UBIFS: switch to dynamic printks
[pandora-kernel.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37
38 #ifdef CONFIG_UBIFS_FS_DEBUG
39
40 DEFINE_SPINLOCK(dbg_lock);
41
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
44
45 unsigned int ubifs_chk_flags;
46 unsigned int ubifs_tst_flags;
47
48 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
49 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
50
51 MODULE_PARM_DESC(debug_chks, "Debug check flags");
52 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
53
54 static const char *get_key_fmt(int fmt)
55 {
56         switch (fmt) {
57         case UBIFS_SIMPLE_KEY_FMT:
58                 return "simple";
59         default:
60                 return "unknown/invalid format";
61         }
62 }
63
64 static const char *get_key_hash(int hash)
65 {
66         switch (hash) {
67         case UBIFS_KEY_HASH_R5:
68                 return "R5";
69         case UBIFS_KEY_HASH_TEST:
70                 return "test";
71         default:
72                 return "unknown/invalid name hash";
73         }
74 }
75
76 static const char *get_key_type(int type)
77 {
78         switch (type) {
79         case UBIFS_INO_KEY:
80                 return "inode";
81         case UBIFS_DENT_KEY:
82                 return "direntry";
83         case UBIFS_XENT_KEY:
84                 return "xentry";
85         case UBIFS_DATA_KEY:
86                 return "data";
87         case UBIFS_TRUN_KEY:
88                 return "truncate";
89         default:
90                 return "unknown/invalid key";
91         }
92 }
93
94 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
95                         char *buffer)
96 {
97         char *p = buffer;
98         int type = key_type(c, key);
99
100         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
101                 switch (type) {
102                 case UBIFS_INO_KEY:
103                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
104                                get_key_type(type));
105                         break;
106                 case UBIFS_DENT_KEY:
107                 case UBIFS_XENT_KEY:
108                         sprintf(p, "(%lu, %s, %#08x)",
109                                 (unsigned long)key_inum(c, key),
110                                 get_key_type(type), key_hash(c, key));
111                         break;
112                 case UBIFS_DATA_KEY:
113                         sprintf(p, "(%lu, %s, %u)",
114                                 (unsigned long)key_inum(c, key),
115                                 get_key_type(type), key_block(c, key));
116                         break;
117                 case UBIFS_TRUN_KEY:
118                         sprintf(p, "(%lu, %s)",
119                                 (unsigned long)key_inum(c, key),
120                                 get_key_type(type));
121                         break;
122                 default:
123                         sprintf(p, "(bad key type: %#08x, %#08x)",
124                                 key->u32[0], key->u32[1]);
125                 }
126         } else
127                 sprintf(p, "bad key format %d", c->key_fmt);
128 }
129
130 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
131 {
132         /* dbg_lock must be held */
133         sprintf_key(c, key, dbg_key_buf0);
134         return dbg_key_buf0;
135 }
136
137 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
138 {
139         /* dbg_lock must be held */
140         sprintf_key(c, key, dbg_key_buf1);
141         return dbg_key_buf1;
142 }
143
144 const char *dbg_ntype(int type)
145 {
146         switch (type) {
147         case UBIFS_PAD_NODE:
148                 return "padding node";
149         case UBIFS_SB_NODE:
150                 return "superblock node";
151         case UBIFS_MST_NODE:
152                 return "master node";
153         case UBIFS_REF_NODE:
154                 return "reference node";
155         case UBIFS_INO_NODE:
156                 return "inode node";
157         case UBIFS_DENT_NODE:
158                 return "direntry node";
159         case UBIFS_XENT_NODE:
160                 return "xentry node";
161         case UBIFS_DATA_NODE:
162                 return "data node";
163         case UBIFS_TRUN_NODE:
164                 return "truncate node";
165         case UBIFS_IDX_NODE:
166                 return "indexing node";
167         case UBIFS_CS_NODE:
168                 return "commit start node";
169         case UBIFS_ORPH_NODE:
170                 return "orphan node";
171         default:
172                 return "unknown node";
173         }
174 }
175
176 static const char *dbg_gtype(int type)
177 {
178         switch (type) {
179         case UBIFS_NO_NODE_GROUP:
180                 return "no node group";
181         case UBIFS_IN_NODE_GROUP:
182                 return "in node group";
183         case UBIFS_LAST_OF_NODE_GROUP:
184                 return "last of node group";
185         default:
186                 return "unknown";
187         }
188 }
189
190 const char *dbg_cstate(int cmt_state)
191 {
192         switch (cmt_state) {
193         case COMMIT_RESTING:
194                 return "commit resting";
195         case COMMIT_BACKGROUND:
196                 return "background commit requested";
197         case COMMIT_REQUIRED:
198                 return "commit required";
199         case COMMIT_RUNNING_BACKGROUND:
200                 return "BACKGROUND commit running";
201         case COMMIT_RUNNING_REQUIRED:
202                 return "commit running and required";
203         case COMMIT_BROKEN:
204                 return "broken commit";
205         default:
206                 return "unknown commit state";
207         }
208 }
209
210 const char *dbg_jhead(int jhead)
211 {
212         switch (jhead) {
213         case GCHD:
214                 return "0 (GC)";
215         case BASEHD:
216                 return "1 (base)";
217         case DATAHD:
218                 return "2 (data)";
219         default:
220                 return "unknown journal head";
221         }
222 }
223
224 static void dump_ch(const struct ubifs_ch *ch)
225 {
226         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
227         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
228         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
229                dbg_ntype(ch->node_type));
230         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
231                dbg_gtype(ch->group_type));
232         printk(KERN_DEBUG "\tsqnum          %llu\n",
233                (unsigned long long)le64_to_cpu(ch->sqnum));
234         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
235 }
236
237 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
238 {
239         const struct ubifs_inode *ui = ubifs_inode(inode);
240
241         printk(KERN_DEBUG "Dump in-memory inode:");
242         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
243         printk(KERN_DEBUG "\tsize           %llu\n",
244                (unsigned long long)i_size_read(inode));
245         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
246         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
247         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
248         printk(KERN_DEBUG "\tatime          %u.%u\n",
249                (unsigned int)inode->i_atime.tv_sec,
250                (unsigned int)inode->i_atime.tv_nsec);
251         printk(KERN_DEBUG "\tmtime          %u.%u\n",
252                (unsigned int)inode->i_mtime.tv_sec,
253                (unsigned int)inode->i_mtime.tv_nsec);
254         printk(KERN_DEBUG "\tctime          %u.%u\n",
255                (unsigned int)inode->i_ctime.tv_sec,
256                (unsigned int)inode->i_ctime.tv_nsec);
257         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
258         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
259         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
260         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
261         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
262         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
263         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
264         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
265                (unsigned long long)ui->synced_i_size);
266         printk(KERN_DEBUG "\tui_size        %llu\n",
267                (unsigned long long)ui->ui_size);
268         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
269         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
270         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
271         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
272         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
273 }
274
275 void dbg_dump_node(const struct ubifs_info *c, const void *node)
276 {
277         int i, n;
278         union ubifs_key key;
279         const struct ubifs_ch *ch = node;
280
281         if (dbg_failure_mode)
282                 return;
283
284         /* If the magic is incorrect, just hexdump the first bytes */
285         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
286                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
287                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
288                                (void *)node, UBIFS_CH_SZ, 1);
289                 return;
290         }
291
292         spin_lock(&dbg_lock);
293         dump_ch(node);
294
295         switch (ch->node_type) {
296         case UBIFS_PAD_NODE:
297         {
298                 const struct ubifs_pad_node *pad = node;
299
300                 printk(KERN_DEBUG "\tpad_len        %u\n",
301                        le32_to_cpu(pad->pad_len));
302                 break;
303         }
304         case UBIFS_SB_NODE:
305         {
306                 const struct ubifs_sb_node *sup = node;
307                 unsigned int sup_flags = le32_to_cpu(sup->flags);
308
309                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
310                        (int)sup->key_hash, get_key_hash(sup->key_hash));
311                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
312                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
313                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
314                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
315                        !!(sup_flags & UBIFS_FLG_BIGLPT));
316                 printk(KERN_DEBUG "\t  space_fixup  %u\n",
317                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
318                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
319                        le32_to_cpu(sup->min_io_size));
320                 printk(KERN_DEBUG "\tleb_size       %u\n",
321                        le32_to_cpu(sup->leb_size));
322                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
323                        le32_to_cpu(sup->leb_cnt));
324                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
325                        le32_to_cpu(sup->max_leb_cnt));
326                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
327                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
328                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
329                        le32_to_cpu(sup->log_lebs));
330                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
331                        le32_to_cpu(sup->lpt_lebs));
332                 printk(KERN_DEBUG "\torph_lebs      %u\n",
333                        le32_to_cpu(sup->orph_lebs));
334                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
335                        le32_to_cpu(sup->jhead_cnt));
336                 printk(KERN_DEBUG "\tfanout         %u\n",
337                        le32_to_cpu(sup->fanout));
338                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
339                        le32_to_cpu(sup->lsave_cnt));
340                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
341                        (int)le16_to_cpu(sup->default_compr));
342                 printk(KERN_DEBUG "\trp_size        %llu\n",
343                        (unsigned long long)le64_to_cpu(sup->rp_size));
344                 printk(KERN_DEBUG "\trp_uid         %u\n",
345                        le32_to_cpu(sup->rp_uid));
346                 printk(KERN_DEBUG "\trp_gid         %u\n",
347                        le32_to_cpu(sup->rp_gid));
348                 printk(KERN_DEBUG "\tfmt_version    %u\n",
349                        le32_to_cpu(sup->fmt_version));
350                 printk(KERN_DEBUG "\ttime_gran      %u\n",
351                        le32_to_cpu(sup->time_gran));
352                 printk(KERN_DEBUG "\tUUID           %pUB\n",
353                        sup->uuid);
354                 break;
355         }
356         case UBIFS_MST_NODE:
357         {
358                 const struct ubifs_mst_node *mst = node;
359
360                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
361                        (unsigned long long)le64_to_cpu(mst->highest_inum));
362                 printk(KERN_DEBUG "\tcommit number  %llu\n",
363                        (unsigned long long)le64_to_cpu(mst->cmt_no));
364                 printk(KERN_DEBUG "\tflags          %#x\n",
365                        le32_to_cpu(mst->flags));
366                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
367                        le32_to_cpu(mst->log_lnum));
368                 printk(KERN_DEBUG "\troot_lnum      %u\n",
369                        le32_to_cpu(mst->root_lnum));
370                 printk(KERN_DEBUG "\troot_offs      %u\n",
371                        le32_to_cpu(mst->root_offs));
372                 printk(KERN_DEBUG "\troot_len       %u\n",
373                        le32_to_cpu(mst->root_len));
374                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
375                        le32_to_cpu(mst->gc_lnum));
376                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
377                        le32_to_cpu(mst->ihead_lnum));
378                 printk(KERN_DEBUG "\tihead_offs     %u\n",
379                        le32_to_cpu(mst->ihead_offs));
380                 printk(KERN_DEBUG "\tindex_size     %llu\n",
381                        (unsigned long long)le64_to_cpu(mst->index_size));
382                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
383                        le32_to_cpu(mst->lpt_lnum));
384                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
385                        le32_to_cpu(mst->lpt_offs));
386                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
387                        le32_to_cpu(mst->nhead_lnum));
388                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
389                        le32_to_cpu(mst->nhead_offs));
390                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
391                        le32_to_cpu(mst->ltab_lnum));
392                 printk(KERN_DEBUG "\tltab_offs      %u\n",
393                        le32_to_cpu(mst->ltab_offs));
394                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
395                        le32_to_cpu(mst->lsave_lnum));
396                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
397                        le32_to_cpu(mst->lsave_offs));
398                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
399                        le32_to_cpu(mst->lscan_lnum));
400                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
401                        le32_to_cpu(mst->leb_cnt));
402                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
403                        le32_to_cpu(mst->empty_lebs));
404                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
405                        le32_to_cpu(mst->idx_lebs));
406                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
407                        (unsigned long long)le64_to_cpu(mst->total_free));
408                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
409                        (unsigned long long)le64_to_cpu(mst->total_dirty));
410                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
