Merge branch 'drm-intel-next' of git://git.kernel.org/pub/scm/linux/kernel/git/anholt...
[pandora-kernel.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/smp_lock.h>
52 #include <linux/buffer_head.h>
53 #include <linux/vfs.h>
54 #include <linux/vmalloc.h>
55 #include <linux/errno.h>
56 #include <linux/mount.h>
57 #include <linux/seq_file.h>
58 #include <linux/bitmap.h>
59 #include <linux/crc-itu-t.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC        0
69 #define VDS_POS_UNALLOC_SPACE_DESC      1
70 #define VDS_POS_LOGICAL_VOL_DESC        2
71 #define VDS_POS_PARTITION_DESC          3
72 #define VDS_POS_IMP_USE_VOL_DESC        4
73 #define VDS_POS_VOL_DESC_PTR            5
74 #define VDS_POS_TERMINATING_DESC        6
75 #define VDS_POS_LENGTH                  7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 static char error_buf[1024];
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88                             struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90                              struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct vfsmount *);
96 static void udf_error(struct super_block *sb, const char *function,
97                       const char *fmt, ...);
98
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
100 {
101         struct logicalVolIntegrityDesc *lvid =
102                 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103         __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
104         __u32 offset = number_of_partitions * 2 *
105                                 sizeof(uint32_t)/sizeof(uint8_t);
106         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
107 }
108
109 /* UDF filesystem type */
110 static int udf_get_sb(struct file_system_type *fs_type,
111                       int flags, const char *dev_name, void *data,
112                       struct vfsmount *mnt)
113 {
114         return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
115 }
116
117 static struct file_system_type udf_fstype = {
118         .owner          = THIS_MODULE,
119         .name           = "udf",
120         .get_sb         = udf_get_sb,
121         .kill_sb        = kill_block_super,
122         .fs_flags       = FS_REQUIRES_DEV,
123 };
124
125 static struct kmem_cache *udf_inode_cachep;
126
127 static struct inode *udf_alloc_inode(struct super_block *sb)
128 {
129         struct udf_inode_info *ei;
130         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
131         if (!ei)
132                 return NULL;
133
134         ei->i_unique = 0;
135         ei->i_lenExtents = 0;
136         ei->i_next_alloc_block = 0;
137         ei->i_next_alloc_goal = 0;
138         ei->i_strat4096 = 0;
139
140         return &ei->vfs_inode;
141 }
142
143 static void udf_destroy_inode(struct inode *inode)
144 {
145         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
146 }
147
148 static void init_once(void *foo)
149 {
150         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
151
152         ei->i_ext.i_data = NULL;
153         inode_init_once(&ei->vfs_inode);
154 }
155
156 static int init_inodecache(void)
157 {
158         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
159                                              sizeof(struct udf_inode_info),
160                                              0, (SLAB_RECLAIM_ACCOUNT |
161                                                  SLAB_MEM_SPREAD),
162                                              init_once);
163         if (!udf_inode_cachep)
164                 return -ENOMEM;
165         return 0;
166 }
167
168 static void destroy_inodecache(void)
169 {
170         kmem_cache_destroy(udf_inode_cachep);
171 }
172
173 /* Superblock operations */
174 static const struct super_operations udf_sb_ops = {
175         .alloc_inode    = udf_alloc_inode,
176         .destroy_inode  = udf_destroy_inode,
177         .write_inode    = udf_write_inode,
178         .delete_inode   = udf_delete_inode,
179         .clear_inode    = udf_clear_inode,
180         .put_super      = udf_put_super,
181         .sync_fs        = udf_sync_fs,
182         .statfs         = udf_statfs,
183         .remount_fs     = udf_remount_fs,
184         .show_options   = udf_show_options,
185 };
186
187 struct udf_options {
188         unsigned char novrs;
189         unsigned int blocksize;
190         unsigned int session;
191         unsigned int lastblock;
192         unsigned int anchor;
193         unsigned int volume;
194         unsigned short partition;
195         unsigned int fileset;
196         unsigned int rootdir;
197         unsigned int flags;
198         mode_t umask;
199         gid_t gid;
200         uid_t uid;
201         mode_t fmode;
202         mode_t dmode;
203         struct nls_table *nls_map;
204 };
205
206 static int __init init_udf_fs(void)
207 {
208         int err;
209
210         err = init_inodecache();
211         if (err)
212                 goto out1;
213         err = register_filesystem(&udf_fstype);
214         if (err)
215                 goto out;
216
217         return 0;
218
219 out:
220         destroy_inodecache();
221
222 out1:
223         return err;
224 }
225
226 static void __exit exit_udf_fs(void)
227 {
228         unregister_filesystem(&udf_fstype);
229         destroy_inodecache();
230 }
231
232 module_init(init_udf_fs)
233 module_exit(exit_udf_fs)
234
235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
236 {
237         struct udf_sb_info *sbi = UDF_SB(sb);
238
239         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
240                                   GFP_KERNEL);
241         if (!sbi->s_partmaps) {
242                 udf_error(sb, __func__,
243                           "Unable to allocate space for %d partition maps",
244                           count);
245                 sbi->s_partitions = 0;
246                 return -ENOMEM;
247         }
248
249         sbi->s_partitions = count;
250         return 0;
251 }
252
253 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
254 {
255         struct super_block *sb = mnt->mnt_sb;
256         struct udf_sb_info *sbi = UDF_SB(sb);
257
258         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
259                 seq_puts(seq, ",nostrict");
260         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
261                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
262         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
263                 seq_puts(seq, ",unhide");
264         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
265                 seq_puts(seq, ",undelete");
266         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
267                 seq_puts(seq, ",noadinicb");
268         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
269                 seq_puts(seq, ",shortad");
270         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
271                 seq_puts(seq, ",uid=forget");
272         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
273                 seq_puts(seq, ",uid=ignore");
274         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
275                 seq_puts(seq, ",gid=forget");
276         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
277                 seq_puts(seq, ",gid=ignore");
278         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
279                 seq_printf(seq, ",uid=%u", sbi->s_uid);
280         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
281                 seq_printf(seq, ",gid=%u", sbi->s_gid);
282         if (sbi->s_umask != 0)
283                 seq_printf(seq, ",umask=%o", sbi->s_umask);
284         if (sbi->s_fmode != UDF_INVALID_MODE)
285                 seq_printf(seq, ",mode=%o", sbi->s_fmode);
286         if (sbi->s_dmode != UDF_INVALID_MODE)
287                 seq_printf(seq, ",dmode=%o", sbi->s_dmode);
288         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
289                 seq_printf(seq, ",session=%u", sbi->s_session);
290         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
291                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
292         if (sbi->s_anchor != 0)
293                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
294         /*
295          * volume, partition, fileset and rootdir seem to be ignored
296          * currently
297          */
298         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
299                 seq_puts(seq, ",utf8");
300         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
301                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
302
303         return 0;
304 }
305
306 /*
307  * udf_parse_options
308  *
309  * PURPOSE
310  *      Parse mount options.
311  *
312  * DESCRIPTION
313  *      The following mount options are supported:
314  *
315  *      gid=            Set the default group.
316  *      umask=          Set the default umask.
317  *      mode=           Set the default file permissions.
318  *      dmode=          Set the default directory permissions.
319  *      uid=            Set the default user.
320  *      bs=             Set the block size.
321  *      unhide          Show otherwise hidden files.
322  *      undelete        Show deleted files in lists.
323  *      adinicb         Embed data in the inode (default)
324  *      noadinicb       Don't embed data in the inode
325  *      shortad         Use short ad's
326  *      longad          Use long ad's (default)
327  *      nostrict        Unset strict conformance
328  *      iocharset=      Set the NLS character set
329  *
330  *      The remaining are for debugging and disaster recovery:
331  *
332  *      novrs           Skip volume sequence recognition
333  *
334  *      The following expect a offset from 0.
335  *
336  *      session=        Set the CDROM session (default= last session)
337  *      anchor=         Override standard anchor location. (default= 256)
338  *      volume=         Override the VolumeDesc location. (unused)
339  *      partition=      Override the PartitionDesc location. (unused)
340  *      lastblock=      Set the last block of the filesystem/
341  *
342  *      The following expect a offset from the partition root.
343  *
344  *      fileset=        Override the fileset block location. (unused)
345  *      rootdir=        Override the root directory location. (unused)
346  *              WARNING: overriding the rootdir to a non-directory may
347  *              yield highly unpredictable results.
348  *
349  * PRE-CONDITIONS
350  *      options         Pointer to mount options string.
351  *      uopts           Pointer to mount options variable.
352  *
353  * POST-CONDITIONS
354  *      <return>        1       Mount options parsed okay.
355  *      <return>        0       Error parsing mount options.
356  *
357  * HISTORY
358  *      July 1, 1997 - Andrew E. Mileski
359  *      Written, tested, and released.
