Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
36
37 static DEFINE_SPINLOCK(dbg_lock);
38
39 static const char *get_key_fmt(int fmt)
40 {
41         switch (fmt) {
42         case UBIFS_SIMPLE_KEY_FMT:
43                 return "simple";
44         default:
45                 return "unknown/invalid format";
46         }
47 }
48
49 static const char *get_key_hash(int hash)
50 {
51         switch (hash) {
52         case UBIFS_KEY_HASH_R5:
53                 return "R5";
54         case UBIFS_KEY_HASH_TEST:
55                 return "test";
56         default:
57                 return "unknown/invalid name hash";
58         }
59 }
60
61 static const char *get_key_type(int type)
62 {
63         switch (type) {
64         case UBIFS_INO_KEY:
65                 return "inode";
66         case UBIFS_DENT_KEY:
67                 return "direntry";
68         case UBIFS_XENT_KEY:
69                 return "xentry";
70         case UBIFS_DATA_KEY:
71                 return "data";
72         case UBIFS_TRUN_KEY:
73                 return "truncate";
74         default:
75                 return "unknown/invalid key";
76         }
77 }
78
79 static const char *get_dent_type(int type)
80 {
81         switch (type) {
82         case UBIFS_ITYPE_REG:
83                 return "file";
84         case UBIFS_ITYPE_DIR:
85                 return "dir";
86         case UBIFS_ITYPE_LNK:
87                 return "symlink";
88         case UBIFS_ITYPE_BLK:
89                 return "blkdev";
90         case UBIFS_ITYPE_CHR:
91                 return "char dev";
92         case UBIFS_ITYPE_FIFO:
93                 return "fifo";
94         case UBIFS_ITYPE_SOCK:
95                 return "socket";
96         default:
97                 return "unknown/invalid type";
98         }
99 }
100
101 const char *dbg_snprintf_key(const struct ubifs_info *c,
102                              const union ubifs_key *key, char *buffer, int len)
103 {
104         char *p = buffer;
105         int type = key_type(c, key);
106
107         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108                 switch (type) {
109                 case UBIFS_INO_KEY:
110                         len -= snprintf(p, len, "(%lu, %s)",
111                                         (unsigned long)key_inum(c, key),
112                                         get_key_type(type));
113                         break;
114                 case UBIFS_DENT_KEY:
115                 case UBIFS_XENT_KEY:
116                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
117                                         (unsigned long)key_inum(c, key),
118                                         get_key_type(type), key_hash(c, key));
119                         break;
120                 case UBIFS_DATA_KEY:
121                         len -= snprintf(p, len, "(%lu, %s, %u)",
122                                         (unsigned long)key_inum(c, key),
123                                         get_key_type(type), key_block(c, key));
124                         break;
125                 case UBIFS_TRUN_KEY:
126                         len -= snprintf(p, len, "(%lu, %s)",
127                                         (unsigned long)key_inum(c, key),
128                                         get_key_type(type));
129                         break;
130                 default:
131                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132                                         key->u32[0], key->u32[1]);
133                 }
134         } else
135                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136         ubifs_assert(len > 0);
137         return p;
138 }
139
140 const char *dbg_ntype(int type)
141 {
142         switch (type) {
143         case UBIFS_PAD_NODE:
144                 return "padding node";
145         case UBIFS_SB_NODE:
146                 return "superblock node";
147         case UBIFS_MST_NODE:
148                 return "master node";
149         case UBIFS_REF_NODE:
150                 return "reference node";
151         case UBIFS_INO_NODE:
152                 return "inode node";
153         case UBIFS_DENT_NODE:
154                 return "direntry node";
155         case UBIFS_XENT_NODE:
156                 return "xentry node";
157         case UBIFS_DATA_NODE:
158                 return "data node";
159         case UBIFS_TRUN_NODE:
160                 return "truncate node";
161         case UBIFS_IDX_NODE:
162                 return "indexing node";
163         case UBIFS_CS_NODE:
164                 return "commit start node";
165         case UBIFS_ORPH_NODE:
166                 return "orphan node";
167         default:
168                 return "unknown node";
169         }
170 }
171
172 static const char *dbg_gtype(int type)
173 {
174         switch (type) {
175         case UBIFS_NO_NODE_GROUP:
176                 return "no node group";
177         case UBIFS_IN_NODE_GROUP:
178                 return "in node group";
179         case UBIFS_LAST_OF_NODE_GROUP:
180                 return "last of node group";
181         default:
182                 return "unknown";
183         }
184 }
185
186 const char *dbg_cstate(int cmt_state)
187 {
188         switch (cmt_state) {
189         case COMMIT_RESTING:
190                 return "commit resting";
191         case COMMIT_BACKGROUND:
192                 return "background commit requested";
193         case COMMIT_REQUIRED:
194                 return "commit required";
195         case COMMIT_RUNNING_BACKGROUND:
196                 return "BACKGROUND commit running";
197         case COMMIT_RUNNING_REQUIRED:
198                 return "commit running and required";
199         case COMMIT_BROKEN:
200                 return "broken commit";
201         default:
202                 return "unknown commit state";
203         }
204 }
205
206 const char *dbg_jhead(int jhead)
207 {
208         switch (jhead) {
209         case GCHD:
210                 return "0 (GC)";
211         case BASEHD:
212                 return "1 (base)";
213         case DATAHD:
214                 return "2 (data)";
215         default:
216                 return "unknown journal head";
217         }
218 }
219
220 static void dump_ch(const struct ubifs_ch *ch)
221 {
222         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
223         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
224         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
225                dbg_ntype(ch->node_type));
226         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
227                dbg_gtype(ch->group_type));
228         pr_err("\tsqnum          %llu\n",
229                (unsigned long long)le64_to_cpu(ch->sqnum));
230         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
231 }
232
233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234 {
235         const struct ubifs_inode *ui = ubifs_inode(inode);
236         struct qstr nm = { .name = NULL };
237         union ubifs_key key;
238         struct ubifs_dent_node *dent, *pdent = NULL;
239         int count = 2;
240
241         pr_err("Dump in-memory inode:");
242         pr_err("\tinode          %lu\n", inode->i_ino);
243         pr_err("\tsize           %llu\n",
244                (unsigned long long)i_size_read(inode));
245         pr_err("\tnlink          %u\n", inode->i_nlink);
246         pr_err("\tuid            %u\n", (unsigned int)inode->i_uid);
247         pr_err("\tgid            %u\n", (unsigned int)inode->i_gid);
248         pr_err("\tatime          %u.%u\n",
249                (unsigned int)inode->i_atime.tv_sec,
250                (unsigned int)inode->i_atime.tv_nsec);
251         pr_err("\tmtime          %u.%u\n",
252                (unsigned int)inode->i_mtime.tv_sec,
253                (unsigned int)inode->i_mtime.tv_nsec);
254         pr_err("\tctime          %u.%u\n",
255                (unsigned int)inode->i_ctime.tv_sec,
256                (unsigned int)inode->i_ctime.tv_nsec);
257         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
258         pr_err("\txattr_size     %u\n", ui->xattr_size);
259         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
260         pr_err("\txattr_names    %u\n", ui->xattr_names);
261         pr_err("\tdirty          %u\n", ui->dirty);
262         pr_err("\txattr          %u\n", ui->xattr);
263         pr_err("\tbulk_read      %u\n", ui->xattr);
264         pr_err("\tsynced_i_size  %llu\n",
265                (unsigned long long)ui->synced_i_size);
266         pr_err("\tui_size        %llu\n",
267                (unsigned long long)ui->ui_size);
268         pr_err("\tflags          %d\n", ui->flags);
269         pr_err("\tcompr_type     %d\n", ui->compr_type);
270         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
271         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
272         pr_err("\tdata_len       %d\n", ui->data_len);
273
274         if (!S_ISDIR(inode->i_mode))
275                 return;
276
277         pr_err("List of directory entries:\n");
278         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279
280         lowest_dent_key(c, &key, inode->i_ino);
281         while (1) {
282                 dent = ubifs_tnc_next_ent(c, &key, &nm);
283                 if (IS_ERR(dent)) {
284                         if (PTR_ERR(dent) != -ENOENT)
285                                 pr_err("error %ld\n", PTR_ERR(dent));
286                         break;
287                 }
288
289                 pr_err("\t%d: %s (%s)\n",
290                        count++, dent->name, get_dent_type(dent->type));
291
292                 nm.name = dent->name;
293                 nm.len = le16_to_cpu(dent->nlen);
294                 kfree(pdent);
295                 pdent = dent;
296                 key_read(c, &dent->key, &key);
297         }