411                        (unsigned long long)le64_to_cpu(mst->total_used));
412                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
413                        (unsigned long long)le64_to_cpu(mst->total_dead));
414                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
415                        (unsigned long long)le64_to_cpu(mst->total_dark));
416                 break;
417         }
418         case UBIFS_REF_NODE:
419         {
420                 const struct ubifs_ref_node *ref = node;
421
422                 printk(KERN_DEBUG "\tlnum           %u\n",
423                        le32_to_cpu(ref->lnum));
424                 printk(KERN_DEBUG "\toffs           %u\n",
425                        le32_to_cpu(ref->offs));
426                 printk(KERN_DEBUG "\tjhead          %u\n",
427                        le32_to_cpu(ref->jhead));
428                 break;
429         }
430         case UBIFS_INO_NODE:
431         {
432                 const struct ubifs_ino_node *ino = node;
433
434                 key_read(c, &ino->key, &key);
435                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
436                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
437                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
438                 printk(KERN_DEBUG "\tsize           %llu\n",
439                        (unsigned long long)le64_to_cpu(ino->size));
440                 printk(KERN_DEBUG "\tnlink          %u\n",
441                        le32_to_cpu(ino->nlink));
442                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
443                        (long long)le64_to_cpu(ino->atime_sec),
444                        le32_to_cpu(ino->atime_nsec));
445                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
446                        (long long)le64_to_cpu(ino->mtime_sec),
447                        le32_to_cpu(ino->mtime_nsec));
448                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
449                        (long long)le64_to_cpu(ino->ctime_sec),
450                        le32_to_cpu(ino->ctime_nsec));
451                 printk(KERN_DEBUG "\tuid            %u\n",
452                        le32_to_cpu(ino->uid));
453                 printk(KERN_DEBUG "\tgid            %u\n",
454                        le32_to_cpu(ino->gid));
455                 printk(KERN_DEBUG "\tmode           %u\n",
456                        le32_to_cpu(ino->mode));
457                 printk(KERN_DEBUG "\tflags          %#x\n",
458                        le32_to_cpu(ino->flags));
459                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
460                        le32_to_cpu(ino->xattr_cnt));
461                 printk(KERN_DEBUG "\txattr_size     %u\n",
462                        le32_to_cpu(ino->xattr_size));
463                 printk(KERN_DEBUG "\txattr_names    %u\n",
464                        le32_to_cpu(ino->xattr_names));
465                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
466                        (int)le16_to_cpu(ino->compr_type));
467                 printk(KERN_DEBUG "\tdata len       %u\n",
468                        le32_to_cpu(ino->data_len));
469                 break;
470         }
471         case UBIFS_DENT_NODE:
472         case UBIFS_XENT_NODE:
473         {
474                 const struct ubifs_dent_node *dent = node;
475                 int nlen = le16_to_cpu(dent->nlen);
476
477                 key_read(c, &dent->key, &key);
478                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
479                 printk(KERN_DEBUG "\tinum           %llu\n",
480                        (unsigned long long)le64_to_cpu(dent->inum));
481                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
482                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
483                 printk(KERN_DEBUG "\tname           ");
484
485                 if (nlen > UBIFS_MAX_NLEN)
486                         printk(KERN_DEBUG "(bad name length, not printing, "
487                                           "bad or corrupted node)");
488                 else {
489                         for (i = 0; i < nlen && dent->name[i]; i++)
490                                 printk(KERN_CONT "%c", dent->name[i]);
491                 }
492                 printk(KERN_CONT "\n");
493
494                 break;
495         }
496         case UBIFS_DATA_NODE:
497         {
498                 const struct ubifs_data_node *dn = node;
499                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
500
501                 key_read(c, &dn->key, &key);
502                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
503                 printk(KERN_DEBUG "\tsize           %u\n",
504                        le32_to_cpu(dn->size));
505                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
506                        (int)le16_to_cpu(dn->compr_type));
507                 printk(KERN_DEBUG "\tdata size      %d\n",
508                        dlen);
509                 printk(KERN_DEBUG "\tdata:\n");
510                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
511                                (void *)&dn->data, dlen, 0);
512                 break;
513         }
514         case UBIFS_TRUN_NODE:
515         {
516                 const struct ubifs_trun_node *trun = node;
517
518                 printk(KERN_DEBUG "\tinum           %u\n",
519                        le32_to_cpu(trun->inum));
520                 printk(KERN_DEBUG "\told_size       %llu\n",
521                        (unsigned long long)le64_to_cpu(trun->old_size));
522                 printk(KERN_DEBUG "\tnew_size       %llu\n",
523                        (unsigned long long)le64_to_cpu(trun->new_size));
524                 break;
525         }
526         case UBIFS_IDX_NODE:
527         {
528                 const struct ubifs_idx_node *idx = node;
529
530                 n = le16_to_cpu(idx->child_cnt);
531                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
532                 printk(KERN_DEBUG "\tlevel          %d\n",
533                        (int)le16_to_cpu(idx->level));
534                 printk(KERN_DEBUG "\tBranches:\n");
535
536                 for (i = 0; i < n && i < c->fanout - 1; i++) {
537                         const struct ubifs_branch *br;
538
539                         br = ubifs_idx_branch(c, idx, i);
540                         key_read(c, &br->key, &key);
541                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
542                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
543                                le32_to_cpu(br->len), DBGKEY(&key));
544                 }
545                 break;
546         }
547         case UBIFS_CS_NODE:
548                 break;
549         case UBIFS_ORPH_NODE:
550         {
551                 const struct ubifs_orph_node *orph = node;
552
553                 printk(KERN_DEBUG "\tcommit number  %llu\n",
554                        (unsigned long long)
555                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
556                 printk(KERN_DEBUG "\tlast node flag %llu\n",
557                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
558                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
559                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
560                 for (i = 0; i < n; i++)
561                         printk(KERN_DEBUG "\t  ino %llu\n",
562                                (unsigned long long)le64_to_cpu(orph->inos[i]));
563                 break;
564         }
565         default:
566                 printk(KERN_DEBUG "node type %d was not recognized\n",
567                        (int)ch->node_type);
568         }
569         spin_unlock(&dbg_lock);
570 }
571
572 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
573 {
574         spin_lock(&dbg_lock);
575         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
576                req->new_ino, req->dirtied_ino);
577         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
578                req->new_ino_d, req->dirtied_ino_d);
579         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
580                req->new_page, req->dirtied_page);
581         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
582                req->new_dent, req->mod_dent);
583         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
584         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
585                req->data_growth, req->dd_growth);
586         spin_unlock(&dbg_lock);
587 }
588
589 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
590 {
591         spin_lock(&dbg_lock);
592         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
593                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
594         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
595                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
596                lst->total_dirty);
597         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
598                "total_dead %lld\n", lst->total_used, lst->total_dark,
599                lst->total_dead);
600         spin_unlock(&dbg_lock);
601 }
602
603 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
604 {
605         int i;
606         struct rb_node *rb;
607         struct ubifs_bud *bud;
608         struct ubifs_gced_idx_leb *idx_gc;
609         long long available, outstanding, free;
610
611         spin_lock(&c->space_lock);
612         spin_lock(&dbg_lock);
613         printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
614                "total budget sum %lld\n", current->pid,
615                bi->data_growth + bi->dd_growth,
616                bi->data_growth + bi->dd_growth + bi->idx_growth);
617         printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
618                "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
619                bi->idx_growth);
620         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
621                "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
622                bi->uncommitted_idx);
623         printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
624                bi->page_budget, bi->inode_budget, bi->dent_budget);
625         printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
626                bi->nospace, bi->nospace_rp);
627         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
628                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
629
630         if (bi != &c->bi)
631                 /*
632                  * If we are dumping saved budgeting data, do not print
633                  * additional information which is about the current state, not
634                  * the old one which corresponded to the saved budgeting data.
635                  */
636                 goto out_unlock;
637
638         printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
639                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
640         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
641                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
642                atomic_long_read(&c->dirty_zn_cnt),
643                atomic_long_read(&c->clean_zn_cnt));
644         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
645                c->gc_lnum, c->ihead_lnum);
646
647         /* If we are in R/O mode, journal heads do not exist */
648         if (c->jheads)
649                 for (i = 0; i < c->jhead_cnt; i++)
650                         printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
651                                dbg_jhead(c->jheads[i].wbuf.jhead),
652                                c->jheads[i].wbuf.lnum);
653         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
654                 bud = rb_entry(rb, struct ubifs_bud, rb);
655                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
656         }
657         list_for_each_entry(bud, &c->old_buds, list)
658                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
659         list_for_each_entry(idx_gc, &c->idx_gc, list)
660                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
661                        idx_gc->lnum, idx_gc->unmap);
662         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
663
664         /* Print budgeting predictions */
665         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
666         outstanding = c->bi.data_growth + c->bi.dd_growth;
667         free = ubifs_get_free_space_nolock(c);
668         printk(KERN_DEBUG "Budgeting predictions:\n");
669         printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
670                available, outstanding, free);
671 out_unlock:
672         spin_unlock(&dbg_lock);
673         spin_unlock(&c->space_lock);
674 }
675
676 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
677 {
678         int i, spc, dark = 0, dead = 0;
679         struct rb_node *rb;
680         struct ubifs_bud *bud;
681
682         spc = lp->free + lp->dirty;
683         if (spc < c->dead_wm)
684                 dead = spc;
685         else
686                 dark = ubifs_calc_dark(c, spc);
687
688         if (lp->flags & LPROPS_INDEX)
689                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
690                        "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
691                        lp->dirty, c->leb_size - spc, spc, lp->flags);
692         else
693                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
694                        "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
695                        "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
696                        c->leb_size - spc, spc, dark, dead,
697                        (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
698
699         if (lp->flags & LPROPS_TAKEN) {
700                 if (lp->flags & LPROPS_INDEX)
701                         printk(KERN_CONT "index, taken");
702                 else
703                         printk(KERN_CONT "taken");
704         } else {
705                 const char *s;
706
707                 if (lp->flags & LPROPS_INDEX) {
708                         switch (lp->flags & LPROPS_CAT_MASK) {
709                         case LPROPS_DIRTY_IDX:
710                                 s = "dirty index";
711                                 break;
712                         case LPROPS_FRDI_IDX:
713                                 s = "freeable index";
714                                 break;
715                         default:
716                                 s = "index";
717                         }
718                 } else {
719                         switch (lp->flags & LPROPS_CAT_MASK) {
720                         case LPROPS_UNCAT:
721                                 s = "not categorized";
722                                 break;
723                         case LPROPS_DIRTY:
724                                 s = "dirty";
725                                 break;
726                         case LPROPS_FREE:
727                                 s = "free";
728                                 break;
729                         case LPROPS_EMPTY:
730                                 s = "empty";
731                                 break;
732                         case LPROPS_FREEABLE:
733                                 s = "freeable";
734                                 break;
735                         default:
736                                 s = NULL;
737                                 break;
738                         }
739                 }
740                 printk(KERN_CONT "%s", s);
741         }
742
743         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
744                 bud = rb_entry(rb, struct ubifs_bud, rb);
745                 if (bud->lnum == lp->lnum) {
746                         int head = 0;
747                         for (i = 0; i < c->jhead_cnt; i++) {
748                                 /*
749                                  * Note, if we are in R/O mode or in the middle
750                                  * of mounting/re-mounting, the write-buffers do
751                                  * not exist.
