UBIFS: unify error path dbg_debugfs_init_fs
[pandora-kernel.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37 #include <linux/slab.h>
38
39 #ifdef CONFIG_UBIFS_FS_DEBUG
40
41 DEFINE_SPINLOCK(dbg_lock);
42
43 static char dbg_key_buf0[128];
44 static char dbg_key_buf1[128];
45
46 unsigned int ubifs_msg_flags;
47 unsigned int ubifs_chk_flags;
48 unsigned int ubifs_tst_flags;
49
50 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
52 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
53
54 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
55 MODULE_PARM_DESC(debug_chks, "Debug check flags");
56 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
57
58 static const char *get_key_fmt(int fmt)
59 {
60         switch (fmt) {
61         case UBIFS_SIMPLE_KEY_FMT:
62                 return "simple";
63         default:
64                 return "unknown/invalid format";
65         }
66 }
67
68 static const char *get_key_hash(int hash)
69 {
70         switch (hash) {
71         case UBIFS_KEY_HASH_R5:
72                 return "R5";
73         case UBIFS_KEY_HASH_TEST:
74                 return "test";
75         default:
76                 return "unknown/invalid name hash";
77         }
78 }
79
80 static const char *get_key_type(int type)
81 {
82         switch (type) {
83         case UBIFS_INO_KEY:
84                 return "inode";
85         case UBIFS_DENT_KEY:
86                 return "direntry";
87         case UBIFS_XENT_KEY:
88                 return "xentry";
89         case UBIFS_DATA_KEY:
90                 return "data";
91         case UBIFS_TRUN_KEY:
92                 return "truncate";
93         default:
94                 return "unknown/invalid key";
95         }
96 }
97
98 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
99                         char *buffer)
100 {
101         char *p = buffer;
102         int type = key_type(c, key);
103
104         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
105                 switch (type) {
106                 case UBIFS_INO_KEY:
107                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
108                                get_key_type(type));
109                         break;
110                 case UBIFS_DENT_KEY:
111                 case UBIFS_XENT_KEY:
112                         sprintf(p, "(%lu, %s, %#08x)",
113                                 (unsigned long)key_inum(c, key),
114                                 get_key_type(type), key_hash(c, key));
115                         break;
116                 case UBIFS_DATA_KEY:
117                         sprintf(p, "(%lu, %s, %u)",
118                                 (unsigned long)key_inum(c, key),
119                                 get_key_type(type), key_block(c, key));
120                         break;
121                 case UBIFS_TRUN_KEY:
122                         sprintf(p, "(%lu, %s)",
123                                 (unsigned long)key_inum(c, key),
124                                 get_key_type(type));
125                         break;
126                 default:
127                         sprintf(p, "(bad key type: %#08x, %#08x)",
128                                 key->u32[0], key->u32[1]);
129                 }
130         } else
131                 sprintf(p, "bad key format %d", c->key_fmt);
132 }
133
134 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
135 {
136         /* dbg_lock must be held */
137         sprintf_key(c, key, dbg_key_buf0);
138         return dbg_key_buf0;
139 }
140
141 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
142 {
143         /* dbg_lock must be held */
144         sprintf_key(c, key, dbg_key_buf1);
145         return dbg_key_buf1;
146 }
147
148 const char *dbg_ntype(int type)
149 {
150         switch (type) {
151         case UBIFS_PAD_NODE:
152                 return "padding node";
153         case UBIFS_SB_NODE:
154                 return "superblock node";
155         case UBIFS_MST_NODE:
156                 return "master node";
157         case UBIFS_REF_NODE:
158                 return "reference node";
159         case UBIFS_INO_NODE:
160                 return "inode node";
161         case UBIFS_DENT_NODE:
162                 return "direntry node";
163         case UBIFS_XENT_NODE:
164                 return "xentry node";
165         case UBIFS_DATA_NODE:
166                 return "data node";
167         case UBIFS_TRUN_NODE:
168                 return "truncate node";
169         case UBIFS_IDX_NODE:
170                 return "indexing node";
171         case UBIFS_CS_NODE:
172                 return "commit start node";
173         case UBIFS_ORPH_NODE:
174                 return "orphan node";
175         default:
176                 return "unknown node";
177         }
178 }
179
180 static const char *dbg_gtype(int type)
181 {
182         switch (type) {
183         case UBIFS_NO_NODE_GROUP:
184                 return "no node group";
185         case UBIFS_IN_NODE_GROUP:
186                 return "in node group";
187         case UBIFS_LAST_OF_NODE_GROUP:
188                 return "last of node group";
189         default:
190                 return "unknown";
191         }
192 }
193
194 const char *dbg_cstate(int cmt_state)
195 {
196         switch (cmt_state) {
197         case COMMIT_RESTING:
198                 return "commit resting";
199         case COMMIT_BACKGROUND:
200                 return "background commit requested";
201         case COMMIT_REQUIRED:
202                 return "commit required";
203         case COMMIT_RUNNING_BACKGROUND:
204                 return "BACKGROUND commit running";
205         case COMMIT_RUNNING_REQUIRED:
206                 return "commit running and required";
207         case COMMIT_BROKEN:
208                 return "broken commit";
209         default:
210                 return "unknown commit state";
211         }
212 }
213
214 const char *dbg_jhead(int jhead)
215 {
216         switch (jhead) {
217         case GCHD:
218                 return "0 (GC)";
219         case BASEHD:
220                 return "1 (base)";
221         case DATAHD:
222                 return "2 (data)";
223         default:
224                 return "unknown journal head";
225         }
226 }
227
228 static void dump_ch(const struct ubifs_ch *ch)
229 {
230         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
231         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
232         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
233                dbg_ntype(ch->node_type));
234         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
235                dbg_gtype(ch->group_type));
236         printk(KERN_DEBUG "\tsqnum          %llu\n",
237                (unsigned long long)le64_to_cpu(ch->sqnum));
238         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
239 }
240
241 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
242 {
243         const struct ubifs_inode *ui = ubifs_inode(inode);
244
245         printk(KERN_DEBUG "Dump in-memory inode:");
246         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
247         printk(KERN_DEBUG "\tsize           %llu\n",
248                (unsigned long long)i_size_read(inode));
249         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
250         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
251         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
252         printk(KERN_DEBUG "\tatime          %u.%u\n",
253                (unsigned int)inode->i_atime.tv_sec,
254                (unsigned int)inode->i_atime.tv_nsec);
255         printk(KERN_DEBUG "\tmtime          %u.%u\n",
256                (unsigned int)inode->i_mtime.tv_sec,
257                (unsigned int)inode->i_mtime.tv_nsec);
258         printk(KERN_DEBUG "\tctime          %u.%u\n",
259                (unsigned int)inode->i_ctime.tv_sec,
260                (unsigned int)inode->i_ctime.tv_nsec);
261         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
262         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
263         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
264         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
265         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
266         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
267         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
268         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
269                (unsigned long long)ui->synced_i_size);
270         printk(KERN_DEBUG "\tui_size        %llu\n",
271                (unsigned long long)ui->ui_size);
272         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
273         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
274         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
275         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
276         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
277 }
278
279 void dbg_dump_node(const struct ubifs_info *c, const void *node)
280 {
281         int i, n;
282         union ubifs_key key;
283         const struct ubifs_ch *ch = node;
284
285         if (dbg_failure_mode)
286                 return;
287
288         /* If the magic is incorrect, just hexdump the first bytes */
289         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
290                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
291                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
292                                (void *)node, UBIFS_CH_SZ, 1);
293                 return;
294         }
295
296         spin_lock(&dbg_lock);
297         dump_ch(node);
298
299         switch (ch->node_type) {
300         case UBIFS_PAD_NODE:
301         {
302                 const struct ubifs_pad_node *pad = node;
303
304                 printk(KERN_DEBUG "\tpad_len        %u\n",
305                        le32_to_cpu(pad->pad_len));
306                 break;
307         }
308         case UBIFS_SB_NODE:
309         {
310                 const struct ubifs_sb_node *sup = node;
311                 unsigned int sup_flags = le32_to_cpu(sup->flags);
312
313                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
314                        (int)sup->key_hash, get_key_hash(sup->key_hash));
315                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
316                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
317                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
318                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
319                        !!(sup_flags & UBIFS_FLG_BIGLPT));
320                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
321                        le32_to_cpu(sup->min_io_size));
322                 printk(KERN_DEBUG "\tleb_size       %u\n",
323                        le32_to_cpu(sup->leb_size));
324                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
325                        le32_to_cpu(sup->leb_cnt));
326                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
327                        le32_to_cpu(sup->max_leb_cnt));
328                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
329                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
330                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
331                        le32_to_cpu(sup->log_lebs));
332                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
333                        le32_to_cpu(sup->lpt_lebs));
334                 printk(KERN_DEBUG "\torph_lebs      %u\n",
335                        le32_to_cpu(sup->orph_lebs));
336                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
337                        le32_to_cpu(sup->jhead_cnt));
338                 printk(KERN_DEBUG "\tfanout         %u\n",
339                        le32_to_cpu(sup->fanout));
340                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
341                        le32_to_cpu(sup->lsave_cnt));
342                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
343                        (int)le16_to_cpu(sup->default_compr));
344                 printk(KERN_DEBUG "\trp_size        %llu\n",
345                        (unsigned long long)le64_to_cpu(sup->rp_size));
346                 printk(KERN_DEBUG "\trp_uid         %u\n",
347                        le32_to_cpu(sup->rp_uid));
348                 printk(KERN_DEBUG "\trp_gid         %u\n",
349                        le32_to_cpu(sup->rp_gid));
350                 printk(KERN_DEBUG "\tfmt_version    %u\n",
351                        le32_to_cpu(sup->fmt_version));
352                 printk(KERN_DEBUG "\ttime_gran      %u\n",
353                        le32_to_cpu(sup->time_gran));
354                 printk(KERN_DEBUG "\tUUID           %pUB\n",
355                        sup->uuid);
356                 break;
357         }
358         case UBIFS_MST_NODE:
359         {
360                 const struct ubifs_mst_node *mst = node;
361
362                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
363                        (unsigned long long)le64_to_cpu(mst->highest_inum));
364                 printk(KERN_DEBUG "\tcommit number  %llu\n",
365                        (unsigned long long)le64_to_cpu(mst->cmt_no));
366                 printk(KERN_DEBUG "\tflags          %#x\n",
367                        le32_to_cpu(mst->flags));
368                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
369                        le32_to_cpu(mst->log_lnum));
370                 printk(KERN_DEBUG "\troot_lnum      %u\n",
371                        le32_to_cpu(mst->root_lnum));
372                 printk(KERN_DEBUG "\troot_offs      %u\n",
373                        le32_to_cpu(mst->root_offs));
374                 printk(KERN_DEBUG "\troot_len       %u\n",
375                        le32_to_cpu(mst->root_len));
376                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
377                        le32_to_cpu(mst->gc_lnum));
378                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
379                        le32_to_cpu(mst->ihead_lnum));
380                 printk(KERN_DEBUG "\tihead_offs     %u\n",
381                        le32_to_cpu(mst->ihead_offs));
382                 printk(KERN_DEBUG "\tindex_size     %llu\n",
383                        (unsigned long long)le64_to_cpu(mst->index_size));
384                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
385                        le32_to_cpu(mst->lpt_lnum));
386                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
387                        le32_to_cpu(mst->lpt_offs));
388                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
389                        le32_to_cpu(mst->nhead_lnum));
390                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
391                        le32_to_cpu(mst->nhead_offs));
