9ef9ed2cfe2efee9aa3d9ed1de1d3e47fc9bc4df
[pandora-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
48
49 static struct workqueue_struct *xfslogd_workqueue;
50 struct workqueue_struct *xfsdatad_workqueue;
51 struct workqueue_struct *xfsconvertd_workqueue;
52
53 #ifdef XFS_BUF_LOCK_TRACKING
54 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
55 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
56 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
57 #else
58 # define XB_SET_OWNER(bp)       do { } while (0)
59 # define XB_CLEAR_OWNER(bp)     do { } while (0)
60 # define XB_GET_OWNER(bp)       do { } while (0)
61 #endif
62
63 #define xb_to_gfp(flags) \
64         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
66
67 #define xb_to_km(flags) \
68          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
69
70 #define xfs_buf_allocate(flags) \
71         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72 #define xfs_buf_deallocate(bp) \
73         kmem_zone_free(xfs_buf_zone, (bp));
74
75 static inline int
76 xfs_buf_is_vmapped(
77         struct xfs_buf  *bp)
78 {
79         /*
80          * Return true if the buffer is vmapped.
81          *
82          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83          * code is clever enough to know it doesn't have to map a single page,
84          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85          */
86         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
87 }
88
89 static inline int
90 xfs_buf_vmap_len(
91         struct xfs_buf  *bp)
92 {
93         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
94 }
95
96 /*
97  * xfs_buf_lru_add - add a buffer to the LRU.
98  *
99  * The LRU takes a new reference to the buffer so that it will only be freed
100  * once the shrinker takes the buffer off the LRU.
101  */
102 STATIC void
103 xfs_buf_lru_add(
104         struct xfs_buf  *bp)
105 {
106         struct xfs_buftarg *btp = bp->b_target;
107
108         spin_lock(&btp->bt_lru_lock);
109         if (list_empty(&bp->b_lru)) {
110                 atomic_inc(&bp->b_hold);
111                 list_add_tail(&bp->b_lru, &btp->bt_lru);
112                 btp->bt_lru_nr++;
113         }
114         spin_unlock(&btp->bt_lru_lock);
115 }
116
117 /*
118  * xfs_buf_lru_del - remove a buffer from the LRU
119  *
120  * The unlocked check is safe here because it only occurs when there are not
121  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
122  * to optimise the shrinker removing the buffer from the LRU and calling
123  * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
124  * bt_lru_lock.
125  */
126 STATIC void
127 xfs_buf_lru_del(
128         struct xfs_buf  *bp)
129 {
130         struct xfs_buftarg *btp = bp->b_target;
131
132         if (list_empty(&bp->b_lru))
133                 return;
134
135         spin_lock(&btp->bt_lru_lock);
136         if (!list_empty(&bp->b_lru)) {
137                 list_del_init(&bp->b_lru);
138                 btp->bt_lru_nr--;
139         }
140         spin_unlock(&btp->bt_lru_lock);
141 }
142
143 /*
144  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
145  * b_lru_ref count so that the buffer is freed immediately when the buffer
146  * reference count falls to zero. If the buffer is already on the LRU, we need
147  * to remove the reference that LRU holds on the buffer.
148  *
149  * This prevents build-up of stale buffers on the LRU.
150  */
151 void
152 xfs_buf_stale(
153         struct xfs_buf  *bp)
154 {
155         bp->b_flags |= XBF_STALE;
156         atomic_set(&(bp)->b_lru_ref, 0);
157         if (!list_empty(&bp->b_lru)) {
158                 struct xfs_buftarg *btp = bp->b_target;
159
160                 spin_lock(&btp->bt_lru_lock);
161                 if (!list_empty(&bp->b_lru)) {
162                         list_del_init(&bp->b_lru);
163                         btp->bt_lru_nr--;
164                         atomic_dec(&bp->b_hold);
165                 }
166                 spin_unlock(&btp->bt_lru_lock);
167         }
168         ASSERT(atomic_read(&bp->b_hold) >= 1);
169 }
170
171 STATIC void
172 _xfs_buf_initialize(
173         xfs_buf_t               *bp,
174         xfs_buftarg_t           *target,
175         xfs_off_t               range_base,
176         size_t                  range_length,
177         xfs_buf_flags_t         flags)
178 {
179         /*
180          * We don't want certain flags to appear in b_flags.
181          */
182         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
183
184         memset(bp, 0, sizeof(xfs_buf_t));
185         atomic_set(&bp->b_hold, 1);
186         atomic_set(&bp->b_lru_ref, 1);
187         init_completion(&bp->b_iowait);
188         INIT_LIST_HEAD(&bp->b_lru);
189         INIT_LIST_HEAD(&bp->b_list);
190         RB_CLEAR_NODE(&bp->b_rbnode);
191         sema_init(&bp->b_sema, 0); /* held, no waiters */
192         XB_SET_OWNER(bp);
193         bp->b_target = target;
194         bp->b_file_offset = range_base;
195         /*
196          * Set buffer_length and count_desired to the same value initially.
197          * I/O routines should use count_desired, which will be the same in
198          * most cases but may be reset (e.g. XFS recovery).
199          */
200         bp->b_buffer_length = bp->b_count_desired = range_length;
201         bp->b_flags = flags;
202         bp->b_bn = XFS_BUF_DADDR_NULL;
203         atomic_set(&bp->b_pin_count, 0);
204         init_waitqueue_head(&bp->b_waiters);
205
206         XFS_STATS_INC(xb_create);
207
208         trace_xfs_buf_init(bp, _RET_IP_);
209 }
210
211 /*
212  *      Allocate a page array capable of holding a specified number
213  *      of pages, and point the page buf at it.
214  */
215 STATIC int
216 _xfs_buf_get_pages(
217         xfs_buf_t               *bp,
218         int                     page_count,
219         xfs_buf_flags_t         flags)
220 {
221         /* Make sure that we have a page list */
222         if (bp->b_pages == NULL) {
223                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
224                 bp->b_page_count = page_count;
225                 if (page_count <= XB_PAGES) {
226                         bp->b_pages = bp->b_page_array;
227                 } else {
228                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
229                                         page_count, xb_to_km(flags));
230                         if (bp->b_pages == NULL)
231                                 return -ENOMEM;
232                 }
233                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
234         }
235         return 0;
236 }
237
238 /*
239  *      Frees b_pages if it was allocated.
240  */
241 STATIC void
242 _xfs_buf_free_pages(
243         xfs_buf_t       *bp)
244 {
245         if (bp->b_pages != bp->b_page_array) {
246                 kmem_free(bp->b_pages);
247                 bp->b_pages = NULL;
248         }
249 }
250
251 /*
252  *      Releases the specified buffer.
253  *
254  *      The modification state of any associated pages is left unchanged.