360  */
361
362 enum {
363         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
364         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
365         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
366         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
367         Opt_rootdir, Opt_utf8, Opt_iocharset,
368         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
369         Opt_fmode, Opt_dmode
370 };
371
372 static const match_table_t tokens = {
373         {Opt_novrs,     "novrs"},
374         {Opt_nostrict,  "nostrict"},
375         {Opt_bs,        "bs=%u"},
376         {Opt_unhide,    "unhide"},
377         {Opt_undelete,  "undelete"},
378         {Opt_noadinicb, "noadinicb"},
379         {Opt_adinicb,   "adinicb"},
380         {Opt_shortad,   "shortad"},
381         {Opt_longad,    "longad"},
382         {Opt_uforget,   "uid=forget"},
383         {Opt_uignore,   "uid=ignore"},
384         {Opt_gforget,   "gid=forget"},
385         {Opt_gignore,   "gid=ignore"},
386         {Opt_gid,       "gid=%u"},
387         {Opt_uid,       "uid=%u"},
388         {Opt_umask,     "umask=%o"},
389         {Opt_session,   "session=%u"},
390         {Opt_lastblock, "lastblock=%u"},
391         {Opt_anchor,    "anchor=%u"},
392         {Opt_volume,    "volume=%u"},
393         {Opt_partition, "partition=%u"},
394         {Opt_fileset,   "fileset=%u"},
395         {Opt_rootdir,   "rootdir=%u"},
396         {Opt_utf8,      "utf8"},
397         {Opt_iocharset, "iocharset=%s"},
398         {Opt_fmode,     "mode=%o"},
399         {Opt_dmode,     "dmode=%o"},
400         {Opt_err,       NULL}
401 };
402
403 static int udf_parse_options(char *options, struct udf_options *uopt,
404                              bool remount)
405 {
406         char *p;
407         int option;
408
409         uopt->novrs = 0;
410         uopt->partition = 0xFFFF;
411         uopt->session = 0xFFFFFFFF;
412         uopt->lastblock = 0;
413         uopt->anchor = 0;
414         uopt->volume = 0xFFFFFFFF;
415         uopt->rootdir = 0xFFFFFFFF;
416         uopt->fileset = 0xFFFFFFFF;
417         uopt->nls_map = NULL;
418
419         if (!options)
420                 return 1;
421
422         while ((p = strsep(&options, ",")) != NULL) {
423                 substring_t args[MAX_OPT_ARGS];
424                 int token;
425                 if (!*p)
426                         continue;
427
428                 token = match_token(p, tokens, args);
429                 switch (token) {
430                 case Opt_novrs:
431                         uopt->novrs = 1;
432                         break;
433                 case Opt_bs:
434                         if (match_int(&args[0], &option))
435                                 return 0;
436                         uopt->blocksize = option;
437                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
438                         break;
439                 case Opt_unhide:
440                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
441                         break;
442                 case Opt_undelete:
443                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
444                         break;
445                 case Opt_noadinicb:
446                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
447                         break;
448                 case Opt_adinicb:
449                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
450                         break;
451                 case Opt_shortad:
452                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
453                         break;
454                 case Opt_longad:
455                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
456                         break;
457                 case Opt_gid:
458                         if (match_int(args, &option))
459                                 return 0;
460                         uopt->gid = option;
461                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
462                         break;
463                 case Opt_uid:
464                         if (match_int(args, &option))
465                                 return 0;
466                         uopt->uid = option;
467                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
468                         break;
469                 case Opt_umask:
470                         if (match_octal(args, &option))
471                                 return 0;
472                         uopt->umask = option;
473                         break;
474                 case Opt_nostrict:
475                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
476                         break;
477                 case Opt_session:
478                         if (match_int(args, &option))
479                                 return 0;
480                         uopt->session = option;
481                         if (!remount)
482                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
483                         break;
484                 case Opt_lastblock:
485                         if (match_int(args, &option))
486                                 return 0;
487                         uopt->lastblock = option;
488                         if (!remount)
489                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
490                         break;
491                 case Opt_anchor:
492                         if (match_int(args, &option))
493                                 return 0;
494                         uopt->anchor = option;
495                         break;
496                 case Opt_volume:
497                         if (match_int(args, &option))
498                                 return 0;
499                         uopt->volume = option;
500                         break;
501                 case Opt_partition:
502                         if (match_int(args, &option))
503                                 return 0;
504                         uopt->partition = option;
505                         break;
506                 case Opt_fileset:
507                         if (match_int(args, &option))
508                                 return 0;
509                         uopt->fileset = option;
510                         break;
511                 case Opt_rootdir:
512                         if (match_int(args, &option))
513                                 return 0;
514                         uopt->rootdir = option;
515                         break;
516                 case Opt_utf8:
517                         uopt->flags |= (1 << UDF_FLAG_UTF8);
518                         break;
519 #ifdef CONFIG_UDF_NLS
520                 case Opt_iocharset:
521                         uopt->nls_map = load_nls(args[0].from);
522                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
523                         break;
524 #endif
525                 case Opt_uignore:
526                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
527                         break;
528                 case Opt_uforget:
529                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
530                         break;
531                 case Opt_gignore:
532                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
533                         break;
534                 case Opt_gforget:
535                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
536                         break;
537                 case Opt_fmode:
538                         if (match_octal(args, &option))
539                                 return 0;
540                         uopt->fmode = option & 0777;
541                         break;
542                 case Opt_dmode:
543                         if (match_octal(args, &option))
544                                 return 0;
545                         uopt->dmode = option & 0777;
546                         break;
547                 default:
548                         printk(KERN_ERR "udf: bad mount option \"%s\" "
549                                "or missing value\n", p);
550                         return 0;
551                 }
552         }
553         return 1;
554 }
555
556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
557 {
558         struct udf_options uopt;
559         struct udf_sb_info *sbi = UDF_SB(sb);
560         int error = 0;
561
562         uopt.flags = sbi->s_flags;
563         uopt.uid   = sbi->s_uid;
564         uopt.gid   = sbi->s_gid;
565         uopt.umask = sbi->s_umask;
566         uopt.fmode = sbi->s_fmode;
567         uopt.dmode = sbi->s_dmode;
568
569         if (!udf_parse_options(options, &uopt, true))
570                 return -EINVAL;
571
572         lock_kernel();
573         sbi->s_flags = uopt.flags;
574         sbi->s_uid   = uopt.uid;
575         sbi->s_gid   = uopt.gid;
576         sbi->s_umask = uopt.umask;
577         sbi->s_fmode = uopt.fmode;
578         sbi->s_dmode = uopt.dmode;
579
580         if (sbi->s_lvid_bh) {
581                 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
582                 if (write_rev > UDF_MAX_WRITE_VERSION)
583                         *flags |= MS_RDONLY;
584         }
585
586         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
587                 goto out_unlock;
588
589         if (*flags & MS_RDONLY)
590                 udf_close_lvid(sb);
591         else
592                 udf_open_lvid(sb);
593
594 out_unlock:
595         unlock_kernel();
596         return error;
597 }
598
599 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
600 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
601 static loff_t udf_check_vsd(struct super_block *sb)
602 {
603         struct volStructDesc *vsd = NULL;
604         loff_t sector = 32768;
605         int sectorsize;
606         struct buffer_head *bh = NULL;
607         int nsr02 = 0;
608         int nsr03 = 0;
609         struct udf_sb_info *sbi;
610
611         sbi = UDF_SB(sb);
612         if (sb->s_blocksize < sizeof(struct volStructDesc))
613                 sectorsize = sizeof(struct volStructDesc);
614         else
615                 sectorsize = sb->s_blocksize;
616
617         sector += (sbi->s_session << sb->s_blocksize_bits);
618
619         udf_debug("Starting at sector %u (%ld byte sectors)\n",
620                   (unsigned int)(sector >> sb->s_blocksize_bits),
621                   sb->s_blocksize);
622         /* Process the sequence (if applicable) */
623         for (; !nsr02 && !nsr03; sector += sectorsize) {
624                 /* Read a block */
625                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
626                 if (!bh)
627                         break;
628
629                 /* Look for ISO  descriptors */
630                 vsd = (struct volStructDesc *)(bh->b_data +
631                                               (sector & (sb->s_blocksize - 1)));
632
633                 if (vsd->stdIdent[0] == 0) {
634                         brelse(bh);
635                         break;
636                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
637                                     VSD_STD_ID_LEN)) {
638                         switch (vsd->structType) {
639                         case 0:
640                                 udf_debug("ISO9660 Boot Record found\n");
641                                 break;
642                         case 1:
643                                 udf_debug("ISO9660 Primary Volume Descriptor "
644                                           "found\n");
645                                 break;
646                         case 2:
647                                 udf_debug("ISO9660 Supplementary Volume "
648                                           "Descriptor found\n");
649                                 break;
650                         case 3:
651                                 udf_debug("ISO9660 Volume Partition Descriptor "
652                                           "found\n");
653                                 break;
654                         case 255:
655                                 udf_debug("ISO9660 Volume Descriptor Set "
656                                           "Terminator found\n");
657                                 break;
658                         default:
659                                 udf_debug("ISO9660 VRS (%u) found\n",
660                                           vsd->structType);
661                                 break;
662                         }
663                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
664                                     VSD_STD_ID_LEN))
665                         ; /* nothing */
666                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
667                                     VSD_STD_ID_LEN)) {
668                         brelse(bh);
669                         break;
670                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
671                                     VSD_STD_ID_LEN))
672                         nsr02 = sector;
673                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
674                                     VSD_STD_ID_LEN))
675                         nsr03 = sector;
676                 brelse(bh);
677         }
678
679         if (nsr03)
680                 return nsr03;
681         else if (nsr02)
682                 return nsr02;
683         else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
684                 return -1;
685         else
686                 return 0;
687 }
688
689 static int udf_find_fileset(struct super_block *sb,
690                             struct kernel_lb_addr *fileset,
691                             struct kernel_lb_addr *root)
692 {
693         struct buffer_head *bh = NULL;
694         long lastblock;
695         uint16_t ident;
696         struct udf_sb_info *sbi;
697
698         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
699             fileset->partitionReferenceNum != 0xFFFF) {
700                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
701
702                 if (!bh) {
703                         return 1;
704                 } else if (ident != TAG_IDENT_FSD) {
705                         brelse(bh);
706                         return 1;
707                 }
708
709         }
710
711         sbi = UDF_SB(sb);
712         if (!bh) {
713                 /* Search backwards through the partitions */
714                 struct kernel_lb_addr newfileset;
715
716 /* --> cvg: FIXME - is it reasonable? */
717                 return 1;
718
719                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
720                      (newfileset.partitionReferenceNum != 0xFFFF &&
721                       fileset->logicalBlockNum == 0xFFFFFFFF &&
722                       fileset->partitionReferenceNum == 0xFFFF);
723                      newfileset.partitionReferenceNum--) {
724                         lastblock = sbi->s_partmaps
725                                         [newfileset.partitionReferenceNum]
726                                                 .s_partition_len;
727                         newfileset.logicalBlockNum = 0;
728
729                         do {
730                                 bh = udf_read_ptagged(sb, &newfileset, 0,
731                                                       &ident);
732                                 if (!bh) {
733                                         newfileset.logicalBlockNum++;
734                                         continue;
735                                 }
736
737                                 switch (ident) {
738                                 case TAG_IDENT_SBD:
739                                 {
740                                         struct spaceBitmapDesc *sp;
741                                         sp = (struct spaceBitmapDesc *)
742                                                                 bh->b_data;
743                                         newfileset.logicalBlockNum += 1 +
744                                                 ((le32_to_cpu(sp->numOfBytes) +
745                                                   sizeof(struct spaceBitmapDesc)
746                                                   - 1) >> sb->s_blocksize_bits);
747                                         brelse(bh);
748                                         break;
749                                 }
750                                 case TAG_IDENT_FSD:
751                                         *fileset = newfileset;
752                                         break;
753                                 default:
754                                         newfileset.logicalBlockNum++;
755                                         brelse(bh);
756                                         bh = NULL;
757                                         break;
758                                 }
759                         } while (newfileset.logicalBlockNum < lastblock &&
760                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
761                                  fileset->partitionReferenceNum == 0xFFFF);
762                 }
763         }
764
765         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
766              fileset->partitionReferenceNum != 0xFFFF) && bh) {
767                 udf_debug("Fileset at block=%d, partition=%d\n",
768                           fileset->logicalBlockNum,
769                           fileset->partitionReferenceNum);
770
771                 sbi->s_partition = fileset->partitionReferenceNum;
772                 udf_load_fileset(sb, bh, root);
773                 brelse(bh);
774                 return 0;
775         }
776         return 1;
777 }
778
779 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
780 {
781         struct primaryVolDesc *pvoldesc;
782         struct ustr *instr, *outstr;
783         struct buffer_head *bh;
784         uint16_t ident;
785         int ret = 1;
786
787         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
788         if (!instr)
789                 return 1;
790
791         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
792         if (!outstr)
793                 goto out1;
794
795         bh = udf_read_tagged(sb, block, block, &ident);
796         if (!bh)
797                 goto out2;
798
799         BUG_ON(ident != TAG_IDENT_PVD);
800
801         pvoldesc = (struct primaryVolDesc *)bh->b_data;
802
803         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
804                               pvoldesc->recordingDateAndTime)) {
805 #ifdef UDFFS_DEBUG
806                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
807                 udf_debug("recording time %04u/%02u/%02u"
808                           " %02u:%02u (%x)\n",
809                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
810                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
811 #endif
812         }
813
814         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
815                 if (udf_CS0toUTF8(outstr, instr)) {
816                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
817                                 outstr->u_len > 31 ? 31 : outstr->u_len);
818                         udf_debug("volIdent[] = '%s'\n",
819                                         UDF_SB(sb)->s_volume_ident);
820                 }
821
822         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
823                 if (udf_CS0toUTF8(outstr, instr))
824                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
825
826         brelse(bh);
827         ret = 0;
828 out2:
829         kfree(outstr);
830 out1:
831         kfree(instr);
832         return ret;
833 }
834
835 static int udf_load_metadata_files(struct super_block *sb, int partition)
836 {
837         struct udf_sb_info *sbi = UDF_SB(sb);
838         struct udf_part_map *map;
839         struct udf_meta_data *mdata;
840         struct kernel_lb_addr addr;
841         int fe_error = 0;
842
843         map = &sbi->s_partmaps[partition];
844         mdata = &map->s_type_specific.s_metadata;
845
846         /* metadata address */
847         addr.logicalBlockNum =  mdata->s_meta_file_loc;
848         addr.partitionReferenceNum = map->s_partition_num;
849
850         udf_debug("Metadata file location: block = %d part = %d\n",
851                           addr.logicalBlockNum, addr.partitionReferenceNum);
852
853         mdata->s_metadata_fe = udf_iget(sb, &addr);
854
855         if (mdata->s_metadata_fe == NULL) {
856                 udf_warning(sb, __func__, "metadata inode efe not found, "
857                                 "will try mirror inode.");
858                 fe_error = 1;
859         } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
860                  ICBTAG_FLAG_AD_SHORT) {
861                 udf_warning(sb, __func__, "metadata inode efe does not have "
862                         "short allocation descriptors!");
863                 fe_error = 1;
864                 iput(mdata->s_metadata_fe);
865                 mdata->s_metadata_fe = NULL;
866         }
867
868         /* mirror file entry */
869         addr.logicalBlockNum = mdata->s_mirror_file_loc;
870         addr.partitionReferenceNum = map->s_partition_num;
871
872         udf_debug("Mirror metadata file location: block = %d part = %d\n",
873                           addr.logicalBlockNum, addr.partitionReferenceNum);
874
875         mdata->s_mirror_fe = udf_iget(sb, &addr);
876
877         if (mdata->s_mirror_fe == NULL) {
878                 if (fe_error) {
879                         udf_error(sb, __func__, "mirror inode efe not found "
880                         "and metadata inode is missing too, exiting...");
881                         goto error_exit;
882                 } else
883                         udf_warning(sb, __func__, "mirror inode efe not found,"
884                                         " but metadata inode is OK");
885         } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
886                  ICBTAG_FLAG_AD_SHORT) {
887                 udf_warning(sb, __func__, "mirror inode efe does not have "
888                         "short allocation descriptors!");
889                 iput(mdata->s_mirror_fe);
890                 mdata->s_mirror_fe = NULL;
891                 if (fe_error)
892                         goto error_exit;
893         }
894
895         /*
896          * bitmap file entry
897          * Note:
898          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
899         */
900         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
901                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
902                 addr.partitionReferenceNum = map->s_partition_num;
903
904                 udf_debug("Bitmap file location: block = %d part = %d\n",
905                         addr.logicalBlockNum, addr.partitionReferenceNum);
906
907                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
908
909                 if (mdata->s_bitmap_fe == NULL) {
910                         if (sb->s_flags & MS_RDONLY)
911                                 udf_warning(sb, __func__, "bitmap inode efe "
912                                         "not found but it's ok since the disc"
913                                         " is mounted read-only");
914                         else {
915                                 udf_error(sb, __func__, "bitmap inode efe not "
916                                         "found and attempted read-write mount");
917                                 goto error_exit;
918                         }
919                 }
920         }
921
922         udf_debug("udf_load_metadata_files Ok\n");
923
924         return 0;
925
926 error_exit:
927         return 1;
928 }
929
930 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
931                              struct kernel_lb_addr *root)
932 {
933         struct fileSetDesc *fset;
934
935         fset = (struct fileSetDesc *)bh->b_data;
936
937         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
938
939         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
940
941         udf_debug("Rootdir at block=%d, partition=%d\n",
942                   root->logicalBlockNum, root->partitionReferenceNum);
943 }
944
945 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
946 {
947         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
948         return DIV_ROUND_UP(map->s_partition_len +
949                             (sizeof(struct spaceBitmapDesc) << 3),
950                             sb->s_blocksize * 8);
951 }
952
