034
1035         xfs_buf_delwri_dequeue(bp);
1036         xfs_bdstrat_cb(bp);
1037
1038         error = xfs_buf_iowait(bp);
1039         if (error)
1040                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1041         xfs_buf_relse(bp);
1042         return error;
1043 }
1044
1045 void
1046 xfs_bdwrite(
1047         void                    *mp,
1048         struct xfs_buf          *bp)
1049 {
1050         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1051
1052         bp->b_flags &= ~XBF_READ;
1053         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1054
1055         xfs_buf_delwri_queue(bp, 1);
1056 }
1057
1058 /*
1059  * Called when we want to stop a buffer from getting written or read.
1060  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1061  * so that the proper iodone callbacks get called.
1062  */
1063 STATIC int
1064 xfs_bioerror(
1065         xfs_buf_t *bp)
1066 {
1067 #ifdef XFSERRORDEBUG
1068         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1069 #endif
1070
1071         /*
1072          * No need to wait until the buffer is unpinned, we aren't flushing it.
1073          */
1074         XFS_BUF_ERROR(bp, EIO);
1075
1076         /*
1077          * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1078          */
1079         XFS_BUF_UNREAD(bp);
1080         XFS_BUF_UNDELAYWRITE(bp);
1081         XFS_BUF_UNDONE(bp);
1082         XFS_BUF_STALE(bp);
1083
1084         xfs_buf_ioend(bp, 0);
1085
1086         return EIO;
1087 }
1088
1089 /*
1090  * Same as xfs_bioerror, except that we are releasing the buffer
1091  * here ourselves, and avoiding the xfs_buf_ioend call.
1092  * This is meant for userdata errors; metadata bufs come with
1093  * iodone functions attached, so that we can track down errors.
1094  */
1095 STATIC int
1096 xfs_bioerror_relse(
1097         struct xfs_buf  *bp)
1098 {
1099         int64_t         fl = XFS_BUF_BFLAGS(bp);
1100         /*
1101          * No need to wait until the buffer is unpinned.
1102          * We aren't flushing it.
1103          *
1104          * chunkhold expects B_DONE to be set, whether
1105          * we actually finish the I/O or not. We don't want to
1106          * change that interface.
1107          */
1108         XFS_BUF_UNREAD(bp);
1109         XFS_BUF_UNDELAYWRITE(bp);
1110         XFS_BUF_DONE(bp);
1111         XFS_BUF_STALE(bp);
1112         XFS_BUF_CLR_IODONE_FUNC(bp);
1113         if (!(fl & XBF_ASYNC)) {
1114                 /*
1115                  * Mark b_error and B_ERROR _both_.
1116                  * Lot's of chunkcache code assumes that.
1117                  * There's no reason to mark error for
1118                  * ASYNC buffers.
1119                  */
1120                 XFS_BUF_ERROR(bp, EIO);
1121                 XFS_BUF_FINISH_IOWAIT(bp);
1122         } else {
1123                 xfs_buf_relse(bp);
1124         }
1125
1126         return EIO;
1127 }
1128
1129
1130 /*
1131  * All xfs metadata buffers except log state machine buffers
1132  * get this attached as their b_bdstrat callback function.
1133  * This is so that we can catch a buffer
1134  * after prematurely unpinning it to forcibly shutdown the filesystem.
1135  */
1136 int
1137 xfs_bdstrat_cb(
1138         struct xfs_buf  *bp)
1139 {
1140         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1141                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1142                 /*
1143                  * Metadata write that didn't get logged but
1144                  * written delayed anyway. These aren't associated
1145                  * with a transaction, and can be ignored.
1146                  */
1147                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1148                         return xfs_bioerror_relse(bp);
1149                 else
1150                         return xfs_bioerror(bp);
1151         }
1152
1153         xfs_buf_iorequest(bp);
1154         return 0;
1155 }
1156
1157 /*
1158  * Wrapper around bdstrat so that we can stop data from going to disk in case
1159  * we are shutting down the filesystem.  Typically user data goes thru this
1160  * path; one of the exceptions is the superblock.