752                                  */
753                                 if (c->jheads &&
754                                     lp->lnum == c->jheads[i].wbuf.lnum) {
755                                         printk(KERN_CONT ", jhead %s",
756                                                dbg_jhead(i));
757                                         head = 1;
758                                 }
759                         }
760                         if (!head)
761                                 printk(KERN_CONT ", bud of jhead %s",
762                                        dbg_jhead(bud->jhead));
763                 }
764         }
765         if (lp->lnum == c->gc_lnum)
766                 printk(KERN_CONT ", GC LEB");
767         printk(KERN_CONT ")\n");
768 }
769
770 void dbg_dump_lprops(struct ubifs_info *c)
771 {
772         int lnum, err;
773         struct ubifs_lprops lp;
774         struct ubifs_lp_stats lst;
775
776         printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
777                current->pid);
778         ubifs_get_lp_stats(c, &lst);
779         dbg_dump_lstats(&lst);
780
781         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
782                 err = ubifs_read_one_lp(c, lnum, &lp);
783                 if (err)
784                         ubifs_err("cannot read lprops for LEB %d", lnum);
785
786                 dbg_dump_lprop(c, &lp);
787         }
788         printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
789                current->pid);
790 }
791
792 void dbg_dump_lpt_info(struct ubifs_info *c)
793 {
794         int i;
795
796         spin_lock(&dbg_lock);
797         printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
798         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
799         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
800         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
801         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
802         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
803         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
804         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
805         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
806         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
807         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
808         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
809         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
810         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
811         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
812         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
813         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
814         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
815         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
816         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
817         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
818                c->nhead_lnum, c->nhead_offs);
819         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
820                c->ltab_lnum, c->ltab_offs);
821         if (c->big_lpt)
822                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
823                        c->lsave_lnum, c->lsave_offs);
824         for (i = 0; i < c->lpt_lebs; i++)
825                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
826                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
827                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
828         spin_unlock(&dbg_lock);
829 }
830
831 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
832 {
833         struct ubifs_scan_leb *sleb;
834         struct ubifs_scan_node *snod;
835         void *buf;
836
837         if (dbg_failure_mode)
838                 return;
839
840         printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
841                current->pid, lnum);
842
843         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
844         if (!buf) {
845                 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
846                 return;
847         }
848
849         sleb = ubifs_scan(c, lnum, 0, buf, 0);
850         if (IS_ERR(sleb)) {
851                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
852                 goto out;
853         }
854
855         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
856                sleb->nodes_cnt, sleb->endpt);
857
858         list_for_each_entry(snod, &sleb->nodes, list) {
859                 cond_resched();
860                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
861                        snod->offs, snod->len);
862                 dbg_dump_node(c, snod->node);
863         }
864
865         printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
866                current->pid, lnum);
867         ubifs_scan_destroy(sleb);
868
869 out:
870         vfree(buf);
871         return;
872 }
873
874 void dbg_dump_znode(const struct ubifs_info *c,
875                     const struct ubifs_znode *znode)
876 {
877         int n;
878         const struct ubifs_zbranch *zbr;
879
880         spin_lock(&dbg_lock);
881         if (znode->parent)
882                 zbr = &znode->parent->zbranch[znode->iip];
883         else
884                 zbr = &c->zroot;
885
886         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
887                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
888                zbr->len, znode->parent, znode->iip, znode->level,
889                znode->child_cnt, znode->flags);
890
891         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
892                 spin_unlock(&dbg_lock);
893                 return;
894         }
895
896         printk(KERN_DEBUG "zbranches:\n");
897         for (n = 0; n < znode->child_cnt; n++) {
898                 zbr = &znode->zbranch[n];
899                 if (znode->level > 0)
900                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
901                                           "%s\n", n, zbr->znode, zbr->lnum,
902                                           zbr->offs, zbr->len,
903                                           DBGKEY(&zbr->key));
904                 else
905                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
906                                           "%s\n", n, zbr->znode, zbr->lnum,
907                                           zbr->offs, zbr->len,
908                                           DBGKEY(&zbr->key));
909         }
910         spin_unlock(&dbg_lock);
911 }
912
913 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
914 {
915         int i;
916
917         printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
918                current->pid, cat, heap->cnt);
919         for (i = 0; i < heap->cnt; i++) {
920                 struct ubifs_lprops *lprops = heap->arr[i];
921
922                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
923                        "flags %d\n", i, lprops->lnum, lprops->hpos,
924                        lprops->free, lprops->dirty, lprops->flags);
925         }
926         printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
927 }
928
929 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
930                     struct ubifs_nnode *parent, int iip)
931 {
932         int i;
933
934         printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
935         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
936                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
937         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
938                pnode->flags, iip, pnode->level, pnode->num);
939         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
940                 struct ubifs_lprops *lp = &pnode->lprops[i];
941
942                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
943                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
944         }
945 }
946
947 void dbg_dump_tnc(struct ubifs_info *c)
948 {
949         struct ubifs_znode *znode;
950         int level;
951
952         printk(KERN_DEBUG "\n");
953         printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
954         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
955         level = znode->level;
956         printk(KERN_DEBUG "== Level %d ==\n", level);
957         while (znode) {
958                 if (level != znode->level) {
959                         level = znode->level;
960                         printk(KERN_DEBUG "== Level %d ==\n", level);
961                 }
962                 dbg_dump_znode(c, znode);
963                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
964         }
965         printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
966 }
967
968 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
969                       void *priv)
970 {
971         dbg_dump_znode(c, znode);
972         return 0;
973 }
974
975 /**
976  * dbg_dump_index - dump the on-flash index.
977  * @c: UBIFS file-system description object
978  *
979  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
980  * which dumps only in-memory znodes and does not read znodes which from flash.
981  */
982 void dbg_dump_index(struct ubifs_info *c)
983 {
984         dbg_walk_index(c, NULL, dump_znode, NULL);
985 }
986
987 /**
988  * dbg_save_space_info - save information about flash space.
989  * @c: UBIFS file-system description object
990  *
991  * This function saves information about UBIFS free space, dirty space, etc, in
992  * order to check it later.
993  */
994 void dbg_save_space_info(struct ubifs_info *c)
995 {
996         struct ubifs_debug_info *d = c->dbg;
997         int freeable_cnt;
998
999         spin_lock(&c->space_lock);
1000         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1001         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1002         d->saved_idx_gc_cnt = c->idx_gc_cnt;
1003
1004         /*
1005          * We use a dirty hack here and zero out @c->freeable_cnt, because it
1006          * affects the free space calculations, and UBIFS might not know about
1007          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1008          * only when we read their lprops, and we do this only lazily, upon the
1009          * need. So at any given point of time @c->freeable_cnt might be not
1010          * exactly accurate.
1011          *
1012          * Just one example about the issue we hit when we did not zero
1013          * @c->freeable_cnt.
1014          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1015          *    amount of free space in @d->saved_free
1016          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1017          *    information from flash, where we cache LEBs from various
1018          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1019          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1020          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1021          *    -> 'ubifs_add_to_cat()').
1022          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1023          *    becomes %1.
1024          * 4. We calculate the amount of free space when the re-mount is
1025          *    finished in 'dbg_check_space_info()' and it does not match
1026          *    @d->saved_free.
1027          */
1028         freeable_cnt = c->freeable_cnt;
1029         c->freeable_cnt = 0;
1030         d->saved_free = ubifs_get_free_space_nolock(c);
1031         c->freeable_cnt = freeable_cnt;
1032         spin_unlock(&c->space_lock);
1033 }
1034
1035 /**
1036  * dbg_check_space_info - check flash space information.
1037  * @c: UBIFS file-system description object
1038  *
1039  * This function compares current flash space information with the information
1040  * which was saved when the 'dbg_save_space_info()' function was called.
1041  * Returns zero if the information has not changed, and %-EINVAL it it has
1042  * changed.
1043  */
1044 int dbg_check_space_info(struct ubifs_info *c)
1045 {
1046         struct ubifs_debug_info *d = c->dbg;
1047         struct ubifs_lp_stats lst;
1048         long long free;
1049         int freeable_cnt;
1050
1051         spin_lock(&c->space_lock);
1052         freeable_cnt = c->freeable_cnt;
1053         c->freeable_cnt = 0;
1054         free = ubifs_get_free_space_nolock(c);
1055         c->freeable_cnt = freeable_cnt;
1056         spin_unlock(&c->space_lock);
1057
1058         if (free != d->saved_free) {
1059                 ubifs_err("free space changed from %lld to %lld",
1060                           d->saved_free, free);
1061                 goto out;
1062         }
1063
1064         return 0;
1065
1066 out:
1067         ubifs_msg("saved lprops statistics dump");
1068         dbg_dump_lstats(&d->saved_lst);
1069         ubifs_msg("saved budgeting info dump");
1070         dbg_dump_budg(c, &d->saved_bi);
1071         ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1072         ubifs_msg("current lprops statistics dump");
1073         ubifs_get_lp_stats(c, &lst);
1074         dbg_dump_lstats(&lst);
1075         ubifs_msg("current budgeting info dump");
1076         dbg_dump_budg(c, &c->bi);
1077         dump_stack();
1078         return -EINVAL;
1079 }
1080
1081 /**
1082  * dbg_check_synced_i_size - check synchronized inode size.
1083  * @inode: inode to check
1084  *
1085  * If inode is clean, synchronized inode size has to be equivalent to current
1086  * inode size. This function has to be called only for locked inodes (@i_mutex
1087  * has to be locked). Returns %0 if synchronized inode size if correct, and
1088  * %-EINVAL if not.
1089  */
1090 int dbg_check_synced_i_size(struct inode *inode)
1091 {
1092         int err = 0;
1093         struct ubifs_inode *ui = ubifs_inode(inode);
1094
1095         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1096                 return 0;
1097         if (!S_ISREG(inode->i_mode))
1098                 return 0;
1099
1100         mutex_lock(&ui->ui_mutex);
1101         spin_lock(&ui->ui_lock);
1102         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1103                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1104                           "is clean", ui->ui_size, ui->synced_i_size);
1105                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1106                           inode->i_mode, i_size_read(inode));
1107                 dbg_dump_stack();
1108                 err = -EINVAL;
1109         }
1110         spin_unlock(&ui->ui_lock);
1111         mutex_unlock(&ui->ui_mutex);
1112         return err;
1113 }
1114
1115 /*
1116  * dbg_check_dir - check directory inode size and link count.
1117  * @c: UBIFS file-system description object
1118  * @dir: the directory to calculate size for
1119  * @size: the result is returned here
1120  *
1121  * This function makes sure that directory size and link count are correct.
1122  * Returns zero in case of success and a negative error code in case of
1123  * failure.
1124  *
1125  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1126  * calling this function.