298         kfree(pdent);
299 }
300
301 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302 {
303         int i, n;
304         union ubifs_key key;
305         const struct ubifs_ch *ch = node;
306         char key_buf[DBG_KEY_BUF_LEN];
307
308         /* If the magic is incorrect, just hexdump the first bytes */
309         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312                                (void *)node, UBIFS_CH_SZ, 1);
313                 return;
314         }
315
316         spin_lock(&dbg_lock);
317         dump_ch(node);
318
319         switch (ch->node_type) {
320         case UBIFS_PAD_NODE:
321         {
322                 const struct ubifs_pad_node *pad = node;
323
324                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
325                 break;
326         }
327         case UBIFS_SB_NODE:
328         {
329                 const struct ubifs_sb_node *sup = node;
330                 unsigned int sup_flags = le32_to_cpu(sup->flags);
331
332                 pr_err("\tkey_hash       %d (%s)\n",
333                        (int)sup->key_hash, get_key_hash(sup->key_hash));
334                 pr_err("\tkey_fmt        %d (%s)\n",
335                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336                 pr_err("\tflags          %#x\n", sup_flags);
337                 pr_err("\t  big_lpt      %u\n",
338                        !!(sup_flags & UBIFS_FLG_BIGLPT));
339                 pr_err("\t  space_fixup  %u\n",
340                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
342                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
343                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
344                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
345                 pr_err("\tmax_bud_bytes  %llu\n",
346                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
348                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
349                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
350                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
351                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
352                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
353                 pr_err("\tdefault_compr  %u\n",
354                        (int)le16_to_cpu(sup->default_compr));
355                 pr_err("\trp_size        %llu\n",
356                        (unsigned long long)le64_to_cpu(sup->rp_size));
357                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
358                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
359                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
360                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
361                 pr_err("\tUUID           %pUB\n", sup->uuid);
362                 break;
363         }
364         case UBIFS_MST_NODE:
365         {
366                 const struct ubifs_mst_node *mst = node;
367
368                 pr_err("\thighest_inum   %llu\n",
369                        (unsigned long long)le64_to_cpu(mst->highest_inum));
370                 pr_err("\tcommit number  %llu\n",
371                        (unsigned long long)le64_to_cpu(mst->cmt_no));
372                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
373                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
374                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
375                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
376                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
377                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
378                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
379                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
380                 pr_err("\tindex_size     %llu\n",
381                        (unsigned long long)le64_to_cpu(mst->index_size));
382                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
383                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
384                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
385                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
386                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
387                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
388                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
389                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
390                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
391                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
392                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
393                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
394                 pr_err("\ttotal_free     %llu\n",
395                        (unsigned long long)le64_to_cpu(mst->total_free));
396                 pr_err("\ttotal_dirty    %llu\n",
397                        (unsigned long long)le64_to_cpu(mst->total_dirty));
398                 pr_err("\ttotal_used     %llu\n",
399                        (unsigned long long)le64_to_cpu(mst->total_used));
400                 pr_err("\ttotal_dead     %llu\n",
401                        (unsigned long long)le64_to_cpu(mst->total_dead));
402                 pr_err("\ttotal_dark     %llu\n",
403                        (unsigned long long)le64_to_cpu(mst->total_dark));
404                 break;
405         }
406         case UBIFS_REF_NODE:
407         {
408                 const struct ubifs_ref_node *ref = node;
409
410                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
411                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
412                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
413                 break;
414         }
415         case UBIFS_INO_NODE:
416         {
417                 const struct ubifs_ino_node *ino = node;
418
419                 key_read(c, &ino->key, &key);
420                 pr_err("\tkey            %s\n",
421                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422                 pr_err("\tcreat_sqnum    %llu\n",
423                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424                 pr_err("\tsize           %llu\n",
425                        (unsigned long long)le64_to_cpu(ino->size));
426                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
427                 pr_err("\tatime          %lld.%u\n",
428                        (long long)le64_to_cpu(ino->atime_sec),
429                        le32_to_cpu(ino->atime_nsec));
430                 pr_err("\tmtime          %lld.%u\n",
431                        (long long)le64_to_cpu(ino->mtime_sec),
432                        le32_to_cpu(ino->mtime_nsec));
433                 pr_err("\tctime          %lld.%u\n",
434                        (long long)le64_to_cpu(ino->ctime_sec),
435                        le32_to_cpu(ino->ctime_nsec));
436                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
437                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
438                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
439                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
440                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
441                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
442                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
443                 pr_err("\tcompr_type     %#x\n",
444                        (int)le16_to_cpu(ino->compr_type));
445                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
446                 break;
447         }
448         case UBIFS_DENT_NODE:
449         case UBIFS_XENT_NODE:
450         {
451                 const struct ubifs_dent_node *dent = node;
452                 int nlen = le16_to_cpu(dent->nlen);
453
454                 key_read(c, &dent->key, &key);
455                 pr_err("\tkey            %s\n",
456                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457                 pr_err("\tinum           %llu\n",
458                        (unsigned long long)le64_to_cpu(dent->inum));
459                 pr_err("\ttype           %d\n", (int)dent->type);
460                 pr_err("\tnlen           %d\n", nlen);
461                 pr_err("\tname           ");
462
463                 if (nlen > UBIFS_MAX_NLEN)
464                         pr_err("(bad name length, not printing, bad or corrupted node)");
465                 else {
466                         for (i = 0; i < nlen && dent->name[i]; i++)
467                                 pr_cont("%c", dent->name[i]);
468                 }
469                 pr_cont("\n");
470
471                 break;
472         }
473         case UBIFS_DATA_NODE:
474         {
475                 const struct ubifs_data_node *dn = node;
476                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
477
478                 key_read(c, &dn->key, &key);
479                 pr_err("\tkey            %s\n",
480                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
482                 pr_err("\tcompr_typ      %d\n",
483                        (int)le16_to_cpu(dn->compr_type));
484                 pr_err("\tdata size      %d\n", dlen);
485                 pr_err("\tdata:\n");
486                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487                                (void *)&dn->data, dlen, 0);
488                 break;
489         }
490         case UBIFS_TRUN_NODE:
491         {
492                 const struct ubifs_trun_node *trun = node;
493
494                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