1161  */
1162 void
1163 xfsbdstrat(
1164         struct xfs_mount        *mp,
1165         struct xfs_buf          *bp)
1166 {
1167         if (XFS_FORCED_SHUTDOWN(mp)) {
1168                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1169                 xfs_bioerror_relse(bp);
1170                 return;
1171         }
1172
1173         xfs_buf_iorequest(bp);
1174 }
1175
1176 STATIC void
1177 _xfs_buf_ioend(
1178         xfs_buf_t               *bp,
1179         int                     schedule)
1180 {
1181         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1182                 xfs_buf_ioend(bp, schedule);
1183 }
1184
1185 STATIC void
1186 xfs_buf_bio_end_io(
1187         struct bio              *bio,
1188         int                     error)
1189 {
1190         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1191
1192         xfs_buf_ioerror(bp, -error);
1193
1194         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1195                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1196
1197         _xfs_buf_ioend(bp, 1);
1198         bio_put(bio);
1199 }
1200
1201 STATIC void
1202 _xfs_buf_ioapply(
1203         xfs_buf_t               *bp)
1204 {
1205         int                     rw, map_i, total_nr_pages, nr_pages;
1206         struct bio              *bio;
1207         int                     offset = bp->b_offset;
1208         int                     size = bp->b_count_desired;
1209         sector_t                sector = bp->b_bn;
1210
1211         total_nr_pages = bp->b_page_count;
1212         map_i = 0;
1213
1214         if (bp->b_flags & XBF_ORDERED) {
1215                 ASSERT(!(bp->b_flags & XBF_READ));
1216                 rw = WRITE_FLUSH_FUA;
1217         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1218                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1219                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1220                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1221         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1222                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1223                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1224                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1225         } else {
1226                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1227                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1228         }
1229
1230
1231 next_chunk:
1232         atomic_inc(&bp->b_io_remaining);
1233         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1234         if (nr_pages > total_nr_pages)
1235                 nr_pages = total_nr_pages;
1236
1237         bio = bio_alloc(GFP_NOIO, nr_pages);
1238         bio->bi_bdev = bp->b_target->bt_bdev;
1239         bio->bi_sector = sector;
1240         bio->bi_end_io = xfs_buf_bio_end_io;
1241         bio->bi_private = bp;
1242
1243
1244         for (; size && nr_pages; nr_pages--, map_i++) {
1245                 int     rbytes, nbytes = PAGE_SIZE - offset;
1246
1247                 if (nbytes > size)
1248                         nbytes = size;
1249
1250                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1251                 if (rbytes < nbytes)
1252                         break;
1253
1254                 offset = 0;
1255                 sector += nbytes >> BBSHIFT;
1256                 size -= nbytes;
1257                 total_nr_pages--;
1258         }
1259
1260         if (likely(bio->bi_size)) {
1261                 if (xfs_buf_is_vmapped(bp)) {
1262                         flush_kernel_vmap_range(bp->b_addr,
1263                                                 xfs_buf_vmap_len(bp));
1264                 }
1265                 submit_bio(rw, bio);
1266                 if (size)
1267                         goto next_chunk;
1268         } else {
1269                 xfs_buf_ioerror(bp, EIO);
1270                 bio_put(bio);
1271         }
1272 }
1273
1274 int
1275 xfs_buf_iorequest(
1276         xfs_buf_t               *bp)
1277 {
1278         trace_xfs_buf_iorequest(bp, _RET_IP_);
1279
1280         if (bp->b_flags & XBF_DELWRI) {
1281                 xfs_buf_delwri_queue(bp, 1);
1282                 return 0;
1283         }
1284
1285         if (bp->b_flags & XBF_WRITE) {
1286                 xfs_buf_wait_unpin(bp);
1287         }
1288
1289         xfs_buf_hold(bp);
1290
1291         /* Set the count to 1 initially, this will stop an I/O
1292          * completion callout which happens before we have started
1293          * all the I/O from calling xfs_buf_ioend too early.
1294          */
1295         atomic_set(&bp->b_io_remaining, 1);
1296         _xfs_buf_ioapply(bp);
1297         _xfs_buf_ioend(bp, 0);
1298
1299         xfs_buf_rele(bp);
1300         return 0;
1301 }
1302
1303 /*
1304  *      Waits for I/O to complete on the buffer supplied.
1305  *      It returns immediately if no I/O is pending.
1306  *      It returns the I/O error code, if any, or 0 if there was no error.