953 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
954 {
955         struct udf_bitmap *bitmap;
956         int nr_groups;
957         int size;
958
959         nr_groups = udf_compute_nr_groups(sb, index);
960         size = sizeof(struct udf_bitmap) +
961                 (sizeof(struct buffer_head *) * nr_groups);
962
963         if (size <= PAGE_SIZE)
964                 bitmap = kmalloc(size, GFP_KERNEL);
965         else
966                 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */
967
968         if (bitmap == NULL) {
969                 udf_error(sb, __func__,
970                           "Unable to allocate space for bitmap "
971                           "and %d buffer_head pointers", nr_groups);
972                 return NULL;
973         }
974
975         memset(bitmap, 0x00, size);
976         bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
977         bitmap->s_nr_groups = nr_groups;
978         return bitmap;
979 }
980
981 static int udf_fill_partdesc_info(struct super_block *sb,
982                 struct partitionDesc *p, int p_index)
983 {
984         struct udf_part_map *map;
985         struct udf_sb_info *sbi = UDF_SB(sb);
986         struct partitionHeaderDesc *phd;
987
988         map = &sbi->s_partmaps[p_index];
989
990         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
991         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
992
993         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
994                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
995         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
996                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
997         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
998                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
999         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1000                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1001
1002         udf_debug("Partition (%d type %x) starts at physical %d, "
1003                   "block length %d\n", p_index,
1004                   map->s_partition_type, map->s_partition_root,
1005                   map->s_partition_len);
1006
1007         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1008             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1009                 return 0;
1010
1011         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1012         if (phd->unallocSpaceTable.extLength) {
1013                 struct kernel_lb_addr loc = {
1014                         .logicalBlockNum = le32_to_cpu(
1015                                 phd->unallocSpaceTable.extPosition),
1016                         .partitionReferenceNum = p_index,
1017                 };
1018
1019                 map->s_uspace.s_table = udf_iget(sb, &loc);
1020                 if (!map->s_uspace.s_table) {
1021                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1022                                         p_index);
1023                         return 1;
1024                 }
1025                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1026                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1027                                 p_index, map->s_uspace.s_table->i_ino);
1028         }
1029
1030         if (phd->unallocSpaceBitmap.extLength) {
1031                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1032                 if (!bitmap)
1033                         return 1;
1034                 map->s_uspace.s_bitmap = bitmap;
1035                 bitmap->s_extLength = le32_to_cpu(
1036                                 phd->unallocSpaceBitmap.extLength);
1037                 bitmap->s_extPosition = le32_to_cpu(
1038                                 phd->unallocSpaceBitmap.extPosition);
1039                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1040                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1041                                                 bitmap->s_extPosition);
1042         }
1043
1044         if (phd->partitionIntegrityTable.extLength)
1045                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1046
1047         if (phd->freedSpaceTable.extLength) {
1048                 struct kernel_lb_addr loc = {
1049                         .logicalBlockNum = le32_to_cpu(
1050                                 phd->freedSpaceTable.extPosition),
1051                         .partitionReferenceNum = p_index,
1052                 };
1053
1054                 map->s_fspace.s_table = udf_iget(sb, &loc);
1055                 if (!map->s_fspace.s_table) {
1056                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1057                                 p_index);
1058                         return 1;
1059                 }
1060
1061                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1062                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1063                                 p_index, map->s_fspace.s_table->i_ino);
1064         }
1065
1066         if (phd->freedSpaceBitmap.extLength) {
1067                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1068                 if (!bitmap)
1069                         return 1;
1070                 map->s_fspace.s_bitmap = bitmap;
1071                 bitmap->s_extLength = le32_to_cpu(
1072                                 phd->freedSpaceBitmap.extLength);
1073                 bitmap->s_extPosition = le32_to_cpu(
1074                                 phd->freedSpaceBitmap.extPosition);
1075                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1076                 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1077                                         bitmap->s_extPosition);
1078         }
1079         return 0;
1080 }
1081
1082 static void udf_find_vat_block(struct super_block *sb, int p_index,
1083                                int type1_index, sector_t start_block)
1084 {
1085         struct udf_sb_info *sbi = UDF_SB(sb);
1086         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1087         sector_t vat_block;
1088         struct kernel_lb_addr ino;
1089
1090         /*
1091          * VAT file entry is in the last recorded block. Some broken disks have
1092          * it a few blocks before so try a bit harder...
1093          */
1094         ino.partitionReferenceNum = type1_index;
1095         for (vat_block = start_block;
1096              vat_block >= map->s_partition_root &&
1097              vat_block >= start_block - 3 &&
1098              !sbi->s_vat_inode; vat_block--) {
1099                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1100                 sbi->s_vat_inode = udf_iget(sb, &ino);
1101         }
1102 }
1103
1104 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1105 {
1106         struct udf_sb_info *sbi = UDF_SB(sb);
1107         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1108         struct buffer_head *bh = NULL;
1109         struct udf_inode_info *vati;
1110         uint32_t pos;
1111         struct virtualAllocationTable20 *vat20;
1112         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1113
1114         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1115         if (!sbi->s_vat_inode &&
1116             sbi->s_last_block != blocks - 1) {
1117                 printk(KERN_NOTICE "UDF-fs: Failed to read VAT inode from the"
1118                        " last recorded block (%lu), retrying with the last "
1119                        "block of the device (%lu).\n",
1120                        (unsigned long)sbi->s_last_block,
1121                        (unsigned long)blocks - 1);
1122                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1123         }
1124         if (!sbi->s_vat_inode)
1125                 return 1;
1126
1127         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1128                 map->s_type_specific.s_virtual.s_start_offset = 0;
1129                 map->s_type_specific.s_virtual.s_num_entries =
1130                         (sbi->s_vat_inode->i_size - 36) >> 2;
1131         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1132                 vati = UDF_I(sbi->s_vat_inode);
1133                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1134                         pos = udf_block_map(sbi->s_vat_inode, 0);
1135                         bh = sb_bread(sb, pos);
1136                         if (!bh)
1137                                 return 1;
1138                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1139                 } else {
1140                         vat20 = (struct virtualAllocationTable20 *)
1141                                                         vati->i_ext.i_data;
1142                 }
1143
1144                 map->s_type_specific.s_virtual.s_start_offset =
1145                         le16_to_cpu(vat20->lengthHeader);
1146                 map->s_type_specific.s_virtual.s_num_entries =
1147                         (sbi->s_vat_inode->i_size -
1148                                 map->s_type_specific.s_virtual.
1149                                         s_start_offset) >> 2;
1150                 brelse(bh);
1151         }
1152         return 0;
1153 }
1154
1155 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1156 {
1157         struct buffer_head *bh;
1158         struct partitionDesc *p;
1159         struct udf_part_map *map;
1160         struct udf_sb_info *sbi = UDF_SB(sb);
1161         int i, type1_idx;
1162         uint16_t partitionNumber;
1163         uint16_t ident;
1164         int ret = 0;
1165
1166         bh = udf_read_tagged(sb, block, block, &ident);
1167         if (!bh)
1168                 return 1;
1169         if (ident != TAG_IDENT_PD)
1170                 goto out_bh;
1171
1172         p = (struct partitionDesc *)bh->b_data;
1173         partitionNumber = le16_to_cpu(p->partitionNumber);
1174
1175         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1176         for (i = 0; i < sbi->s_partitions; i++) {
1177                 map = &sbi->s_partmaps[i];
1178                 udf_debug("Searching map: (%d == %d)\n",
1179                           map->s_partition_num, partitionNumber);
1180                 if (map->s_partition_num == partitionNumber &&
1181                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1182                      map->s_partition_type == UDF_SPARABLE_MAP15))
1183                         break;
1184         }
1185
1186         if (i >= sbi->s_partitions) {
1187                 udf_debug("Partition (%d) not found in partition map\n",
1188                           partitionNumber);
1189                 goto out_bh;
1190         }
1191
1192         ret = udf_fill_partdesc_info(sb, p, i);
1193
1194         /*
1195          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1196          * PHYSICAL partitions are already set up
1197          */
1198         type1_idx = i;
1199         for (i = 0; i < sbi->s_partitions; i++) {
1200                 map = &sbi->s_partmaps[i];
1201
1202                 if (map->s_partition_num == partitionNumber &&
1203                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1204                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1205                      map->s_partition_type == UDF_METADATA_MAP25))
1206                         break;
1207         }
1208
1209         if (i >= sbi->s_partitions)
1210                 goto out_bh;
1211
1212         ret = udf_fill_partdesc_info(sb, p, i);
1213         if (ret)
1214                 goto out_bh;
1215
1216         if (map->s_partition_type == UDF_METADATA_MAP25) {
1217                 ret = udf_load_metadata_files(sb, i);
1218                 if (ret) {
1219                         printk(KERN_ERR "UDF-fs: error loading MetaData "
1220                         "partition map %d\n", i);
1221                         goto out_bh;
1222                 }
1223         } else {
1224                 ret = udf_load_vat(sb, i, type1_idx);
1225                 if (ret)
1226                         goto out_bh;
1227                 /*
1228                  * Mark filesystem read-only if we have a partition with
1229                  * virtual map since we don't handle writing to it (we
1230                  * overwrite blocks instead of relocating them).