495                 pr_err("\told_size       %llu\n",
496                        (unsigned long long)le64_to_cpu(trun->old_size));
497                 pr_err("\tnew_size       %llu\n",
498                        (unsigned long long)le64_to_cpu(trun->new_size));
499                 break;
500         }
501         case UBIFS_IDX_NODE:
502         {
503                 const struct ubifs_idx_node *idx = node;
504
505                 n = le16_to_cpu(idx->child_cnt);
506                 pr_err("\tchild_cnt      %d\n", n);
507                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
508                 pr_err("\tBranches:\n");
509
510                 for (i = 0; i < n && i < c->fanout - 1; i++) {
511                         const struct ubifs_branch *br;
512
513                         br = ubifs_idx_branch(c, idx, i);
514                         key_read(c, &br->key, &key);
515                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
516                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517                                le32_to_cpu(br->len),
518                                dbg_snprintf_key(c, &key, key_buf,
519                                                 DBG_KEY_BUF_LEN));
520                 }
521                 break;
522         }
523         case UBIFS_CS_NODE:
524                 break;
525         case UBIFS_ORPH_NODE:
526         {
527                 const struct ubifs_orph_node *orph = node;
528
529                 pr_err("\tcommit number  %llu\n",
530                        (unsigned long long)
531                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532                 pr_err("\tlast node flag %llu\n",
533                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535                 pr_err("\t%d orphan inode numbers:\n", n);
536                 for (i = 0; i < n; i++)
537                         pr_err("\t  ino %llu\n",
538                                (unsigned long long)le64_to_cpu(orph->inos[i]));
539                 break;
540         }
541         default:
542                 pr_err("node type %d was not recognized\n",
543                        (int)ch->node_type);
544         }
545         spin_unlock(&dbg_lock);
546 }
547
548 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
549 {
550         spin_lock(&dbg_lock);
551         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552                req->new_ino, req->dirtied_ino);
553         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
554                req->new_ino_d, req->dirtied_ino_d);
555         pr_err("\tnew_page    %d, dirtied_page %d\n",
556                req->new_page, req->dirtied_page);
557         pr_err("\tnew_dent    %d, mod_dent     %d\n",
558                req->new_dent, req->mod_dent);
559         pr_err("\tidx_growth  %d\n", req->idx_growth);
560         pr_err("\tdata_growth %d dd_growth     %d\n",
561                req->data_growth, req->dd_growth);
562         spin_unlock(&dbg_lock);
563 }
564
565 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
566 {
567         spin_lock(&dbg_lock);
568         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
569                current->pid, lst->empty_lebs, lst->idx_lebs);
570         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573                lst->total_used, lst->total_dark, lst->total_dead);
574         spin_unlock(&dbg_lock);
575 }
576
577 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
578 {
579         int i;
580         struct rb_node *rb;
581         struct ubifs_bud *bud;
582         struct ubifs_gced_idx_leb *idx_gc;
583         long long available, outstanding, free;
584
585         spin_lock(&c->space_lock);
586         spin_lock(&dbg_lock);
587         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
588                current->pid, bi->data_growth + bi->dd_growth,
589                bi->data_growth + bi->dd_growth + bi->idx_growth);
590         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
591                bi->data_growth, bi->dd_growth, bi->idx_growth);
592         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
593                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
594         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
595                bi->page_budget, bi->inode_budget, bi->dent_budget);
596         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
597         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
598                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
599
600         if (bi != &c->bi)
601                 /*
602                  * If we are dumping saved budgeting data, do not print
603                  * additional information which is about the current state, not
604                  * the old one which corresponded to the saved budgeting data.
605                  */
606                 goto out_unlock;
607
608         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
609                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
610         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
611                atomic_long_read(&c->dirty_pg_cnt),
612                atomic_long_read(&c->dirty_zn_cnt),
613                atomic_long_read(&c->clean_zn_cnt));
614         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
615
616         /* If we are in R/O mode, journal heads do not exist */
617         if (c->jheads)
618                 for (i = 0; i < c->jhead_cnt; i++)
619                         pr_err("\tjhead %s\t LEB %d\n",
620                                dbg_jhead(c->jheads[i].wbuf.jhead),
621                                c->jheads[i].wbuf.lnum);
622         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
623                 bud = rb_entry(rb, struct ubifs_bud, rb);
624                 pr_err("\tbud LEB %d\n", bud->lnum);
625         }
626         list_for_each_entry(bud, &c->old_buds, list)
627                 pr_err("\told bud LEB %d\n", bud->lnum);
628         list_for_each_entry(idx_gc, &c->idx_gc, list)
629                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
630                        idx_gc->lnum, idx_gc->unmap);
631         pr_err("\tcommit state %d\n", c->cmt_state);
632
633         /* Print budgeting predictions */
634         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
635         outstanding = c->bi.data_growth + c->bi.dd_growth;
636         free = ubifs_get_free_space_nolock(c);
637         pr_err("Budgeting predictions:\n");
638         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
639                available, outstanding, free);
640 out_unlock:
641         spin_unlock(&dbg_lock);
642         spin_unlock(&c->space_lock);
643 }
644
645 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
646 {
647         int i, spc, dark = 0, dead = 0;
648         struct rb_node *rb;
649         struct ubifs_bud *bud;
650
651         spc = lp->free + lp->dirty;
652         if (spc < c->dead_wm)
653                 dead = spc;
654         else
655                 dark = ubifs_calc_dark(c, spc);
656
657         if (lp->flags & LPROPS_INDEX)
658                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
659                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
660                        lp->flags);
661         else
662                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
663                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
665
666         if (lp->flags & LPROPS_TAKEN) {
667                 if (lp->flags & LPROPS_INDEX)
668                         pr_cont("index, taken");
669                 else
670                         pr_cont("taken");
671         } else {
672                 const char *s;
673
674                 if (lp->flags & LPROPS_INDEX) {
675                         switch (lp->flags & LPROPS_CAT_MASK) {
676                         case LPROPS_DIRTY_IDX:
677                                 s = "dirty index";
678                                 break;
679                         case LPROPS_FRDI_IDX:
680                                 s = "freeable index";
681                                 break;
682                         default:
683                                 s = "index";
684                         }
685                 } else {
686                         switch (lp->flags & LPROPS_CAT_MASK) {
687                         case LPROPS_UNCAT:
688                                 s = "not categorized";
689                                 break;
690                         case LPROPS_DIRTY:
691                                 s = "dirty";
692                                 break;
693                         case LPROPS_FREE:
694                                 s = "free";
695                                 break;
696                         case LPROPS_EMPTY:
697                                 s = "empty";
698                                 break;
699                         case LPROPS_FREEABLE:
700                                 s = "freeable";
701                                 break;
702                         default:
703                                 s = NULL;
704                                 break;
705                         }
706                 }
707                 pr_cont("%s", s);
708         }
709
710         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
711                 bud = rb_entry(rb, struct ubifs_bud, rb);
712                 if (bud->lnum == lp->lnum) {
713                         int head = 0;
714                         for (i = 0; i < c->jhead_cnt; i++) {
715                                 /*
716                                  * Note, if we are in R/O mode or in the middle
717                                  * of mounting/re-mounting, the write-buffers do
718                                  * not exist.