392                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
393                        le32_to_cpu(mst->ltab_lnum));
394                 printk(KERN_DEBUG "\tltab_offs      %u\n",
395                        le32_to_cpu(mst->ltab_offs));
396                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
397                        le32_to_cpu(mst->lsave_lnum));
398                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
399                        le32_to_cpu(mst->lsave_offs));
400                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
401                        le32_to_cpu(mst->lscan_lnum));
402                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
403                        le32_to_cpu(mst->leb_cnt));
404                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
405                        le32_to_cpu(mst->empty_lebs));
406                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
407                        le32_to_cpu(mst->idx_lebs));
408                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
409                        (unsigned long long)le64_to_cpu(mst->total_free));
410                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
411                        (unsigned long long)le64_to_cpu(mst->total_dirty));
412                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
413                        (unsigned long long)le64_to_cpu(mst->total_used));
414                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
415                        (unsigned long long)le64_to_cpu(mst->total_dead));
416                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
417                        (unsigned long long)le64_to_cpu(mst->total_dark));
418                 break;
419         }
420         case UBIFS_REF_NODE:
421         {
422                 const struct ubifs_ref_node *ref = node;
423
424                 printk(KERN_DEBUG "\tlnum           %u\n",
425                        le32_to_cpu(ref->lnum));
426                 printk(KERN_DEBUG "\toffs           %u\n",
427                        le32_to_cpu(ref->offs));
428                 printk(KERN_DEBUG "\tjhead          %u\n",
429                        le32_to_cpu(ref->jhead));
430                 break;
431         }
432         case UBIFS_INO_NODE:
433         {
434                 const struct ubifs_ino_node *ino = node;
435
436                 key_read(c, &ino->key, &key);
437                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
438                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
439                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
440                 printk(KERN_DEBUG "\tsize           %llu\n",
441                        (unsigned long long)le64_to_cpu(ino->size));
442                 printk(KERN_DEBUG "\tnlink          %u\n",
443                        le32_to_cpu(ino->nlink));
444                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
445                        (long long)le64_to_cpu(ino->atime_sec),
446                        le32_to_cpu(ino->atime_nsec));
447                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
448                        (long long)le64_to_cpu(ino->mtime_sec),
449                        le32_to_cpu(ino->mtime_nsec));
450                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
451                        (long long)le64_to_cpu(ino->ctime_sec),
452                        le32_to_cpu(ino->ctime_nsec));
453                 printk(KERN_DEBUG "\tuid            %u\n",
454                        le32_to_cpu(ino->uid));
455                 printk(KERN_DEBUG "\tgid            %u\n",
456                        le32_to_cpu(ino->gid));
457                 printk(KERN_DEBUG "\tmode           %u\n",
458                        le32_to_cpu(ino->mode));
459                 printk(KERN_DEBUG "\tflags          %#x\n",
460                        le32_to_cpu(ino->flags));
461                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
462                        le32_to_cpu(ino->xattr_cnt));
463                 printk(KERN_DEBUG "\txattr_size     %u\n",
464                        le32_to_cpu(ino->xattr_size));
465                 printk(KERN_DEBUG "\txattr_names    %u\n",
466                        le32_to_cpu(ino->xattr_names));
467                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
468                        (int)le16_to_cpu(ino->compr_type));
469                 printk(KERN_DEBUG "\tdata len       %u\n",
470                        le32_to_cpu(ino->data_len));
471                 break;
472         }
473         case UBIFS_DENT_NODE:
474         case UBIFS_XENT_NODE:
475         {
476                 const struct ubifs_dent_node *dent = node;
477                 int nlen = le16_to_cpu(dent->nlen);
478
479                 key_read(c, &dent->key, &key);
480                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
481                 printk(KERN_DEBUG "\tinum           %llu\n",
482                        (unsigned long long)le64_to_cpu(dent->inum));
483                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
484                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
485                 printk(KERN_DEBUG "\tname           ");
486
487                 if (nlen > UBIFS_MAX_NLEN)
488                         printk(KERN_DEBUG "(bad name length, not printing, "
489                                           "bad or corrupted node)");
490                 else {
491                         for (i = 0; i < nlen && dent->name[i]; i++)
492                                 printk(KERN_CONT "%c", dent->name[i]);
493                 }
494                 printk(KERN_CONT "\n");
495
496                 break;
497         }
498         case UBIFS_DATA_NODE:
499         {
500                 const struct ubifs_data_node *dn = node;
501                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
502
503                 key_read(c, &dn->key, &key);
504                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
505                 printk(KERN_DEBUG "\tsize           %u\n",
506                        le32_to_cpu(dn->size));
507                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
508                        (int)le16_to_cpu(dn->compr_type));
509                 printk(KERN_DEBUG "\tdata size      %d\n",
510                        dlen);
511                 printk(KERN_DEBUG "\tdata:\n");
512                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513                                (void *)&dn->data, dlen, 0);
514                 break;
515         }
516         case UBIFS_TRUN_NODE:
517         {
518                 const struct ubifs_trun_node *trun = node;
519
520                 printk(KERN_DEBUG "\tinum           %u\n",
521                        le32_to_cpu(trun->inum));
522                 printk(KERN_DEBUG "\told_size       %llu\n",
523                        (unsigned long long)le64_to_cpu(trun->old_size));
524                 printk(KERN_DEBUG "\tnew_size       %llu\n",
525                        (unsigned long long)le64_to_cpu(trun->new_size));
526                 break;
527         }
528         case UBIFS_IDX_NODE:
529         {
530                 const struct ubifs_idx_node *idx = node;
531
532                 n = le16_to_cpu(idx->child_cnt);
533                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
534                 printk(KERN_DEBUG "\tlevel          %d\n",
535                        (int)le16_to_cpu(idx->level));
536                 printk(KERN_DEBUG "\tBranches:\n");
537
538                 for (i = 0; i < n && i < c->fanout - 1; i++) {
539                         const struct ubifs_branch *br;
540
541                         br = ubifs_idx_branch(c, idx, i);
542                         key_read(c, &br->key, &key);
543                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
544                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
545                                le32_to_cpu(br->len), DBGKEY(&key));
546                 }
547                 break;
548         }
549         case UBIFS_CS_NODE:
550                 break;
551         case UBIFS_ORPH_NODE:
552         {
553                 const struct ubifs_orph_node *orph = node;
554
555                 printk(KERN_DEBUG "\tcommit number  %llu\n",
556                        (unsigned long long)
557                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
558                 printk(KERN_DEBUG "\tlast node flag %llu\n",
559                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
560                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
561                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
562                 for (i = 0; i < n; i++)
563                         printk(KERN_DEBUG "\t  ino %llu\n",
564                                (unsigned long long)le64_to_cpu(orph->inos[i]));
565                 break;
566         }
567         default:
568                 printk(KERN_DEBUG "node type %d was not recognized\n",
569                        (int)ch->node_type);
570         }
571         spin_unlock(&dbg_lock);
572 }
573
574 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
575 {
576         spin_lock(&dbg_lock);
577         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
578                req->new_ino, req->dirtied_ino);
579         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
580                req->new_ino_d, req->dirtied_ino_d);
581         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
582                req->new_page, req->dirtied_page);
583         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
584                req->new_dent, req->mod_dent);
585         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
586         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
587                req->data_growth, req->dd_growth);
588         spin_unlock(&dbg_lock);
589 }
590
591 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
592 {
593         spin_lock(&dbg_lock);
594         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
595                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
596         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
597                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
598                lst->total_dirty);
599         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
600                "total_dead %lld\n", lst->total_used, lst->total_dark,
601                lst->total_dead);
602         spin_unlock(&dbg_lock);
603 }
604
605 void dbg_dump_budg(struct ubifs_info *c)
606 {
607         int i;
608         struct rb_node *rb;
609         struct ubifs_bud *bud;
610         struct ubifs_gced_idx_leb *idx_gc;
611         long long available, outstanding, free;
612
613         ubifs_assert(spin_is_locked(&c->space_lock));
614         spin_lock(&dbg_lock);
615         printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
616                "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
617                c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
618         printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
619                "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
620                c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
621                c->freeable_cnt);
622         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
623                "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
624                c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
625         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
626                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
627                atomic_long_read(&c->dirty_zn_cnt),
628                atomic_long_read(&c->clean_zn_cnt));
629         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
630                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
631         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
632                c->gc_lnum, c->ihead_lnum);
633         /* If we are in R/O mode, journal heads do not exist */
634         if (c->jheads)
635                 for (i = 0; i < c->jhead_cnt; i++)
636                         printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
637                                dbg_jhead(c->jheads[i].wbuf.jhead),
638                                c->jheads[i].wbuf.lnum);
639         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
640                 bud = rb_entry(rb, struct ubifs_bud, rb);
641                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
642         }
643         list_for_each_entry(bud, &c->old_buds, list)
644                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
645         list_for_each_entry(idx_gc, &c->idx_gc, list)
646                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
647                        idx_gc->lnum, idx_gc->unmap);
648         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
649
650         /* Print budgeting predictions */
651         available = ubifs_calc_available(c, c->min_idx_lebs);
652         outstanding = c->budg_data_growth + c->budg_dd_growth;
653         free = ubifs_get_free_space_nolock(c);
654         printk(KERN_DEBUG "Budgeting predictions:\n");
655         printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
656                available, outstanding, free);
657         spin_unlock(&dbg_lock);
658 }
659
660 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
661 {
662         int i, spc, dark = 0, dead = 0;
663         struct rb_node *rb;
664         struct ubifs_bud *bud;
665
666         spc = lp->free + lp->dirty;
667         if (spc < c->dead_wm)
668                 dead = spc;
669         else
670                 dark = ubifs_calc_dark(c, spc);
671
672         if (lp->flags & LPROPS_INDEX)
673                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
674                        "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
675                        lp->dirty, c->leb_size - spc, spc, lp->flags);
676         else
677                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
678                        "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
679                        "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
680                        c->leb_size - spc, spc, dark, dead,
681                        (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
682
683         if (lp->flags & LPROPS_TAKEN) {
684                 if (lp->flags & LPROPS_INDEX)
685                         printk(KERN_CONT "index, taken");
686                 else
687                         printk(KERN_CONT "taken");
688         } else {
689                 const char *s;
690
691                 if (lp->flags & LPROPS_INDEX) {