255  *      The buffer most not be on any hash - use xfs_buf_rele instead for
256  *      hashed and refcounted buffers
257  */
258 void
259 xfs_buf_free(
260         xfs_buf_t               *bp)
261 {
262         trace_xfs_buf_free(bp, _RET_IP_);
263
264         ASSERT(list_empty(&bp->b_lru));
265
266         if (bp->b_flags & _XBF_PAGES) {
267                 uint            i;
268
269                 if (xfs_buf_is_vmapped(bp))
270                         vm_unmap_ram(bp->b_addr - bp->b_offset,
271                                         bp->b_page_count);
272
273                 for (i = 0; i < bp->b_page_count; i++) {
274                         struct page     *page = bp->b_pages[i];
275
276                         __free_page(page);
277                 }
278         } else if (bp->b_flags & _XBF_KMEM)
279                 kmem_free(bp->b_addr);
280         _xfs_buf_free_pages(bp);
281         xfs_buf_deallocate(bp);
282 }
283
284 /*
285  * Allocates all the pages for buffer in question and builds it's page list.
286  */
287 STATIC int
288 xfs_buf_allocate_memory(
289         xfs_buf_t               *bp,
290         uint                    flags)
291 {
292         size_t                  size = bp->b_count_desired;
293         size_t                  nbytes, offset;
294         gfp_t                   gfp_mask = xb_to_gfp(flags);
295         unsigned short          page_count, i;
296         xfs_off_t               end;
297         int                     error;
298
299         /*
300          * for buffers that are contained within a single page, just allocate
301          * the memory from the heap - there's no need for the complexity of
302          * page arrays to keep allocation down to order 0.
303          */
304         if (bp->b_buffer_length < PAGE_SIZE) {
305                 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
306                 if (!bp->b_addr) {
307                         /* low memory - use alloc_page loop instead */
308                         goto use_alloc_page;
309                 }
310
311                 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
312                                                                 PAGE_MASK) !=
313                     ((unsigned long)bp->b_addr & PAGE_MASK)) {
314                         /* b_addr spans two pages - use alloc_page instead */
315                         kmem_free(bp->b_addr);
316                         bp->b_addr = NULL;
317                         goto use_alloc_page;
318                 }
319                 bp->b_offset = offset_in_page(bp->b_addr);
320                 bp->b_pages = bp->b_page_array;
321                 bp->b_pages[0] = virt_to_page(bp->b_addr);
322                 bp->b_page_count = 1;
323                 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
324                 return 0;
325         }
326
327 use_alloc_page:
328         end = bp->b_file_offset + bp->b_buffer_length;
329         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
330         error = _xfs_buf_get_pages(bp, page_count, flags);
331         if (unlikely(error))
332                 return error;
333
334         offset = bp->b_offset;
335         bp->b_flags |= _XBF_PAGES;
336
337         for (i = 0; i < bp->b_page_count; i++) {
338                 struct page     *page;
339                 uint            retries = 0;
340 retry:
341                 page = alloc_page(gfp_mask);
342                 if (unlikely(page == NULL)) {
343                         if (flags & XBF_READ_AHEAD) {
344                                 bp->b_page_count = i;
345                                 error = ENOMEM;
346                                 goto out_free_pages;
347                         }
348
349                         /*
350                          * This could deadlock.
351                          *
352                          * But until all the XFS lowlevel code is revamped to
353                          * handle buffer allocation failures we can't do much.
354                          */
355                         if (!(++retries % 100))
356                                 xfs_err(NULL,
357                 "possible memory allocation deadlock in %s (mode:0x%x)",
358                                         __func__, gfp_mask);
359
360                         XFS_STATS_INC(xb_page_retries);
361                         congestion_wait(BLK_RW_ASYNC, HZ/50);
362                         goto retry;
363                 }
364
365                 XFS_STATS_INC(xb_page_found);
366
367                 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
368                 size -= nbytes;
369                 bp->b_pages[i] = page;
370                 offset = 0;
371         }
372         return 0;
373
374 out_free_pages:
375         for (i = 0; i < bp->b_page_count; i++)
376                 __free_page(bp->b_pages[i]);
377         return error;
378 }
379
380 /*
381  *      Map buffer into kernel address-space if necessary.
382  */
383 STATIC int
384 _xfs_buf_map_pages(
385         xfs_buf_t               *bp,
386         uint                    flags)
387 {
388         ASSERT(bp->b_flags & _XBF_PAGES);
389         if (bp->b_page_count == 1) {
390                 /* A single page buffer is always mappable */
391                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
392                 bp->b_flags |= XBF_MAPPED;
393         } else if (flags & XBF_MAPPED) {
394                 int retried = 0;
395
396                 do {
397                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
398                                                 -1, PAGE_KERNEL);
399                         if (bp->b_addr)
400                                 break;
401                         vm_unmap_aliases();
402                 } while (retried++ <= 1);
403
404                 if (!bp->b_addr)
405                         return -ENOMEM;
406                 bp->b_addr += bp->b_offset;
407                 bp->b_flags |= XBF_MAPPED;
408         }
409
410         return 0;
411 }
412
413 /*
414  *      Finding and Reading Buffers
415  */
416
417 /*
418  *      Look up, and creates if absent, a lockable buffer for
419  *      a given range of an inode.  The buffer is returned
420  *      locked.  If other overlapping buffers exist, they are
421  *      released before the new buffer is created and locked,
422  *      which may imply that this call will block until those buffers
423  *      are unlocked.  No I/O is implied by this call.
424  */
425 xfs_buf_t *
426 _xfs_buf_find(
427         xfs_buftarg_t           *btp,   /* block device target          */
428         xfs_off_t               ioff,   /* starting offset of range     */
429         size_t                  isize,  /* length of range              */
430         xfs_buf_flags_t         flags,
431         xfs_buf_t               *new_bp)
432 {
433         xfs_off_t               range_base;
434         size_t                  range_length;
435         struct xfs_perag        *pag;
436         struct rb_node          **rbp;
437         struct rb_node          *parent;
438         xfs_buf_t               *bp;
439
440         range_base = (ioff << BBSHIFT);
441         range_length = (isize << BBSHIFT);
442
443         /* Check for IOs smaller than the sector size / not sector aligned */
444         ASSERT(!(range_length < (1 << btp->bt_sshift)));
445         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
446
447         /* get tree root */
448         pag = xfs_perag_get(btp->bt_mount,
449                                 xfs_daddr_to_agno(btp->bt_mount, ioff));
450
451         /* walk tree */
452         spin_lock(&pag->pag_buf_lock);
453         rbp = &pag->pag_buf_tree.rb_node;
454         parent = NULL;
455         bp = NULL;
456         while (*rbp) {
457                 parent = *rbp;
458                 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
459
460                 if (range_base < bp->b_file_offset)
461                         rbp = &(*rbp)->rb_left;
462                 else if (range_base > bp->b_file_offset)
463                         rbp = &(*rbp)->rb_right;
464                 else {
465                         /*
466                          * found a block offset match. If the range doesn't
467                          * match, the only way this is allowed is if the buffer
468                          * in the cache is stale and the transaction that made
469                          * it stale has not yet committed. i.e. we are
470                          * reallocating a busy extent. Skip this buffer and
471                          * continue searching to the right for an exact match.