1231                  */
1232                 sb->s_flags |= MS_RDONLY;
1233                 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1234                         "because writing to pseudooverwrite partition is "
1235                         "not implemented.\n");
1236         }
1237 out_bh:
1238         /* In case loading failed, we handle cleanup in udf_fill_super */
1239         brelse(bh);
1240         return ret;
1241 }
1242
1243 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1244                                struct kernel_lb_addr *fileset)
1245 {
1246         struct logicalVolDesc *lvd;
1247         int i, j, offset;
1248         uint8_t type;
1249         struct udf_sb_info *sbi = UDF_SB(sb);
1250         struct genericPartitionMap *gpm;
1251         uint16_t ident;
1252         struct buffer_head *bh;
1253         int ret = 0;
1254
1255         bh = udf_read_tagged(sb, block, block, &ident);
1256         if (!bh)
1257                 return 1;
1258         BUG_ON(ident != TAG_IDENT_LVD);
1259         lvd = (struct logicalVolDesc *)bh->b_data;
1260
1261         i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1262         if (i != 0) {
1263                 ret = i;
1264                 goto out_bh;
1265         }
1266
1267         for (i = 0, offset = 0;
1268              i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1269              i++, offset += gpm->partitionMapLength) {
1270                 struct udf_part_map *map = &sbi->s_partmaps[i];
1271                 gpm = (struct genericPartitionMap *)
1272                                 &(lvd->partitionMaps[offset]);
1273                 type = gpm->partitionMapType;
1274                 if (type == 1) {
1275                         struct genericPartitionMap1 *gpm1 =
1276                                 (struct genericPartitionMap1 *)gpm;
1277                         map->s_partition_type = UDF_TYPE1_MAP15;
1278                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1279                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1280                         map->s_partition_func = NULL;
1281                 } else if (type == 2) {
1282                         struct udfPartitionMap2 *upm2 =
1283                                                 (struct udfPartitionMap2 *)gpm;
1284                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1285                                                 strlen(UDF_ID_VIRTUAL))) {
1286                                 u16 suf =
1287                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1288                                                         identSuffix)[0]);
1289                                 if (suf < 0x0200) {
1290                                         map->s_partition_type =
1291                                                         UDF_VIRTUAL_MAP15;
1292                                         map->s_partition_func =
1293                                                         udf_get_pblock_virt15;
1294                                 } else {
1295                                         map->s_partition_type =
1296                                                         UDF_VIRTUAL_MAP20;
1297                                         map->s_partition_func =
1298                                                         udf_get_pblock_virt20;
1299                                 }
1300                         } else if (!strncmp(upm2->partIdent.ident,
1301                                                 UDF_ID_SPARABLE,
1302                                                 strlen(UDF_ID_SPARABLE))) {
1303                                 uint32_t loc;
1304                                 struct sparingTable *st;
1305                                 struct sparablePartitionMap *spm =
1306                                         (struct sparablePartitionMap *)gpm;
1307
1308                                 map->s_partition_type = UDF_SPARABLE_MAP15;
1309                                 map->s_type_specific.s_sparing.s_packet_len =
1310                                                 le16_to_cpu(spm->packetLength);
1311                                 for (j = 0; j < spm->numSparingTables; j++) {
1312                                         struct buffer_head *bh2;
1313
1314                                         loc = le32_to_cpu(
1315                                                 spm->locSparingTable[j]);
1316                                         bh2 = udf_read_tagged(sb, loc, loc,
1317                                                              &ident);
1318                                         map->s_type_specific.s_sparing.
1319                                                         s_spar_map[j] = bh2;
1320
1321                                         if (bh2 == NULL)
1322                                                 continue;
1323
1324                                         st = (struct sparingTable *)bh2->b_data;
1325                                         if (ident != 0 || strncmp(
1326                                                 st->sparingIdent.ident,
1327                                                 UDF_ID_SPARING,
1328                                                 strlen(UDF_ID_SPARING))) {
1329                                                 brelse(bh2);
1330                                                 map->s_type_specific.s_sparing.
1331                                                         s_spar_map[j] = NULL;
1332                                         }
1333                                 }
1334                                 map->s_partition_func = udf_get_pblock_spar15;
1335                         } else if (!strncmp(upm2->partIdent.ident,
1336                                                 UDF_ID_METADATA,
1337                                                 strlen(UDF_ID_METADATA))) {
1338                                 struct udf_meta_data *mdata =
1339                                         &map->s_type_specific.s_metadata;
1340                                 struct metadataPartitionMap *mdm =
1341                                                 (struct metadataPartitionMap *)
1342                                                 &(lvd->partitionMaps[offset]);
1343                                 udf_debug("Parsing Logical vol part %d "
1344                                         "type %d  id=%s\n", i, type,
1345                                         UDF_ID_METADATA);
1346
1347                                 map->s_partition_type = UDF_METADATA_MAP25;
1348                                 map->s_partition_func = udf_get_pblock_meta25;
1349
1350                                 mdata->s_meta_file_loc   =
1351                                         le32_to_cpu(mdm->metadataFileLoc);
1352                                 mdata->s_mirror_file_loc =
1353                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1354                                 mdata->s_bitmap_file_loc =
1355                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1356                                 mdata->s_alloc_unit_size =
1357                                         le32_to_cpu(mdm->allocUnitSize);
1358                                 mdata->s_align_unit_size =
1359                                         le16_to_cpu(mdm->alignUnitSize);
1360                                 mdata->s_dup_md_flag     =
1361                                         mdm->flags & 0x01;
1362
1363                                 udf_debug("Metadata Ident suffix=0x%x\n",
1364                                         (le16_to_cpu(
1365                                          ((__le16 *)
1366                                               mdm->partIdent.identSuffix)[0])));
1367                                 udf_debug("Metadata part num=%d\n",
1368                                         le16_to_cpu(mdm->partitionNum));
1369                                 udf_debug("Metadata part alloc unit size=%d\n",
1370                                         le32_to_cpu(mdm->allocUnitSize));
1371                                 udf_debug("Metadata file loc=%d\n",
1372                                         le32_to_cpu(mdm->metadataFileLoc));
1373                                 udf_debug("Mirror file loc=%d\n",
1374                                        le32_to_cpu(mdm->metadataMirrorFileLoc));
1375                                 udf_debug("Bitmap file loc=%d\n",
1376                                        le32_to_cpu(mdm->metadataBitmapFileLoc));
1377                                 udf_debug("Duplicate Flag: %d %d\n",
1378                                         mdata->s_dup_md_flag, mdm->flags);
1379                         } else {
1380                                 udf_debug("Unknown ident: %s\n",
1381                                           upm2->partIdent.ident);
1382                                 continue;
1383                         }
1384                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1385                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1386                 }
1387                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1388                           i, map->s_partition_num, type,
1389                           map->s_volumeseqnum);
1390         }
1391
1392         if (fileset) {
1393                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1394
1395                 *fileset = lelb_to_cpu(la->extLocation);
1396                 udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1397                           "partition=%d\n", fileset->logicalBlockNum,
1398                           fileset->partitionReferenceNum);
1399         }
1400         if (lvd->integritySeqExt.extLength)
1401                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1402
1403 out_bh:
1404         brelse(bh);
1405         return ret;
1406 }
1407
1408 /*
1409  * udf_load_logicalvolint
1410  *
1411  */
1412 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1413 {
1414         struct buffer_head *bh = NULL;
1415         uint16_t ident;
1416         struct udf_sb_info *sbi = UDF_SB(sb);
1417         struct logicalVolIntegrityDesc *lvid;
1418
1419         while (loc.extLength > 0 &&
1420                (bh = udf_read_tagged(sb, loc.extLocation,
1421                                      loc.extLocation, &ident)) &&
1422                ident == TAG_IDENT_LVID) {
1423                 sbi->s_lvid_bh = bh;
1424                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1425
1426                 if (lvid->nextIntegrityExt.extLength)
1427                         udf_load_logicalvolint(sb,
1428                                 leea_to_cpu(lvid->nextIntegrityExt));
1429
1430                 if (sbi->s_lvid_bh != bh)
1431                         brelse(bh);
1432                 loc.extLength -= sb->s_blocksize;
1433                 loc.extLocation++;
1434         }
1435         if (sbi->s_lvid_bh != bh)
1436                 brelse(bh);
1437 }
1438
1439 /*
1440  * udf_process_sequence
1441  *
1442  * PURPOSE
1443  *      Process a main/reserve volume descriptor sequence.