1127  */
1128 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1129 {
1130         unsigned int nlink = 2;
1131         union ubifs_key key;
1132         struct ubifs_dent_node *dent, *pdent = NULL;
1133         struct qstr nm = { .name = NULL };
1134         loff_t size = UBIFS_INO_NODE_SZ;
1135
1136         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1137                 return 0;
1138
1139         if (!S_ISDIR(dir->i_mode))
1140                 return 0;
1141
1142         lowest_dent_key(c, &key, dir->i_ino);
1143         while (1) {
1144                 int err;
1145
1146                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1147                 if (IS_ERR(dent)) {
1148                         err = PTR_ERR(dent);
1149                         if (err == -ENOENT)
1150                                 break;
1151                         return err;
1152                 }
1153
1154                 nm.name = dent->name;
1155                 nm.len = le16_to_cpu(dent->nlen);
1156                 size += CALC_DENT_SIZE(nm.len);
1157                 if (dent->type == UBIFS_ITYPE_DIR)
1158                         nlink += 1;
1159                 kfree(pdent);
1160                 pdent = dent;
1161                 key_read(c, &dent->key, &key);
1162         }
1163         kfree(pdent);
1164
1165         if (i_size_read(dir) != size) {
1166                 ubifs_err("directory inode %lu has size %llu, "
1167                           "but calculated size is %llu", dir->i_ino,
1168                           (unsigned long long)i_size_read(dir),
1169                           (unsigned long long)size);
1170                 dump_stack();
1171                 return -EINVAL;
1172         }
1173         if (dir->i_nlink != nlink) {
1174                 ubifs_err("directory inode %lu has nlink %u, but calculated "
1175                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1176                 dump_stack();
1177                 return -EINVAL;
1178         }
1179
1180         return 0;
1181 }
1182
1183 /**
1184  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1185  * @c: UBIFS file-system description object
1186  * @zbr1: first zbranch
1187  * @zbr2: following zbranch
1188  *
1189  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1190  * names of the direntries/xentries which are referred by the keys. This
1191  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1192  * sure the name of direntry/xentry referred by @zbr1 is less than
1193  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1194  * and a negative error code in case of failure.
1195  */
1196 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1197                                struct ubifs_zbranch *zbr2)
1198 {
1199         int err, nlen1, nlen2, cmp;
1200         struct ubifs_dent_node *dent1, *dent2;
1201         union ubifs_key key;
1202
1203         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1204         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1205         if (!dent1)
1206                 return -ENOMEM;
1207         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1208         if (!dent2) {
1209                 err = -ENOMEM;
1210                 goto out_free;
1211         }
1212
1213         err = ubifs_tnc_read_node(c, zbr1, dent1);
1214         if (err)
1215                 goto out_free;
1216         err = ubifs_validate_entry(c, dent1);
1217         if (err)
1218                 goto out_free;
1219
1220         err = ubifs_tnc_read_node(c, zbr2, dent2);
1221         if (err)
1222                 goto out_free;
1223         err = ubifs_validate_entry(c, dent2);
1224         if (err)
1225                 goto out_free;
1226
1227         /* Make sure node keys are the same as in zbranch */
1228         err = 1;
1229         key_read(c, &dent1->key, &key);
1230         if (keys_cmp(c, &zbr1->key, &key)) {
1231                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1232                         zbr1->offs, DBGKEY(&key));
1233                 dbg_err("but it should have key %s according to tnc",
1234                         DBGKEY(&zbr1->key));
1235                 dbg_dump_node(c, dent1);
1236                 goto out_free;
1237         }
1238
1239         key_read(c, &dent2->key, &key);
1240         if (keys_cmp(c, &zbr2->key, &key)) {
1241                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1242                         zbr1->offs, DBGKEY(&key));
1243                 dbg_err("but it should have key %s according to tnc",
1244                         DBGKEY(&zbr2->key));
1245                 dbg_dump_node(c, dent2);
1246                 goto out_free;
1247         }
1248
1249         nlen1 = le16_to_cpu(dent1->nlen);
1250         nlen2 = le16_to_cpu(dent2->nlen);
1251
1252         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1253         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1254                 err = 0;
1255                 goto out_free;
1256         }
1257         if (cmp == 0 && nlen1 == nlen2)
1258                 dbg_err("2 xent/dent nodes with the same name");
1259         else
1260                 dbg_err("bad order of colliding key %s",
1261                         DBGKEY(&key));
1262
1263         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1264         dbg_dump_node(c, dent1);
1265         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1266         dbg_dump_node(c, dent2);
1267
1268 out_free:
1269         kfree(dent2);
1270         kfree(dent1);
1271         return err;
1272 }
1273
1274 /**
1275  * dbg_check_znode - check if znode is all right.
1276  * @c: UBIFS file-system description object
1277  * @zbr: zbranch which points to this znode
1278  *
1279  * This function makes sure that znode referred to by @zbr is all right.
1280  * Returns zero if it is, and %-EINVAL if it is not.
1281  */
1282 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1283 {
1284         struct ubifs_znode *znode = zbr->znode;
1285         struct ubifs_znode *zp = znode->parent;
1286         int n, err, cmp;
1287
1288         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1289                 err = 1;
1290                 goto out;
1291         }
1292         if (znode->level < 0) {
1293                 err = 2;
1294                 goto out;
1295         }
1296         if (znode->iip < 0 || znode->iip >= c->fanout) {
1297                 err = 3;
1298                 goto out;
1299         }
1300
1301         if (zbr->len == 0)
1302                 /* Only dirty zbranch may have no on-flash nodes */
1303                 if (!ubifs_zn_dirty(znode)) {
1304                         err = 4;
1305                         goto out;
1306                 }
1307
1308         if (ubifs_zn_dirty(znode)) {
1309                 /*
1310                  * If znode is dirty, its parent has to be dirty as well. The
1311                  * order of the operation is important, so we have to have
1312                  * memory barriers.
1313                  */
1314                 smp_mb();
1315                 if (zp && !ubifs_zn_dirty(zp)) {
1316                         /*
1317                          * The dirty flag is atomic and is cleared outside the
1318                          * TNC mutex, so znode's dirty flag may now have
1319                          * been cleared. The child is always cleared before the
1320                          * parent, so we just need to check again.
1321                          */
1322                         smp_mb();
1323                         if (ubifs_zn_dirty(znode)) {
1324                                 err = 5;
1325                                 goto out;
1326                         }
1327                 }
1328         }
1329
1330         if (zp) {
1331                 const union ubifs_key *min, *max;
1332
1333                 if (znode->level != zp->level - 1) {
1334                         err = 6;
1335                         goto out;
1336                 }
1337
1338                 /* Make sure the 'parent' pointer in our znode is correct */
1339                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1340                 if (!err) {
1341                         /* This zbranch does not exist in the parent */
1342                         err = 7;
1343                         goto out;
1344                 }
1345
1346                 if (znode->iip >= zp->child_cnt) {
1347                         err = 8;
1348                         goto out;
1349                 }
1350
1351                 if (znode->iip != n) {
1352                         /* This may happen only in case of collisions */
1353                         if (keys_cmp(c, &zp->zbranch[n].key,
1354                                      &zp->zbranch[znode->iip].key)) {
1355                                 err = 9;
1356                                 goto out;
1357                         }
1358                         n = znode->iip;
1359                 }
1360
1361                 /*
1362                  * Make sure that the first key in our znode is greater than or
1363                  * equal to the key in the pointing zbranch.
1364                  */
1365                 min = &zbr->key;
1366                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1367                 if (cmp == 1) {
1368                         err = 10;
1369                         goto out;
1370                 }
1371
1372                 if (n + 1 < zp->child_cnt) {
1373                         max = &zp->zbranch[n + 1].key;
1374
1375                         /*
1376                          * Make sure the last key in our znode is less or
1377                          * equivalent than the key in the zbranch which goes
1378                          * after our pointing zbranch.
1379                          */
1380                         cmp = keys_cmp(c, max,
1381                                 &znode->zbranch[znode->child_cnt - 1].key);
1382                         if (cmp == -1) {
1383                                 err = 11;
1384                                 goto out;
1385                         }
1386                 }
1387         } else {
1388                 /* This may only be root znode */
1389                 if (zbr != &c->zroot) {
1390                         err = 12;
1391                         goto out;
1392                 }
1393         }
1394
1395         /*
1396          * Make sure that next key is greater or equivalent then the previous
1397          * one.
1398          */
1399         for (n = 1; n < znode->child_cnt; n++) {
1400                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1401                                &znode->zbranch[n].key);
1402                 if (cmp > 0) {
1403                         err = 13;
1404                         goto out;
1405                 }
1406                 if (cmp == 0) {
1407                         /* This can only be keys with colliding hash */
1408                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1409                                 err = 14;
1410                                 goto out;
1411                         }
1412
1413                         if (znode->level != 0 || c->replaying)
1414                                 continue;
1415
1416                         /*
1417                          * Colliding keys should follow binary order of
1418                          * corresponding xentry/dentry names.
1419                          */
1420                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1421                                                   &znode->zbranch[n]);
1422                         if (err < 0)
1423                                 return err;
1424                         if (err) {
1425                                 err = 15;
1426                                 goto out;
1427                         }
1428                 }
1429         }
1430
1431         for (n = 0; n < znode->child_cnt; n++) {
1432                 if (!znode->zbranch[n].znode &&
1433                     (znode->zbranch[n].lnum == 0 ||
1434                      znode->zbranch[n].len == 0)) {
1435                         err = 16;
1436                         goto out;
1437                 }
1438
1439                 if (znode->zbranch[n].lnum != 0 &&
1440                     znode->zbranch[n].len == 0) {
1441                         err = 17;
1442                         goto out;
1443                 }
1444
1445                 if (znode->zbranch[n].lnum == 0 &&
1446                     znode->zbranch[n].len != 0) {
1447                         err = 18;
1448                         goto out;
1449                 }
1450
1451                 if (znode->zbranch[n].lnum == 0 &&
1452                     znode->zbranch[n].offs != 0) {
1453                         err = 19;
1454                         goto out;
1455                 }
1456
1457                 if (znode->level != 0 && znode->zbranch[n].znode)
1458                         if (znode->zbranch[n].znode->parent != znode) {
1459                                 err = 20;
1460                                 goto out;
1461                         }
1462         }
1463
1464         return 0;
1465
1466 out:
1467         ubifs_err("failed, error %d", err);
1468         ubifs_msg("dump of the znode");
1469         dbg_dump_znode(c, znode);
1470         if (zp) {
1471                 ubifs_msg("dump of the parent znode");
1472                 dbg_dump_znode(c, zp);
1473         }
1474         dump_stack();
1475         return -EINVAL;
1476 }
1477
1478 /**
1479  * dbg_check_tnc - check TNC tree.
1480  * @c: UBIFS file-system description object
1481  * @extra: do extra checks that are possible at start commit
1482  *
1483  * This function traverses whole TNC tree and checks every znode. Returns zero
1484  * if everything is all right and %-EINVAL if something is wrong with TNC.
1485  */
1486 int dbg_check_tnc(struct ubifs_info *c, int extra)
1487 {
1488         struct ubifs_znode *znode;
1489         long clean_cnt = 0, dirty_cnt = 0;
1490         int err, last;
1491
1492         if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1493                 return 0;
1494
1495         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1496         if (!c->zroot.znode)
1497                 return 0;
1498
1499         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1500         while (1) {
1501                 struct ubifs_znode *prev;
1502                 struct ubifs_zbranch *zbr;
1503
1504                 if (!znode->parent)
1505                         zbr = &c->zroot;
1506                 else
1507                         zbr = &znode->parent->zbranch[znode->iip];
1508
1509                 err = dbg_check_znode(c, zbr);
1510                 if (err)
1511                         return err;
1512
1513                 if (extra) {
1514                         if (ubifs_zn_dirty(znode))
1515                                 dirty_cnt += 1;
1516                         else
1517                                 clean_cnt += 1;
1518                 }
1519
1520                 prev = znode;
1521                 znode = ubifs_tnc_postorder_next(znode);
1522                 if (!znode)
1523                         break;
1524
1525                 /*
1526                  * If the last key of this znode is equivalent to the first key
1527                  * of the next znode (collision), then check order of the keys.