692                         switch (lp->flags & LPROPS_CAT_MASK) {
693                         case LPROPS_DIRTY_IDX:
694                                 s = "dirty index";
695                                 break;
696                         case LPROPS_FRDI_IDX:
697                                 s = "freeable index";
698                                 break;
699                         default:
700                                 s = "index";
701                         }
702                 } else {
703                         switch (lp->flags & LPROPS_CAT_MASK) {
704                         case LPROPS_UNCAT:
705                                 s = "not categorized";
706                                 break;
707                         case LPROPS_DIRTY:
708                                 s = "dirty";
709                                 break;
710                         case LPROPS_FREE:
711                                 s = "free";
712                                 break;
713                         case LPROPS_EMPTY:
714                                 s = "empty";
715                                 break;
716                         case LPROPS_FREEABLE:
717                                 s = "freeable";
718                                 break;
719                         default:
720                                 s = NULL;
721                                 break;
722                         }
723                 }
724                 printk(KERN_CONT "%s", s);
725         }
726
727         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
728                 bud = rb_entry(rb, struct ubifs_bud, rb);
729                 if (bud->lnum == lp->lnum) {
730                         int head = 0;
731                         for (i = 0; i < c->jhead_cnt; i++) {
732                                 if (lp->lnum == c->jheads[i].wbuf.lnum) {
733                                         printk(KERN_CONT ", jhead %s",
734                                                dbg_jhead(i));
735                                         head = 1;
736                                 }
737                         }
738                         if (!head)
739                                 printk(KERN_CONT ", bud of jhead %s",
740                                        dbg_jhead(bud->jhead));
741                 }
742         }
743         if (lp->lnum == c->gc_lnum)
744                 printk(KERN_CONT ", GC LEB");
745         printk(KERN_CONT ")\n");
746 }
747
748 void dbg_dump_lprops(struct ubifs_info *c)
749 {
750         int lnum, err;
751         struct ubifs_lprops lp;
752         struct ubifs_lp_stats lst;
753
754         printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
755                current->pid);
756         ubifs_get_lp_stats(c, &lst);
757         dbg_dump_lstats(&lst);
758
759         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
760                 err = ubifs_read_one_lp(c, lnum, &lp);
761                 if (err)
762                         ubifs_err("cannot read lprops for LEB %d", lnum);
763
764                 dbg_dump_lprop(c, &lp);
765         }
766         printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
767                current->pid);
768 }
769
770 void dbg_dump_lpt_info(struct ubifs_info *c)
771 {
772         int i;
773
774         spin_lock(&dbg_lock);
775         printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
776         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
777         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
778         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
779         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
780         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
781         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
782         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
783         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
784         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
785         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
786         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
787         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
788         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
789         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
790         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
791         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
792         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
793         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
794         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
795         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
796                c->nhead_lnum, c->nhead_offs);
797         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
798                c->ltab_lnum, c->ltab_offs);
799         if (c->big_lpt)
800                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
801                        c->lsave_lnum, c->lsave_offs);
802         for (i = 0; i < c->lpt_lebs; i++)
803                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
804                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
805                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
806         spin_unlock(&dbg_lock);
807 }
808
809 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
810 {
811         struct ubifs_scan_leb *sleb;
812         struct ubifs_scan_node *snod;
813         void *buf;
814
815         if (dbg_failure_mode)
816                 return;
817
818         printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
819                current->pid, lnum);
820
821         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
822         if (!buf) {
823                 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
824                 return;
825         }
826
827         sleb = ubifs_scan(c, lnum, 0, buf, 0);
828         if (IS_ERR(sleb)) {
829                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
830                 goto out;
831         }
832
833         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
834                sleb->nodes_cnt, sleb->endpt);
835
836         list_for_each_entry(snod, &sleb->nodes, list) {
837                 cond_resched();
838                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
839                        snod->offs, snod->len);
840                 dbg_dump_node(c, snod->node);
841         }
842
843         printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
844                current->pid, lnum);
845         ubifs_scan_destroy(sleb);
846
847 out:
848         vfree(buf);
849         return;
850 }
851
852 void dbg_dump_znode(const struct ubifs_info *c,
853                     const struct ubifs_znode *znode)
854 {
855         int n;
856         const struct ubifs_zbranch *zbr;
857
858         spin_lock(&dbg_lock);
859         if (znode->parent)
860                 zbr = &znode->parent->zbranch[znode->iip];
861         else
862                 zbr = &c->zroot;
863
864         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
865                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
866                zbr->len, znode->parent, znode->iip, znode->level,
867                znode->child_cnt, znode->flags);
868
869         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
870                 spin_unlock(&dbg_lock);
871                 return;
872         }
873
874         printk(KERN_DEBUG "zbranches:\n");
875         for (n = 0; n < znode->child_cnt; n++) {
876                 zbr = &znode->zbranch[n];
877                 if (znode->level > 0)
878                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
879                                           "%s\n", n, zbr->znode, zbr->lnum,
880                                           zbr->offs, zbr->len,
881                                           DBGKEY(&zbr->key));
882                 else
883                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
884                                           "%s\n", n, zbr->znode, zbr->lnum,
885                                           zbr->offs, zbr->len,
886                                           DBGKEY(&zbr->key));
887         }
888         spin_unlock(&dbg_lock);
889 }
890
891 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
892 {
893         int i;
894
895         printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
896                current->pid, cat, heap->cnt);
897         for (i = 0; i < heap->cnt; i++) {
898                 struct ubifs_lprops *lprops = heap->arr[i];
899
900                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
901                        "flags %d\n", i, lprops->lnum, lprops->hpos,
902                        lprops->free, lprops->dirty, lprops->flags);
903         }
904         printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
905 }
906
907 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
908                     struct ubifs_nnode *parent, int iip)
909 {
910         int i;
911
912         printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
913         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
914                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
915         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
916                pnode->flags, iip, pnode->level, pnode->num);
917         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
918                 struct ubifs_lprops *lp = &pnode->lprops[i];
919
920                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
921                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
922         }
923 }
924
925 void dbg_dump_tnc(struct ubifs_info *c)
926 {
927         struct ubifs_znode *znode;
928         int level;
929
930         printk(KERN_DEBUG "\n");
931         printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
932         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
933         level = znode->level;
934         printk(KERN_DEBUG "== Level %d ==\n", level);
935         while (znode) {
936                 if (level != znode->level) {
937                         level = znode->level;
938                         printk(KERN_DEBUG "== Level %d ==\n", level);
939                 }
940                 dbg_dump_znode(c, znode);
941                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
942         }
943         printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
944 }
945
946 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
947                       void *priv)
948 {
949         dbg_dump_znode(c, znode);
950         return 0;
951 }
952
953 /**
954  * dbg_dump_index - dump the on-flash index.
955  * @c: UBIFS file-system description object
956  *
957  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
958  * which dumps only in-memory znodes and does not read znodes which from flash.
959  */
960 void dbg_dump_index(struct ubifs_info *c)
961 {
962         dbg_walk_index(c, NULL, dump_znode, NULL);
963 }
964
965 /**
966  * dbg_save_space_info - save information about flash space.
967  * @c: UBIFS file-system description object
968  *
969  * This function saves information about UBIFS free space, dirty space, etc, in
970  * order to check it later.
971  */
972 void dbg_save_space_info(struct ubifs_info *c)
973 {
974         struct ubifs_debug_info *d = c->dbg;
975
976         ubifs_get_lp_stats(c, &d->saved_lst);
977
978         spin_lock(&c->space_lock);
979         d->saved_free = ubifs_get_free_space_nolock(c);
980         spin_unlock(&c->space_lock);
981 }
982
983 /**
984  * dbg_check_space_info - check flash space information.
985  * @c: UBIFS file-system description object
986  *
987  * This function compares current flash space information with the information
988  * which was saved when the 'dbg_save_space_info()' function was called.
989  * Returns zero if the information has not changed, and %-EINVAL it it has
990  * changed.
991  */
992 int dbg_check_space_info(struct ubifs_info *c)
993 {
994         struct ubifs_debug_info *d = c->dbg;
995         struct ubifs_lp_stats lst;
996         long long avail, free;
997
998         spin_lock(&c->space_lock);
999         avail = ubifs_calc_available(c, c->min_idx_lebs);
1000         spin_unlock(&c->space_lock);
1001         free = ubifs_get_free_space(c);
1002
1003         if (free != d->saved_free) {
1004                 ubifs_err("free space changed from %lld to %lld",
1005                           d->saved_free, free);
1006                 goto out;
1007         }
1008
1009         return 0;
1010
1011 out:
1012         ubifs_msg("saved lprops statistics dump");
1013         dbg_dump_lstats(&d->saved_lst);
1014         ubifs_get_lp_stats(c, &lst);
1015
1016         ubifs_msg("current lprops statistics dump");
1017         dbg_dump_lstats(&lst);
1018
1019         spin_lock(&c->space_lock);
1020         dbg_dump_budg(c);
1021         spin_unlock(&c->space_lock);
1022         dump_stack();
1023         return -EINVAL;
1024 }
1025
1026 /**
1027  * dbg_check_synced_i_size - check synchronized inode size.
1028  * @inode: inode to check
1029  *
1030  * If inode is clean, synchronized inode size has to be equivalent to current
1031  * inode size. This function has to be called only for locked inodes (@i_mutex
1032  * has to be locked). Returns %0 if synchronized inode size if correct, and
1033  * %-EINVAL if not.
1034  */
1035 int dbg_check_synced_i_size(struct inode *inode)
1036 {
1037         int err = 0;
1038         struct ubifs_inode *ui = ubifs_inode(inode);
1039
1040         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1041                 return 0;
1042         if (!S_ISREG(inode->i_mode))
1043                 return 0;
1044
1045         mutex_lock(&ui->ui_mutex);
1046         spin_lock(&ui->ui_lock);
1047         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1048                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1049                           "is clean", ui->ui_size, ui->synced_i_size);
1050                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1051                           inode->i_mode, i_size_read(inode));
1052                 dbg_dump_stack();
1053                 err = -EINVAL;
1054         }
1055         spin_unlock(&ui->ui_lock);
1056         mutex_unlock(&ui->ui_mutex);
1057         return err;
1058 }
1059
1060 /*
1061  * dbg_check_dir - check directory inode size and link count.
1062  * @c: UBIFS file-system description object
1063  * @dir: the directory to calculate size for
1064  * @size: the result is returned here
1065  *
1066  * This function makes sure that directory size and link count are correct.
1067  * Returns zero in case of success and a negative error code in case of
1068  * failure.
1069  *
1070  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1071  * calling this function.