719                                  */
720                                 if (c->jheads &&
721                                     lp->lnum == c->jheads[i].wbuf.lnum) {
722                                         pr_cont(", jhead %s", dbg_jhead(i));
723                                         head = 1;
724                                 }
725                         }
726                         if (!head)
727                                 pr_cont(", bud of jhead %s",
728                                        dbg_jhead(bud->jhead));
729                 }
730         }
731         if (lp->lnum == c->gc_lnum)
732                 pr_cont(", GC LEB");
733         pr_cont(")\n");
734 }
735
736 void ubifs_dump_lprops(struct ubifs_info *c)
737 {
738         int lnum, err;
739         struct ubifs_lprops lp;
740         struct ubifs_lp_stats lst;
741
742         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
743         ubifs_get_lp_stats(c, &lst);
744         ubifs_dump_lstats(&lst);
745
746         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
747                 err = ubifs_read_one_lp(c, lnum, &lp);
748                 if (err)
749                         ubifs_err("cannot read lprops for LEB %d", lnum);
750
751                 ubifs_dump_lprop(c, &lp);
752         }
753         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
754 }
755
756 void ubifs_dump_lpt_info(struct ubifs_info *c)
757 {
758         int i;
759
760         spin_lock(&dbg_lock);
761         pr_err("(pid %d) dumping LPT information\n", current->pid);
762         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
763         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
764         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
765         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
766         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
767         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
768         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
769         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
770         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
771         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
772         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
773         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
774         pr_err("\tspace_bits:    %d\n", c->space_bits);
775         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
776         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
777         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
778         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
779         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
780         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
781         pr_err("\tLPT head is at %d:%d\n",
782                c->nhead_lnum, c->nhead_offs);
783         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
784         if (c->big_lpt)
785                 pr_err("\tLPT lsave is at %d:%d\n",
786                        c->lsave_lnum, c->lsave_offs);
787         for (i = 0; i < c->lpt_lebs; i++)
788                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
789                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
790                        c->ltab[i].tgc, c->ltab[i].cmt);
791         spin_unlock(&dbg_lock);
792 }
793
794 void ubifs_dump_sleb(const struct ubifs_info *c,
795                      const struct ubifs_scan_leb *sleb, int offs)
796 {
797         struct ubifs_scan_node *snod;
798
799         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
800                current->pid, sleb->lnum, offs);
801
802         list_for_each_entry(snod, &sleb->nodes, list) {
803                 cond_resched();
804                 pr_err("Dumping node at LEB %d:%d len %d\n",
805                        sleb->lnum, snod->offs, snod->len);
806                 ubifs_dump_node(c, snod->node);
807         }
808 }
809
810 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
811 {
812         struct ubifs_scan_leb *sleb;
813         struct ubifs_scan_node *snod;
814         void *buf;
815
816         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
817
818         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
819         if (!buf) {
820                 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
821                 return;
822         }
823
824         sleb = ubifs_scan(c, lnum, 0, buf, 0);
825         if (IS_ERR(sleb)) {
826                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
827                 goto out;
828         }
829
830         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
831                sleb->nodes_cnt, sleb->endpt);
832
833         list_for_each_entry(snod, &sleb->nodes, list) {
834                 cond_resched();
835                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
836                        snod->offs, snod->len);
837                 ubifs_dump_node(c, snod->node);
838         }
839
840         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
841         ubifs_scan_destroy(sleb);
842
843 out:
844         vfree(buf);
845         return;
846 }
847
848 void ubifs_dump_znode(const struct ubifs_info *c,
849                       const struct ubifs_znode *znode)
850 {
851         int n;
852         const struct ubifs_zbranch *zbr;
853         char key_buf[DBG_KEY_BUF_LEN];
854
855         spin_lock(&dbg_lock);
856         if (znode->parent)
857                 zbr = &znode->parent->zbranch[znode->iip];
858         else
859                 zbr = &c->zroot;
860
861         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
862                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
863                znode->level, znode->child_cnt, znode->flags);
864
865         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
866                 spin_unlock(&dbg_lock);
867                 return;
868         }
869
870         pr_err("zbranches:\n");
871         for (n = 0; n < znode->child_cnt; n++) {
872                 zbr = &znode->zbranch[n];
873                 if (znode->level > 0)
874                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
875                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
876                                dbg_snprintf_key(c, &zbr->key, key_buf,
877                                                 DBG_KEY_BUF_LEN));
878                 else
879                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
880                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
881                                dbg_snprintf_key(c, &zbr->key, key_buf,
882                                                 DBG_KEY_BUF_LEN));
883         }
884         spin_unlock(&dbg_lock);
885 }
886
887 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
888 {
889         int i;
890
891         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
892                current->pid, cat, heap->cnt);
893         for (i = 0; i < heap->cnt; i++) {
894                 struct ubifs_lprops *lprops = heap->arr[i];
895
896                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
897                        i, lprops->lnum, lprops->hpos, lprops->free,
898                        lprops->dirty, lprops->flags);
899         }
900         pr_err("(pid %d) finish dumping heap\n", current->pid);
901 }
902
903 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
904                       struct ubifs_nnode *parent, int iip)
905 {
906         int i;
907
908         pr_err("(pid %d) dumping pnode:\n", current->pid);
909         pr_err("\taddress %zx parent %zx cnext %zx\n",
910                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
911         pr_err("\tflags %lu iip %d level %d num %d\n",
912                pnode->flags, iip, pnode->level, pnode->num);
913         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
914                 struct ubifs_lprops *lp = &pnode->lprops[i];
915
916                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
917                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
918         }
919 }
920
921 void ubifs_dump_tnc(struct ubifs_info *c)
922 {
923         struct ubifs_znode *znode;
924         int level;
925
926         pr_err("\n");
927         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
928         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
929         level = znode->level;
930         pr_err("== Level %d ==\n", level);
931         while (znode) {
932                 if (level != znode->level) {
933                         level = znode->level;
934                         pr_err("== Level %d ==\n", level);
935                 }
936                 ubifs_dump_znode(c, znode);
937                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
938         }
939         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
940 }
941
942 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
943                       void *priv)
944 {
945         ubifs_dump_znode(c, znode);
946         return 0;
947 }
948
949 /**
950  * ubifs_dump_index - dump the on-flash index.
951  * @c: UBIFS file-system description object
952  *
953  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
954  * which dumps only in-memory znodes and does not read znodes which from flash.
955  */
956 void ubifs_dump_index(struct ubifs_info *c)
957 {
958         dbg_walk_index(c, NULL, dump_znode, NULL);
959 }
960
961 /**
962  * dbg_save_space_info - save information about flash space.
963  * @c: UBIFS file-system description object
964  *
965  * This function saves information about UBIFS free space, dirty space, etc, in
966  * order to check it later.
967  */
968 void dbg_save_space_info(struct ubifs_info *c)
969 {
970         struct ubifs_debug_info *d = c->dbg;
971         int freeable_cnt;
972
973         spin_lock(&c->space_lock);
974         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
975         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
976         d->saved_idx_gc_cnt = c->idx_gc_cnt;
977
978         /*
979          * We use a dirty hack here and zero out @c->freeable_cnt, because it
980          * affects the free space calculations, and UBIFS might not know about
981          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
982          * only when we read their lprops, and we do this only lazily, upon the
983          * need. So at any given point of time @c->freeable_cnt might be not
984          * exactly accurate.
985          *
986          * Just one example about the issue we hit when we did not zero
987          * @c->freeable_cnt.
988          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
989          *    amount of free space in @d->saved_free
990          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
991          *    information from flash, where we cache LEBs from various
992          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
993          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
994          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
995          *    -> 'ubifs_add_to_cat()').
996          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
997          *    becomes %1.
998          * 4. We calculate the amount of free space when the re-mount is
999          *    finished in 'dbg_check_space_info()' and it does not match
1000          *    @d->saved_free.
1001          */
1002         freeable_cnt = c->freeable_cnt;
1003         c->freeable_cnt = 0;
1004         d->saved_free = ubifs_get_free_space_nolock(c);
1005         c->freeable_cnt = freeable_cnt;
1006         spin_unlock(&c->space_lock);
1007 }
1008
1009 /**
1010  * dbg_check_space_info - check flash space information.
1011  * @c: UBIFS file-system description object
1012  *
1013  * This function compares current flash space information with the information
1014  * which was saved when the 'dbg_save_space_info()' function was called.
1015  * Returns zero if the information has not changed, and %-EINVAL it it has
1016  * changed.