1444  *
1445  * PRE-CONDITIONS
1446  *      sb                      Pointer to _locked_ superblock.
1447  *      block                   First block of first extent of the sequence.
1448  *      lastblock               Lastblock of first extent of the sequence.
1449  *
1450  * HISTORY
1451  *      July 1, 1997 - Andrew E. Mileski
1452  *      Written, tested, and released.
1453  */
1454 static noinline int udf_process_sequence(struct super_block *sb, long block,
1455                                 long lastblock, struct kernel_lb_addr *fileset)
1456 {
1457         struct buffer_head *bh = NULL;
1458         struct udf_vds_record vds[VDS_POS_LENGTH];
1459         struct udf_vds_record *curr;
1460         struct generic_desc *gd;
1461         struct volDescPtr *vdp;
1462         int done = 0;
1463         uint32_t vdsn;
1464         uint16_t ident;
1465         long next_s = 0, next_e = 0;
1466
1467         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1468
1469         /*
1470          * Read the main descriptor sequence and find which descriptors
1471          * are in it.
1472          */
1473         for (; (!done && block <= lastblock); block++) {
1474
1475                 bh = udf_read_tagged(sb, block, block, &ident);
1476                 if (!bh) {
1477                         printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1478                                "sequence is corrupted or we could not read "
1479                                "it.\n", (unsigned long long)block);
1480                         return 1;
1481                 }
1482
1483                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1484                 gd = (struct generic_desc *)bh->b_data;
1485                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1486                 switch (ident) {
1487                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1488                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1489                         if (vdsn >= curr->volDescSeqNum) {
1490                                 curr->volDescSeqNum = vdsn;
1491                                 curr->block = block;
1492                         }
1493                         break;
1494                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1495                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1496                         if (vdsn >= curr->volDescSeqNum) {
1497                                 curr->volDescSeqNum = vdsn;
1498                                 curr->block = block;
1499
1500                                 vdp = (struct volDescPtr *)bh->b_data;
1501                                 next_s = le32_to_cpu(
1502                                         vdp->nextVolDescSeqExt.extLocation);
1503                                 next_e = le32_to_cpu(
1504                                         vdp->nextVolDescSeqExt.extLength);
1505                                 next_e = next_e >> sb->s_blocksize_bits;
1506                                 next_e += next_s;
1507                         }
1508                         break;
1509                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1510                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1511                         if (vdsn >= curr->volDescSeqNum) {
1512                                 curr->volDescSeqNum = vdsn;
1513                                 curr->block = block;
1514                         }
1515                         break;
1516                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1517                         curr = &vds[VDS_POS_PARTITION_DESC];
1518                         if (!curr->block)
1519                                 curr->block = block;
1520                         break;
1521                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1522                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1523                         if (vdsn >= curr->volDescSeqNum) {
1524                                 curr->volDescSeqNum = vdsn;
1525                                 curr->block = block;
1526                         }
1527                         break;
1528                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1529                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1530                         if (vdsn >= curr->volDescSeqNum) {
1531                                 curr->volDescSeqNum = vdsn;
1532                                 curr->block = block;
1533                         }
1534                         break;
1535                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1536                         vds[VDS_POS_TERMINATING_DESC].block = block;
1537                         if (next_e) {
1538                                 block = next_s;
1539                                 lastblock = next_e;
1540                                 next_s = next_e = 0;
1541                         } else
1542                                 done = 1;
1543                         break;
1544                 }
1545                 brelse(bh);
1546         }
1547         /*
1548          * Now read interesting descriptors again and process them
1549          * in a suitable order
1550          */
1551         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1552                 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1553                 return 1;
1554         }
1555         if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1556                 return 1;
1557
1558         if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1559             vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1560                 return 1;
1561
1562         if (vds[VDS_POS_PARTITION_DESC].block) {
1563                 /*
1564                  * We rescan the whole descriptor sequence to find
1565                  * partition descriptor blocks and process them.
1566                  */
1567                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1568                      block < vds[VDS_POS_TERMINATING_DESC].block;
1569                      block++)
1570                         if (udf_load_partdesc(sb, block))
1571                                 return 1;
1572         }
1573
1574         return 0;
1575 }
1576
1577 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1578                              struct kernel_lb_addr *fileset)
1579 {
1580         struct anchorVolDescPtr *anchor;
1581         long main_s, main_e, reserve_s, reserve_e;
1582         struct udf_sb_info *sbi;
1583
1584         sbi = UDF_SB(sb);
1585         anchor = (struct anchorVolDescPtr *)bh->b_data;
1586
1587         /* Locate the main sequence */
1588         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1589         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1590         main_e = main_e >> sb->s_blocksize_bits;
1591         main_e += main_s;
1592
1593         /* Locate the reserve sequence */
1594         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1595         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1596         reserve_e = reserve_e >> sb->s_blocksize_bits;
1597         reserve_e += reserve_s;
1598
1599         /* Process the main & reserve sequences */
1600         /* responsible for finding the PartitionDesc(s) */
1601         if (!udf_process_sequence(sb, main_s, main_e, fileset))
1602                 return 1;
1603         return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1604 }
1605
1606 /*
1607  * Check whether there is an anchor block in the given block and
1608  * load Volume Descriptor Sequence if so.
1609  */
1610 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1611                                   struct kernel_lb_addr *fileset)
1612 {
1613         struct buffer_head *bh;
1614         uint16_t ident;
1615         int ret;
1616
1617         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1618             udf_fixed_to_variable(block) >=
1619             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1620                 return 0;
1621
1622         bh = udf_read_tagged(sb, block, block, &ident);
1623         if (!bh)
1624                 return 0;
1625         if (ident != TAG_IDENT_AVDP) {
1626                 brelse(bh);
1627                 return 0;
1628         }
1629         ret = udf_load_sequence(sb, bh, fileset);
1630         brelse(bh);
1631         return ret;
1632 }
1633
1634 /* Search for an anchor volume descriptor pointer */
1635 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1636                                  struct kernel_lb_addr *fileset)
1637 {
1638         sector_t last[6];
1639         int i;
1640         struct udf_sb_info *sbi = UDF_SB(sb);
1641         int last_count = 0;
1642
1643         /* First try user provided anchor */
1644         if (sbi->s_anchor) {
1645                 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1646                         return lastblock;
1647         }
1648         /*
1649          * according to spec, anchor is in either:
1650          *     block 256
1651          *     lastblock-256
1652          *     lastblock
1653          *  however, if the disc isn't closed, it could be 512.
1654          */
1655         if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1656                 return lastblock;
1657         /*
1658          * The trouble is which block is the last one. Drives often misreport
1659          * this so we try various possibilities.
1660          */
1661         last[last_count++] = lastblock;
1662         if (lastblock >= 1)
1663                 last[last_count++] = lastblock - 1;
1664         last[last_count++] = lastblock + 1;
1665         if (lastblock >= 2)
1666                 last[last_count++] = lastblock - 2;
1667         if (lastblock >= 150)
1668                 last[last_count++] = lastblock - 150;
1669         if (lastblock >= 152)
1670                 last[last_count++] = lastblock - 152;
1671
1672         for (i = 0; i < last_count; i++) {
1673                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1674                                 sb->s_blocksize_bits)
1675                         continue;
1676                 if (udf_check_anchor_block(sb, last[i], fileset))
1677                         return last[i];
1678                 if (last[i] < 256)
1679                         continue;
1680                 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1681                         return last[i];
1682         }
1683
1684         /* Finally try block 512 in case media is open */
1685         if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1686                 return last[0];
1687         return 0;
1688 }
1689
1690 /*
1691  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1692  * area specified by it. The function expects sbi->s_lastblock to be the last
1693  * block on the media.
1694  *
1695  * Return 1 if ok, 0 if not found.