1072  */
1073 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1074 {
1075         unsigned int nlink = 2;
1076         union ubifs_key key;
1077         struct ubifs_dent_node *dent, *pdent = NULL;
1078         struct qstr nm = { .name = NULL };
1079         loff_t size = UBIFS_INO_NODE_SZ;
1080
1081         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1082                 return 0;
1083
1084         if (!S_ISDIR(dir->i_mode))
1085                 return 0;
1086
1087         lowest_dent_key(c, &key, dir->i_ino);
1088         while (1) {
1089                 int err;
1090
1091                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1092                 if (IS_ERR(dent)) {
1093                         err = PTR_ERR(dent);
1094                         if (err == -ENOENT)
1095                                 break;
1096                         return err;
1097                 }
1098
1099                 nm.name = dent->name;
1100                 nm.len = le16_to_cpu(dent->nlen);
1101                 size += CALC_DENT_SIZE(nm.len);
1102                 if (dent->type == UBIFS_ITYPE_DIR)
1103                         nlink += 1;
1104                 kfree(pdent);
1105                 pdent = dent;
1106                 key_read(c, &dent->key, &key);
1107         }
1108         kfree(pdent);
1109
1110         if (i_size_read(dir) != size) {
1111                 ubifs_err("directory inode %lu has size %llu, "
1112                           "but calculated size is %llu", dir->i_ino,
1113                           (unsigned long long)i_size_read(dir),
1114                           (unsigned long long)size);
1115                 dump_stack();
1116                 return -EINVAL;
1117         }
1118         if (dir->i_nlink != nlink) {
1119                 ubifs_err("directory inode %lu has nlink %u, but calculated "
1120                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1121                 dump_stack();
1122                 return -EINVAL;
1123         }
1124
1125         return 0;
1126 }
1127
1128 /**
1129  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1130  * @c: UBIFS file-system description object
1131  * @zbr1: first zbranch
1132  * @zbr2: following zbranch
1133  *
1134  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1135  * names of the direntries/xentries which are referred by the keys. This
1136  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1137  * sure the name of direntry/xentry referred by @zbr1 is less than
1138  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1139  * and a negative error code in case of failure.
1140  */
1141 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1142                                struct ubifs_zbranch *zbr2)
1143 {
1144         int err, nlen1, nlen2, cmp;
1145         struct ubifs_dent_node *dent1, *dent2;
1146         union ubifs_key key;
1147
1148         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1149         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1150         if (!dent1)
1151                 return -ENOMEM;
1152         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1153         if (!dent2) {
1154                 err = -ENOMEM;
1155                 goto out_free;
1156         }
1157
1158         err = ubifs_tnc_read_node(c, zbr1, dent1);
1159         if (err)
1160                 goto out_free;
1161         err = ubifs_validate_entry(c, dent1);
1162         if (err)
1163                 goto out_free;
1164
1165         err = ubifs_tnc_read_node(c, zbr2, dent2);
1166         if (err)
1167                 goto out_free;
1168         err = ubifs_validate_entry(c, dent2);
1169         if (err)
1170                 goto out_free;
1171
1172         /* Make sure node keys are the same as in zbranch */
1173         err = 1;
1174         key_read(c, &dent1->key, &key);
1175         if (keys_cmp(c, &zbr1->key, &key)) {
1176                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1177                         zbr1->offs, DBGKEY(&key));
1178                 dbg_err("but it should have key %s according to tnc",
1179                         DBGKEY(&zbr1->key));
1180                 dbg_dump_node(c, dent1);
1181                 goto out_free;
1182         }
1183
1184         key_read(c, &dent2->key, &key);
1185         if (keys_cmp(c, &zbr2->key, &key)) {
1186                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1187                         zbr1->offs, DBGKEY(&key));
1188                 dbg_err("but it should have key %s according to tnc",
1189                         DBGKEY(&zbr2->key));
1190                 dbg_dump_node(c, dent2);
1191                 goto out_free;
1192         }
1193
1194         nlen1 = le16_to_cpu(dent1->nlen);
1195         nlen2 = le16_to_cpu(dent2->nlen);
1196
1197         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1198         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1199                 err = 0;
1200                 goto out_free;
1201         }
1202         if (cmp == 0 && nlen1 == nlen2)
1203                 dbg_err("2 xent/dent nodes with the same name");
1204         else
1205                 dbg_err("bad order of colliding key %s",
1206                         DBGKEY(&key));
1207
1208         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1209         dbg_dump_node(c, dent1);
1210         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1211         dbg_dump_node(c, dent2);
1212
1213 out_free:
1214         kfree(dent2);
1215         kfree(dent1);
1216         return err;
1217 }
1218
1219 /**
1220  * dbg_check_znode - check if znode is all right.
1221  * @c: UBIFS file-system description object
1222  * @zbr: zbranch which points to this znode
1223  *
1224  * This function makes sure that znode referred to by @zbr is all right.
1225  * Returns zero if it is, and %-EINVAL if it is not.
1226  */
1227 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1228 {
1229         struct ubifs_znode *znode = zbr->znode;
1230         struct ubifs_znode *zp = znode->parent;
1231         int n, err, cmp;
1232
1233         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1234                 err = 1;
1235                 goto out;
1236         }
1237         if (znode->level < 0) {
1238                 err = 2;
1239                 goto out;
1240         }
1241         if (znode->iip < 0 || znode->iip >= c->fanout) {
1242                 err = 3;
1243                 goto out;
1244         }
1245
1246         if (zbr->len == 0)
1247                 /* Only dirty zbranch may have no on-flash nodes */
1248                 if (!ubifs_zn_dirty(znode)) {
1249                         err = 4;
1250                         goto out;
1251                 }
1252
1253         if (ubifs_zn_dirty(znode)) {
1254                 /*
1255                  * If znode is dirty, its parent has to be dirty as well. The
1256                  * order of the operation is important, so we have to have
1257                  * memory barriers.
1258                  */
1259                 smp_mb();
1260                 if (zp && !ubifs_zn_dirty(zp)) {
1261                         /*
1262                          * The dirty flag is atomic and is cleared outside the
1263                          * TNC mutex, so znode's dirty flag may now have
1264                          * been cleared. The child is always cleared before the
1265                          * parent, so we just need to check again.
1266                          */
1267                         smp_mb();
1268                         if (ubifs_zn_dirty(znode)) {
1269                                 err = 5;
1270                                 goto out;
1271                         }
1272                 }
1273         }
1274
1275         if (zp) {
1276                 const union ubifs_key *min, *max;
1277
1278                 if (znode->level != zp->level - 1) {
1279                         err = 6;
1280                         goto out;
1281                 }
1282
1283                 /* Make sure the 'parent' pointer in our znode is correct */
1284                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1285                 if (!err) {
1286                         /* This zbranch does not exist in the parent */
1287                         err = 7;
1288                         goto out;
1289                 }
1290
1291                 if (znode->iip >= zp->child_cnt) {
1292                         err = 8;
1293                         goto out;
1294                 }
1295
1296                 if (znode->iip != n) {
1297                         /* This may happen only in case of collisions */
1298                         if (keys_cmp(c, &zp->zbranch[n].key,
1299                                      &zp->zbranch[znode->iip].key)) {
1300                                 err = 9;
1301                                 goto out;
1302                         }
1303                         n = znode->iip;
1304                 }
1305
1306                 /*
1307                  * Make sure that the first key in our znode is greater than or
1308                  * equal to the key in the pointing zbranch.
1309                  */
1310                 min = &zbr->key;
1311                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1312                 if (cmp == 1) {
1313                         err = 10;
1314                         goto out;
1315                 }
1316
1317                 if (n + 1 < zp->child_cnt) {
1318                         max = &zp->zbranch[n + 1].key;
1319
1320                         /*
1321                          * Make sure the last key in our znode is less or
1322                          * equivalent than the key in the zbranch which goes
1323                          * after our pointing zbranch.
1324                          */
1325                         cmp = keys_cmp(c, max,
1326                                 &znode->zbranch[znode->child_cnt - 1].key);
1327                         if (cmp == -1) {
1328                                 err = 11;
1329                                 goto out;
1330                         }
1331                 }
1332         } else {
1333                 /* This may only be root znode */
1334                 if (zbr != &c->zroot) {
1335                         err = 12;
1336                         goto out;
1337                 }
1338         }
1339
1340         /*
1341          * Make sure that next key is greater or equivalent then the previous
1342          * one.
1343          */
1344         for (n = 1; n < znode->child_cnt; n++) {
1345                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1346                                &znode->zbranch[n].key);
1347                 if (cmp > 0) {
1348                         err = 13;
1349                         goto out;
1350                 }
1351                 if (cmp == 0) {
1352                         /* This can only be keys with colliding hash */
1353                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1354                                 err = 14;
1355                                 goto out;
1356                         }
1357
1358                         if (znode->level != 0 || c->replaying)
1359                                 continue;
1360
1361                         /*
1362                          * Colliding keys should follow binary order of
1363                          * corresponding xentry/dentry names.
1364                          */
1365                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1366                                                   &znode->zbranch[n]);
1367                         if (err < 0)
1368                                 return err;
1369                         if (err) {
1370                                 err = 15;
1371                                 goto out;
1372                         }
1373                 }
1374         }
1375
1376         for (n = 0; n < znode->child_cnt; n++) {
1377                 if (!znode->zbranch[n].znode &&
1378                     (znode->zbranch[n].lnum == 0 ||
1379                      znode->zbranch[n].len == 0)) {
1380                         err = 16;
1381                         goto out;
1382                 }
1383
1384                 if (znode->zbranch[n].lnum != 0 &&
1385                     znode->zbranch[n].len == 0) {
1386                         err = 17;
1387                         goto out;
1388                 }
1389
1390                 if (znode->zbranch[n].lnum == 0 &&
1391                     znode->zbranch[n].len != 0) {
1392                         err = 18;
1393                         goto out;
1394                 }
1395
1396                 if (znode->zbranch[n].lnum == 0 &&
1397                     znode->zbranch[n].offs != 0) {
1398                         err = 19;
1399                         goto out;
1400                 }
1401
1402                 if (znode->level != 0 && znode->zbranch[n].znode)
1403                         if (znode->zbranch[n].znode->parent != znode) {
1404                                 err = 20;
1405                                 goto out;
1406                         }
1407         }
1408
1409         return 0;
1410
1411 out:
1412         ubifs_err("failed, error %d", err);
1413         ubifs_msg("dump of the znode");
1414         dbg_dump_znode(c, znode);
1415         if (zp) {
1416                 ubifs_msg("dump of the parent znode");
1417                 dbg_dump_znode(c, zp);
1418         }
1419         dump_stack();
1420         return -EINVAL;
1421 }
1422
1423 /**
1424  * dbg_check_tnc - check TNC tree.
1425  * @c: UBIFS file-system description object
1426  * @extra: do extra checks that are possible at start commit
1427  *
1428  * This function traverses whole TNC tree and checks every znode. Returns zero
1429  * if everything is all right and %-EINVAL if something is wrong with TNC.
1430  */
1431 int dbg_check_tnc(struct ubifs_info *c, int extra)
1432 {
1433         struct ubifs_znode *znode;
1434         long clean_cnt = 0, dirty_cnt = 0;
1435         int err, last;
1436
1437         if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1438                 return 0;
1439
1440         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1441         if (!c->zroot.znode)
1442                 return 0;
1443
1444         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1445         while (1) {
1446                 struct ubifs_znode *prev;
1447                 struct ubifs_zbranch *zbr;
1448
1449                 if (!znode->parent)
1450                         zbr = &c->zroot;
1451                 else
1452                         zbr = &znode->parent->zbranch[znode->iip];
1453
1454                 err = dbg_check_znode(c, zbr);
1455                 if (err)
1456                         return err;
1457
1458                 if (extra) {
1459                         if (ubifs_zn_dirty(znode))
1460                                 dirty_cnt += 1;
1461                         else
1462                                 clean_cnt += 1;
1463                 }
1464
1465                 prev = znode;
1466                 znode = ubifs_tnc_postorder_next(znode);
1467                 if (!znode)
1468                         break;
1469
1470                 /*
1471                  * If the last key of this znode is equivalent to the first key
1472                  * of the next znode (collision), then check order of the keys.