1017  */
1018 int dbg_check_space_info(struct ubifs_info *c)
1019 {
1020         struct ubifs_debug_info *d = c->dbg;
1021         struct ubifs_lp_stats lst;
1022         long long free;
1023         int freeable_cnt;
1024
1025         spin_lock(&c->space_lock);
1026         freeable_cnt = c->freeable_cnt;
1027         c->freeable_cnt = 0;
1028         free = ubifs_get_free_space_nolock(c);
1029         c->freeable_cnt = freeable_cnt;
1030         spin_unlock(&c->space_lock);
1031
1032         if (free != d->saved_free) {
1033                 ubifs_err("free space changed from %lld to %lld",
1034                           d->saved_free, free);
1035                 goto out;
1036         }
1037
1038         return 0;
1039
1040 out:
1041         ubifs_msg("saved lprops statistics dump");
1042         ubifs_dump_lstats(&d->saved_lst);
1043         ubifs_msg("saved budgeting info dump");
1044         ubifs_dump_budg(c, &d->saved_bi);
1045         ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1046         ubifs_msg("current lprops statistics dump");
1047         ubifs_get_lp_stats(c, &lst);
1048         ubifs_dump_lstats(&lst);
1049         ubifs_msg("current budgeting info dump");
1050         ubifs_dump_budg(c, &c->bi);
1051         dump_stack();
1052         return -EINVAL;
1053 }
1054
1055 /**
1056  * dbg_check_synced_i_size - check synchronized inode size.
1057  * @c: UBIFS file-system description object
1058  * @inode: inode to check
1059  *
1060  * If inode is clean, synchronized inode size has to be equivalent to current
1061  * inode size. This function has to be called only for locked inodes (@i_mutex
1062  * has to be locked). Returns %0 if synchronized inode size if correct, and
1063  * %-EINVAL if not.
1064  */
1065 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1066 {
1067         int err = 0;
1068         struct ubifs_inode *ui = ubifs_inode(inode);
1069
1070         if (!dbg_is_chk_gen(c))
1071                 return 0;
1072         if (!S_ISREG(inode->i_mode))
1073                 return 0;
1074
1075         mutex_lock(&ui->ui_mutex);
1076         spin_lock(&ui->ui_lock);
1077         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1078                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean",
1079                           ui->ui_size, ui->synced_i_size);
1080                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1081                           inode->i_mode, i_size_read(inode));
1082                 dump_stack();
1083                 err = -EINVAL;
1084         }
1085         spin_unlock(&ui->ui_lock);
1086         mutex_unlock(&ui->ui_mutex);
1087         return err;
1088 }
1089
1090 /*
1091  * dbg_check_dir - check directory inode size and link count.
1092  * @c: UBIFS file-system description object
1093  * @dir: the directory to calculate size for
1094  * @size: the result is returned here
1095  *
1096  * This function makes sure that directory size and link count are correct.
1097  * Returns zero in case of success and a negative error code in case of
1098  * failure.
1099  *
1100  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1101  * calling this function.
1102  */
1103 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1104 {
1105         unsigned int nlink = 2;
1106         union ubifs_key key;
1107         struct ubifs_dent_node *dent, *pdent = NULL;
1108         struct qstr nm = { .name = NULL };
1109         loff_t size = UBIFS_INO_NODE_SZ;
1110
1111         if (!dbg_is_chk_gen(c))
1112                 return 0;
1113
1114         if (!S_ISDIR(dir->i_mode))
1115                 return 0;
1116
1117         lowest_dent_key(c, &key, dir->i_ino);
1118         while (1) {
1119                 int err;
1120
1121                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1122                 if (IS_ERR(dent)) {
1123                         err = PTR_ERR(dent);
1124                         if (err == -ENOENT)
1125                                 break;
1126                         return err;
1127                 }
1128
1129                 nm.name = dent->name;
1130                 nm.len = le16_to_cpu(dent->nlen);
1131                 size += CALC_DENT_SIZE(nm.len);
1132                 if (dent->type == UBIFS_ITYPE_DIR)
1133                         nlink += 1;
1134                 kfree(pdent);
1135                 pdent = dent;
1136                 key_read(c, &dent->key, &key);
1137         }
1138         kfree(pdent);
1139
1140         if (i_size_read(dir) != size) {
1141                 ubifs_err("directory inode %lu has size %llu, but calculated size is %llu",
1142                           dir->i_ino, (unsigned long long)i_size_read(dir),
1143                           (unsigned long long)size);
1144                 ubifs_dump_inode(c, dir);
1145                 dump_stack();
1146                 return -EINVAL;
1147         }
1148         if (dir->i_nlink != nlink) {
1149                 ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u",
1150                           dir->i_ino, dir->i_nlink, nlink);
1151                 ubifs_dump_inode(c, dir);
1152                 dump_stack();
1153                 return -EINVAL;
1154         }
1155
1156         return 0;
1157 }
1158
1159 /**
1160  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1161  * @c: UBIFS file-system description object
1162  * @zbr1: first zbranch
1163  * @zbr2: following zbranch
1164  *
1165  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1166  * names of the direntries/xentries which are referred by the keys. This
1167  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1168  * sure the name of direntry/xentry referred by @zbr1 is less than
1169  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1170  * and a negative error code in case of failure.
1171  */
1172 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1173                                struct ubifs_zbranch *zbr2)
1174 {
1175         int err, nlen1, nlen2, cmp;
1176         struct ubifs_dent_node *dent1, *dent2;
1177         union ubifs_key key;
1178         char key_buf[DBG_KEY_BUF_LEN];
1179
1180         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1181         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1182         if (!dent1)
1183                 return -ENOMEM;
1184         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1185         if (!dent2) {
1186                 err = -ENOMEM;
1187                 goto out_free;
1188         }
1189
1190         err = ubifs_tnc_read_node(c, zbr1, dent1);
1191         if (err)
1192                 goto out_free;
1193         err = ubifs_validate_entry(c, dent1);
1194         if (err)
1195                 goto out_free;
1196
1197         err = ubifs_tnc_read_node(c, zbr2, dent2);
1198         if (err)
1199                 goto out_free;
1200         err = ubifs_validate_entry(c, dent2);
1201         if (err)
1202                 goto out_free;
1203
1204         /* Make sure node keys are the same as in zbranch */
1205         err = 1;
1206         key_read(c, &dent1->key, &key);
1207         if (keys_cmp(c, &zbr1->key, &key)) {
1208                 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1209                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1210                                                        DBG_KEY_BUF_LEN));
1211                 ubifs_err("but it should have key %s according to tnc",
1212                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1213                                            DBG_KEY_BUF_LEN));
1214                 ubifs_dump_node(c, dent1);
1215                 goto out_free;
1216         }
1217
1218         key_read(c, &dent2->key, &key);
1219         if (keys_cmp(c, &zbr2->key, &key)) {
1220                 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1221                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1222                                                        DBG_KEY_BUF_LEN));
1223                 ubifs_err("but it should have key %s according to tnc",
1224                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1225                                            DBG_KEY_BUF_LEN));
1226                 ubifs_dump_node(c, dent2);
1227                 goto out_free;
1228         }
1229
1230         nlen1 = le16_to_cpu(dent1->nlen);
1231         nlen2 = le16_to_cpu(dent2->nlen);
1232
1233         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1234         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1235                 err = 0;
1236                 goto out_free;
1237         }
1238         if (cmp == 0 && nlen1 == nlen2)
1239                 ubifs_err("2 xent/dent nodes with the same name");
1240         else
1241                 ubifs_err("bad order of colliding key %s",
1242                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1243
1244         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1245         ubifs_dump_node(c, dent1);
1246         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1247         ubifs_dump_node(c, dent2);
1248
1249 out_free:
1250         kfree(dent2);
1251         kfree(dent1);
1252         return err;
1253 }
1254
1255 /**
1256  * dbg_check_znode - check if znode is all right.
1257  * @c: UBIFS file-system description object
1258  * @zbr: zbranch which points to this znode
1259  *
1260  * This function makes sure that znode referred to by @zbr is all right.
1261  * Returns zero if it is, and %-EINVAL if it is not.