1528                  */
1529                 last = prev->child_cnt - 1;
1530                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1531                     !keys_cmp(c, &prev->zbranch[last].key,
1532                               &znode->zbranch[0].key)) {
1533                         err = dbg_check_key_order(c, &prev->zbranch[last],
1534                                                   &znode->zbranch[0]);
1535                         if (err < 0)
1536                                 return err;
1537                         if (err) {
1538                                 ubifs_msg("first znode");
1539                                 dbg_dump_znode(c, prev);
1540                                 ubifs_msg("second znode");
1541                                 dbg_dump_znode(c, znode);
1542                                 return -EINVAL;
1543                         }
1544                 }
1545         }
1546
1547         if (extra) {
1548                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1549                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1550                                   atomic_long_read(&c->clean_zn_cnt),
1551                                   clean_cnt);
1552                         return -EINVAL;
1553                 }
1554                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1555                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1556                                   atomic_long_read(&c->dirty_zn_cnt),
1557                                   dirty_cnt);
1558                         return -EINVAL;
1559                 }
1560         }
1561
1562         return 0;
1563 }
1564
1565 /**
1566  * dbg_walk_index - walk the on-flash index.
1567  * @c: UBIFS file-system description object
1568  * @leaf_cb: called for each leaf node
1569  * @znode_cb: called for each indexing node
1570  * @priv: private data which is passed to callbacks
1571  *
1572  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1573  * node and @znode_cb for each indexing node. Returns zero in case of success
1574  * and a negative error code in case of failure.
1575  *
1576  * It would be better if this function removed every znode it pulled to into
1577  * the TNC, so that the behavior more closely matched the non-debugging
1578  * behavior.
1579  */
1580 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1581                    dbg_znode_callback znode_cb, void *priv)
1582 {
1583         int err;
1584         struct ubifs_zbranch *zbr;
1585         struct ubifs_znode *znode, *child;
1586
1587         mutex_lock(&c->tnc_mutex);
1588         /* If the root indexing node is not in TNC - pull it */
1589         if (!c->zroot.znode) {
1590                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1591                 if (IS_ERR(c->zroot.znode)) {
1592                         err = PTR_ERR(c->zroot.znode);
1593                         c->zroot.znode = NULL;
1594                         goto out_unlock;
1595                 }
1596         }
1597
1598         /*
1599          * We are going to traverse the indexing tree in the postorder manner.
1600          * Go down and find the leftmost indexing node where we are going to
1601          * start from.
1602          */
1603         znode = c->zroot.znode;
1604         while (znode->level > 0) {
1605                 zbr = &znode->zbranch[0];
1606                 child = zbr->znode;
1607                 if (!child) {
1608                         child = ubifs_load_znode(c, zbr, znode, 0);
1609                         if (IS_ERR(child)) {
1610                                 err = PTR_ERR(child);
1611                                 goto out_unlock;
1612                         }
1613                         zbr->znode = child;
1614                 }
1615
1616                 znode = child;
1617         }
1618
1619         /* Iterate over all indexing nodes */
1620         while (1) {
1621                 int idx;
1622
1623                 cond_resched();
1624
1625                 if (znode_cb) {
1626                         err = znode_cb(c, znode, priv);
1627                         if (err) {
1628                                 ubifs_err("znode checking function returned "
1629                                           "error %d", err);
1630                                 dbg_dump_znode(c, znode);
1631                                 goto out_dump;
1632                         }
1633                 }
1634                 if (leaf_cb && znode->level == 0) {
1635                         for (idx = 0; idx < znode->child_cnt; idx++) {
1636                                 zbr = &znode->zbranch[idx];
1637                                 err = leaf_cb(c, zbr, priv);
1638                                 if (err) {
1639                                         ubifs_err("leaf checking function "
1640                                                   "returned error %d, for leaf "
1641                                                   "at LEB %d:%d",
1642                                                   err, zbr->lnum, zbr->offs);
1643                                         goto out_dump;
1644                                 }
1645                         }
1646                 }
1647
1648                 if (!znode->parent)
1649                         break;
1650
1651                 idx = znode->iip + 1;
1652                 znode = znode->parent;
1653                 if (idx < znode->child_cnt) {
1654                         /* Switch to the next index in the parent */
1655                         zbr = &znode->zbranch[idx];
1656                         child = zbr->znode;
1657                         if (!child) {
1658                                 child = ubifs_load_znode(c, zbr, znode, idx);
1659                                 if (IS_ERR(child)) {
1660                                         err = PTR_ERR(child);
1661                                         goto out_unlock;
1662                                 }
1663                                 zbr->znode = child;
1664                         }
1665                         znode = child;
1666                 } else
1667                         /*
1668                          * This is the last child, switch to the parent and
1669                          * continue.
1670                          */
1671                         continue;
1672
1673                 /* Go to the lowest leftmost znode in the new sub-tree */
1674                 while (znode->level > 0) {
1675                         zbr = &znode->zbranch[0];
1676                         child = zbr->znode;
1677                         if (!child) {
1678                                 child = ubifs_load_znode(c, zbr, znode, 0);
1679                                 if (IS_ERR(child)) {
1680                                         err = PTR_ERR(child);
1681                                         goto out_unlock;
1682                                 }
1683                                 zbr->znode = child;
1684                         }
1685                         znode = child;
1686                 }
1687         }
1688
1689         mutex_unlock(&c->tnc_mutex);
1690         return 0;
1691
1692 out_dump:
1693         if (znode->parent)
1694                 zbr = &znode->parent->zbranch[znode->iip];
1695         else
1696                 zbr = &c->zroot;
1697         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1698         dbg_dump_znode(c, znode);
1699 out_unlock:
1700         mutex_unlock(&c->tnc_mutex);
1701         return err;
1702 }
1703
1704 /**
1705  * add_size - add znode size to partially calculated index size.
1706  * @c: UBIFS file-system description object
1707  * @znode: znode to add size for
1708  * @priv: partially calculated index size
1709  *
1710  * This is a helper function for 'dbg_check_idx_size()' which is called for
1711  * every indexing node and adds its size to the 'long long' variable pointed to
1712  * by @priv.
1713  */
1714 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1715 {
1716         long long *idx_size = priv;
1717         int add;
1718
1719         add = ubifs_idx_node_sz(c, znode->child_cnt);
1720         add = ALIGN(add, 8);
1721         *idx_size += add;
1722         return 0;
1723 }
1724
1725 /**
1726  * dbg_check_idx_size - check index size.
1727  * @c: UBIFS file-system description object
1728  * @idx_size: size to check
1729  *
1730  * This function walks the UBIFS index, calculates its size and checks that the
1731  * size is equivalent to @idx_size. Returns zero in case of success and a
1732  * negative error code in case of failure.
1733  */
1734 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1735 {
1736         int err;
1737         long long calc = 0;
1738
1739         if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1740                 return 0;
1741
1742         err = dbg_walk_index(c, NULL, add_size, &calc);
1743         if (err) {
1744                 ubifs_err("error %d while walking the index", err);
1745                 return err;
1746         }
1747
1748         if (calc != idx_size) {
1749                 ubifs_err("index size check failed: calculated size is %lld, "
1750                           "should be %lld", calc, idx_size);
1751                 dump_stack();
1752                 return -EINVAL;
1753         }
1754
1755         return 0;
1756 }
1757
1758 /**
1759  * struct fsck_inode - information about an inode used when checking the file-system.
1760  * @rb: link in the RB-tree of inodes
1761  * @inum: inode number
1762  * @mode: inode type, permissions, etc
1763  * @nlink: inode link count
1764  * @xattr_cnt: count of extended attributes
1765  * @references: how many directory/xattr entries refer this inode (calculated
1766  *              while walking the index)
1767  * @calc_cnt: for directory inode count of child directories
1768  * @size: inode size (read from on-flash inode)
1769  * @xattr_sz: summary size of all extended attributes (read from on-flash
1770  *            inode)
1771  * @calc_sz: for directories calculated directory size
1772  * @calc_xcnt: count of extended attributes
1773  * @calc_xsz: calculated summary size of all extended attributes
1774  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1775  *             inode (read from on-flash inode)
1776  * @calc_xnms: calculated sum of lengths of all extended attribute names
1777  */
1778 struct fsck_inode {
1779         struct rb_node rb;
1780         ino_t inum;
1781         umode_t mode;
1782         unsigned int nlink;
1783         unsigned int xattr_cnt;
1784         int references;
1785         int calc_cnt;
1786         long long size;
1787         unsigned int xattr_sz;
1788         long long calc_sz;
1789         long long calc_xcnt;
1790         long long calc_xsz;
1791         unsigned int xattr_nms;
1792         long long calc_xnms;
1793 };
1794
1795 /**
1796  * struct fsck_data - private FS checking information.
1797  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1798  */
1799 struct fsck_data {
1800         struct rb_root inodes;
1801 };
1802
1803 /**
1804  * add_inode - add inode information to RB-tree of inodes.
1805  * @c: UBIFS file-system description object
1806  * @fsckd: FS checking information
1807  * @ino: raw UBIFS inode to add
1808  *
1809  * This is a helper function for 'check_leaf()' which adds information about
1810  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1811  * case of success and a negative error code in case of failure.
1812  */
1813 static struct fsck_inode *add_inode(struct ubifs_info *c,
1814                                     struct fsck_data *fsckd,
1815                                     struct ubifs_ino_node *ino)
1816 {
1817         struct rb_node **p, *parent = NULL;
1818         struct fsck_inode *fscki;
1819         ino_t inum = key_inum_flash(c, &ino->key);
1820         struct inode *inode;
1821         struct ubifs_inode *ui;
1822
1823         p = &fsckd->inodes.rb_node;
1824         while (*p) {
1825                 parent = *p;
1826                 fscki = rb_entry(parent, struct fsck_inode, rb);
1827                 if (inum < fscki->inum)
1828                         p = &(*p)->rb_left;
1829                 else if (inum > fscki->inum)
1830                         p = &(*p)->rb_right;
1831                 else
1832                         return fscki;
1833         }
1834
1835         if (inum > c->highest_inum) {
1836                 ubifs_err("too high inode number, max. is %lu",
1837                           (unsigned long)c->highest_inum);
1838                 return ERR_PTR(-EINVAL);
1839         }
1840
1841         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1842         if (!fscki)
1843                 return ERR_PTR(-ENOMEM);
1844
1845         inode = ilookup(c->vfs_sb, inum);
1846
1847         fscki->inum = inum;
1848         /*
1849          * If the inode is present in the VFS inode cache, use it instead of
1850          * the on-flash inode which might be out-of-date. E.g., the size might
1851          * be out-of-date. If we do not do this, the following may happen, for
1852          * example:
1853          *   1. A power cut happens
1854          *   2. We mount the file-system R/O, the replay process fixes up the
1855          *      inode size in the VFS cache, but on on-flash.
1856          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1857          *      size.