1473                  */
1474                 last = prev->child_cnt - 1;
1475                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1476                     !keys_cmp(c, &prev->zbranch[last].key,
1477                               &znode->zbranch[0].key)) {
1478                         err = dbg_check_key_order(c, &prev->zbranch[last],
1479                                                   &znode->zbranch[0]);
1480                         if (err < 0)
1481                                 return err;
1482                         if (err) {
1483                                 ubifs_msg("first znode");
1484                                 dbg_dump_znode(c, prev);
1485                                 ubifs_msg("second znode");
1486                                 dbg_dump_znode(c, znode);
1487                                 return -EINVAL;
1488                         }
1489                 }
1490         }
1491
1492         if (extra) {
1493                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1494                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1495                                   atomic_long_read(&c->clean_zn_cnt),
1496                                   clean_cnt);
1497                         return -EINVAL;
1498                 }
1499                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1500                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1501                                   atomic_long_read(&c->dirty_zn_cnt),
1502                                   dirty_cnt);
1503                         return -EINVAL;
1504                 }
1505         }
1506
1507         return 0;
1508 }
1509
1510 /**
1511  * dbg_walk_index - walk the on-flash index.
1512  * @c: UBIFS file-system description object
1513  * @leaf_cb: called for each leaf node
1514  * @znode_cb: called for each indexing node
1515  * @priv: private data which is passed to callbacks
1516  *
1517  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1518  * node and @znode_cb for each indexing node. Returns zero in case of success
1519  * and a negative error code in case of failure.
1520  *
1521  * It would be better if this function removed every znode it pulled to into
1522  * the TNC, so that the behavior more closely matched the non-debugging
1523  * behavior.
1524  */
1525 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1526                    dbg_znode_callback znode_cb, void *priv)
1527 {
1528         int err;
1529         struct ubifs_zbranch *zbr;
1530         struct ubifs_znode *znode, *child;
1531
1532         mutex_lock(&c->tnc_mutex);
1533         /* If the root indexing node is not in TNC - pull it */
1534         if (!c->zroot.znode) {
1535                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1536                 if (IS_ERR(c->zroot.znode)) {
1537                         err = PTR_ERR(c->zroot.znode);
1538                         c->zroot.znode = NULL;
1539                         goto out_unlock;
1540                 }
1541         }
1542
1543         /*
1544          * We are going to traverse the indexing tree in the postorder manner.
1545          * Go down and find the leftmost indexing node where we are going to
1546          * start from.
1547          */
1548         znode = c->zroot.znode;
1549         while (znode->level > 0) {
1550                 zbr = &znode->zbranch[0];
1551                 child = zbr->znode;
1552                 if (!child) {
1553                         child = ubifs_load_znode(c, zbr, znode, 0);
1554                         if (IS_ERR(child)) {
1555                                 err = PTR_ERR(child);
1556                                 goto out_unlock;
1557                         }
1558                         zbr->znode = child;
1559                 }
1560
1561                 znode = child;
1562         }
1563
1564         /* Iterate over all indexing nodes */
1565         while (1) {
1566                 int idx;
1567
1568                 cond_resched();
1569
1570                 if (znode_cb) {
1571                         err = znode_cb(c, znode, priv);
1572                         if (err) {
1573                                 ubifs_err("znode checking function returned "
1574                                           "error %d", err);
1575                                 dbg_dump_znode(c, znode);
1576                                 goto out_dump;
1577                         }
1578                 }
1579                 if (leaf_cb && znode->level == 0) {
1580                         for (idx = 0; idx < znode->child_cnt; idx++) {
1581                                 zbr = &znode->zbranch[idx];
1582                                 err = leaf_cb(c, zbr, priv);
1583                                 if (err) {
1584                                         ubifs_err("leaf checking function "
1585                                                   "returned error %d, for leaf "
1586                                                   "at LEB %d:%d",
1587                                                   err, zbr->lnum, zbr->offs);
1588                                         goto out_dump;
1589                                 }
1590                         }
1591                 }
1592
1593                 if (!znode->parent)
1594                         break;
1595
1596                 idx = znode->iip + 1;
1597                 znode = znode->parent;
1598                 if (idx < znode->child_cnt) {
1599                         /* Switch to the next index in the parent */
1600                         zbr = &znode->zbranch[idx];
1601                         child = zbr->znode;
1602                         if (!child) {
1603                                 child = ubifs_load_znode(c, zbr, znode, idx);
1604                                 if (IS_ERR(child)) {
1605                                         err = PTR_ERR(child);
1606                                         goto out_unlock;
1607                                 }
1608                                 zbr->znode = child;
1609                         }
1610                         znode = child;
1611                 } else
1612                         /*
1613                          * This is the last child, switch to the parent and
1614                          * continue.
1615                          */
1616                         continue;
1617
1618                 /* Go to the lowest leftmost znode in the new sub-tree */
1619                 while (znode->level > 0) {
1620                         zbr = &znode->zbranch[0];
1621                         child = zbr->znode;
1622                         if (!child) {
1623                                 child = ubifs_load_znode(c, zbr, znode, 0);
1624                                 if (IS_ERR(child)) {
1625                                         err = PTR_ERR(child);
1626                                         goto out_unlock;
1627                                 }
1628                                 zbr->znode = child;
1629                         }
1630                         znode = child;
1631                 }
1632         }
1633
1634         mutex_unlock(&c->tnc_mutex);
1635         return 0;
1636
1637 out_dump:
1638         if (znode->parent)
1639                 zbr = &znode->parent->zbranch[znode->iip];
1640         else
1641                 zbr = &c->zroot;
1642         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1643         dbg_dump_znode(c, znode);
1644 out_unlock:
1645         mutex_unlock(&c->tnc_mutex);
1646         return err;
1647 }
1648
1649 /**
1650  * add_size - add znode size to partially calculated index size.
1651  * @c: UBIFS file-system description object
1652  * @znode: znode to add size for
1653  * @priv: partially calculated index size
1654  *
1655  * This is a helper function for 'dbg_check_idx_size()' which is called for
1656  * every indexing node and adds its size to the 'long long' variable pointed to
1657  * by @priv.
1658  */
1659 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1660 {
1661         long long *idx_size = priv;
1662         int add;
1663
1664         add = ubifs_idx_node_sz(c, znode->child_cnt);
1665         add = ALIGN(add, 8);
1666         *idx_size += add;
1667         return 0;
1668 }
1669
1670 /**
1671  * dbg_check_idx_size - check index size.
1672  * @c: UBIFS file-system description object
1673  * @idx_size: size to check
1674  *
1675  * This function walks the UBIFS index, calculates its size and checks that the
1676  * size is equivalent to @idx_size. Returns zero in case of success and a
1677  * negative error code in case of failure.
1678  */
1679 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1680 {
1681         int err;
1682         long long calc = 0;
1683
1684         if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1685                 return 0;
1686
1687         err = dbg_walk_index(c, NULL, add_size, &calc);
1688         if (err) {
1689                 ubifs_err("error %d while walking the index", err);
1690                 return err;
1691         }
1692
1693         if (calc != idx_size) {
1694                 ubifs_err("index size check failed: calculated size is %lld, "
1695                           "should be %lld", calc, idx_size);
1696                 dump_stack();
1697                 return -EINVAL;
1698         }
1699
1700         return 0;
1701 }
1702
1703 /**
1704  * struct fsck_inode - information about an inode used when checking the file-system.
1705  * @rb: link in the RB-tree of inodes
1706  * @inum: inode number
1707  * @mode: inode type, permissions, etc
1708  * @nlink: inode link count
1709  * @xattr_cnt: count of extended attributes
1710  * @references: how many directory/xattr entries refer this inode (calculated
1711  *              while walking the index)
1712  * @calc_cnt: for directory inode count of child directories
1713  * @size: inode size (read from on-flash inode)
1714  * @xattr_sz: summary size of all extended attributes (read from on-flash
1715  *            inode)
1716  * @calc_sz: for directories calculated directory size
1717  * @calc_xcnt: count of extended attributes
1718  * @calc_xsz: calculated summary size of all extended attributes
1719  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1720  *             inode (read from on-flash inode)
1721  * @calc_xnms: calculated sum of lengths of all extended attribute names
1722  */
1723 struct fsck_inode {
1724         struct rb_node rb;
1725         ino_t inum;
1726         umode_t mode;
1727         unsigned int nlink;
1728         unsigned int xattr_cnt;
1729         int references;
1730         int calc_cnt;
1731         long long size;
1732         unsigned int xattr_sz;
1733         long long calc_sz;
1734         long long calc_xcnt;
1735         long long calc_xsz;
1736         unsigned int xattr_nms;
1737         long long calc_xnms;
1738 };
1739
1740 /**
1741  * struct fsck_data - private FS checking information.
1742  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1743  */
1744 struct fsck_data {
1745         struct rb_root inodes;
1746 };
1747
1748 /**
1749  * add_inode - add inode information to RB-tree of inodes.
1750  * @c: UBIFS file-system description object
1751  * @fsckd: FS checking information
1752  * @ino: raw UBIFS inode to add
1753  *
1754  * This is a helper function for 'check_leaf()' which adds information about
1755  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1756  * case of success and a negative error code in case of failure.
1757  */
1758 static struct fsck_inode *add_inode(struct ubifs_info *c,
1759                                     struct fsck_data *fsckd,
1760                                     struct ubifs_ino_node *ino)
1761 {
1762         struct rb_node **p, *parent = NULL;
1763         struct fsck_inode *fscki;
1764         ino_t inum = key_inum_flash(c, &ino->key);
1765
1766         p = &fsckd->inodes.rb_node;
1767         while (*p) {
1768                 parent = *p;
1769                 fscki = rb_entry(parent, struct fsck_inode, rb);
1770                 if (inum < fscki->inum)
1771                         p = &(*p)->rb_left;
1772                 else if (inum > fscki->inum)
1773                         p = &(*p)->rb_right;
1774                 else
1775                         return fscki;
1776         }
1777
1778         if (inum > c->highest_inum) {
1779                 ubifs_err("too high inode number, max. is %lu",
1780                           (unsigned long)c->highest_inum);
1781                 return ERR_PTR(-EINVAL);
1782         }
1783
1784         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1785         if (!fscki)
1786                 return ERR_PTR(-ENOMEM);
1787
1788         fscki->inum = inum;
1789         fscki->nlink = le32_to_cpu(ino->nlink);
1790         fscki->size = le64_to_cpu(ino->size);
1791         fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1792         fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1793         fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1794         fscki->mode = le32_to_cpu(ino->mode);
1795         if (S_ISDIR(fscki->mode)) {
1796                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1797                 fscki->calc_cnt = 2;
1798         }
1799         rb_link_node(&fscki->rb, parent, p);
1800         rb_insert_color(&fscki->rb, &fsckd->inodes);
1801         return fscki;
1802 }
1803
1804 /**
1805  * search_inode - search inode in the RB-tree of inodes.
1806  * @fsckd: FS checking information
1807  * @inum: inode number to search
1808  *
1809  * This is a helper function for 'check_leaf()' which searches inode @inum in
1810  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1811  * the inode was not found.