472                          */
473                         if (bp->b_buffer_length != range_length) {
474                                 ASSERT(bp->b_flags & XBF_STALE);
475                                 rbp = &(*rbp)->rb_right;
476                                 continue;
477                         }
478                         atomic_inc(&bp->b_hold);
479                         goto found;
480                 }
481         }
482
483         /* No match found */
484         if (new_bp) {
485                 _xfs_buf_initialize(new_bp, btp, range_base,
486                                 range_length, flags);
487                 rb_link_node(&new_bp->b_rbnode, parent, rbp);
488                 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
489                 /* the buffer keeps the perag reference until it is freed */
490                 new_bp->b_pag = pag;
491                 spin_unlock(&pag->pag_buf_lock);
492         } else {
493                 XFS_STATS_INC(xb_miss_locked);
494                 spin_unlock(&pag->pag_buf_lock);
495                 xfs_perag_put(pag);
496         }
497         return new_bp;
498
499 found:
500         spin_unlock(&pag->pag_buf_lock);
501         xfs_perag_put(pag);
502
503         if (xfs_buf_cond_lock(bp)) {
504                 /* failed, so wait for the lock if requested. */
505                 if (!(flags & XBF_TRYLOCK)) {
506                         xfs_buf_lock(bp);
507                         XFS_STATS_INC(xb_get_locked_waited);
508                 } else {
509                         xfs_buf_rele(bp);
510                         XFS_STATS_INC(xb_busy_locked);
511                         return NULL;
512                 }
513         }
514
515         /*
516          * if the buffer is stale, clear all the external state associated with
517          * it. We need to keep flags such as how we allocated the buffer memory
518          * intact here.
519          */
520         if (bp->b_flags & XBF_STALE) {
521                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
522                 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
523         }
524
525         trace_xfs_buf_find(bp, flags, _RET_IP_);
526         XFS_STATS_INC(xb_get_locked);
527         return bp;
528 }
529
530 /*
531  *      Assembles a buffer covering the specified range.
532  *      Storage in memory for all portions of the buffer will be allocated,
533  *      although backing storage may not be.
534  */
535 xfs_buf_t *
536 xfs_buf_get(
537         xfs_buftarg_t           *target,/* target for buffer            */
538         xfs_off_t               ioff,   /* starting offset of range     */
539         size_t                  isize,  /* length of range              */
540         xfs_buf_flags_t         flags)
541 {
542         xfs_buf_t               *bp, *new_bp;
543         int                     error = 0;
544
545         new_bp = xfs_buf_allocate(flags);
546         if (unlikely(!new_bp))
547                 return NULL;
548
549         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
550         if (bp == new_bp) {
551                 error = xfs_buf_allocate_memory(bp, flags);
552                 if (error)
553                         goto no_buffer;
554         } else {
555                 xfs_buf_deallocate(new_bp);
556                 if (unlikely(bp == NULL))
557                         return NULL;
558         }
559
560         if (!(bp->b_flags & XBF_MAPPED)) {
561                 error = _xfs_buf_map_pages(bp, flags);
562                 if (unlikely(error)) {
563                         xfs_warn(target->bt_mount,
564                                 "%s: failed to map pages\n", __func__);
565                         goto no_buffer;
566                 }
567         }
568
569         XFS_STATS_INC(xb_get);
570
571         /*
572          * Always fill in the block number now, the mapped cases can do
573          * their own overlay of this later.
574          */
575         bp->b_bn = ioff;
576         bp->b_count_desired = bp->b_buffer_length;
577
578         trace_xfs_buf_get(bp, flags, _RET_IP_);
579         return bp;
580
581  no_buffer:
582         if (flags & (XBF_LOCK | XBF_TRYLOCK))
583                 xfs_buf_unlock(bp);
584         xfs_buf_rele(bp);
585         return NULL;
586 }
587
588 STATIC int
589 _xfs_buf_read(
590         xfs_buf_t               *bp,
591         xfs_buf_flags_t         flags)
592 {
593         int                     status;
594
595         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
596         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
597
598         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
599                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
600         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
601                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
602
603         status = xfs_buf_iorequest(bp);
604         if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
605                 return status;
606         return xfs_buf_iowait(bp);
607 }
608
609 xfs_buf_t *
610 xfs_buf_read(
611         xfs_buftarg_t           *target,
612         xfs_off_t               ioff,
613         size_t                  isize,
614         xfs_buf_flags_t         flags)
615 {
616         xfs_buf_t               *bp;
617
618         flags |= XBF_READ;
619
620         bp = xfs_buf_get(target, ioff, isize, flags);
621         if (bp) {
622                 trace_xfs_buf_read(bp, flags, _RET_IP_);
623
624                 if (!XFS_BUF_ISDONE(bp)) {
625                         XFS_STATS_INC(xb_get_read);
626                         _xfs_buf_read(bp, flags);
627                 } else if (flags & XBF_ASYNC) {
628                         /*
629                          * Read ahead call which is already satisfied,
630                          * drop the buffer
631                          */
632                         goto no_buffer;
633                 } else {
634                         /* We do not want read in the flags */
635                         bp->b_flags &= ~XBF_READ;
636                 }
637         }
638
639         return bp;
640
641  no_buffer:
642         if (flags & (XBF_LOCK | XBF_TRYLOCK))
643                 xfs_buf_unlock(bp);
644         xfs_buf_rele(bp);
645         return NULL;
646 }
647
648 /*
649  *      If we are not low on memory then do the readahead in a deadlock
650  *      safe manner.
651  */
652 void
653 xfs_buf_readahead(
654         xfs_buftarg_t           *target,
655         xfs_off_t               ioff,
656         size_t                  isize)
657 {
658         if (bdi_read_congested(target->bt_bdi))
659                 return;
660
661         xfs_buf_read(target, ioff, isize,
662                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
663 }
664
665 /*
666  * Read an uncached buffer from disk. Allocates and returns a locked
667  * buffer containing the disk contents or nothing.