1696  *
1697  */
1698 static int udf_find_anchor(struct super_block *sb,
1699                            struct kernel_lb_addr *fileset)
1700 {
1701         sector_t lastblock;
1702         struct udf_sb_info *sbi = UDF_SB(sb);
1703
1704         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1705         if (lastblock)
1706                 goto out;
1707
1708         /* No anchor found? Try VARCONV conversion of block numbers */
1709         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1710         /* Firstly, we try to not convert number of the last block */
1711         lastblock = udf_scan_anchors(sb,
1712                                 udf_variable_to_fixed(sbi->s_last_block),
1713                                 fileset);
1714         if (lastblock)
1715                 goto out;
1716
1717         /* Secondly, we try with converted number of the last block */
1718         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1719         if (!lastblock) {
1720                 /* VARCONV didn't help. Clear it. */
1721                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1722                 return 0;
1723         }
1724 out:
1725         sbi->s_last_block = lastblock;
1726         return 1;
1727 }
1728
1729 /*
1730  * Check Volume Structure Descriptor, find Anchor block and load Volume
1731  * Descriptor Sequence
1732  */
1733 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1734                         int silent, struct kernel_lb_addr *fileset)
1735 {
1736         struct udf_sb_info *sbi = UDF_SB(sb);
1737         loff_t nsr_off;
1738
1739         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1740                 if (!silent)
1741                         printk(KERN_WARNING "UDF-fs: Bad block size\n");
1742                 return 0;
1743         }
1744         sbi->s_last_block = uopt->lastblock;
1745         if (!uopt->novrs) {
1746                 /* Check that it is NSR02 compliant */
1747                 nsr_off = udf_check_vsd(sb);
1748                 if (!nsr_off) {
1749                         if (!silent)
1750                                 printk(KERN_WARNING "UDF-fs: No VRS found\n");
1751                         return 0;
1752                 }
1753                 if (nsr_off == -1)
1754                         udf_debug("Failed to read byte 32768. Assuming open "
1755                                   "disc. Skipping validity check\n");
1756                 if (!sbi->s_last_block)
1757                         sbi->s_last_block = udf_get_last_block(sb);
1758         } else {
1759                 udf_debug("Validity check skipped because of novrs option\n");
1760         }
1761
1762         /* Look for anchor block and load Volume Descriptor Sequence */
1763         sbi->s_anchor = uopt->anchor;
1764         if (!udf_find_anchor(sb, fileset)) {
1765                 if (!silent)
1766                         printk(KERN_WARNING "UDF-fs: No anchor found\n");
1767                 return 0;
1768         }
1769         return 1;
1770 }
1771
1772 static void udf_open_lvid(struct super_block *sb)
1773 {
1774         struct udf_sb_info *sbi = UDF_SB(sb);
1775         struct buffer_head *bh = sbi->s_lvid_bh;
1776         struct logicalVolIntegrityDesc *lvid;
1777         struct logicalVolIntegrityDescImpUse *lvidiu;
1778
1779         if (!bh)
1780                 return;
1781         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1782         lvidiu = udf_sb_lvidiu(sbi);
1783
1784         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1787                                 CURRENT_TIME);
1788         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1789
1790         lvid->descTag.descCRC = cpu_to_le16(
1791                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1792                         le16_to_cpu(lvid->descTag.descCRCLength)));
1793
1794         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1795         mark_buffer_dirty(bh);
1796         sbi->s_lvid_dirty = 0;
1797 }
1798
1799 static void udf_close_lvid(struct super_block *sb)
1800 {
1801         struct udf_sb_info *sbi = UDF_SB(sb);
1802         struct buffer_head *bh = sbi->s_lvid_bh;
1803         struct logicalVolIntegrityDesc *lvid;
1804         struct logicalVolIntegrityDescImpUse *lvidiu;
1805
1806         if (!bh)
1807                 return;
1808
1809         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1810         lvidiu = udf_sb_lvidiu(sbi);
1811         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1812         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1813         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1814         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1815                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1816         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1817                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1818         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1819                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1820         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1821
1822         lvid->descTag.descCRC = cpu_to_le16(
1823                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1824                                 le16_to_cpu(lvid->descTag.descCRCLength)));
1825
1826         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1827         mark_buffer_dirty(bh);
1828         sbi->s_lvid_dirty = 0;
1829 }
1830
1831 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1832 {
1833         int i;
1834         int nr_groups = bitmap->s_nr_groups;
1835         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1836                                                 nr_groups);
1837
1838         for (i = 0; i < nr_groups; i++)
1839                 if (bitmap->s_block_bitmap[i])
1840                         brelse(bitmap->s_block_bitmap[i]);
1841
1842         if (size <= PAGE_SIZE)
1843                 kfree(bitmap);
1844         else
1845                 vfree(bitmap);
1846 }
1847
1848 static void udf_free_partition(struct udf_part_map *map)
1849 {
1850         int i;
1851         struct udf_meta_data *mdata;
1852
1853         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1854                 iput(map->s_uspace.s_table);
1855         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1856                 iput(map->s_fspace.s_table);
1857         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1858                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1859         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1860                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1861         if (map->s_partition_type == UDF_SPARABLE_MAP15)
1862                 for (i = 0; i < 4; i++)
1863                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1864         else if (map->s_partition_type == UDF_METADATA_MAP25) {
1865                 mdata = &map->s_type_specific.s_metadata;
1866                 iput(mdata->s_metadata_fe);
1867                 mdata->s_metadata_fe = NULL;
1868
1869                 iput(mdata->s_mirror_fe);
1870                 mdata->s_mirror_fe = NULL;
1871
1872                 iput(mdata->s_bitmap_fe);
1873                 mdata->s_bitmap_fe = NULL;
1874         }
1875 }
1876
1877 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1878 {
1879         int i;
1880         int ret;
1881         struct inode *inode = NULL;
1882         struct udf_options uopt;
1883         struct kernel_lb_addr rootdir, fileset;
1884         struct udf_sb_info *sbi;
1885
1886         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1887         uopt.uid = -1;
1888         uopt.gid = -1;
1889         uopt.umask = 0;
1890         uopt.fmode = UDF_INVALID_MODE;
1891         uopt.dmode = UDF_INVALID_MODE;
1892
1893         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1894         if (!sbi)
1895                 return -ENOMEM;
1896
1897         sb->s_fs_info = sbi;
1898
1899         mutex_init(&sbi->s_alloc_mutex);
1900
1901         if (!udf_parse_options((char *)options, &uopt, false))
1902                 goto error_out;
1903
1904         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1905             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1906                 udf_error(sb, "udf_read_super",
1907                           "utf8 cannot be combined with iocharset\n");
1908                 goto error_out;
1909         }
1910 #ifdef CONFIG_UDF_NLS
1911         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1912                 uopt.nls_map = load_nls_default();
1913                 if (!uopt.nls_map)
1914                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1915                 else
1916                         udf_debug("Using default NLS map\n");
1917         }
1918 #endif
1919         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1920                 uopt.flags |= (1 << UDF_FLAG_UTF8);
1921
1922         fileset.logicalBlockNum = 0xFFFFFFFF;
1923         fileset.partitionReferenceNum = 0xFFFF;
1924
1925         sbi->s_flags = uopt.flags;
1926         sbi->s_uid = uopt.uid;
1927         sbi->s_gid = uopt.gid;
1928         sbi->s_umask = uopt.umask;
1929         sbi->s_fmode = uopt.fmode;
1930         sbi->s_dmode = uopt.dmode;
1931         sbi->s_nls_map = uopt.nls_map;
1932
1933         if (uopt.session == 0xFFFFFFFF)
1934                 sbi->s_session = udf_get_last_session(sb);
1935         else
1936                 sbi->s_session = uopt.session;
1937
1938         udf_debug("Multi-session=%d\n", sbi->s_session);
1939
1940         /* Fill in the rest of the superblock */
1941         sb->s_op = &udf_sb_ops;
1942         sb->s_export_op = &udf_export_ops;
1943
1944         sb->s_dirt = 0;
1945         sb->s_magic = UDF_SUPER_MAGIC;
1946         sb->s_time_gran = 1000;
1947
1948         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1949                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1950         } else {
1951                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1952                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1953                 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1954                         if (!silent)
1955                                 printk(KERN_NOTICE
1956                                        "UDF-fs: Rescanning with blocksize "
1957                                        "%d\n", UDF_DEFAULT_BLOCKSIZE);
1958                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1959                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1960                 }
1961         }
1962         if (!ret) {
1963                 printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1964                 goto error_out;
1965         }
1966
1967         udf_debug("Lastblock=%d\n", sbi->s_last_block);
1968
1969         if (sbi->s_lvid_bh) {
1970                 struct logicalVolIntegrityDescImpUse *lvidiu =
1971                                                         udf_sb_lvidiu(sbi);
1972                 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1973                 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1974                 /* uint16_t maxUDFWriteRev =
1975                                 le16_to_cpu(lvidiu->maxUDFWriteRev); */
1976
1977                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1978                         printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
1979                                         "(max is %x)\n",
1980                                le16_to_cpu(lvidiu->minUDFReadRev),
1981                                UDF_MAX_READ_VERSION);
1982                         goto error_out;
1983                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1984                         sb->s_flags |= MS_RDONLY;
1985
1986                 sbi->s_udfrev = minUDFWriteRev;
1987
1988                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1989                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1990                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1991                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1992         }
1993
1994         if (!sbi->s_partitions) {
1995                 printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
1996                 goto error_out;
1997         }
1998
1999         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2000                         UDF_PART_FLAG_READ_ONLY) {
2001                 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
2002                                    "forcing readonly mount\n");
2003                 sb->s_flags |= MS_RDONLY;
2004         }
2005
2006         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2007                 printk(KERN_WARNING "UDF-fs: No fileset found\n");
2008                 goto error_out;
2009         }
2010
2011         if (!silent) {
2012                 struct timestamp ts;
2013                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2014                 udf_info("UDF: Mounting volume '%s', "
2015                          "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2016                          sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
2017                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2018         }
2019         if (!(sb->s_flags & MS_RDONLY))
2020                 udf_open_lvid(sb);
2021
2022         /* Assign the root inode */
2023         /* assign inodes by physical block number */
2024         /* perhaps it's not extensible enough, but for now ... */
2025         inode = udf_iget(sb, &rootdir);
2026         if (!inode) {
2027                 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
2028                                 "partition=%d\n",
2029                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2030                 goto error_out;
2031         }
2032
2033         /* Allocate a dentry for the root inode */
2034         sb->s_root = d_alloc_root(inode);
2035         if (!sb->s_root) {
2036                 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2037                 iput(inode);
2038                 goto error_out;
2039         }
2040         sb->s_maxbytes = MAX_LFS_FILESIZE;
2041         return 0;
2042
2043 error_out:
2044         if (sbi->s_vat_inode)
2045                 iput(sbi->s_vat_inode);
2046         if (sbi->s_partitions)
2047                 for (i = 0; i < sbi->s_partitions; i++)
2048                         udf_free_partition(&sbi->s_partmaps[i]);
2049 #ifdef CONFIG_UDF_NLS
2050         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2051                 unload_nls(sbi->s_nls_map);
2052 #endif
2053         if (!(sb->s_flags & MS_RDONLY))
2054                 udf_close_lvid(sb);
2055         brelse(sbi->s_lvid_bh);
2056
2057         kfree(sbi->s_partmaps);
2058         kfree(sbi);
2059         sb->s_fs_info = NULL;
2060
2061         return -EINVAL;
2062 }
2063
2064 static void udf_error(struct super_block *sb, const char *function,
2065                       const char *fmt, ...)