1262  */
1263 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1264 {
1265         struct ubifs_znode *znode = zbr->znode;
1266         struct ubifs_znode *zp = znode->parent;
1267         int n, err, cmp;
1268
1269         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1270                 err = 1;
1271                 goto out;
1272         }
1273         if (znode->level < 0) {
1274                 err = 2;
1275                 goto out;
1276         }
1277         if (znode->iip < 0 || znode->iip >= c->fanout) {
1278                 err = 3;
1279                 goto out;
1280         }
1281
1282         if (zbr->len == 0)
1283                 /* Only dirty zbranch may have no on-flash nodes */
1284                 if (!ubifs_zn_dirty(znode)) {
1285                         err = 4;
1286                         goto out;
1287                 }
1288
1289         if (ubifs_zn_dirty(znode)) {
1290                 /*
1291                  * If znode is dirty, its parent has to be dirty as well. The
1292                  * order of the operation is important, so we have to have
1293                  * memory barriers.
1294                  */
1295                 smp_mb();
1296                 if (zp && !ubifs_zn_dirty(zp)) {
1297                         /*
1298                          * The dirty flag is atomic and is cleared outside the
1299                          * TNC mutex, so znode's dirty flag may now have
1300                          * been cleared. The child is always cleared before the
1301                          * parent, so we just need to check again.
1302                          */
1303                         smp_mb();
1304                         if (ubifs_zn_dirty(znode)) {
1305                                 err = 5;
1306                                 goto out;
1307                         }
1308                 }
1309         }
1310
1311         if (zp) {
1312                 const union ubifs_key *min, *max;
1313
1314                 if (znode->level != zp->level - 1) {
1315                         err = 6;
1316                         goto out;
1317                 }
1318
1319                 /* Make sure the 'parent' pointer in our znode is correct */
1320                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1321                 if (!err) {
1322                         /* This zbranch does not exist in the parent */
1323                         err = 7;
1324                         goto out;
1325                 }
1326
1327                 if (znode->iip >= zp->child_cnt) {
1328                         err = 8;
1329                         goto out;
1330                 }
1331
1332                 if (znode->iip != n) {
1333                         /* This may happen only in case of collisions */
1334                         if (keys_cmp(c, &zp->zbranch[n].key,
1335                                      &zp->zbranch[znode->iip].key)) {
1336                                 err = 9;
1337                                 goto out;
1338                         }
1339                         n = znode->iip;
1340                 }
1341
1342                 /*
1343                  * Make sure that the first key in our znode is greater than or
1344                  * equal to the key in the pointing zbranch.
1345                  */
1346                 min = &zbr->key;
1347                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1348                 if (cmp == 1) {
1349                         err = 10;
1350                         goto out;
1351                 }
1352
1353                 if (n + 1 < zp->child_cnt) {
1354                         max = &zp->zbranch[n + 1].key;
1355
1356                         /*
1357                          * Make sure the last key in our znode is less or
1358                          * equivalent than the key in the zbranch which goes
1359                          * after our pointing zbranch.
1360                          */
1361                         cmp = keys_cmp(c, max,
1362                                 &znode->zbranch[znode->child_cnt - 1].key);
1363                         if (cmp == -1) {
1364                                 err = 11;
1365                                 goto out;
1366                         }
1367                 }
1368         } else {
1369                 /* This may only be root znode */
1370                 if (zbr != &c->zroot) {
1371                         err = 12;
1372                         goto out;
1373                 }
1374         }
1375
1376         /*
1377          * Make sure that next key is greater or equivalent then the previous
1378          * one.
1379          */
1380         for (n = 1; n < znode->child_cnt; n++) {
1381                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1382                                &znode->zbranch[n].key);
1383                 if (cmp > 0) {
1384                         err = 13;
1385                         goto out;
1386                 }
1387                 if (cmp == 0) {
1388                         /* This can only be keys with colliding hash */
1389                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1390                                 err = 14;
1391                                 goto out;
1392                         }
1393
1394                         if (znode->level != 0 || c->replaying)
1395                                 continue;
1396
1397                         /*
1398                          * Colliding keys should follow binary order of
1399                          * corresponding xentry/dentry names.
1400                          */
1401                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1402                                                   &znode->zbranch[n]);
1403                         if (err < 0)
1404                                 return err;
1405                         if (err) {
1406                                 err = 15;
1407                                 goto out;
1408                         }
1409                 }
1410         }
1411
1412         for (n = 0; n < znode->child_cnt; n++) {
1413                 if (!znode->zbranch[n].znode &&
1414                     (znode->zbranch[n].lnum == 0 ||
1415                      znode->zbranch[n].len == 0)) {
1416                         err = 16;
1417                         goto out;
1418                 }
1419
1420                 if (znode->zbranch[n].lnum != 0 &&
1421                     znode->zbranch[n].len == 0) {
1422                         err = 17;
1423                         goto out;
1424                 }
1425
1426                 if (znode->zbranch[n].lnum == 0 &&
1427                     znode->zbranch[n].len != 0) {
1428                         err = 18;
1429                         goto out;
1430                 }
1431
1432                 if (znode->zbranch[n].lnum == 0 &&
1433                     znode->zbranch[n].offs != 0) {
1434                         err = 19;
1435                         goto out;
1436                 }
1437
1438                 if (znode->level != 0 && znode->zbranch[n].znode)
1439                         if (znode->zbranch[n].znode->parent != znode) {
1440                                 err = 20;
1441                                 goto out;
1442                         }
1443         }
1444
1445         return 0;
1446
1447 out:
1448         ubifs_err("failed, error %d", err);
1449         ubifs_msg("dump of the znode");
1450         ubifs_dump_znode(c, znode);
1451         if (zp) {
1452                 ubifs_msg("dump of the parent znode");
1453                 ubifs_dump_znode(c, zp);
1454         }
1455         dump_stack();
1456         return -EINVAL;
1457 }
1458
1459 /**
1460  * dbg_check_tnc - check TNC tree.
1461  * @c: UBIFS file-system description object
1462  * @extra: do extra checks that are possible at start commit
1463  *
1464  * This function traverses whole TNC tree and checks every znode. Returns zero
1465  * if everything is all right and %-EINVAL if something is wrong with TNC.
1466  */
1467 int dbg_check_tnc(struct ubifs_info *c, int extra)
1468 {
1469         struct ubifs_znode *znode;
1470         long clean_cnt = 0, dirty_cnt = 0;
1471         int err, last;
1472
1473         if (!dbg_is_chk_index(c))
1474                 return 0;
1475
1476         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1477         if (!c->zroot.znode)
1478                 return 0;
1479
1480         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1481         while (1) {
1482                 struct ubifs_znode *prev;
1483                 struct ubifs_zbranch *zbr;
1484
1485                 if (!znode->parent)
1486                         zbr = &c->zroot;
1487                 else
1488                         zbr = &znode->parent->zbranch[znode->iip];
1489
1490                 err = dbg_check_znode(c, zbr);
1491                 if (err)
1492                         return err;
1493
1494                 if (extra) {
1495                         if (ubifs_zn_dirty(znode))
1496                                 dirty_cnt += 1;
1497                         else
1498                                 clean_cnt += 1;
1499                 }
1500
1501                 prev = znode;
1502                 znode = ubifs_tnc_postorder_next(znode);
1503                 if (!znode)
1504                         break;
1505
1506                 /*
1507                  * If the last key of this znode is equivalent to the first key
1508                  * of the next znode (collision), then check order of the keys.
1509                  */
1510                 last = prev->child_cnt - 1;
1511                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1512                     !keys_cmp(c, &prev->zbranch[last].key,
1513                               &znode->zbranch[0].key)) {
1514                         err = dbg_check_key_order(c, &prev->zbranch[last],
1515                                                   &znode->zbranch[0]);
1516                         if (err < 0)
1517                                 return err;
1518                         if (err) {
1519                                 ubifs_msg("first znode");
1520                                 ubifs_dump_znode(c, prev);
1521                                 ubifs_msg("second znode");
1522                                 ubifs_dump_znode(c, znode);
1523                                 return -EINVAL;
1524                         }
1525                 }
1526         }
1527
1528         if (extra) {
1529                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1530                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1531                                   atomic_long_read(&c->clean_zn_cnt),
1532                                   clean_cnt);
1533                         return -EINVAL;
1534                 }
1535                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1536                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1537                                   atomic_long_read(&c->dirty_zn_cnt),
1538                                   dirty_cnt);
1539                         return -EINVAL;
1540                 }
1541         }
1542
1543         return 0;
1544 }
1545
1546 /**
1547  * dbg_walk_index - walk the on-flash index.