668  */
669 struct xfs_buf *
670 xfs_buf_read_uncached(
671         struct xfs_mount        *mp,
672         struct xfs_buftarg      *target,
673         xfs_daddr_t             daddr,
674         size_t                  length,
675         int                     flags)
676 {
677         xfs_buf_t               *bp;
678         int                     error;
679
680         bp = xfs_buf_get_uncached(target, length, flags);
681         if (!bp)
682                 return NULL;
683
684         /* set up the buffer for a read IO */
685         xfs_buf_lock(bp);
686         XFS_BUF_SET_ADDR(bp, daddr);
687         XFS_BUF_READ(bp);
688         XFS_BUF_BUSY(bp);
689
690         xfsbdstrat(mp, bp);
691         error = xfs_buf_iowait(bp);
692         if (error || bp->b_error) {
693                 xfs_buf_relse(bp);
694                 return NULL;
695         }
696         return bp;
697 }
698
699 xfs_buf_t *
700 xfs_buf_get_empty(
701         size_t                  len,
702         xfs_buftarg_t           *target)
703 {
704         xfs_buf_t               *bp;
705
706         bp = xfs_buf_allocate(0);
707         if (bp)
708                 _xfs_buf_initialize(bp, target, 0, len, 0);
709         return bp;
710 }
711
712 static inline struct page *
713 mem_to_page(
714         void                    *addr)
715 {
716         if ((!is_vmalloc_addr(addr))) {
717                 return virt_to_page(addr);
718         } else {
719                 return vmalloc_to_page(addr);
720         }
721 }
722
723 int
724 xfs_buf_associate_memory(
725         xfs_buf_t               *bp,
726         void                    *mem,
727         size_t                  len)
728 {
729         int                     rval;
730         int                     i = 0;
731         unsigned long           pageaddr;
732         unsigned long           offset;
733         size_t                  buflen;
734         int                     page_count;
735
736         pageaddr = (unsigned long)mem & PAGE_MASK;
737         offset = (unsigned long)mem - pageaddr;
738         buflen = PAGE_ALIGN(len + offset);
739         page_count = buflen >> PAGE_SHIFT;
740
741         /* Free any previous set of page pointers */
742         if (bp->b_pages)
743                 _xfs_buf_free_pages(bp);
744
745         bp->b_pages = NULL;
746         bp->b_addr = mem;
747
748         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
749         if (rval)
750                 return rval;
751
752         bp->b_offset = offset;
753
754         for (i = 0; i < bp->b_page_count; i++) {
755                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
756                 pageaddr += PAGE_SIZE;
757         }
758
759         bp->b_count_desired = len;
760         bp->b_buffer_length = buflen;
761         bp->b_flags |= XBF_MAPPED;
762
763         return 0;
764 }
765
766 xfs_buf_t *
767 xfs_buf_get_uncached(
768         struct xfs_buftarg      *target,
769         size_t                  len,
770         int                     flags)
771 {
772         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
773         int                     error, i;
774         xfs_buf_t               *bp;
775
776         bp = xfs_buf_allocate(0);
777         if (unlikely(bp == NULL))
778                 goto fail;
779         _xfs_buf_initialize(bp, target, 0, len, 0);
780
781         error = _xfs_buf_get_pages(bp, page_count, 0);
782         if (error)
783                 goto fail_free_buf;
784
785         for (i = 0; i < page_count; i++) {
786                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
787                 if (!bp->b_pages[i])
788                         goto fail_free_mem;
789         }
790         bp->b_flags |= _XBF_PAGES;
791
792         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
793         if (unlikely(error)) {
794                 xfs_warn(target->bt_mount,
795                         "%s: failed to map pages\n", __func__);
796                 goto fail_free_mem;
797         }
798
799         xfs_buf_unlock(bp);
800
801         trace_xfs_buf_get_uncached(bp, _RET_IP_);
802         return bp;
803
804  fail_free_mem:
805         while (--i >= 0)
806                 __free_page(bp->b_pages[i]);
807         _xfs_buf_free_pages(bp);
808  fail_free_buf:
809         xfs_buf_deallocate(bp);
810  fail:
811         return NULL;
812 }
813
814 /*
815  *      Increment reference count on buffer, to hold the buffer concurrently
816  *      with another thread which may release (free) the buffer asynchronously.
817  *      Must hold the buffer already to call this function.
818  */
819 void
820 xfs_buf_hold(
821         xfs_buf_t               *bp)
822 {
823         trace_xfs_buf_hold(bp, _RET_IP_);
824         atomic_inc(&bp->b_hold);
825 }
826
827 /*
828  *      Releases a hold on the specified buffer.  If the
829  *      the hold count is 1, calls xfs_buf_free.
830  */
831 void
832 xfs_buf_rele(
833         xfs_buf_t               *bp)
834 {
835         struct xfs_perag        *pag = bp->b_pag;
836
837         trace_xfs_buf_rele(bp, _RET_IP_);
838
839         if (!pag) {
840                 ASSERT(list_empty(&bp->b_lru));
841                 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
842                 if (atomic_dec_and_test(&bp->b_hold))
843                         xfs_buf_free(bp);
844                 return;
845         }
846
847         ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
848
849         ASSERT(atomic_read(&bp->b_hold) > 0);
850         if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
851                 if (!(bp->b_flags & XBF_STALE) &&
852                            atomic_read(&bp->b_lru_ref)) {
853                         xfs_buf_lru_add(bp);
854                         spin_unlock(&pag->pag_buf_lock);
855                 } else {
856                         xfs_buf_lru_del(bp);
857                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
858                         rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
859                         spin_unlock(&pag->pag_buf_lock);
860                         xfs_perag_put(pag);
861                         xfs_buf_free(bp);
862                 }
863         }
864 }
865
866
867 /*
868  *      Lock a buffer object, if it is not already locked.
869  *
870  *      If we come across a stale, pinned, locked buffer, we know that we are
871  *      being asked to lock a buffer that has been reallocated. Because it is
872  *      pinned, we know that the log has not been pushed to disk and hence it
873  *      will still be locked.  Rather than continuing to have trylock attempts
874  *      fail until someone else pushes the log, push it ourselves before
875  *      returning.  This means that the xfsaild will not get stuck trying
876  *      to push on stale inode buffers.
877  */
878 int
879 xfs_buf_cond_lock(
880         xfs_buf_t               *bp)
881 {
882         int                     locked;
883
884         locked = down_trylock(&bp->b_sema) == 0;
885         if (locked)
886                 XB_SET_OWNER(bp);
887         else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
888                 xfs_log_force(bp->b_target->bt_mount, 0);
889
890         trace_xfs_buf_cond_lock(bp, _RET_IP_);
891         return locked ? 0 : -EBUSY;
892 }
893
894 int
895 xfs_buf_lock_value(
896         xfs_buf_t               *bp)
897 {
898         return bp->b_sema.count;
899 }
900
901 /*
902  *      Lock a buffer object.
903  *
904  *      If we come across a stale, pinned, locked buffer, we know that we
905  *      are being asked to lock a buffer that has been reallocated. Because
906  *      it is pinned, we know that the log has not been pushed to disk and
907  *      hence it will still be locked. Rather than sleeping until someone
908  *      else pushes the log, push it ourselves before trying to get the lock.
909  */
910 void
911 xfs_buf_lock(
912         xfs_buf_t               *bp)
913 {
914         trace_xfs_buf_lock(bp, _RET_IP_);
915
916         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
917                 xfs_log_force(bp->b_target->bt_mount, 0);
918         down(&bp->b_sema);
919         XB_SET_OWNER(bp);
920
921         trace_xfs_buf_lock_done(bp, _RET_IP_);
922 }
923
924 /*
925  *      Releases the lock on the buffer object.
926  *      If the buffer is marked delwri but is not queued, do so before we
927  *      unlock the buffer as we need to set flags correctly.  We also need to
928  *      take a reference for the delwri queue because the unlocker is going to
929  *      drop their's and they don't know we just queued it.