1812  */
1813 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1814 {
1815         struct rb_node *p;
1816         struct fsck_inode *fscki;
1817
1818         p = fsckd->inodes.rb_node;
1819         while (p) {
1820                 fscki = rb_entry(p, struct fsck_inode, rb);
1821                 if (inum < fscki->inum)
1822                         p = p->rb_left;
1823                 else if (inum > fscki->inum)
1824                         p = p->rb_right;
1825                 else
1826                         return fscki;
1827         }
1828         return NULL;
1829 }
1830
1831 /**
1832  * read_add_inode - read inode node and add it to RB-tree of inodes.
1833  * @c: UBIFS file-system description object
1834  * @fsckd: FS checking information
1835  * @inum: inode number to read
1836  *
1837  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1838  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1839  * information pointer in case of success and a negative error code in case of
1840  * failure.
1841  */
1842 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1843                                          struct fsck_data *fsckd, ino_t inum)
1844 {
1845         int n, err;
1846         union ubifs_key key;
1847         struct ubifs_znode *znode;
1848         struct ubifs_zbranch *zbr;
1849         struct ubifs_ino_node *ino;
1850         struct fsck_inode *fscki;
1851
1852         fscki = search_inode(fsckd, inum);
1853         if (fscki)
1854                 return fscki;
1855
1856         ino_key_init(c, &key, inum);
1857         err = ubifs_lookup_level0(c, &key, &znode, &n);
1858         if (!err) {
1859                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1860                 return ERR_PTR(-ENOENT);
1861         } else if (err < 0) {
1862                 ubifs_err("error %d while looking up inode %lu",
1863                           err, (unsigned long)inum);
1864                 return ERR_PTR(err);
1865         }
1866
1867         zbr = &znode->zbranch[n];
1868         if (zbr->len < UBIFS_INO_NODE_SZ) {
1869                 ubifs_err("bad node %lu node length %d",
1870                           (unsigned long)inum, zbr->len);
1871                 return ERR_PTR(-EINVAL);
1872         }
1873
1874         ino = kmalloc(zbr->len, GFP_NOFS);
1875         if (!ino)
1876                 return ERR_PTR(-ENOMEM);
1877
1878         err = ubifs_tnc_read_node(c, zbr, ino);
1879         if (err) {
1880                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1881                           zbr->lnum, zbr->offs, err);
1882                 kfree(ino);
1883                 return ERR_PTR(err);
1884         }
1885
1886         fscki = add_inode(c, fsckd, ino);
1887         kfree(ino);
1888         if (IS_ERR(fscki)) {
1889                 ubifs_err("error %ld while adding inode %lu node",
1890                           PTR_ERR(fscki), (unsigned long)inum);
1891                 return fscki;
1892         }
1893
1894         return fscki;
1895 }
1896
1897 /**
1898  * check_leaf - check leaf node.
1899  * @c: UBIFS file-system description object
1900  * @zbr: zbranch of the leaf node to check
1901  * @priv: FS checking information
1902  *
1903  * This is a helper function for 'dbg_check_filesystem()' which is called for
1904  * every single leaf node while walking the indexing tree. It checks that the
1905  * leaf node referred from the indexing tree exists, has correct CRC, and does
1906  * some other basic validation. This function is also responsible for building
1907  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1908  * calculates reference count, size, etc for each inode in order to later
1909  * compare them to the information stored inside the inodes and detect possible
1910  * inconsistencies. Returns zero in case of success and a negative error code
1911  * in case of failure.
1912  */
1913 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1914                       void *priv)
1915 {
1916         ino_t inum;
1917         void *node;
1918         struct ubifs_ch *ch;
1919         int err, type = key_type(c, &zbr->key);
1920         struct fsck_inode *fscki;
1921
1922         if (zbr->len < UBIFS_CH_SZ) {
1923                 ubifs_err("bad leaf length %d (LEB %d:%d)",
1924                           zbr->len, zbr->lnum, zbr->offs);
1925                 return -EINVAL;
1926         }
1927
1928         node = kmalloc(zbr->len, GFP_NOFS);
1929         if (!node)
1930                 return -ENOMEM;
1931
1932         err = ubifs_tnc_read_node(c, zbr, node);
1933         if (err) {
1934                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1935                           zbr->lnum, zbr->offs, err);
1936                 goto out_free;
1937         }
1938
1939         /* If this is an inode node, add it to RB-tree of inodes */
1940         if (type == UBIFS_INO_KEY) {
1941                 fscki = add_inode(c, priv, node);
1942                 if (IS_ERR(fscki)) {
1943                         err = PTR_ERR(fscki);
1944                         ubifs_err("error %d while adding inode node", err);
1945                         goto out_dump;
1946                 }
1947                 goto out;
1948         }
1949
1950         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1951             type != UBIFS_DATA_KEY) {
1952                 ubifs_err("unexpected node type %d at LEB %d:%d",
1953                           type, zbr->lnum, zbr->offs);
1954                 err = -EINVAL;
1955                 goto out_free;
1956         }
1957
1958         ch = node;
1959         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1960                 ubifs_err("too high sequence number, max. is %llu",
1961                           c->max_sqnum);
1962                 err = -EINVAL;
1963                 goto out_dump;
1964         }
1965
1966         if (type == UBIFS_DATA_KEY) {
1967                 long long blk_offs;
1968                 struct ubifs_data_node *dn = node;
1969
1970                 /*
1971                  * Search the inode node this data node belongs to and insert
1972                  * it to the RB-tree of inodes.
1973                  */
1974                 inum = key_inum_flash(c, &dn->key);
1975                 fscki = read_add_inode(c, priv, inum);
1976                 if (IS_ERR(fscki)) {
1977                         err = PTR_ERR(fscki);
1978                         ubifs_err("error %d while processing data node and "
1979                                   "trying to find inode node %lu",
1980                                   err, (unsigned long)inum);
1981                         goto out_dump;
1982                 }
1983
1984                 /* Make sure the data node is within inode size */
1985                 blk_offs = key_block_flash(c, &dn->key);
1986                 blk_offs <<= UBIFS_BLOCK_SHIFT;
1987                 blk_offs += le32_to_cpu(dn->size);
1988                 if (blk_offs > fscki->size) {
1989                         ubifs_err("data node at LEB %d:%d is not within inode "
1990                                   "size %lld", zbr->lnum, zbr->offs,
1991                                   fscki->size);
1992                         err = -EINVAL;
1993                         goto out_dump;
1994                 }
1995         } else {
1996                 int nlen;
1997                 struct ubifs_dent_node *dent = node;
1998                 struct fsck_inode *fscki1;
1999
2000                 err = ubifs_validate_entry(c, dent);
2001                 if (err)
2002                         goto out_dump;
2003
2004                 /*
2005                  * Search the inode node this entry refers to and the parent
2006                  * inode node and insert them to the RB-tree of inodes.
2007                  */
2008                 inum = le64_to_cpu(dent->inum);
2009                 fscki = read_add_inode(c, priv, inum);
2010                 if (IS_ERR(fscki)) {
2011                         err = PTR_ERR(fscki);
2012                         ubifs_err("error %d while processing entry node and "
2013                                   "trying to find inode node %lu",
2014                                   err, (unsigned long)inum);
2015                         goto out_dump;
2016                 }
2017
2018                 /* Count how many direntries or xentries refers this inode */
2019                 fscki->references += 1;
2020
2021                 inum = key_inum_flash(c, &dent->key);
2022                 fscki1 = read_add_inode(c, priv, inum);
2023                 if (IS_ERR(fscki1)) {
2024                         err = PTR_ERR(fscki1);
2025                         ubifs_err("error %d while processing entry node and "
2026                                   "trying to find parent inode node %lu",
2027                                   err, (unsigned long)inum);
2028                         goto out_dump;
2029                 }
2030
2031                 nlen = le16_to_cpu(dent->nlen);
2032                 if (type == UBIFS_XENT_KEY) {
2033                         fscki1->calc_xcnt += 1;
2034                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2035                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2036                         fscki1->calc_xnms += nlen;
2037                 } else {
2038                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2039                         if (dent->type == UBIFS_ITYPE_DIR)
2040                                 fscki1->calc_cnt += 1;
2041                 }
2042         }
2043
2044 out:
2045         kfree(node);
2046         return 0;
2047
2048 out_dump:
2049         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2050         dbg_dump_node(c, node);
2051 out_free:
2052         kfree(node);
2053         return err;
2054 }
2055
2056 /**
2057  * free_inodes - free RB-tree of inodes.
2058  * @fsckd: FS checking information
2059  */
2060 static void free_inodes(struct fsck_data *fsckd)
2061 {
2062         struct rb_node *this = fsckd->inodes.rb_node;
2063         struct fsck_inode *fscki;
2064
2065         while (this) {
2066                 if (this->rb_left)
2067                         this = this->rb_left;
2068                 else if (this->rb_right)
2069                         this = this->rb_right;
2070                 else {
2071                         fscki = rb_entry(this, struct fsck_inode, rb);
2072                         this = rb_parent(this);
2073                         if (this) {
2074                                 if (this->rb_left == &fscki->rb)
2075                                         this->rb_left = NULL;
2076                                 else
2077                                         this->rb_right = NULL;
2078                         }
2079                         kfree(fscki);
2080                 }
2081         }
2082 }
2083
2084 /**
2085  * check_inodes - checks all inodes.
2086  * @c: UBIFS file-system description object
2087  * @fsckd: FS checking information
2088  *
2089  * This is a helper function for 'dbg_check_filesystem()' which walks the
2090  * RB-tree of inodes after the index scan has been finished, and checks that
2091  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2092  * %-EINVAL if not, and a negative error code in case of failure.
2093  */
2094 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2095 {
2096         int n, err;
2097         union ubifs_key key;
2098         struct ubifs_znode *znode;
2099         struct ubifs_zbranch *zbr;
2100         struct ubifs_ino_node *ino;
2101         struct fsck_inode *fscki;
2102         struct rb_node *this = rb_first(&fsckd->inodes);
2103
2104         while (this) {
2105                 fscki = rb_entry(this, struct fsck_inode, rb);
2106                 this = rb_next(this);
2107
2108                 if (S_ISDIR(fscki->mode)) {
2109                         /*
2110                          * Directories have to have exactly one reference (they
2111                          * cannot have hardlinks), although root inode is an
2112                          * exception.