1307  */
1308 int
1309 xfs_buf_iowait(
1310         xfs_buf_t               *bp)
1311 {
1312         trace_xfs_buf_iowait(bp, _RET_IP_);
1313
1314         if (atomic_read(&bp->b_io_remaining))
1315                 blk_run_backing_dev(bp->b_target->bt_bdi, NULL);
1316         wait_for_completion(&bp->b_iowait);
1317
1318         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1319         return bp->b_error;
1320 }
1321
1322 xfs_caddr_t
1323 xfs_buf_offset(
1324         xfs_buf_t               *bp,
1325         size_t                  offset)
1326 {
1327         struct page             *page;
1328
1329         if (bp->b_flags & XBF_MAPPED)
1330                 return XFS_BUF_PTR(bp) + offset;
1331
1332         offset += bp->b_offset;
1333         page = bp->b_pages[offset >> PAGE_SHIFT];
1334         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1335 }
1336
1337 /*
1338  *      Move data into or out of a buffer.
1339  */
1340 void
1341 xfs_buf_iomove(
1342         xfs_buf_t               *bp,    /* buffer to process            */
1343         size_t                  boff,   /* starting buffer offset       */
1344         size_t                  bsize,  /* length to copy               */
1345         void                    *data,  /* data address                 */
1346         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1347 {
1348         size_t                  bend, cpoff, csize;
1349         struct page             *page;
1350
1351         bend = boff + bsize;
1352         while (boff < bend) {
1353                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1354                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1355                 csize = min_t(size_t,
1356                               PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1357
1358                 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1359
1360                 switch (mode) {
1361                 case XBRW_ZERO:
1362                         memset(page_address(page) + cpoff, 0, csize);
1363                         break;
1364                 case XBRW_READ:
1365                         memcpy(data, page_address(page) + cpoff, csize);
1366                         break;
1367                 case XBRW_WRITE:
1368                         memcpy(page_address(page) + cpoff, data, csize);
1369                 }
1370
1371                 boff += csize;
1372                 data += csize;
1373         }
1374 }
1375
1376 /*
1377  *      Handling of buffer targets (buftargs).
1378  */
1379
1380 /*
1381  * Wait for any bufs with callbacks that have been submitted but have not yet
1382  * returned. These buffers will have an elevated hold count, so wait on those
1383  * while freeing all the buffers only held by the LRU.
1384  */
1385 void
1386 xfs_wait_buftarg(
1387         struct xfs_buftarg      *btp)
1388 {
1389         struct xfs_buf          *bp;
1390
1391 restart:
1392         spin_lock(&btp->bt_lru_lock);
1393         while (!list_empty(&btp->bt_lru)) {
1394                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1395                 if (atomic_read(&bp->b_hold) > 1) {
1396                         spin_unlock(&btp->bt_lru_lock);
1397                         delay(100);
1398                         goto restart;
1399                 }
1400                 /*
1401                  * clear the LRU reference count so the bufer doesn't get
1402                  * ignored in xfs_buf_rele().
1403                  */
1404                 atomic_set(&bp->b_lru_ref, 0);
1405                 spin_unlock(&btp->bt_lru_lock);
1406                 xfs_buf_rele(bp);
1407                 spin_lock(&btp->bt_lru_lock);
1408         }
1409         spin_unlock(&btp->bt_lru_lock);
1410 }
1411
1412 int
1413 xfs_buftarg_shrink(
1414         struct shrinker         *shrink,
1415         int                     nr_to_scan,
1416         gfp_t                   mask)
1417 {
1418         struct xfs_buftarg      *btp = container_of(shrink,
1419                                         struct xfs_buftarg, bt_shrinker);
1420         struct xfs_buf          *bp;
1421         LIST_HEAD(dispose);
1422
1423         if (!nr_to_scan)
1424                 return btp->bt_lru_nr;
1425
1426         spin_lock(&btp->bt_lru_lock);
1427         while (!list_empty(&btp->bt_lru)) {
1428                 if (nr_to_scan-- <= 0)
1429                         break;
1430
1431                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1432
1433                 /*
1434                  * Decrement the b_lru_ref count unless the value is already
1435                  * zero. If the value is already zero, we need to reclaim the
1436                  * buffer, otherwise it gets another trip through the LRU.
1437                  */
1438                 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1439                         list_move_tail(&bp->b_lru, &btp->bt_lru);
1440                         continue;
1441                 }
1442
1443                 /*
1444                  * remove the buffer from the LRU now to avoid needing another
1445                  * lock round trip inside xfs_buf_rele().