930  */
931 void
932 xfs_buf_unlock(
933         xfs_buf_t               *bp)
934 {
935         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
936                 atomic_inc(&bp->b_hold);
937                 bp->b_flags |= XBF_ASYNC;
938                 xfs_buf_delwri_queue(bp, 0);
939         }
940
941         XB_CLEAR_OWNER(bp);
942         up(&bp->b_sema);
943
944         trace_xfs_buf_unlock(bp, _RET_IP_);
945 }
946
947 STATIC void
948 xfs_buf_wait_unpin(
949         xfs_buf_t               *bp)
950 {
951         DECLARE_WAITQUEUE       (wait, current);
952
953         if (atomic_read(&bp->b_pin_count) == 0)
954                 return;
955
956         add_wait_queue(&bp->b_waiters, &wait);
957         for (;;) {
958                 set_current_state(TASK_UNINTERRUPTIBLE);
959                 if (atomic_read(&bp->b_pin_count) == 0)
960                         break;
961                 io_schedule();
962         }
963         remove_wait_queue(&bp->b_waiters, &wait);
964         set_current_state(TASK_RUNNING);
965 }
966
967 /*
968  *      Buffer Utility Routines
969  */
970
971 STATIC void
972 xfs_buf_iodone_work(
973         struct work_struct      *work)
974 {
975         xfs_buf_t               *bp =
976                 container_of(work, xfs_buf_t, b_iodone_work);
977
978         if (bp->b_iodone)
979                 (*(bp->b_iodone))(bp);
980         else if (bp->b_flags & XBF_ASYNC)
981                 xfs_buf_relse(bp);
982 }
983
984 void
985 xfs_buf_ioend(
986         xfs_buf_t               *bp,
987         int                     schedule)
988 {
989         trace_xfs_buf_iodone(bp, _RET_IP_);
990
991         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
992         if (bp->b_error == 0)
993                 bp->b_flags |= XBF_DONE;
994
995         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
996                 if (schedule) {
997                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
998                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
999                 } else {
1000                         xfs_buf_iodone_work(&bp->b_iodone_work);
1001                 }
1002         } else {
1003                 complete(&bp->b_iowait);
1004         }
1005 }
1006
1007 void
1008 xfs_buf_ioerror(
1009         xfs_buf_t               *bp,
1010         int                     error)
1011 {
1012         ASSERT(error >= 0 && error <= 0xffff);
1013         bp->b_error = (unsigned short)error;
1014         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1015 }
1016
1017 int
1018 xfs_bwrite(
1019         struct xfs_mount        *mp,
1020         struct xfs_buf          *bp)
1021 {
1022         int                     error;
1023
1024         bp->b_flags |= XBF_WRITE;
1025         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1026
1027         xfs_buf_delwri_dequeue(bp);
1028         xfs_bdstrat_cb(bp);
1029
1030         error = xfs_buf_iowait(bp);
1031         if (error)
1032                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1033         xfs_buf_relse(bp);
1034         return error;
1035 }
1036
1037 void
1038 xfs_bdwrite(
1039         void                    *mp,
1040         struct xfs_buf          *bp)
1041 {
1042         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1043
1044         bp->b_flags &= ~XBF_READ;
1045         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1046
1047         xfs_buf_delwri_queue(bp, 1);
1048 }
1049
1050 /*
1051  * Called when we want to stop a buffer from getting written or read.
1052  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1053  * so that the proper iodone callbacks get called.
1054  */
1055 STATIC int
1056 xfs_bioerror(
1057         xfs_buf_t *bp)
1058 {
1059 #ifdef XFSERRORDEBUG
1060         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1061 #endif
1062
1063         /*
1064          * No need to wait until the buffer is unpinned, we aren't flushing it.
1065          */
1066         XFS_BUF_ERROR(bp, EIO);
1067
1068         /*
1069          * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1070          */
1071         XFS_BUF_UNREAD(bp);
1072         XFS_BUF_UNDELAYWRITE(bp);
1073         XFS_BUF_UNDONE(bp);
1074         XFS_BUF_STALE(bp);
1075
1076         xfs_buf_ioend(bp, 0);
1077
1078         return EIO;
1079 }
1080
1081 /*
1082  * Same as xfs_bioerror, except that we are releasing the buffer
1083  * here ourselves, and avoiding the xfs_buf_ioend call.
1084  * This is meant for userdata errors; metadata bufs come with
1085  * iodone functions attached, so that we can track down errors.
1086  */
1087 STATIC int
1088 xfs_bioerror_relse(
1089         struct xfs_buf  *bp)
1090 {
1091         int64_t         fl = XFS_BUF_BFLAGS(bp);
1092         /*
1093          * No need to wait until the buffer is unpinned.
1094          * We aren't flushing it.
1095          *
1096          * chunkhold expects B_DONE to be set, whether
1097          * we actually finish the I/O or not. We don't want to
1098          * change that interface.
1099          */
1100         XFS_BUF_UNREAD(bp);
1101         XFS_BUF_UNDELAYWRITE(bp);
1102         XFS_BUF_DONE(bp);
1103         XFS_BUF_STALE(bp);
1104         XFS_BUF_CLR_IODONE_FUNC(bp);
1105         if (!(fl & XBF_ASYNC)) {
1106                 /*
1107                  * Mark b_error and B_ERROR _both_.
1108                  * Lot's of chunkcache code assumes that.
1109                  * There's no reason to mark error for
1110                  * ASYNC buffers.
1111                  */
1112                 XFS_BUF_ERROR(bp, EIO);
1113                 XFS_BUF_FINISH_IOWAIT(bp);
1114         } else {
1115                 xfs_buf_relse(bp);
1116         }
1117
1118         return EIO;
1119 }
1120
1121
1122 /*
1123  * All xfs metadata buffers except log state machine buffers
1124  * get this attached as their b_bdstrat callback function.
1125  * This is so that we can catch a buffer
1126  * after prematurely unpinning it to forcibly shutdown the filesystem.
1127  */
1128 int
1129 xfs_bdstrat_cb(
1130         struct xfs_buf  *bp)
1131 {
1132         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1133                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1134                 /*
1135                  * Metadata write that didn't get logged but
1136                  * written delayed anyway. These aren't associated
1137                  * with a transaction, and can be ignored.
1138                  */
1139                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1140                         return xfs_bioerror_relse(bp);
1141                 else
1142                         return xfs_bioerror(bp);
1143         }
1144
1145         xfs_buf_iorequest(bp);
1146         return 0;
1147 }
1148
1149 /*
1150  * Wrapper around bdstrat so that we can stop data from going to disk in case
1151  * we are shutting down the filesystem.  Typically user data goes thru this
1152  * path; one of the exceptions is the superblock.