2066 {
2067         va_list args;
2068
2069         if (!(sb->s_flags & MS_RDONLY)) {
2070                 /* mark sb error */
2071                 sb->s_dirt = 1;
2072         }
2073         va_start(args, fmt);
2074         vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2075         va_end(args);
2076         printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2077                 sb->s_id, function, error_buf);
2078 }
2079
2080 void udf_warning(struct super_block *sb, const char *function,
2081                  const char *fmt, ...)
2082 {
2083         va_list args;
2084
2085         va_start(args, fmt);
2086         vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2087         va_end(args);
2088         printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2089                sb->s_id, function, error_buf);
2090 }
2091
2092 static void udf_put_super(struct super_block *sb)
2093 {
2094         int i;
2095         struct udf_sb_info *sbi;
2096
2097         sbi = UDF_SB(sb);
2098
2099         lock_kernel();
2100
2101         if (sbi->s_vat_inode)
2102                 iput(sbi->s_vat_inode);
2103         if (sbi->s_partitions)
2104                 for (i = 0; i < sbi->s_partitions; i++)
2105                         udf_free_partition(&sbi->s_partmaps[i]);
2106 #ifdef CONFIG_UDF_NLS
2107         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2108                 unload_nls(sbi->s_nls_map);
2109 #endif
2110         if (!(sb->s_flags & MS_RDONLY))
2111                 udf_close_lvid(sb);
2112         brelse(sbi->s_lvid_bh);
2113         kfree(sbi->s_partmaps);
2114         kfree(sb->s_fs_info);
2115         sb->s_fs_info = NULL;
2116
2117         unlock_kernel();
2118 }
2119
2120 static int udf_sync_fs(struct super_block *sb, int wait)
2121 {
2122         struct udf_sb_info *sbi = UDF_SB(sb);
2123
2124         mutex_lock(&sbi->s_alloc_mutex);
2125         if (sbi->s_lvid_dirty) {
2126                 /*
2127                  * Blockdevice will be synced later so we don't have to submit
2128                  * the buffer for IO
2129                  */
2130                 mark_buffer_dirty(sbi->s_lvid_bh);
2131                 sb->s_dirt = 0;
2132                 sbi->s_lvid_dirty = 0;
2133         }
2134         mutex_unlock(&sbi->s_alloc_mutex);
2135
2136         return 0;
2137 }
2138
2139 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2140 {
2141         struct super_block *sb = dentry->d_sb;
2142         struct udf_sb_info *sbi = UDF_SB(sb);
2143         struct logicalVolIntegrityDescImpUse *lvidiu;
2144         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2145
2146         if (sbi->s_lvid_bh != NULL)
2147                 lvidiu = udf_sb_lvidiu(sbi);
2148         else
2149                 lvidiu = NULL;
2150
2151         buf->f_type = UDF_SUPER_MAGIC;
2152         buf->f_bsize = sb->s_blocksize;
2153         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2154         buf->f_bfree = udf_count_free(sb);
2155         buf->f_bavail = buf->f_bfree;
2156         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2157                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2158                         + buf->f_bfree;
2159         buf->f_ffree = buf->f_bfree;
2160         buf->f_namelen = UDF_NAME_LEN - 2;
2161         buf->f_fsid.val[0] = (u32)id;
2162         buf->f_fsid.val[1] = (u32)(id >> 32);
2163
2164         return 0;
2165 }
2166
2167 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2168                                           struct udf_bitmap *bitmap)
2169 {
2170         struct buffer_head *bh = NULL;
2171         unsigned int accum = 0;
2172         int index;
2173         int block = 0, newblock;
2174         struct kernel_lb_addr loc;
2175         uint32_t bytes;
2176         uint8_t *ptr;
2177         uint16_t ident;
2178         struct spaceBitmapDesc *bm;
2179
2180         lock_kernel();
2181
2182         loc.logicalBlockNum = bitmap->s_extPosition;
2183         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2184         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2185
2186         if (!bh) {
2187                 printk(KERN_ERR "udf: udf_count_free failed\n");
2188                 goto out;
2189         } else if (ident != TAG_IDENT_SBD) {
2190                 brelse(bh);
2191                 printk(KERN_ERR "udf: udf_count_free failed\n");
2192                 goto out;
2193         }
2194
2195         bm = (struct spaceBitmapDesc *)bh->b_data;
2196         bytes = le32_to_cpu(bm->numOfBytes);
2197         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2198         ptr = (uint8_t *)bh->b_data;
2199
2200         while (bytes > 0) {
2201                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2202                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2203                                         cur_bytes * 8);
2204                 bytes -= cur_bytes;
2205                 if (bytes) {
2206                         brelse(bh);
2207                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2208                         bh = udf_tread(sb, newblock);
2209                         if (!bh) {
2210                                 udf_debug("read failed\n");
2211                                 goto out;
2212                         }
2213                         index = 0;
2214                         ptr = (uint8_t *)bh->b_data;
2215                 }
2216         }
2217         brelse(bh);
2218
2219 out:
2220         unlock_kernel();
2221
2222         return accum;
2223 }
2224
2225 static unsigned int udf_count_free_table(struct super_block *sb,
2226                                          struct inode *table)
2227 {
2228         unsigned int accum = 0;
2229         uint32_t elen;
2230         struct kernel_lb_addr eloc;
2231         int8_t etype;
2232         struct extent_position epos;
2233
2234         lock_kernel();
2235
2236         epos.block = UDF_I(table)->i_location;
2237         epos.offset = sizeof(struct unallocSpaceEntry);
2238         epos.bh = NULL;
2239
2240         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2241                 accum += (elen >> table->i_sb->s_blocksize_bits);
2242
2243         brelse(epos.bh);
2244
2245         unlock_kernel();
2246
2247         return accum;
2248 }
2249
2250 static unsigned int udf_count_free(struct super_block *sb)
2251 {
2252         unsigned int accum = 0;
2253         struct udf_sb_info *sbi;
2254         struct udf_part_map *map;
2255
2256         sbi = UDF_SB(sb);
2257         if (sbi->s_lvid_bh) {
2258                 struct logicalVolIntegrityDesc *lvid =
2259                         (struct logicalVolIntegrityDesc *)
2260                         sbi->s_lvid_bh->b_data;
2261                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2262                         accum = le32_to_cpu(
2263                                         lvid->freeSpaceTable[sbi->s_partition]);
2264                         if (accum == 0xFFFFFFFF)
2265                                 accum = 0;
2266                 }
2267         }
2268
2269         if (accum)
2270                 return accum;
2271
2272         map = &sbi->s_partmaps[sbi->s_partition];
2273         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2274                 accum += udf_count_free_bitmap(sb,
2275                                                map->s_uspace.s_bitmap);
2276         }
2277         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2278                 accum += udf_count_free_bitmap(sb,
2279                                                map->s_fspace.s_bitmap);
2280         }
2281         if (accum)
2282                 return accum;
2283
2284         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2285                 accum += udf_count_free_table(sb,
2286                                               map->s_uspace.s_table);
2287         }
2288         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2289                 accum += udf_count_free_table(sb,
2290                                               map->s_fspace.s_table);
2291         }
2292
2293         return accum;
2294 }