1446                  */
1447                 list_move(&bp->b_lru, &dispose);
1448                 btp->bt_lru_nr--;
1449         }
1450         spin_unlock(&btp->bt_lru_lock);
1451
1452         while (!list_empty(&dispose)) {
1453                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1454                 list_del_init(&bp->b_lru);
1455                 xfs_buf_rele(bp);
1456         }
1457
1458         return btp->bt_lru_nr;
1459 }
1460
1461 void
1462 xfs_free_buftarg(
1463         struct xfs_mount        *mp,
1464         struct xfs_buftarg      *btp)
1465 {
1466         unregister_shrinker(&btp->bt_shrinker);
1467
1468         xfs_flush_buftarg(btp, 1);
1469         if (mp->m_flags & XFS_MOUNT_BARRIER)
1470                 xfs_blkdev_issue_flush(btp);
1471
1472         kthread_stop(btp->bt_task);
1473         kmem_free(btp);
1474 }
1475
1476 STATIC int
1477 xfs_setsize_buftarg_flags(
1478         xfs_buftarg_t           *btp,
1479         unsigned int            blocksize,
1480         unsigned int            sectorsize,
1481         int                     verbose)
1482 {
1483         btp->bt_bsize = blocksize;
1484         btp->bt_sshift = ffs(sectorsize) - 1;
1485         btp->bt_smask = sectorsize - 1;
1486
1487         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1488                 xfs_warn(btp->bt_mount,
1489                         "Cannot set_blocksize to %u on device %s\n",
1490                         sectorsize, XFS_BUFTARG_NAME(btp));
1491                 return EINVAL;
1492         }
1493
1494         return 0;
1495 }
1496
1497 /*
1498  *      When allocating the initial buffer target we have not yet
1499  *      read in the superblock, so don't know what sized sectors
1500  *      are being used is at this early stage.  Play safe.
1501  */
1502 STATIC int
1503 xfs_setsize_buftarg_early(
1504         xfs_buftarg_t           *btp,
1505         struct block_device     *bdev)
1506 {
1507         return xfs_setsize_buftarg_flags(btp,
1508                         PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1509 }
1510
1511 int
1512 xfs_setsize_buftarg(
1513         xfs_buftarg_t           *btp,
1514         unsigned int            blocksize,
1515         unsigned int            sectorsize)
1516 {
1517         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1518 }
1519
1520 STATIC int
1521 xfs_alloc_delwrite_queue(
1522         xfs_buftarg_t           *btp,
1523         const char              *fsname)
1524 {
1525         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1526         spin_lock_init(&btp->bt_delwrite_lock);
1527         btp->bt_flags = 0;
1528         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1529         if (IS_ERR(btp->bt_task))
1530                 return PTR_ERR(btp->bt_task);
1531         return 0;
1532 }
1533
1534 xfs_buftarg_t *
1535 xfs_alloc_buftarg(
1536         struct xfs_mount        *mp,
1537         struct block_device     *bdev,
1538         int                     external,
1539         const char              *fsname)
1540 {
1541         xfs_buftarg_t           *btp;
1542
1543         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1544
1545         btp->bt_mount = mp;
1546         btp->bt_dev =  bdev->bd_dev;
1547         btp->bt_bdev = bdev;
1548         btp->bt_bdi = blk_get_backing_dev_info(bdev);
1549         if (!btp->bt_bdi)
1550                 goto error;
1551
1552         INIT_LIST_HEAD(&btp->bt_lru);
1553         spin_lock_init(&btp->bt_lru_lock);
1554         if (xfs_setsize_buftarg_early(btp, bdev))
1555                 goto error;
1556         if (xfs_alloc_delwrite_queue(btp, fsname))
1557                 goto error;
1558         btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1559         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1560         register_shrinker(&btp->bt_shrinker);
1561         return btp;
1562
1563 error:
1564         kmem_free(btp);
1565         return NULL;
1566 }
1567
1568
1569 /*
1570  *      Delayed write buffer handling
1571  */
1572 STATIC void
1573 xfs_buf_delwri_queue(
1574         xfs_buf_t               *bp,
1575         int                     unlock)
1576 {
1577         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1578         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1579
1580         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1581
1582         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1583
1584         spin_lock(dwlk);
1585         /* If already in the queue, dequeue and place at tail */
1586         if (!list_empty(&bp->b_list)) {
1587                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1588                 if (unlock)
1589                         atomic_dec(&bp->b_hold);
1590                 list_del(&bp->b_list);
1591         }
1592
1593         if (list_empty(dwq)) {
1594                 /* start xfsbufd as it is about to have something to do */
1595                 wake_up_process(bp->b_target->bt_task);
1596         }
1597
1598         bp->b_flags |= _XBF_DELWRI_Q;
1599         list_add_tail(&bp->b_list, dwq);
1600         bp->b_queuetime = jiffies;
1601         spin_unlock(dwlk);
1602
1603         if (unlock)
1604                 xfs_buf_unlock(bp);
1605 }
1606
1607 void
1608 xfs_buf_delwri_dequeue(
1609         xfs_buf_t               *bp)
1610 {
1611         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1612         int                     dequeued = 0;
1613
1614         spin_lock(dwlk);
1615         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1616                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1617                 list_del_init(&bp->b_list);
1618                 dequeued = 1;
1619         }
1620         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1621         spin_unlock(dwlk);
1622
1623         if (dequeued)