1153  */
1154 void
1155 xfsbdstrat(
1156         struct xfs_mount        *mp,
1157         struct xfs_buf          *bp)
1158 {
1159         if (XFS_FORCED_SHUTDOWN(mp)) {
1160                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1161                 xfs_bioerror_relse(bp);
1162                 return;
1163         }
1164
1165         xfs_buf_iorequest(bp);
1166 }
1167
1168 STATIC void
1169 _xfs_buf_ioend(
1170         xfs_buf_t               *bp,
1171         int                     schedule)
1172 {
1173         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1174                 xfs_buf_ioend(bp, schedule);
1175 }
1176
1177 STATIC void
1178 xfs_buf_bio_end_io(
1179         struct bio              *bio,
1180         int                     error)
1181 {
1182         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1183
1184         xfs_buf_ioerror(bp, -error);
1185
1186         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1187                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1188
1189         _xfs_buf_ioend(bp, 1);
1190         bio_put(bio);
1191 }
1192
1193 STATIC void
1194 _xfs_buf_ioapply(
1195         xfs_buf_t               *bp)
1196 {
1197         int                     rw, map_i, total_nr_pages, nr_pages;
1198         struct bio              *bio;
1199         int                     offset = bp->b_offset;
1200         int                     size = bp->b_count_desired;
1201         sector_t                sector = bp->b_bn;
1202
1203         total_nr_pages = bp->b_page_count;
1204         map_i = 0;
1205
1206         if (bp->b_flags & XBF_ORDERED) {
1207                 ASSERT(!(bp->b_flags & XBF_READ));
1208                 rw = WRITE_FLUSH_FUA;
1209         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1210                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1211                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1212                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1213         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1214                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1215                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1216                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1217         } else {
1218                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1219                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1220         }
1221
1222
1223 next_chunk:
1224         atomic_inc(&bp->b_io_remaining);
1225         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1226         if (nr_pages > total_nr_pages)
1227                 nr_pages = total_nr_pages;
1228
1229         bio = bio_alloc(GFP_NOIO, nr_pages);
1230         bio->bi_bdev = bp->b_target->bt_bdev;
1231         bio->bi_sector = sector;
1232         bio->bi_end_io = xfs_buf_bio_end_io;
1233         bio->bi_private = bp;
1234
1235
1236         for (; size && nr_pages; nr_pages--, map_i++) {
1237                 int     rbytes, nbytes = PAGE_SIZE - offset;
1238
1239                 if (nbytes > size)
1240                         nbytes = size;
1241
1242                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1243                 if (rbytes < nbytes)
1244                         break;
1245
1246                 offset = 0;
1247                 sector += nbytes >> BBSHIFT;
1248                 size -= nbytes;
1249                 total_nr_pages--;
1250         }
1251
1252         if (likely(bio->bi_size)) {
1253                 if (xfs_buf_is_vmapped(bp)) {
1254                         flush_kernel_vmap_range(bp->b_addr,
1255                                                 xfs_buf_vmap_len(bp));
1256                 }
1257                 submit_bio(rw, bio);
1258                 if (size)
1259                         goto next_chunk;
1260         } else {
1261                 xfs_buf_ioerror(bp, EIO);
1262                 bio_put(bio);
1263         }
1264 }
1265
1266 int
1267 xfs_buf_iorequest(
1268         xfs_buf_t               *bp)
1269 {
1270         trace_xfs_buf_iorequest(bp, _RET_IP_);
1271
1272         if (bp->b_flags & XBF_DELWRI) {
1273                 xfs_buf_delwri_queue(bp, 1);
1274                 return 0;
1275         }
1276
1277         if (bp->b_flags & XBF_WRITE) {
1278                 xfs_buf_wait_unpin(bp);
1279         }
1280
1281         xfs_buf_hold(bp);
1282
1283         /* Set the count to 1 initially, this will stop an I/O
1284          * completion callout which happens before we have started
1285          * all the I/O from calling xfs_buf_ioend too early.
1286          */
1287         atomic_set(&bp->b_io_remaining, 1);
1288         _xfs_buf_ioapply(bp);
1289         _xfs_buf_ioend(bp, 0);
1290
1291         xfs_buf_rele(bp);
1292         return 0;
1293 }
1294
1295 /*
1296  *      Waits for I/O to complete on the buffer supplied.
1297  *      It returns immediately if no I/O is pending.
1298  *      It returns the I/O error code, if any, or 0 if there was no error.
1299  */
1300 int
1301 xfs_buf_iowait(
1302         xfs_buf_t               *bp)
1303 {
1304         trace_xfs_buf_iowait(bp, _RET_IP_);
1305
1306         wait_for_completion(&bp->b_iowait);
1307
1308         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1309         return bp->b_error;
1310 }
1311
1312 xfs_caddr_t
1313 xfs_buf_offset(
1314         xfs_buf_t               *bp,
1315         size_t                  offset)
1316 {
1317         struct page             *page;
1318
1319         if (bp->b_flags & XBF_MAPPED)
1320                 return XFS_BUF_PTR(bp) + offset;
1321
1322         offset += bp->b_offset;
1323         page = bp->b_pages[offset >> PAGE_SHIFT];
1324         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1325 }
1326
1327 /*
1328  *      Move data into or out of a buffer.
1329  */
1330 void
1331 xfs_buf_iomove(
1332         xfs_buf_t               *bp,    /* buffer to process            */
1333         size_t                  boff,   /* starting buffer offset       */
1334         size_t                  bsize,  /* length to copy               */
1335         void                    *data,  /* data address                 */
1336         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1337 {
1338         size_t                  bend, cpoff, csize;
1339         struct page             *page;
1340
1341         bend = boff + bsize;
1342         while (boff < bend) {
1343                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1344                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1345                 csize = min_t(size_t,
1346                               PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1347
1348                 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1349
1350                 switch (mode) {
1351                 case XBRW_ZERO:
1352                         memset(page_address(page) + cpoff, 0, csize);
1353                         break;
1354                 case XBRW_READ:
1355                         memcpy(data, page_address(page) + cpoff, csize);
1356                         break;
1357                 case XBRW_WRITE:
1358                         memcpy(page_address(page) + cpoff, data, csize);
1359                 }
1360
1361                 boff += csize;
1362                 data += csize;
1363         }
1364 }
1365
1366 /*
1367  *      Handling of buffer targets (buftargs).
1368  */
1369
1370 /*
1371  * Wait for any bufs with callbacks that have been submitted but have not yet
1372  * returned. These buffers will have an elevated hold count, so wait on those
1373  * while freeing all the buffers only held by the LRU.
1374  */
1375 void
1376 xfs_wait_buftarg(
1377         struct xfs_buftarg      *btp)
1378 {
1379         struct xfs_buf          *bp;
1380
1381 restart:
1382         spin_lock(&btp->bt_lru_lock);
1383         while (!list_empty(&btp->bt_lru)) {
1384                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1385                 if (atomic_read(&bp->b_hold) > 1) {
1386                         spin_unlock(&btp->bt_lru_lock);
1387                         delay(100);
1388                         goto restart;
1389                 }
1390                 /*
1391                  * clear the LRU reference count so the bufer doesn't get
1392                  * ignored in xfs_buf_rele().
1393                  */
1394                 atomic_set(&bp->b_lru_ref, 0);
1395                 spin_unlock(&btp->bt_lru_lock);
1396                 xfs_buf_rele(bp);
1397                 spin_lock(&btp->bt_lru_lock);
1398         }
1399         spin_unlock(&btp->bt_lru_lock);
1400 }
1401
1402 int
1403 xfs_buftarg_shrink(
1404         struct shrinker         *shrink,
1405         int                     nr_to_scan,
1406         gfp_t                   mask)
1407 {
1408         struct xfs_buftarg      *btp = container_of(shrink,
1409                                         struct xfs_buftarg, bt_shrinker);
1410         struct xfs_buf          *bp;
1411         LIST_HEAD(dispose);
1412
1413         if (!nr_to_scan)
1414                 return btp->bt_lru_nr;
1415
1416         spin_lock(&btp->bt_lru_lock);
1417         while (!list_empty(&btp->bt_lru)) {
1418                 if (nr_to_scan-- <= 0)
1419                         break;
1420
1421                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1422
1423                 /*
1424                  * Decrement the b_lru_ref count unless the value is already
1425                  * zero. If the value is already zero, we need to reclaim the
1426                  * buffer, otherwise it gets another trip through the LRU.