1858          */
1859         if (!inode) {
1860                 fscki->nlink = le32_to_cpu(ino->nlink);
1861                 fscki->size = le64_to_cpu(ino->size);
1862                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1863                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1864                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1865                 fscki->mode = le32_to_cpu(ino->mode);
1866         } else {
1867                 ui = ubifs_inode(inode);
1868                 fscki->nlink = inode->i_nlink;
1869                 fscki->size = inode->i_size;
1870                 fscki->xattr_cnt = ui->xattr_cnt;
1871                 fscki->xattr_sz = ui->xattr_size;
1872                 fscki->xattr_nms = ui->xattr_names;
1873                 fscki->mode = inode->i_mode;
1874                 iput(inode);
1875         }
1876
1877         if (S_ISDIR(fscki->mode)) {
1878                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1879                 fscki->calc_cnt = 2;
1880         }
1881
1882         rb_link_node(&fscki->rb, parent, p);
1883         rb_insert_color(&fscki->rb, &fsckd->inodes);
1884
1885         return fscki;
1886 }
1887
1888 /**
1889  * search_inode - search inode in the RB-tree of inodes.
1890  * @fsckd: FS checking information
1891  * @inum: inode number to search
1892  *
1893  * This is a helper function for 'check_leaf()' which searches inode @inum in
1894  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1895  * the inode was not found.
1896  */
1897 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1898 {
1899         struct rb_node *p;
1900         struct fsck_inode *fscki;
1901
1902         p = fsckd->inodes.rb_node;
1903         while (p) {
1904                 fscki = rb_entry(p, struct fsck_inode, rb);
1905                 if (inum < fscki->inum)
1906                         p = p->rb_left;
1907                 else if (inum > fscki->inum)
1908                         p = p->rb_right;
1909                 else
1910                         return fscki;
1911         }
1912         return NULL;
1913 }
1914
1915 /**
1916  * read_add_inode - read inode node and add it to RB-tree of inodes.
1917  * @c: UBIFS file-system description object
1918  * @fsckd: FS checking information
1919  * @inum: inode number to read
1920  *
1921  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1922  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1923  * information pointer in case of success and a negative error code in case of
1924  * failure.
1925  */
1926 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1927                                          struct fsck_data *fsckd, ino_t inum)
1928 {
1929         int n, err;
1930         union ubifs_key key;
1931         struct ubifs_znode *znode;
1932         struct ubifs_zbranch *zbr;
1933         struct ubifs_ino_node *ino;
1934         struct fsck_inode *fscki;
1935
1936         fscki = search_inode(fsckd, inum);
1937         if (fscki)
1938                 return fscki;
1939
1940         ino_key_init(c, &key, inum);
1941         err = ubifs_lookup_level0(c, &key, &znode, &n);
1942         if (!err) {
1943                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1944                 return ERR_PTR(-ENOENT);
1945         } else if (err < 0) {
1946                 ubifs_err("error %d while looking up inode %lu",
1947                           err, (unsigned long)inum);
1948                 return ERR_PTR(err);
1949         }
1950
1951         zbr = &znode->zbranch[n];
1952         if (zbr->len < UBIFS_INO_NODE_SZ) {
1953                 ubifs_err("bad node %lu node length %d",
1954                           (unsigned long)inum, zbr->len);
1955                 return ERR_PTR(-EINVAL);
1956         }
1957
1958         ino = kmalloc(zbr->len, GFP_NOFS);
1959         if (!ino)
1960                 return ERR_PTR(-ENOMEM);
1961
1962         err = ubifs_tnc_read_node(c, zbr, ino);
1963         if (err) {
1964                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1965                           zbr->lnum, zbr->offs, err);
1966                 kfree(ino);
1967                 return ERR_PTR(err);
1968         }
1969
1970         fscki = add_inode(c, fsckd, ino);
1971         kfree(ino);
1972         if (IS_ERR(fscki)) {
1973                 ubifs_err("error %ld while adding inode %lu node",
1974                           PTR_ERR(fscki), (unsigned long)inum);
1975                 return fscki;
1976         }
1977
1978         return fscki;
1979 }
1980
1981 /**
1982  * check_leaf - check leaf node.
1983  * @c: UBIFS file-system description object
1984  * @zbr: zbranch of the leaf node to check
1985  * @priv: FS checking information
1986  *
1987  * This is a helper function for 'dbg_check_filesystem()' which is called for
1988  * every single leaf node while walking the indexing tree. It checks that the
1989  * leaf node referred from the indexing tree exists, has correct CRC, and does
1990  * some other basic validation. This function is also responsible for building
1991  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1992  * calculates reference count, size, etc for each inode in order to later
1993  * compare them to the information stored inside the inodes and detect possible
1994  * inconsistencies. Returns zero in case of success and a negative error code
1995  * in case of failure.
1996  */
1997 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1998                       void *priv)
1999 {
2000         ino_t inum;
2001         void *node;
2002         struct ubifs_ch *ch;
2003         int err, type = key_type(c, &zbr->key);
2004         struct fsck_inode *fscki;
2005
2006         if (zbr->len < UBIFS_CH_SZ) {
2007                 ubifs_err("bad leaf length %d (LEB %d:%d)",
2008                           zbr->len, zbr->lnum, zbr->offs);
2009                 return -EINVAL;
2010         }
2011
2012         node = kmalloc(zbr->len, GFP_NOFS);
2013         if (!node)
2014                 return -ENOMEM;
2015
2016         err = ubifs_tnc_read_node(c, zbr, node);
2017         if (err) {
2018                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2019                           zbr->lnum, zbr->offs, err);
2020                 goto out_free;
2021         }
2022
2023         /* If this is an inode node, add it to RB-tree of inodes */
2024         if (type == UBIFS_INO_KEY) {
2025                 fscki = add_inode(c, priv, node);
2026                 if (IS_ERR(fscki)) {
2027                         err = PTR_ERR(fscki);
2028                         ubifs_err("error %d while adding inode node", err);
2029                         goto out_dump;
2030                 }
2031                 goto out;
2032         }
2033
2034         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2035             type != UBIFS_DATA_KEY) {
2036                 ubifs_err("unexpected node type %d at LEB %d:%d",
2037                           type, zbr->lnum, zbr->offs);
2038                 err = -EINVAL;
2039                 goto out_free;
2040         }
2041
2042         ch = node;
2043         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2044                 ubifs_err("too high sequence number, max. is %llu",
2045                           c->max_sqnum);
2046                 err = -EINVAL;
2047                 goto out_dump;
2048         }
2049
2050         if (type == UBIFS_DATA_KEY) {
2051                 long long blk_offs;
2052                 struct ubifs_data_node *dn = node;
2053
2054                 /*
2055                  * Search the inode node this data node belongs to and insert
2056                  * it to the RB-tree of inodes.
2057                  */
2058                 inum = key_inum_flash(c, &dn->key);
2059                 fscki = read_add_inode(c, priv, inum);
2060                 if (IS_ERR(fscki)) {
2061                         err = PTR_ERR(fscki);
2062                         ubifs_err("error %d while processing data node and "
2063                                   "trying to find inode node %lu",
2064                                   err, (unsigned long)inum);
2065                         goto out_dump;
2066                 }
2067
2068                 /* Make sure the data node is within inode size */
2069                 blk_offs = key_block_flash(c, &dn->key);
2070                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2071                 blk_offs += le32_to_cpu(dn->size);
2072                 if (blk_offs > fscki->size) {
2073                         ubifs_err("data node at LEB %d:%d is not within inode "
2074                                   "size %lld", zbr->lnum, zbr->offs,
2075                                   fscki->size);
2076                         err = -EINVAL;
2077                         goto out_dump;
2078                 }
2079         } else {
2080                 int nlen;
2081                 struct ubifs_dent_node *dent = node;
2082                 struct fsck_inode *fscki1;
2083
2084                 err = ubifs_validate_entry(c, dent);
2085                 if (err)
2086                         goto out_dump;
2087
2088                 /*
2089                  * Search the inode node this entry refers to and the parent
2090                  * inode node and insert them to the RB-tree of inodes.
2091                  */
2092                 inum = le64_to_cpu(dent->inum);
2093                 fscki = read_add_inode(c, priv, inum);
2094                 if (IS_ERR(fscki)) {
2095                         err = PTR_ERR(fscki);
2096                         ubifs_err("error %d while processing entry node and "
2097                                   "trying to find inode node %lu",
2098                                   err, (unsigned long)inum);
2099                         goto out_dump;
2100                 }
2101
2102                 /* Count how many direntries or xentries refers this inode */
2103                 fscki->references += 1;
2104
2105                 inum = key_inum_flash(c, &dent->key);
2106                 fscki1 = read_add_inode(c, priv, inum);
2107                 if (IS_ERR(fscki1)) {
2108                         err = PTR_ERR(fscki1);
2109                         ubifs_err("error %d while processing entry node and "
2110                                   "trying to find parent inode node %lu",
2111                                   err, (unsigned long)inum);
2112                         goto out_dump;
2113                 }
2114
2115                 nlen = le16_to_cpu(dent->nlen);
2116                 if (type == UBIFS_XENT_KEY) {
2117                         fscki1->calc_xcnt += 1;
2118                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2119                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2120                         fscki1->calc_xnms += nlen;
2121                 } else {
2122                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2123                         if (dent->type == UBIFS_ITYPE_DIR)
2124                                 fscki1->calc_cnt += 1;
2125                 }
2126         }
2127
2128 out:
2129         kfree(node);
2130         return 0;
2131
2132 out_dump:
2133         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2134         dbg_dump_node(c, node);
2135 out_free:
2136         kfree(node);
2137         return err;
2138 }
2139
2140 /**
2141  * free_inodes - free RB-tree of inodes.
2142  * @fsckd: FS checking information
2143  */
2144 static void free_inodes(struct fsck_data *fsckd)
2145 {
2146         struct rb_node *this = fsckd->inodes.rb_node;
2147         struct fsck_inode *fscki;
2148
2149         while (this) {
2150                 if (this->rb_left)
2151                         this = this->rb_left;
2152                 else if (this->rb_right)
2153                         this = this->rb_right;
2154                 else {
2155                         fscki = rb_entry(this, struct fsck_inode, rb);
2156                         this = rb_parent(this);
2157                         if (this) {
2158                                 if (this->rb_left == &fscki->rb)
2159                                         this->rb_left = NULL;
2160                                 else
2161                                         this->rb_right = NULL;
2162                         }
2163                         kfree(fscki);
2164                 }
2165         }
2166 }
2167
2168 /**
2169  * check_inodes - checks all inodes.
2170  * @c: UBIFS file-system description object
2171  * @fsckd: FS checking information
2172  *
2173  * This is a helper function for 'dbg_check_filesystem()' which walks the
2174  * RB-tree of inodes after the index scan has been finished, and checks that
2175  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2176  * %-EINVAL if not, and a negative error code in case of failure.
2177  */
2178 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2179 {
2180         int n, err;
2181         union ubifs_key key;
2182         struct ubifs_znode *znode;
2183         struct ubifs_zbranch *zbr;
2184         struct ubifs_ino_node *ino;
2185         struct fsck_inode *fscki;
2186         struct rb_node *this = rb_first(&fsckd->inodes);
2187
2188         while (this) {
2189                 fscki = rb_entry(this, struct fsck_inode, rb);
2190                 this = rb_next(this);
2191
2192                 if (S_ISDIR(fscki->mode)) {
2193                         /*
2194                          * Directories have to have exactly one reference (they
2195                          * cannot have hardlinks), although root inode is an
2196                          * exception.