1624                 xfs_buf_rele(bp);
1625
1626         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1627 }
1628
1629 /*
1630  * If a delwri buffer needs to be pushed before it has aged out, then promote
1631  * it to the head of the delwri queue so that it will be flushed on the next
1632  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1633  * than the age currently needed to flush the buffer. Hence the next time the
1634  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1635  */
1636 void
1637 xfs_buf_delwri_promote(
1638         struct xfs_buf  *bp)
1639 {
1640         struct xfs_buftarg *btp = bp->b_target;
1641         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1642
1643         ASSERT(bp->b_flags & XBF_DELWRI);
1644         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1645
1646         /*
1647          * Check the buffer age before locking the delayed write queue as we
1648          * don't need to promote buffers that are already past the flush age.
1649          */
1650         if (bp->b_queuetime < jiffies - age)
1651                 return;
1652         bp->b_queuetime = jiffies - age;
1653         spin_lock(&btp->bt_delwrite_lock);
1654         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1655         spin_unlock(&btp->bt_delwrite_lock);
1656 }
1657
1658 STATIC void
1659 xfs_buf_runall_queues(
1660         struct workqueue_struct *queue)
1661 {
1662         flush_workqueue(queue);
1663 }
1664
1665 /*
1666  * Move as many buffers as specified to the supplied list
1667  * idicating if we skipped any buffers to prevent deadlocks.
1668  */
1669 STATIC int
1670 xfs_buf_delwri_split(
1671         xfs_buftarg_t   *target,
1672         struct list_head *list,
1673         unsigned long   age)
1674 {
1675         xfs_buf_t       *bp, *n;
1676         struct list_head *dwq = &target->bt_delwrite_queue;
1677         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1678         int             skipped = 0;
1679         int             force;
1680
1681         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1682         INIT_LIST_HEAD(list);
1683         spin_lock(dwlk);
1684         list_for_each_entry_safe(bp, n, dwq, b_list) {
1685                 ASSERT(bp->b_flags & XBF_DELWRI);
1686
1687                 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1688                         if (!force &&
1689                             time_before(jiffies, bp->b_queuetime + age)) {
1690                                 xfs_buf_unlock(bp);
1691                                 break;
1692                         }
1693
1694                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1695                                          _XBF_RUN_QUEUES);
1696                         bp->b_flags |= XBF_WRITE;
1697                         list_move_tail(&bp->b_list, list);
1698                         trace_xfs_buf_delwri_split(bp, _RET_IP_);
1699                 } else
1700                         skipped++;
1701         }
1702         spin_unlock(dwlk);
1703
1704         return skipped;
1705
1706 }
1707
1708 /*
1709  * Compare function is more complex than it needs to be because
1710  * the return value is only 32 bits and we are doing comparisons
1711  * on 64 bit values
1712  */
1713 static int
1714 xfs_buf_cmp(
1715         void            *priv,
1716         struct list_head *a,
1717         struct list_head *b)
1718 {
1719         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1720         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1721         xfs_daddr_t             diff;
1722
1723         diff = ap->b_bn - bp->b_bn;
1724         if (diff < 0)
1725                 return -1;
1726         if (diff > 0)
1727                 return 1;
1728         return 0;
1729 }
1730
1731 void
1732 xfs_buf_delwri_sort(
1733         xfs_buftarg_t   *target,
1734         struct list_head *list)
1735 {
1736         list_sort(NULL, list, xfs_buf_cmp);
1737 }
1738
1739 STATIC int
1740 xfsbufd(
1741         void            *data)
1742 {
1743         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1744
1745         current->flags |= PF_MEMALLOC;
1746
1747         set_freezable();
1748
1749         do {
1750                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1751                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1752                 int     count = 0;
1753                 struct list_head tmp;
1754
1755                 if (unlikely(freezing(current))) {
1756                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1757                         refrigerator();
1758                 } else {
1759                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1760                 }
1761
1762                 /* sleep for a long time if there is nothing to do. */
1763                 if (list_empty(&target->bt_delwrite_queue))
1764                         tout = MAX_SCHEDULE_TIMEOUT;
1765                 schedule_timeout_interruptible(tout);
1766
1767                 xfs_buf_delwri_split(target, &tmp, age);
1768                 list_sort(NULL, &tmp, xfs_buf_cmp);
1769                 while (!list_empty(&tmp)) {
1770                         struct xfs_buf *bp;
1771                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1772                         list_del_init(&bp->b_list);
1773                         xfs_bdstrat_cb(bp);
1774                         count++;
1775                 }
1776                 if (count)
1777                         blk_run_backing_dev(target->bt_bdi, NULL);
1778
1779         } while (!kthread_should_stop());
1780
1781         return 0;
1782 }
1783
1784 /*
1785  *      Go through all incore buffers, and release buffers if they belong to
1786  *      the given device. This is used in filesystem error handling to
1787  *      preserve the consistency of its metadata.