1427                  */
1428                 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1429                         list_move_tail(&bp->b_lru, &btp->bt_lru);
1430                         continue;
1431                 }
1432
1433                 /*
1434                  * remove the buffer from the LRU now to avoid needing another
1435                  * lock round trip inside xfs_buf_rele().
1436                  */
1437                 list_move(&bp->b_lru, &dispose);
1438                 btp->bt_lru_nr--;
1439         }
1440         spin_unlock(&btp->bt_lru_lock);
1441
1442         while (!list_empty(&dispose)) {
1443                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1444                 list_del_init(&bp->b_lru);
1445                 xfs_buf_rele(bp);
1446         }
1447
1448         return btp->bt_lru_nr;
1449 }
1450
1451 void
1452 xfs_free_buftarg(
1453         struct xfs_mount        *mp,
1454         struct xfs_buftarg      *btp)
1455 {
1456         unregister_shrinker(&btp->bt_shrinker);
1457
1458         xfs_flush_buftarg(btp, 1);
1459         if (mp->m_flags & XFS_MOUNT_BARRIER)
1460                 xfs_blkdev_issue_flush(btp);
1461
1462         kthread_stop(btp->bt_task);
1463         kmem_free(btp);
1464 }
1465
1466 STATIC int
1467 xfs_setsize_buftarg_flags(
1468         xfs_buftarg_t           *btp,
1469         unsigned int            blocksize,
1470         unsigned int            sectorsize,
1471         int                     verbose)
1472 {
1473         btp->bt_bsize = blocksize;
1474         btp->bt_sshift = ffs(sectorsize) - 1;
1475         btp->bt_smask = sectorsize - 1;
1476
1477         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1478                 xfs_warn(btp->bt_mount,
1479                         "Cannot set_blocksize to %u on device %s\n",
1480                         sectorsize, XFS_BUFTARG_NAME(btp));
1481                 return EINVAL;
1482         }
1483
1484         return 0;
1485 }
1486
1487 /*
1488  *      When allocating the initial buffer target we have not yet
1489  *      read in the superblock, so don't know what sized sectors
1490  *      are being used is at this early stage.  Play safe.
1491  */
1492 STATIC int
1493 xfs_setsize_buftarg_early(
1494         xfs_buftarg_t           *btp,
1495         struct block_device     *bdev)
1496 {
1497         return xfs_setsize_buftarg_flags(btp,
1498                         PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1499 }
1500
1501 int
1502 xfs_setsize_buftarg(
1503         xfs_buftarg_t           *btp,
1504         unsigned int            blocksize,
1505         unsigned int            sectorsize)
1506 {
1507         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1508 }
1509
1510 STATIC int
1511 xfs_alloc_delwrite_queue(
1512         xfs_buftarg_t           *btp,
1513         const char              *fsname)
1514 {
1515         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1516         spin_lock_init(&btp->bt_delwrite_lock);
1517         btp->bt_flags = 0;
1518         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1519         if (IS_ERR(btp->bt_task))
1520                 return PTR_ERR(btp->bt_task);
1521         return 0;
1522 }
1523
1524 xfs_buftarg_t *
1525 xfs_alloc_buftarg(
1526         struct xfs_mount        *mp,
1527         struct block_device     *bdev,
1528         int                     external,
1529         const char              *fsname)
1530 {
1531         xfs_buftarg_t           *btp;
1532
1533         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1534
1535         btp->bt_mount = mp;
1536         btp->bt_dev =  bdev->bd_dev;
1537         btp->bt_bdev = bdev;
1538         btp->bt_bdi = blk_get_backing_dev_info(bdev);
1539         if (!btp->bt_bdi)
1540                 goto error;
1541
1542         INIT_LIST_HEAD(&btp->bt_lru);
1543         spin_lock_init(&btp->bt_lru_lock);
1544         if (xfs_setsize_buftarg_early(btp, bdev))
1545                 goto error;
1546         if (xfs_alloc_delwrite_queue(btp, fsname))
1547                 goto error;
1548         btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1549         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1550         register_shrinker(&btp->bt_shrinker);
1551         return btp;
1552
1553 error:
1554         kmem_free(btp);
1555         return NULL;
1556 }
1557
1558
1559 /*
1560  *      Delayed write buffer handling
1561  */
1562 STATIC void
1563 xfs_buf_delwri_queue(
1564         xfs_buf_t               *bp,
1565         int                     unlock)
1566 {
1567         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1568         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1569
1570         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1571
1572         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1573
1574         spin_lock(dwlk);
1575         /* If already in the queue, dequeue and place at tail */
1576         if (!list_empty(&bp->b_list)) {
1577                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1578                 if (unlock)
1579                         atomic_dec(&bp->b_hold);
1580                 list_del(&bp->b_list);
1581         }
1582
1583         if (list_empty(dwq)) {
1584                 /* start xfsbufd as it is about to have something to do */
1585                 wake_up_process(bp->b_target->bt_task);
1586         }
1587
1588         bp->b_flags |= _XBF_DELWRI_Q;
1589         list_add_tail(&bp->b_list, dwq);
1590         bp->b_queuetime = jiffies;
1591         spin_unlock(dwlk);
1592
1593         if (unlock)
1594                 xfs_buf_unlock(bp);
1595 }
1596
1597 void
1598 xfs_buf_delwri_dequeue(
1599         xfs_buf_t               *bp)
1600 {
1601         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1602         int                     dequeued = 0;
1603
1604         spin_lock(dwlk);
1605         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1606                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1607                 list_del_init(&bp->b_list);
1608                 dequeued = 1;
1609         }
1610         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1611         spin_unlock(dwlk);
1612
1613         if (dequeued)
1614                 xfs_buf_rele(bp);
1615
1616         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1617 }
1618
1619 /*
1620  * If a delwri buffer needs to be pushed before it has aged out, then promote
1621  * it to the head of the delwri queue so that it will be flushed on the next
1622  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1623  * than the age currently needed to flush the buffer. Hence the next time the
1624  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1625  */
1626 void
1627 xfs_buf_delwri_promote(
1628         struct xfs_buf  *bp)
1629 {
1630         struct xfs_buftarg *btp = bp->b_target;
1631         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1632
1633         ASSERT(bp->b_flags & XBF_DELWRI);
1634         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1635
1636         /*
1637          * Check the buffer age before locking the delayed write queue as we
1638          * don't need to promote buffers that are already past the flush age.
1639          */
1640         if (bp->b_queuetime < jiffies - age)
1641                 return;
1642         bp->b_queuetime = jiffies - age;
1643         spin_lock(&btp->bt_delwrite_lock);
1644         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1645         spin_unlock(&btp->bt_delwrite_lock);
1646 }
1647
1648 STATIC void
1649 xfs_buf_runall_queues(
1650         struct workqueue_struct *queue)
1651 {
1652         flush_workqueue(queue);
1653 }
1654
1655 /*
1656  * Move as many buffers as specified to the supplied list
1657  * idicating if we skipped any buffers to prevent deadlocks.