1548  * @c: UBIFS file-system description object
1549  * @leaf_cb: called for each leaf node
1550  * @znode_cb: called for each indexing node
1551  * @priv: private data which is passed to callbacks
1552  *
1553  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1554  * node and @znode_cb for each indexing node. Returns zero in case of success
1555  * and a negative error code in case of failure.
1556  *
1557  * It would be better if this function removed every znode it pulled to into
1558  * the TNC, so that the behavior more closely matched the non-debugging
1559  * behavior.
1560  */
1561 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1562                    dbg_znode_callback znode_cb, void *priv)
1563 {
1564         int err;
1565         struct ubifs_zbranch *zbr;
1566         struct ubifs_znode *znode, *child;
1567
1568         mutex_lock(&c->tnc_mutex);
1569         /* If the root indexing node is not in TNC - pull it */
1570         if (!c->zroot.znode) {
1571                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1572                 if (IS_ERR(c->zroot.znode)) {
1573                         err = PTR_ERR(c->zroot.znode);
1574                         c->zroot.znode = NULL;
1575                         goto out_unlock;
1576                 }
1577         }
1578
1579         /*
1580          * We are going to traverse the indexing tree in the postorder manner.
1581          * Go down and find the leftmost indexing node where we are going to
1582          * start from.
1583          */
1584         znode = c->zroot.znode;
1585         while (znode->level > 0) {
1586                 zbr = &znode->zbranch[0];
1587                 child = zbr->znode;
1588                 if (!child) {
1589                         child = ubifs_load_znode(c, zbr, znode, 0);
1590                         if (IS_ERR(child)) {
1591                                 err = PTR_ERR(child);
1592                                 goto out_unlock;
1593                         }
1594                         zbr->znode = child;
1595                 }
1596
1597                 znode = child;
1598         }
1599
1600         /* Iterate over all indexing nodes */
1601         while (1) {
1602                 int idx;
1603
1604                 cond_resched();
1605
1606                 if (znode_cb) {
1607                         err = znode_cb(c, znode, priv);
1608                         if (err) {
1609                                 ubifs_err("znode checking function returned error %d",
1610                                           err);
1611                                 ubifs_dump_znode(c, znode);
1612                                 goto out_dump;
1613                         }
1614                 }
1615                 if (leaf_cb && znode->level == 0) {
1616                         for (idx = 0; idx < znode->child_cnt; idx++) {
1617                                 zbr = &znode->zbranch[idx];
1618                                 err = leaf_cb(c, zbr, priv);
1619                                 if (err) {
1620                                         ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d",
1621                                                   err, zbr->lnum, zbr->offs);
1622                                         goto out_dump;
1623                                 }
1624                         }
1625                 }
1626
1627                 if (!znode->parent)
1628                         break;
1629
1630                 idx = znode->iip + 1;
1631                 znode = znode->parent;
1632                 if (idx < znode->child_cnt) {
1633                         /* Switch to the next index in the parent */
1634                         zbr = &znode->zbranch[idx];
1635                         child = zbr->znode;
1636                         if (!child) {
1637                                 child = ubifs_load_znode(c, zbr, znode, idx);
1638                                 if (IS_ERR(child)) {
1639                                         err = PTR_ERR(child);
1640                                         goto out_unlock;
1641                                 }
1642                                 zbr->znode = child;
1643                         }
1644                         znode = child;
1645                 } else
1646                         /*
1647                          * This is the last child, switch to the parent and
1648                          * continue.
1649                          */
1650                         continue;
1651
1652                 /* Go to the lowest leftmost znode in the new sub-tree */
1653                 while (znode->level > 0) {
1654                         zbr = &znode->zbranch[0];
1655                         child = zbr->znode;
1656                         if (!child) {
1657                                 child = ubifs_load_znode(c, zbr, znode, 0);
1658                                 if (IS_ERR(child)) {
1659                                         err = PTR_ERR(child);
1660                                         goto out_unlock;
1661                                 }
1662                                 zbr->znode = child;
1663                         }
1664                         znode = child;
1665                 }
1666         }
1667
1668         mutex_unlock(&c->tnc_mutex);
1669         return 0;
1670
1671 out_dump:
1672         if (znode->parent)
1673                 zbr = &znode->parent->zbranch[znode->iip];
1674         else
1675                 zbr = &c->zroot;
1676         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1677         ubifs_dump_znode(c, znode);
1678 out_unlock:
1679         mutex_unlock(&c->tnc_mutex);
1680         return err;
1681 }
1682
1683 /**
1684  * add_size - add znode size to partially calculated index size.
1685  * @c: UBIFS file-system description object
1686  * @znode: znode to add size for
1687  * @priv: partially calculated index size
1688  *
1689  * This is a helper function for 'dbg_check_idx_size()' which is called for
1690  * every indexing node and adds its size to the 'long long' variable pointed to
1691  * by @priv.
1692  */
1693 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1694 {
1695         long long *idx_size = priv;
1696         int add;
1697
1698         add = ubifs_idx_node_sz(c, znode->child_cnt);
1699         add = ALIGN(add, 8);
1700         *idx_size += add;
1701         return 0;
1702 }
1703
1704 /**
1705  * dbg_check_idx_size - check index size.
1706  * @c: UBIFS file-system description object
1707  * @idx_size: size to check
1708  *
1709  * This function walks the UBIFS index, calculates its size and checks that the
1710  * size is equivalent to @idx_size. Returns zero in case of success and a
1711  * negative error code in case of failure.
1712  */
1713 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1714 {
1715         int err;
1716         long long calc = 0;
1717
1718         if (!dbg_is_chk_index(c))
1719                 return 0;
1720
1721         err = dbg_walk_index(c, NULL, add_size, &calc);
1722         if (err) {
1723                 ubifs_err("error %d while walking the index", err);
1724                 return err;
1725         }
1726
1727         if (calc != idx_size) {
1728                 ubifs_err("index size check failed: calculated size is %lld, should be %lld",
1729                           calc, idx_size);
1730                 dump_stack();
1731                 return -EINVAL;
1732         }
1733
1734         return 0;
1735 }
1736
1737 /**
1738  * struct fsck_inode - information about an inode used when checking the file-system.
1739  * @rb: link in the RB-tree of inodes
1740  * @inum: inode number
1741  * @mode: inode type, permissions, etc
1742  * @nlink: inode link count
1743  * @xattr_cnt: count of extended attributes
1744  * @references: how many directory/xattr entries refer this inode (calculated
1745  *              while walking the index)
1746  * @calc_cnt: for directory inode count of child directories
1747  * @size: inode size (read from on-flash inode)
1748  * @xattr_sz: summary size of all extended attributes (read from on-flash
1749  *            inode)
1750  * @calc_sz: for directories calculated directory size
1751  * @calc_xcnt: count of extended attributes
1752  * @calc_xsz: calculated summary size of all extended attributes
1753  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1754  *             inode (read from on-flash inode)
1755  * @calc_xnms: calculated sum of lengths of all extended attribute names
1756  */
1757 struct fsck_inode {
1758         struct rb_node rb;
1759         ino_t inum;
1760         umode_t mode;
1761         unsigned int nlink;
1762         unsigned int xattr_cnt;
1763         int references;
1764         int calc_cnt;
1765         long long size;
1766         unsigned int xattr_sz;
1767         long long calc_sz;
1768         long long calc_xcnt;
1769         long long calc_xsz;
1770         unsigned int xattr_nms;
1771         long long calc_xnms;
1772 };
1773
1774 /**
1775  * struct fsck_data - private FS checking information.