1788  */
1789 int
1790 xfs_flush_buftarg(
1791         xfs_buftarg_t   *target,
1792         int             wait)
1793 {
1794         xfs_buf_t       *bp;
1795         int             pincount = 0;
1796         LIST_HEAD(tmp_list);
1797         LIST_HEAD(wait_list);
1798
1799         xfs_buf_runall_queues(xfsconvertd_workqueue);
1800         xfs_buf_runall_queues(xfsdatad_workqueue);
1801         xfs_buf_runall_queues(xfslogd_workqueue);
1802
1803         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1804         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1805
1806         /*
1807          * Dropped the delayed write list lock, now walk the temporary list.
1808          * All I/O is issued async and then if we need to wait for completion
1809          * we do that after issuing all the IO.
1810          */
1811         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1812         while (!list_empty(&tmp_list)) {
1813                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1814                 ASSERT(target == bp->b_target);
1815                 list_del_init(&bp->b_list);
1816                 if (wait) {
1817                         bp->b_flags &= ~XBF_ASYNC;
1818                         list_add(&bp->b_list, &wait_list);
1819                 }
1820                 xfs_bdstrat_cb(bp);
1821         }
1822
1823         if (wait) {
1824                 /* Expedite and wait for IO to complete. */
1825                 blk_run_backing_dev(target->bt_bdi, NULL);
1826                 while (!list_empty(&wait_list)) {
1827                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1828
1829                         list_del_init(&bp->b_list);
1830                         xfs_buf_iowait(bp);
1831                         xfs_buf_relse(bp);
1832                 }
1833         }
1834
1835         return pincount;
1836 }
1837
1838 int __init
1839 xfs_buf_init(void)
1840 {
1841         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1842                                                 KM_ZONE_HWALIGN, NULL);
1843         if (!xfs_buf_zone)
1844                 goto out;
1845
1846         xfslogd_workqueue = alloc_workqueue("xfslogd",
1847                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1848         if (!xfslogd_workqueue)
1849                 goto out_free_buf_zone;
1850
1851         xfsdatad_workqueue = create_workqueue("xfsdatad");
1852         if (!xfsdatad_workqueue)
1853                 goto out_destroy_xfslogd_workqueue;
1854
1855         xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1856         if (!xfsconvertd_workqueue)
1857                 goto out_destroy_xfsdatad_workqueue;
1858
1859         return 0;
1860
1861  out_destroy_xfsdatad_workqueue:
1862         destroy_workqueue(xfsdatad_workqueue);
1863  out_destroy_xfslogd_workqueue:
1864         destroy_workqueue(xfslogd_workqueue);
1865  out_free_buf_zone:
1866         kmem_zone_destroy(xfs_buf_zone);
1867  out:
1868         return -ENOMEM;
1869 }
1870
1871 void
1872 xfs_buf_terminate(void)
1873 {
1874         destroy_workqueue(xfsconvertd_workqueue);
1875         destroy_workqueue(xfsdatad_workqueue);
1876         destroy_workqueue(xfslogd_workqueue);
1877         kmem_zone_destroy(xfs_buf_zone);
1878 }
1879
1880 #ifdef CONFIG_KDB_MODULES
1881 struct list_head *
1882 xfs_get_buftarg_list(void)
1883 {
1884         return &xfs_buftarg_list;
1885 }
1886 #endif