2197                          */
2198                         if (fscki->inum != UBIFS_ROOT_INO &&
2199                             fscki->references != 1) {
2200                                 ubifs_err("directory inode %lu has %d "
2201                                           "direntries which refer it, but "
2202                                           "should be 1",
2203                                           (unsigned long)fscki->inum,
2204                                           fscki->references);
2205                                 goto out_dump;
2206                         }
2207                         if (fscki->inum == UBIFS_ROOT_INO &&
2208                             fscki->references != 0) {
2209                                 ubifs_err("root inode %lu has non-zero (%d) "
2210                                           "direntries which refer it",
2211                                           (unsigned long)fscki->inum,
2212                                           fscki->references);
2213                                 goto out_dump;
2214                         }
2215                         if (fscki->calc_sz != fscki->size) {
2216                                 ubifs_err("directory inode %lu size is %lld, "
2217                                           "but calculated size is %lld",
2218                                           (unsigned long)fscki->inum,
2219                                           fscki->size, fscki->calc_sz);
2220                                 goto out_dump;
2221                         }
2222                         if (fscki->calc_cnt != fscki->nlink) {
2223                                 ubifs_err("directory inode %lu nlink is %d, "
2224                                           "but calculated nlink is %d",
2225                                           (unsigned long)fscki->inum,
2226                                           fscki->nlink, fscki->calc_cnt);
2227                                 goto out_dump;
2228                         }
2229                 } else {
2230                         if (fscki->references != fscki->nlink) {
2231                                 ubifs_err("inode %lu nlink is %d, but "
2232                                           "calculated nlink is %d",
2233                                           (unsigned long)fscki->inum,
2234                                           fscki->nlink, fscki->references);
2235                                 goto out_dump;
2236                         }
2237                 }
2238                 if (fscki->xattr_sz != fscki->calc_xsz) {
2239                         ubifs_err("inode %lu has xattr size %u, but "
2240                                   "calculated size is %lld",
2241                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2242                                   fscki->calc_xsz);
2243                         goto out_dump;
2244                 }
2245                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2246                         ubifs_err("inode %lu has %u xattrs, but "
2247                                   "calculated count is %lld",
2248                                   (unsigned long)fscki->inum,
2249                                   fscki->xattr_cnt, fscki->calc_xcnt);
2250                         goto out_dump;
2251                 }
2252                 if (fscki->xattr_nms != fscki->calc_xnms) {
2253                         ubifs_err("inode %lu has xattr names' size %u, but "
2254                                   "calculated names' size is %lld",
2255                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2256                                   fscki->calc_xnms);
2257                         goto out_dump;
2258                 }
2259         }
2260
2261         return 0;
2262
2263 out_dump:
2264         /* Read the bad inode and dump it */
2265         ino_key_init(c, &key, fscki->inum);
2266         err = ubifs_lookup_level0(c, &key, &znode, &n);
2267         if (!err) {
2268                 ubifs_err("inode %lu not found in index",
2269                           (unsigned long)fscki->inum);
2270                 return -ENOENT;
2271         } else if (err < 0) {
2272                 ubifs_err("error %d while looking up inode %lu",
2273                           err, (unsigned long)fscki->inum);
2274                 return err;
2275         }
2276
2277         zbr = &znode->zbranch[n];
2278         ino = kmalloc(zbr->len, GFP_NOFS);
2279         if (!ino)
2280                 return -ENOMEM;
2281
2282         err = ubifs_tnc_read_node(c, zbr, ino);
2283         if (err) {
2284                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2285                           zbr->lnum, zbr->offs, err);
2286                 kfree(ino);
2287                 return err;
2288         }
2289
2290         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2291                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2292         dbg_dump_node(c, ino);
2293         kfree(ino);
2294         return -EINVAL;
2295 }
2296
2297 /**
2298  * dbg_check_filesystem - check the file-system.
2299  * @c: UBIFS file-system description object
2300  *
2301  * This function checks the file system, namely:
2302  * o makes sure that all leaf nodes exist and their CRCs are correct;
2303  * o makes sure inode nlink, size, xattr size/count are correct (for all
2304  *   inodes).
2305  *
2306  * The function reads whole indexing tree and all nodes, so it is pretty
2307  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2308  * not, and a negative error code in case of failure.
2309  */
2310 int dbg_check_filesystem(struct ubifs_info *c)
2311 {
2312         int err;
2313         struct fsck_data fsckd;
2314
2315         if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2316                 return 0;
2317
2318         fsckd.inodes = RB_ROOT;
2319         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2320         if (err)
2321                 goto out_free;
2322
2323         err = check_inodes(c, &fsckd);
2324         if (err)
2325                 goto out_free;
2326
2327         free_inodes(&fsckd);
2328         return 0;
2329
2330 out_free:
2331         ubifs_err("file-system check failed with error %d", err);
2332         dump_stack();
2333         free_inodes(&fsckd);
2334         return err;
2335 }
2336
2337 /**
2338  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2339  * @c: UBIFS file-system description object
2340  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2341  *
2342  * This function returns zero if the list of data nodes is sorted correctly,
2343  * and %-EINVAL if not.
2344  */
2345 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2346 {
2347         struct list_head *cur;
2348         struct ubifs_scan_node *sa, *sb;
2349
2350         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2351                 return 0;
2352
2353         for (cur = head->next; cur->next != head; cur = cur->next) {
2354                 ino_t inuma, inumb;
2355                 uint32_t blka, blkb;
2356
2357                 cond_resched();
2358                 sa = container_of(cur, struct ubifs_scan_node, list);
2359                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2360
2361                 if (sa->type != UBIFS_DATA_NODE) {
2362                         ubifs_err("bad node type %d", sa->type);
2363                         dbg_dump_node(c, sa->node);
2364                         return -EINVAL;
2365                 }
2366                 if (sb->type != UBIFS_DATA_NODE) {
2367                         ubifs_err("bad node type %d", sb->type);
2368                         dbg_dump_node(c, sb->node);
2369                         return -EINVAL;
2370                 }
2371
2372                 inuma = key_inum(c, &sa->key);
2373                 inumb = key_inum(c, &sb->key);
2374
2375                 if (inuma < inumb)
2376                         continue;
2377                 if (inuma > inumb) {
2378                         ubifs_err("larger inum %lu goes before inum %lu",
2379                                   (unsigned long)inuma, (unsigned long)inumb);
2380                         goto error_dump;
2381                 }
2382
2383                 blka = key_block(c, &sa->key);
2384                 blkb = key_block(c, &sb->key);
2385
2386                 if (blka > blkb) {
2387                         ubifs_err("larger block %u goes before %u", blka, blkb);
2388                         goto error_dump;
2389                 }
2390                 if (blka == blkb) {
2391                         ubifs_err("two data nodes for the same block");
2392                         goto error_dump;
2393                 }
2394         }
2395
2396         return 0;
2397
2398 error_dump:
2399         dbg_dump_node(c, sa->node);
2400         dbg_dump_node(c, sb->node);
2401         return -EINVAL;
2402 }
2403
2404 /**
2405  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2406  * @c: UBIFS file-system description object
2407  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2408  *
2409  * This function returns zero if the list of non-data nodes is sorted correctly,
2410  * and %-EINVAL if not.
2411  */
2412 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2413 {
2414         struct list_head *cur;
2415         struct ubifs_scan_node *sa, *sb;
2416
2417         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2418                 return 0;
2419
2420         for (cur = head->next; cur->next != head; cur = cur->next) {
2421                 ino_t inuma, inumb;
2422                 uint32_t hasha, hashb;
2423
2424                 cond_resched();
2425                 sa = container_of(cur, struct ubifs_scan_node, list);
2426                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2427
2428                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2429                     sa->type != UBIFS_XENT_NODE) {
2430                         ubifs_err("bad node type %d", sa->type);
2431                         dbg_dump_node(c, sa->node);
2432                         return -EINVAL;
2433                 }
2434                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2435                     sa->type != UBIFS_XENT_NODE) {
2436                         ubifs_err("bad node type %d", sb->type);
2437                         dbg_dump_node(c, sb->node);
2438                         return -EINVAL;
2439                 }
2440
2441                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2442                         ubifs_err("non-inode node goes before inode node");
2443                         goto error_dump;
2444                 }
2445
2446                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2447                         continue;
2448
2449                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2450                         /* Inode nodes are sorted in descending size order */
2451                         if (sa->len < sb->len) {
2452                                 ubifs_err("smaller inode node goes first");
2453                                 goto error_dump;
2454                         }
2455                         continue;
2456                 }
2457
2458                 /*
2459                  * This is either a dentry or xentry, which should be sorted in
2460                  * ascending (parent ino, hash) order.