2113                          */
2114                         if (fscki->inum != UBIFS_ROOT_INO &&
2115                             fscki->references != 1) {
2116                                 ubifs_err("directory inode %lu has %d "
2117                                           "direntries which refer it, but "
2118                                           "should be 1",
2119                                           (unsigned long)fscki->inum,
2120                                           fscki->references);
2121                                 goto out_dump;
2122                         }
2123                         if (fscki->inum == UBIFS_ROOT_INO &&
2124                             fscki->references != 0) {
2125                                 ubifs_err("root inode %lu has non-zero (%d) "
2126                                           "direntries which refer it",
2127                                           (unsigned long)fscki->inum,
2128                                           fscki->references);
2129                                 goto out_dump;
2130                         }
2131                         if (fscki->calc_sz != fscki->size) {
2132                                 ubifs_err("directory inode %lu size is %lld, "
2133                                           "but calculated size is %lld",
2134                                           (unsigned long)fscki->inum,
2135                                           fscki->size, fscki->calc_sz);
2136                                 goto out_dump;
2137                         }
2138                         if (fscki->calc_cnt != fscki->nlink) {
2139                                 ubifs_err("directory inode %lu nlink is %d, "
2140                                           "but calculated nlink is %d",
2141                                           (unsigned long)fscki->inum,
2142                                           fscki->nlink, fscki->calc_cnt);
2143                                 goto out_dump;
2144                         }
2145                 } else {
2146                         if (fscki->references != fscki->nlink) {
2147                                 ubifs_err("inode %lu nlink is %d, but "
2148                                           "calculated nlink is %d",
2149                                           (unsigned long)fscki->inum,
2150                                           fscki->nlink, fscki->references);
2151                                 goto out_dump;
2152                         }
2153                 }
2154                 if (fscki->xattr_sz != fscki->calc_xsz) {
2155                         ubifs_err("inode %lu has xattr size %u, but "
2156                                   "calculated size is %lld",
2157                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2158                                   fscki->calc_xsz);
2159                         goto out_dump;
2160                 }
2161                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2162                         ubifs_err("inode %lu has %u xattrs, but "
2163                                   "calculated count is %lld",
2164                                   (unsigned long)fscki->inum,
2165                                   fscki->xattr_cnt, fscki->calc_xcnt);
2166                         goto out_dump;
2167                 }
2168                 if (fscki->xattr_nms != fscki->calc_xnms) {
2169                         ubifs_err("inode %lu has xattr names' size %u, but "
2170                                   "calculated names' size is %lld",
2171                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2172                                   fscki->calc_xnms);
2173                         goto out_dump;
2174                 }
2175         }
2176
2177         return 0;
2178
2179 out_dump:
2180         /* Read the bad inode and dump it */
2181         ino_key_init(c, &key, fscki->inum);
2182         err = ubifs_lookup_level0(c, &key, &znode, &n);
2183         if (!err) {
2184                 ubifs_err("inode %lu not found in index",
2185                           (unsigned long)fscki->inum);
2186                 return -ENOENT;
2187         } else if (err < 0) {
2188                 ubifs_err("error %d while looking up inode %lu",
2189                           err, (unsigned long)fscki->inum);
2190                 return err;
2191         }
2192
2193         zbr = &znode->zbranch[n];
2194         ino = kmalloc(zbr->len, GFP_NOFS);
2195         if (!ino)
2196                 return -ENOMEM;
2197
2198         err = ubifs_tnc_read_node(c, zbr, ino);
2199         if (err) {
2200                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2201                           zbr->lnum, zbr->offs, err);
2202                 kfree(ino);
2203                 return err;
2204         }
2205
2206         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2207                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2208         dbg_dump_node(c, ino);
2209         kfree(ino);
2210         return -EINVAL;
2211 }
2212
2213 /**
2214  * dbg_check_filesystem - check the file-system.
2215  * @c: UBIFS file-system description object
2216  *
2217  * This function checks the file system, namely:
2218  * o makes sure that all leaf nodes exist and their CRCs are correct;
2219  * o makes sure inode nlink, size, xattr size/count are correct (for all
2220  *   inodes).
2221  *
2222  * The function reads whole indexing tree and all nodes, so it is pretty
2223  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2224  * not, and a negative error code in case of failure.
2225  */
2226 int dbg_check_filesystem(struct ubifs_info *c)
2227 {
2228         int err;
2229         struct fsck_data fsckd;
2230
2231         if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2232                 return 0;
2233
2234         fsckd.inodes = RB_ROOT;
2235         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2236         if (err)
2237                 goto out_free;
2238
2239         err = check_inodes(c, &fsckd);
2240         if (err)
2241                 goto out_free;
2242
2243         free_inodes(&fsckd);
2244         return 0;
2245
2246 out_free:
2247         ubifs_err("file-system check failed with error %d", err);
2248         dump_stack();
2249         free_inodes(&fsckd);
2250         return err;
2251 }
2252
2253 /**
2254  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2255  * @c: UBIFS file-system description object
2256  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2257  *
2258  * This function returns zero if the list of data nodes is sorted correctly,
2259  * and %-EINVAL if not.
2260  */
2261 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2262 {
2263         struct list_head *cur;
2264         struct ubifs_scan_node *sa, *sb;
2265
2266         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2267                 return 0;
2268
2269         for (cur = head->next; cur->next != head; cur = cur->next) {
2270                 ino_t inuma, inumb;
2271                 uint32_t blka, blkb;
2272
2273                 cond_resched();
2274                 sa = container_of(cur, struct ubifs_scan_node, list);
2275                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2276
2277                 if (sa->type != UBIFS_DATA_NODE) {
2278                         ubifs_err("bad node type %d", sa->type);
2279                         dbg_dump_node(c, sa->node);
2280                         return -EINVAL;
2281                 }
2282                 if (sb->type != UBIFS_DATA_NODE) {
2283                         ubifs_err("bad node type %d", sb->type);
2284                         dbg_dump_node(c, sb->node);
2285                         return -EINVAL;
2286                 }
2287
2288                 inuma = key_inum(c, &sa->key);
2289                 inumb = key_inum(c, &sb->key);
2290
2291                 if (inuma < inumb)
2292                         continue;
2293                 if (inuma > inumb) {
2294                         ubifs_err("larger inum %lu goes before inum %lu",
2295                                   (unsigned long)inuma, (unsigned long)inumb);
2296                         goto error_dump;
2297                 }
2298
2299                 blka = key_block(c, &sa->key);
2300                 blkb = key_block(c, &sb->key);
2301
2302                 if (blka > blkb) {
2303                         ubifs_err("larger block %u goes before %u", blka, blkb);
2304                         goto error_dump;
2305                 }
2306                 if (blka == blkb) {
2307                         ubifs_err("two data nodes for the same block");
2308                         goto error_dump;
2309                 }
2310         }
2311
2312         return 0;
2313
2314 error_dump:
2315         dbg_dump_node(c, sa->node);
2316         dbg_dump_node(c, sb->node);
2317         return -EINVAL;
2318 }
2319
2320 /**
2321  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2322  * @c: UBIFS file-system description object
2323  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2324  *
2325  * This function returns zero if the list of non-data nodes is sorted correctly,
2326  * and %-EINVAL if not.
2327  */
2328 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2329 {
2330         struct list_head *cur;
2331         struct ubifs_scan_node *sa, *sb;
2332
2333         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2334                 return 0;
2335
2336         for (cur = head->next; cur->next != head; cur = cur->next) {
2337                 ino_t inuma, inumb;
2338                 uint32_t hasha, hashb;
2339
2340                 cond_resched();
2341                 sa = container_of(cur, struct ubifs_scan_node, list);
2342                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2343
2344                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2345                     sa->type != UBIFS_XENT_NODE) {
2346                         ubifs_err("bad node type %d", sa->type);
2347                         dbg_dump_node(c, sa->node);
2348                         return -EINVAL;
2349                 }
2350                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2351                     sa->type != UBIFS_XENT_NODE) {
2352                         ubifs_err("bad node type %d", sb->type);
2353                         dbg_dump_node(c, sb->node);
2354                         return -EINVAL;
2355                 }
2356
2357                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2358                         ubifs_err("non-inode node goes before inode node");
2359                         goto error_dump;
2360                 }
2361
2362                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2363                         continue;
2364
2365                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2366                         /* Inode nodes are sorted in descending size order */
2367                         if (sa->len < sb->len) {
2368                                 ubifs_err("smaller inode node goes first");
2369                                 goto error_dump;
2370                         }
2371                         continue;
2372                 }
2373
2374                 /*
2375                  * This is either a dentry or xentry, which should be sorted in
2376                  * ascending (parent ino, hash) order.