1658  */
1659 STATIC int
1660 xfs_buf_delwri_split(
1661         xfs_buftarg_t   *target,
1662         struct list_head *list,
1663         unsigned long   age)
1664 {
1665         xfs_buf_t       *bp, *n;
1666         struct list_head *dwq = &target->bt_delwrite_queue;
1667         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1668         int             skipped = 0;
1669         int             force;
1670
1671         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1672         INIT_LIST_HEAD(list);
1673         spin_lock(dwlk);
1674         list_for_each_entry_safe(bp, n, dwq, b_list) {
1675                 ASSERT(bp->b_flags & XBF_DELWRI);
1676
1677                 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1678                         if (!force &&
1679                             time_before(jiffies, bp->b_queuetime + age)) {
1680                                 xfs_buf_unlock(bp);
1681                                 break;
1682                         }
1683
1684                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1685                                          _XBF_RUN_QUEUES);
1686                         bp->b_flags |= XBF_WRITE;
1687                         list_move_tail(&bp->b_list, list);
1688                         trace_xfs_buf_delwri_split(bp, _RET_IP_);
1689                 } else
1690                         skipped++;
1691         }
1692         spin_unlock(dwlk);
1693
1694         return skipped;
1695
1696 }
1697
1698 /*
1699  * Compare function is more complex than it needs to be because
1700  * the return value is only 32 bits and we are doing comparisons
1701  * on 64 bit values
1702  */
1703 static int
1704 xfs_buf_cmp(
1705         void            *priv,
1706         struct list_head *a,
1707         struct list_head *b)
1708 {
1709         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1710         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1711         xfs_daddr_t             diff;
1712
1713         diff = ap->b_bn - bp->b_bn;
1714         if (diff < 0)
1715                 return -1;
1716         if (diff > 0)
1717                 return 1;
1718         return 0;
1719 }
1720
1721 void
1722 xfs_buf_delwri_sort(
1723         xfs_buftarg_t   *target,
1724         struct list_head *list)
1725 {
1726         list_sort(NULL, list, xfs_buf_cmp);
1727 }
1728
1729 STATIC int
1730 xfsbufd(
1731         void            *data)
1732 {
1733         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1734
1735         current->flags |= PF_MEMALLOC;
1736
1737         set_freezable();
1738
1739         do {
1740                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1741                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1742                 struct list_head tmp;
1743                 struct blk_plug plug;
1744
1745                 if (unlikely(freezing(current))) {
1746                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1747                         refrigerator();
1748                 } else {
1749                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1750                 }
1751
1752                 /* sleep for a long time if there is nothing to do. */
1753                 if (list_empty(&target->bt_delwrite_queue))
1754                         tout = MAX_SCHEDULE_TIMEOUT;
1755                 schedule_timeout_interruptible(tout);
1756
1757                 xfs_buf_delwri_split(target, &tmp, age);
1758                 list_sort(NULL, &tmp, xfs_buf_cmp);
1759
1760                 blk_start_plug(&plug);
1761                 while (!list_empty(&tmp)) {
1762                         struct xfs_buf *bp;
1763                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1764                         list_del_init(&bp->b_list);
1765                         xfs_bdstrat_cb(bp);
1766                 }
1767                 blk_finish_plug(&plug);
1768         } while (!kthread_should_stop());
1769
1770         return 0;
1771 }
1772
1773 /*
1774  *      Go through all incore buffers, and release buffers if they belong to
1775  *      the given device. This is used in filesystem error handling to
1776  *      preserve the consistency of its metadata.
1777  */
1778 int
1779 xfs_flush_buftarg(
1780         xfs_buftarg_t   *target,
1781         int             wait)
1782 {
1783         xfs_buf_t       *bp;
1784         int             pincount = 0;
1785         LIST_HEAD(tmp_list);
1786         LIST_HEAD(wait_list);
1787         struct blk_plug plug;
1788
1789         xfs_buf_runall_queues(xfsconvertd_workqueue);
1790         xfs_buf_runall_queues(xfsdatad_workqueue);
1791         xfs_buf_runall_queues(xfslogd_workqueue);
1792
1793         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1794         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1795
1796         /*
1797          * Dropped the delayed write list lock, now walk the temporary list.
1798          * All I/O is issued async and then if we need to wait for completion
1799          * we do that after issuing all the IO.
1800          */
1801         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1802
1803         blk_start_plug(&plug);
1804         while (!list_empty(&tmp_list)) {
1805                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1806                 ASSERT(target == bp->b_target);
1807                 list_del_init(&bp->b_list);
1808                 if (wait) {
1809                         bp->b_flags &= ~XBF_ASYNC;
1810                         list_add(&bp->b_list, &wait_list);
1811                 }
1812                 xfs_bdstrat_cb(bp);
1813         }
1814         blk_finish_plug(&plug);
1815
1816         if (wait) {
1817                 /* Wait for IO to complete. */
1818                 while (!list_empty(&wait_list)) {
1819                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1820
1821                         list_del_init(&bp->b_list);
1822                         xfs_buf_iowait(bp);
1823                         xfs_buf_relse(bp);
1824                 }
1825         }
1826
1827         return pincount;
1828 }
1829
1830 int __init
1831 xfs_buf_init(void)
1832 {
1833         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1834                                                 KM_ZONE_HWALIGN, NULL);
1835         if (!xfs_buf_zone)
1836                 goto out;
1837
1838         xfslogd_workqueue = alloc_workqueue("xfslogd",
1839                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1840         if (!xfslogd_workqueue)
1841                 goto out_free_buf_zone;
1842
1843         xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1844         if (!xfsdatad_workqueue)
1845                 goto out_destroy_xfslogd_workqueue;
1846
1847         xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1848                                                 WQ_MEM_RECLAIM, 1);
1849         if (!xfsconvertd_workqueue)
1850                 goto out_destroy_xfsdatad_workqueue;
1851
1852         return 0;
1853
1854  out_destroy_xfsdatad_workqueue:
1855         destroy_workqueue(xfsdatad_workqueue);
1856  out_destroy_xfslogd_workqueue:
1857         destroy_workqueue(xfslogd_workqueue);
1858  out_free_buf_zone:
1859         kmem_zone_destroy(xfs_buf_zone);
1860  out:
1861         return -ENOMEM;
1862 }
1863
1864 void
1865 xfs_buf_terminate(void)
1866 {
1867         destroy_workqueue(xfsconvertd_workqueue);
1868         destroy_workqueue(xfsdatad_workqueue);
1869         destroy_workqueue(xfslogd_workqueue);
1870         kmem_zone_destroy(xfs_buf_zone);
1871 }
1872
1873 #ifdef CONFIG_KDB_MODULES
1874 struct list_head *
1875 xfs_get_buftarg_list(void)
1876 {
1877         return &xfs_buftarg_list;
1878 }
1879 #endif