2461                  */
2462                 inuma = key_inum(c, &sa->key);
2463                 inumb = key_inum(c, &sb->key);
2464
2465                 if (inuma < inumb)
2466                         continue;
2467                 if (inuma > inumb) {
2468                         ubifs_err("larger inum %lu goes before inum %lu",
2469                                   (unsigned long)inuma, (unsigned long)inumb);
2470                         goto error_dump;
2471                 }
2472
2473                 hasha = key_block(c, &sa->key);
2474                 hashb = key_block(c, &sb->key);
2475
2476                 if (hasha > hashb) {
2477                         ubifs_err("larger hash %u goes before %u",
2478                                   hasha, hashb);
2479                         goto error_dump;
2480                 }
2481         }
2482
2483         return 0;
2484
2485 error_dump:
2486         ubifs_msg("dumping first node");
2487         dbg_dump_node(c, sa->node);
2488         ubifs_msg("dumping second node");
2489         dbg_dump_node(c, sb->node);
2490         return -EINVAL;
2491         return 0;
2492 }
2493
2494 int dbg_force_in_the_gaps(void)
2495 {
2496         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2497                 return 0;
2498
2499         return !(random32() & 7);
2500 }
2501
2502 /* Failure mode for recovery testing */
2503
2504 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2505
2506 struct failure_mode_info {
2507         struct list_head list;
2508         struct ubifs_info *c;
2509 };
2510
2511 static LIST_HEAD(fmi_list);
2512 static DEFINE_SPINLOCK(fmi_lock);
2513
2514 static unsigned int next;
2515
2516 static int simple_rand(void)
2517 {
2518         if (next == 0)
2519                 next = current->pid;
2520         next = next * 1103515245 + 12345;
2521         return (next >> 16) & 32767;
2522 }
2523
2524 static void failure_mode_init(struct ubifs_info *c)
2525 {
2526         struct failure_mode_info *fmi;
2527
2528         fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2529         if (!fmi) {
2530                 ubifs_err("Failed to register failure mode - no memory");
2531                 return;
2532         }
2533         fmi->c = c;
2534         spin_lock(&fmi_lock);
2535         list_add_tail(&fmi->list, &fmi_list);
2536         spin_unlock(&fmi_lock);
2537 }
2538
2539 static void failure_mode_exit(struct ubifs_info *c)
2540 {
2541         struct failure_mode_info *fmi, *tmp;
2542
2543         spin_lock(&fmi_lock);
2544         list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2545                 if (fmi->c == c) {
2546                         list_del(&fmi->list);
2547                         kfree(fmi);
2548                 }
2549         spin_unlock(&fmi_lock);
2550 }
2551
2552 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2553 {
2554         struct failure_mode_info *fmi;
2555
2556         spin_lock(&fmi_lock);
2557         list_for_each_entry(fmi, &fmi_list, list)
2558                 if (fmi->c->ubi == desc) {
2559                         struct ubifs_info *c = fmi->c;
2560
2561                         spin_unlock(&fmi_lock);
2562                         return c;
2563                 }
2564         spin_unlock(&fmi_lock);
2565         return NULL;
2566 }
2567
2568 static int in_failure_mode(struct ubi_volume_desc *desc)
2569 {
2570         struct ubifs_info *c = dbg_find_info(desc);
2571
2572         if (c && dbg_failure_mode)
2573                 return c->dbg->failure_mode;
2574         return 0;
2575 }
2576
2577 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2578 {
2579         struct ubifs_info *c = dbg_find_info(desc);
2580         struct ubifs_debug_info *d;
2581
2582         if (!c || !dbg_failure_mode)
2583                 return 0;
2584         d = c->dbg;
2585         if (d->failure_mode)
2586                 return 1;
2587         if (!d->fail_cnt) {
2588                 /* First call - decide delay to failure */
2589                 if (chance(1, 2)) {
2590                         unsigned int delay = 1 << (simple_rand() >> 11);
2591
2592                         if (chance(1, 2)) {
2593                                 d->fail_delay = 1;
2594                                 d->fail_timeout = jiffies +
2595                                                   msecs_to_jiffies(delay);
2596                                 dbg_rcvry("failing after %ums", delay);
2597                         } else {
2598                                 d->fail_delay = 2;
2599                                 d->fail_cnt_max = delay;
2600                                 dbg_rcvry("failing after %u calls", delay);
2601                         }
2602                 }
2603                 d->fail_cnt += 1;
2604         }
2605         /* Determine if failure delay has expired */
2606         if (d->fail_delay == 1) {
2607                 if (time_before(jiffies, d->fail_timeout))
2608                         return 0;
2609         } else if (d->fail_delay == 2)
2610                 if (d->fail_cnt++ < d->fail_cnt_max)
2611                         return 0;
2612         if (lnum == UBIFS_SB_LNUM) {
2613                 if (write) {
2614                         if (chance(1, 2))
2615                                 return 0;
2616                 } else if (chance(19, 20))
2617                         return 0;
2618                 dbg_rcvry("failing in super block LEB %d", lnum);
2619         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2620                 if (chance(19, 20))
2621                         return 0;
2622                 dbg_rcvry("failing in master LEB %d", lnum);
2623         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2624                 if (write) {
2625                         if (chance(99, 100))
2626                                 return 0;
2627                 } else if (chance(399, 400))
2628                         return 0;
2629                 dbg_rcvry("failing in log LEB %d", lnum);
2630         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2631                 if (write) {
2632                         if (chance(7, 8))
2633                                 return 0;
2634                 } else if (chance(19, 20))
2635                         return 0;
2636                 dbg_rcvry("failing in LPT LEB %d", lnum);
2637         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2638                 if (write) {
2639                         if (chance(1, 2))
2640                                 return 0;
2641                 } else if (chance(9, 10))
2642                         return 0;
2643                 dbg_rcvry("failing in orphan LEB %d", lnum);
2644         } else if (lnum == c->ihead_lnum) {
2645                 if (chance(99, 100))
2646                         return 0;
2647                 dbg_rcvry("failing in index head LEB %d", lnum);
2648         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2649                 if (chance(9, 10))
2650                         return 0;
2651                 dbg_rcvry("failing in GC head LEB %d", lnum);
2652         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2653                    !ubifs_search_bud(c, lnum)) {
2654                 if (chance(19, 20))
2655                         return 0;
2656                 dbg_rcvry("failing in non-bud LEB %d", lnum);
2657         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2658                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2659                 if (chance(999, 1000))
2660                         return 0;
2661                 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2662         } else {
2663                 if (chance(9999, 10000))
2664                         return 0;
2665                 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2666         }
2667         ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2668         d->failure_mode = 1;
2669         dump_stack();
2670         return 1;
2671 }
2672
2673 static void cut_data(const void *buf, int len)
2674 {
2675         int flen, i;
2676         unsigned char *p = (void *)buf;
2677
2678         flen = (len * (long long)simple_rand()) >> 15;
2679         for (i = flen; i < len; i++)
2680                 p[i] = 0xff;
2681 }
2682
2683 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2684                  int len, int check)
2685 {
2686         if (in_failure_mode(desc))
2687                 return -EROFS;
2688         return ubi_leb_read(desc, lnum, buf, offset, len, check);
2689 }
2690
2691 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2692                   int offset, int len, int dtype)
2693 {
2694         int err, failing;
2695
2696         if (in_failure_mode(desc))
2697                 return -EROFS;
2698         failing = do_fail(desc, lnum, 1);
2699         if (failing)
2700                 cut_data(buf, len);
2701         err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2702         if (err)
2703                 return err;
2704         if (failing)
2705                 return -EROFS;
2706         return 0;
2707 }
2708
2709 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2710                    int len, int dtype)
2711 {
2712         int err;
2713
2714         if (do_fail(desc, lnum, 1))
2715                 return -EROFS;
2716         err = ubi_leb_change(desc, lnum, buf, len, dtype);
2717         if (err)
2718                 return err;
2719         if (do_fail(desc, lnum, 1))
2720                 return -EROFS;
2721         return 0;
2722 }
2723
2724 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2725 {
2726         int err;
2727
2728         if (do_fail(desc, lnum, 0))
2729                 return -EROFS;
2730         err = ubi_leb_erase(desc, lnum);
2731         if (err)
2732                 return err;
2733         if (do_fail(desc, lnum, 0))
2734                 return -EROFS;
2735         return 0;
2736 }
2737
2738 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2739 {
2740         int err;
2741
2742         if (do_fail(desc, lnum, 0))
2743                 return -EROFS;
2744         err = ubi_leb_unmap(desc, lnum);
2745         if (err)
2746                 return err;
2747         if (do_fail(desc, lnum, 0))
2748                 return -EROFS;
2749         return 0;
2750 }
2751
2752 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2753 {
2754         if (in_failure_mode(desc))
2755                 return -EROFS;
2756         return ubi_is_mapped(desc, lnum);
2757 }
2758
2759 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2760 {
2761         int err;
2762
2763         if (do_fail(desc, lnum, 0))
2764                 return -EROFS;
2765         err = ubi_leb_map(desc, lnum, dtype);
2766         if (err)
2767                 return err;
2768         if (do_fail(desc, lnum, 0))
2769                 return -EROFS;
2770         return 0;
2771 }
2772
2773 /**
2774  * ubifs_debugging_init - initialize UBIFS debugging.
2775  * @c: UBIFS file-system description object
2776  *
2777  * This function initializes debugging-related data for the file system.
2778  * Returns zero in case of success and a negative error code in case of
2779  * failure.
2780  */
2781 int ubifs_debugging_init(struct ubifs_info *c)
2782 {
2783         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2784         if (!c->dbg)
2785                 return -ENOMEM;
2786
2787         failure_mode_init(c);
2788         return 0;
2789 }
2790
2791 /**
2792  * ubifs_debugging_exit - free debugging data.
2793  * @c: UBIFS file-system description object
2794  */
2795 void ubifs_debugging_exit(struct ubifs_info *c)
2796 {
2797         failure_mode_exit(c);
2798         kfree(c->dbg);
2799 }
2800
2801 /*
2802  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2803  * contain the stuff specific to particular file-system mounts.
2804  */
2805 static struct dentry *dfs_rootdir;
2806
2807 /**
2808  * dbg_debugfs_init - initialize debugfs file-system.
2809  *
2810  * UBIFS uses debugfs file-system to expose various debugging knobs to
2811  * user-space. This function creates "ubifs" directory in the debugfs
2812  * file-system. Returns zero in case of success and a negative error code in
2813  * case of failure.
2814  */
2815 int dbg_debugfs_init(void)
2816 {
2817         dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2818         if (IS_ERR(dfs_rootdir)) {
2819                 int err = PTR_ERR(dfs_rootdir);
2820                 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2821                           "error %d\n", err);
2822                 return err;
2823         }
2824
2825         return 0;
2826 }
2827
2828 /**
2829  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2830  */
2831 void dbg_debugfs_exit(void)
2832 {
2833         debugfs_remove(dfs_rootdir);
2834 }
2835
2836 static int open_debugfs_file(struct inode *inode, struct file *file)
2837 {
2838         file->private_data = inode->i_private;
2839         return nonseekable_open(inode, file);
2840 }
2841
2842 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2843                                   size_t count, loff_t *ppos)
2844 {
2845         struct ubifs_info *c = file->private_data;
2846         struct ubifs_debug_info *d = c->dbg;
2847
2848         if (file->f_path.dentry == d->dfs_dump_lprops)
2849                 dbg_dump_lprops(c);
2850         else if (file->f_path.dentry == d->dfs_dump_budg)
2851                 dbg_dump_budg(c, &c->bi);
2852         else if (file->f_path.dentry == d->dfs_dump_tnc) {
2853                 mutex_lock(&c->tnc_mutex);
2854                 dbg_dump_tnc(c);
2855                 mutex_unlock(&c->tnc_mutex);
2856         } else
2857                 return -EINVAL;
2858
2859         return count;
2860 }
2861
2862 static const struct file_operations dfs_fops = {
2863         .open = open_debugfs_file,
2864         .write = write_debugfs_file,
2865         .owner = THIS_MODULE,
2866         .llseek = no_llseek,
2867 };
2868
2869 /**
2870  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2871  * @c: UBIFS file-system description object
2872  *
2873  * This function creates all debugfs files for this instance of UBIFS. Returns
2874  * zero in case of success and a negative error code in case of failure.
2875  *
2876  * Note, the only reason we have not merged this function with the
2877  * 'ubifs_debugging_init()' function is because it is better to initialize
2878  * debugfs interfaces at the very end of the mount process, and remove them at
2879  * the very beginning of the mount process.
2880  */
2881 int dbg_debugfs_init_fs(struct ubifs_info *c)
2882 {
2883         int err;
2884         const char *fname;
2885         struct dentry *dent;
2886         struct ubifs_debug_info *d = c->dbg;
2887
2888         sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2889         fname = d->dfs_dir_name;
2890         dent = debugfs_create_dir(fname, dfs_rootdir);
2891         if (IS_ERR_OR_NULL(dent))
2892                 goto out;
2893         d->dfs_dir = dent;
2894
2895         fname = "dump_lprops";
2896         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2897         if (IS_ERR_OR_NULL(dent))
2898                 goto out_remove;
2899         d->dfs_dump_lprops = dent;
2900
2901         fname = "dump_budg";
2902         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2903         if (IS_ERR_OR_NULL(dent))
2904                 goto out_remove;
2905         d->dfs_dump_budg = dent;
2906
2907         fname = "dump_tnc";
2908         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2909         if (IS_ERR_OR_NULL(dent))
2910                 goto out_remove;
2911         d->dfs_dump_tnc = dent;
2912
2913         return 0;
2914
2915 out_remove:
2916         debugfs_remove_recursive(d->dfs_dir);
2917 out:
2918         err = dent ? PTR_ERR(dent) : -ENODEV;
2919         ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2920                   fname, err);
2921         return err;
2922 }
2923
2924 /**
2925  * dbg_debugfs_exit_fs - remove all debugfs files.
2926  * @c: UBIFS file-system description object
2927  */
2928 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2929 {
2930         debugfs_remove_recursive(c->dbg->dfs_dir);
2931 }
2932
2933 #endif /* CONFIG_UBIFS_FS_DEBUG */