2377                  */
2378                 inuma = key_inum(c, &sa->key);
2379                 inumb = key_inum(c, &sb->key);
2380
2381                 if (inuma < inumb)
2382                         continue;
2383                 if (inuma > inumb) {
2384                         ubifs_err("larger inum %lu goes before inum %lu",
2385                                   (unsigned long)inuma, (unsigned long)inumb);
2386                         goto error_dump;
2387                 }
2388
2389                 hasha = key_block(c, &sa->key);
2390                 hashb = key_block(c, &sb->key);
2391
2392                 if (hasha > hashb) {
2393                         ubifs_err("larger hash %u goes before %u", hasha, hashb);
2394                         goto error_dump;
2395                 }
2396         }
2397
2398         return 0;
2399
2400 error_dump:
2401         ubifs_msg("dumping first node");
2402         dbg_dump_node(c, sa->node);
2403         ubifs_msg("dumping second node");
2404         dbg_dump_node(c, sb->node);
2405         return -EINVAL;
2406         return 0;
2407 }
2408
2409 static int invocation_cnt;
2410
2411 int dbg_force_in_the_gaps(void)
2412 {
2413         if (!dbg_force_in_the_gaps_enabled)
2414                 return 0;
2415         /* Force in-the-gaps every 8th commit */
2416         return !((invocation_cnt++) & 0x7);
2417 }
2418
2419 /* Failure mode for recovery testing */
2420
2421 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2422
2423 struct failure_mode_info {
2424         struct list_head list;
2425         struct ubifs_info *c;
2426 };
2427
2428 static LIST_HEAD(fmi_list);
2429 static DEFINE_SPINLOCK(fmi_lock);
2430
2431 static unsigned int next;
2432
2433 static int simple_rand(void)
2434 {
2435         if (next == 0)
2436                 next = current->pid;
2437         next = next * 1103515245 + 12345;
2438         return (next >> 16) & 32767;
2439 }
2440
2441 static void failure_mode_init(struct ubifs_info *c)
2442 {
2443         struct failure_mode_info *fmi;
2444
2445         fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2446         if (!fmi) {
2447                 ubifs_err("Failed to register failure mode - no memory");
2448                 return;
2449         }
2450         fmi->c = c;
2451         spin_lock(&fmi_lock);
2452         list_add_tail(&fmi->list, &fmi_list);
2453         spin_unlock(&fmi_lock);
2454 }
2455
2456 static void failure_mode_exit(struct ubifs_info *c)
2457 {
2458         struct failure_mode_info *fmi, *tmp;
2459
2460         spin_lock(&fmi_lock);
2461         list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2462                 if (fmi->c == c) {
2463                         list_del(&fmi->list);
2464                         kfree(fmi);
2465                 }
2466         spin_unlock(&fmi_lock);
2467 }
2468
2469 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2470 {
2471         struct failure_mode_info *fmi;
2472
2473         spin_lock(&fmi_lock);
2474         list_for_each_entry(fmi, &fmi_list, list)
2475                 if (fmi->c->ubi == desc) {
2476                         struct ubifs_info *c = fmi->c;
2477
2478                         spin_unlock(&fmi_lock);
2479                         return c;
2480                 }
2481         spin_unlock(&fmi_lock);
2482         return NULL;
2483 }
2484
2485 static int in_failure_mode(struct ubi_volume_desc *desc)
2486 {
2487         struct ubifs_info *c = dbg_find_info(desc);
2488
2489         if (c && dbg_failure_mode)
2490                 return c->dbg->failure_mode;
2491         return 0;
2492 }
2493
2494 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2495 {
2496         struct ubifs_info *c = dbg_find_info(desc);
2497         struct ubifs_debug_info *d;
2498
2499         if (!c || !dbg_failure_mode)
2500                 return 0;
2501         d = c->dbg;
2502         if (d->failure_mode)
2503                 return 1;
2504         if (!d->fail_cnt) {
2505                 /* First call - decide delay to failure */
2506                 if (chance(1, 2)) {
2507                         unsigned int delay = 1 << (simple_rand() >> 11);
2508
2509                         if (chance(1, 2)) {
2510                                 d->fail_delay = 1;
2511                                 d->fail_timeout = jiffies +
2512                                                   msecs_to_jiffies(delay);
2513                                 dbg_rcvry("failing after %ums", delay);
2514                         } else {
2515                                 d->fail_delay = 2;
2516                                 d->fail_cnt_max = delay;
2517                                 dbg_rcvry("failing after %u calls", delay);
2518                         }
2519                 }
2520                 d->fail_cnt += 1;
2521         }
2522         /* Determine if failure delay has expired */
2523         if (d->fail_delay == 1) {
2524                 if (time_before(jiffies, d->fail_timeout))
2525                         return 0;
2526         } else if (d->fail_delay == 2)
2527                 if (d->fail_cnt++ < d->fail_cnt_max)
2528                         return 0;
2529         if (lnum == UBIFS_SB_LNUM) {
2530                 if (write) {
2531                         if (chance(1, 2))
2532                                 return 0;
2533                 } else if (chance(19, 20))
2534                         return 0;
2535                 dbg_rcvry("failing in super block LEB %d", lnum);
2536         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2537                 if (chance(19, 20))
2538                         return 0;
2539                 dbg_rcvry("failing in master LEB %d", lnum);
2540         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2541                 if (write) {
2542                         if (chance(99, 100))
2543                                 return 0;
2544                 } else if (chance(399, 400))
2545                         return 0;
2546                 dbg_rcvry("failing in log LEB %d", lnum);
2547         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2548                 if (write) {
2549                         if (chance(7, 8))
2550                                 return 0;
2551                 } else if (chance(19, 20))
2552                         return 0;
2553                 dbg_rcvry("failing in LPT LEB %d", lnum);
2554         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2555                 if (write) {
2556                         if (chance(1, 2))
2557                                 return 0;
2558                 } else if (chance(9, 10))
2559                         return 0;
2560                 dbg_rcvry("failing in orphan LEB %d", lnum);
2561         } else if (lnum == c->ihead_lnum) {
2562                 if (chance(99, 100))
2563                         return 0;
2564                 dbg_rcvry("failing in index head LEB %d", lnum);
2565         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2566                 if (chance(9, 10))
2567                         return 0;
2568                 dbg_rcvry("failing in GC head LEB %d", lnum);
2569         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2570                    !ubifs_search_bud(c, lnum)) {
2571                 if (chance(19, 20))
2572                         return 0;
2573                 dbg_rcvry("failing in non-bud LEB %d", lnum);
2574         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2575                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2576                 if (chance(999, 1000))
2577                         return 0;
2578                 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2579         } else {
2580                 if (chance(9999, 10000))
2581                         return 0;
2582                 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2583         }
2584         ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2585         d->failure_mode = 1;
2586         dump_stack();
2587         return 1;
2588 }
2589
2590 static void cut_data(const void *buf, int len)
2591 {
2592         int flen, i;
2593         unsigned char *p = (void *)buf;
2594
2595         flen = (len * (long long)simple_rand()) >> 15;
2596         for (i = flen; i < len; i++)
2597                 p[i] = 0xff;
2598 }
2599
2600 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2601                  int len, int check)
2602 {
2603         if (in_failure_mode(desc))
2604                 return -EIO;
2605         return ubi_leb_read(desc, lnum, buf, offset, len, check);
2606 }
2607
2608 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2609                   int offset, int len, int dtype)
2610 {
2611         int err, failing;
2612
2613         if (in_failure_mode(desc))
2614                 return -EIO;
2615         failing = do_fail(desc, lnum, 1);
2616         if (failing)
2617                 cut_data(buf, len);
2618         err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2619         if (err)
2620                 return err;
2621         if (failing)
2622                 return -EIO;
2623         return 0;
2624 }
2625
2626 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2627                    int len, int dtype)
2628 {
2629         int err;
2630
2631         if (do_fail(desc, lnum, 1))
2632                 return -EIO;
2633         err = ubi_leb_change(desc, lnum, buf, len, dtype);
2634         if (err)
2635                 return err;
2636         if (do_fail(desc, lnum, 1))
2637                 return -EIO;
2638         return 0;
2639 }
2640
2641 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2642 {
2643         int err;
2644
2645         if (do_fail(desc, lnum, 0))
2646                 return -EIO;
2647         err = ubi_leb_erase(desc, lnum);
2648         if (err)
2649                 return err;
2650         if (do_fail(desc, lnum, 0))
2651                 return -EIO;
2652         return 0;
2653 }
2654
2655 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2656 {
2657         int err;
2658
2659         if (do_fail(desc, lnum, 0))
2660                 return -EIO;
2661         err = ubi_leb_unmap(desc, lnum);
2662         if (err)
2663                 return err;
2664         if (do_fail(desc, lnum, 0))
2665                 return -EIO;
2666         return 0;
2667 }
2668
2669 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2670 {
2671         if (in_failure_mode(desc))
2672                 return -EIO;
2673         return ubi_is_mapped(desc, lnum);
2674 }
2675
2676 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2677 {
2678         int err;
2679
2680         if (do_fail(desc, lnum, 0))
2681                 return -EIO;
2682         err = ubi_leb_map(desc, lnum, dtype);
2683         if (err)
2684                 return err;
2685         if (do_fail(desc, lnum, 0))
2686                 return -EIO;
2687         return 0;
2688 }
2689
2690 /**
2691  * ubifs_debugging_init - initialize UBIFS debugging.
2692  * @c: UBIFS file-system description object
2693  *
2694  * This function initializes debugging-related data for the file system.
2695  * Returns zero in case of success and a negative error code in case of
2696  * failure.
2697  */
2698 int ubifs_debugging_init(struct ubifs_info *c)
2699 {
2700         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2701         if (!c->dbg)
2702                 return -ENOMEM;
2703
2704         failure_mode_init(c);
2705         return 0;
2706 }
2707
2708 /**
2709  * ubifs_debugging_exit - free debugging data.
2710  * @c: UBIFS file-system description object
2711  */
2712 void ubifs_debugging_exit(struct ubifs_info *c)
2713 {
2714         failure_mode_exit(c);
2715         kfree(c->dbg);
2716 }
2717
2718 /*
2719  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2720  * contain the stuff specific to particular file-system mounts.
2721  */
2722 static struct dentry *dfs_rootdir;
2723
2724 /**
2725  * dbg_debugfs_init - initialize debugfs file-system.
2726  *
2727  * UBIFS uses debugfs file-system to expose various debugging knobs to
2728  * user-space. This function creates "ubifs" directory in the debugfs
2729  * file-system. Returns zero in case of success and a negative error code in
2730  * case of failure.
2731  */
2732 int dbg_debugfs_init(void)
2733 {
2734         dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2735         if (IS_ERR(dfs_rootdir)) {
2736                 int err = PTR_ERR(dfs_rootdir);
2737                 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2738                           "error %d\n", err);
2739                 return err;
2740         }
2741
2742         return 0;
2743 }
2744
2745 /**
2746  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2747  */
2748 void dbg_debugfs_exit(void)
2749 {
2750         debugfs_remove(dfs_rootdir);
2751 }
2752
2753 static int open_debugfs_file(struct inode *inode, struct file *file)
2754 {
2755         file->private_data = inode->i_private;
2756         return 0;
2757 }
2758
2759 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2760                                   size_t count, loff_t *ppos)
2761 {
2762         struct ubifs_info *c = file->private_data;
2763         struct ubifs_debug_info *d = c->dbg;
2764
2765         if (file->f_path.dentry == d->dfs_dump_lprops)
2766                 dbg_dump_lprops(c);
2767         else if (file->f_path.dentry == d->dfs_dump_budg) {
2768                 spin_lock(&c->space_lock);
2769                 dbg_dump_budg(c);
2770                 spin_unlock(&c->space_lock);
2771         } else if (file->f_path.dentry == d->dfs_dump_tnc) {
2772                 mutex_lock(&c->tnc_mutex);
2773                 dbg_dump_tnc(c);
2774                 mutex_unlock(&c->tnc_mutex);
2775         } else
2776                 return -EINVAL;
2777
2778         *ppos += count;
2779         return count;
2780 }
2781
2782 static const struct file_operations dfs_fops = {
2783         .open = open_debugfs_file,
2784         .write = write_debugfs_file,
2785         .owner = THIS_MODULE,
2786         .llseek = default_llseek,
2787 };
2788
2789 /**
2790  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2791  * @c: UBIFS file-system description object
2792  *
2793  * This function creates all debugfs files for this instance of UBIFS. Returns
2794  * zero in case of success and a negative error code in case of failure.
2795  *
2796  * Note, the only reason we have not merged this function with the
2797  * 'ubifs_debugging_init()' function is because it is better to initialize
2798  * debugfs interfaces at the very end of the mount process, and remove them at
2799  * the very beginning of the mount process.
2800  */
2801 int dbg_debugfs_init_fs(struct ubifs_info *c)
2802 {
2803         int err;
2804         const char *fname;
2805         struct dentry *dent;
2806         struct ubifs_debug_info *d = c->dbg;
2807
2808         sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2809         fname = d->dfs_dir_name;
2810         dent = debugfs_create_dir(fname, dfs_rootdir);
2811         if (IS_ERR(dent))
2812                 goto out;
2813         d->dfs_dir = dent;
2814
2815         fname = "dump_lprops";
2816         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2817         if (IS_ERR(dent))
2818                 goto out_remove;
2819         d->dfs_dump_lprops = dent;
2820
2821         fname = "dump_budg";
2822         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2823         if (IS_ERR(dent))
2824                 goto out_remove;
2825         d->dfs_dump_budg = dent;
2826
2827         fname = "dump_tnc";
2828         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2829         if (IS_ERR(dent))
2830                 goto out_remove;
2831         d->dfs_dump_tnc = dent;
2832
2833         return 0;
2834
2835 out_remove:
2836         debugfs_remove_recursive(d->dfs_dir);
2837 out:
2838         err = PTR_ERR(dent);
2839         ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2840                   fname, err);
2841         return err;
2842 }
2843
2844 /**
2845  * dbg_debugfs_exit_fs - remove all debugfs files.
2846  * @c: UBIFS file-system description object
2847  */
2848 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2849 {
2850         debugfs_remove_recursive(c->dbg->dfs_dir);
2851 }
2852
2853 #endif /* CONFIG_UBIFS_FS_DEBUG */