1776  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1777  */
1778 struct fsck_data {
1779         struct rb_root inodes;
1780 };
1781
1782 /**
1783  * add_inode - add inode information to RB-tree of inodes.
1784  * @c: UBIFS file-system description object
1785  * @fsckd: FS checking information
1786  * @ino: raw UBIFS inode to add
1787  *
1788  * This is a helper function for 'check_leaf()' which adds information about
1789  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1790  * case of success and a negative error code in case of failure.
1791  */
1792 static struct fsck_inode *add_inode(struct ubifs_info *c,
1793                                     struct fsck_data *fsckd,
1794                                     struct ubifs_ino_node *ino)
1795 {
1796         struct rb_node **p, *parent = NULL;
1797         struct fsck_inode *fscki;
1798         ino_t inum = key_inum_flash(c, &ino->key);
1799         struct inode *inode;
1800         struct ubifs_inode *ui;
1801
1802         p = &fsckd->inodes.rb_node;
1803         while (*p) {
1804                 parent = *p;
1805                 fscki = rb_entry(parent, struct fsck_inode, rb);
1806                 if (inum < fscki->inum)
1807                         p = &(*p)->rb_left;
1808                 else if (inum > fscki->inum)
1809                         p = &(*p)->rb_right;
1810                 else
1811                         return fscki;
1812         }
1813
1814         if (inum > c->highest_inum) {
1815                 ubifs_err("too high inode number, max. is %lu",
1816                           (unsigned long)c->highest_inum);
1817                 return ERR_PTR(-EINVAL);
1818         }
1819
1820         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1821         if (!fscki)
1822                 return ERR_PTR(-ENOMEM);
1823
1824         inode = ilookup(c->vfs_sb, inum);
1825
1826         fscki->inum = inum;
1827         /*
1828          * If the inode is present in the VFS inode cache, use it instead of
1829          * the on-flash inode which might be out-of-date. E.g., the size might
1830          * be out-of-date. If we do not do this, the following may happen, for
1831          * example:
1832          *   1. A power cut happens
1833          *   2. We mount the file-system R/O, the replay process fixes up the
1834          *      inode size in the VFS cache, but on on-flash.
1835          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1836          *      size.
1837          */
1838         if (!inode) {
1839                 fscki->nlink = le32_to_cpu(ino->nlink);
1840                 fscki->size = le64_to_cpu(ino->size);
1841                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1842                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1843                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1844                 fscki->mode = le32_to_cpu(ino->mode);
1845         } else {
1846                 ui = ubifs_inode(inode);
1847                 fscki->nlink = inode->i_nlink;
1848                 fscki->size = inode->i_size;
1849                 fscki->xattr_cnt = ui->xattr_cnt;
1850                 fscki->xattr_sz = ui->xattr_size;
1851                 fscki->xattr_nms = ui->xattr_names;
1852                 fscki->mode = inode->i_mode;
1853                 iput(inode);
1854         }
1855
1856         if (S_ISDIR(fscki->mode)) {
1857                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1858                 fscki->calc_cnt = 2;
1859         }
1860
1861         rb_link_node(&fscki->rb, parent, p);
1862         rb_insert_color(&fscki->rb, &fsckd->inodes);
1863
1864         return fscki;
1865 }
1866
1867 /**
1868  * search_inode - search inode in the RB-tree of inodes.
1869  * @fsckd: FS checking information
1870  * @inum: inode number to search
1871  *
1872  * This is a helper function for 'check_leaf()' which searches inode @inum in
1873  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1874  * the inode was not found.
1875  */
1876 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1877 {
1878         struct rb_node *p;
1879         struct fsck_inode *fscki;
1880
1881         p = fsckd->inodes.rb_node;
1882         while (p) {
1883                 fscki = rb_entry(p, struct fsck_inode, rb);
1884                 if (inum < fscki->inum)
1885                         p = p->rb_left;
1886                 else if (inum > fscki->inum)
1887                         p = p->rb_right;
1888                 else
1889                         return fscki;
1890         }
1891         return NULL;
1892 }
1893
1894 /**
1895  * read_add_inode - read inode node and add it to RB-tree of inodes.
1896  * @c: UBIFS file-system description object
1897  * @fsckd: FS checking information
1898  * @inum: inode number to read
1899  *
1900  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1901  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1902  * information pointer in case of success and a negative error code in case of
1903  * failure.
1904  */
1905 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1906                                          struct fsck_data *fsckd, ino_t inum)
1907 {
1908         int n, err;
1909         union ubifs_key key;
1910         struct ubifs_znode *znode;
1911         struct ubifs_zbranch *zbr;
1912         struct ubifs_ino_node *ino;
1913         struct fsck_inode *fscki;
1914
1915         fscki = search_inode(fsckd, inum);
1916         if (fscki)
1917                 return fscki;
1918
1919         ino_key_init(c, &key, inum);
1920         err = ubifs_lookup_level0(c, &key, &znode, &n);
1921         if (!err) {
1922                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1923                 return ERR_PTR(-ENOENT);
1924         } else if (err < 0) {
1925                 ubifs_err("error %d while looking up inode %lu",
1926                           err, (unsigned long)inum);
1927                 return ERR_PTR(err);
1928         }
1929
1930         zbr = &znode->zbranch[n];
1931         if (zbr->len < UBIFS_INO_NODE_SZ) {
1932                 ubifs_err("bad node %lu node length %d",
1933                           (unsigned long)inum, zbr->len);
1934                 return ERR_PTR(-EINVAL);
1935         }
1936
1937         ino = kmalloc(zbr->len, GFP_NOFS);
1938         if (!ino)
1939                 return ERR_PTR(-ENOMEM);
1940
1941         err = ubifs_tnc_read_node(c, zbr, ino);
1942         if (err) {
1943                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1944                           zbr->lnum, zbr->offs, err);
1945                 kfree(ino);
1946                 return ERR_PTR(err);
1947         }
1948
1949         fscki = add_inode(c, fsckd, ino);
1950         kfree(ino);
1951         if (IS_ERR(fscki)) {
1952                 ubifs_err("error %ld while adding inode %lu node",
1953                           PTR_ERR(fscki), (unsigned long)inum);
1954                 return fscki;
1955         }
1956
1957         return fscki;
1958 }
1959
1960 /**
1961  * check_leaf - check leaf node.
1962  * @c: UBIFS file-system description object
1963  * @zbr: zbranch of the leaf node to check
1964  * @priv: FS checking information
1965  *
1966  * This is a helper function for 'dbg_check_filesystem()' which is called for
1967  * every single leaf node while walking the indexing tree. It checks that the
1968  * leaf node referred from the indexing tree exists, has correct CRC, and does
1969  * some other basic validation. This function is also responsible for building
1970  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1971  * calculates reference count, size, etc for each inode in order to later
1972  * compare them to the information stored inside the inodes and detect possible
1973  * inconsistencies. Returns zero in case of success and a negative error code
1974  * in case of failure.
1975  */
1976 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1977                       void *priv)
1978 {
1979         ino_t inum;
1980         void *node;
1981         struct ubifs_ch *ch;
1982         int err, type = key_type(c, &zbr->key);
1983         struct fsck_inode *fscki;
1984
1985         if (zbr->len < UBIFS_CH_SZ) {
1986                 ubifs_err("bad leaf length %d (LEB %d:%d)",
1987                           zbr->len, zbr->lnum, zbr->offs);
1988                 return -EINVAL;
1989         }
1990
1991         node = kmalloc(zbr->len, GFP_NOFS);
1992         if (!node)
1993                 return -ENOMEM;
1994
1995         err = ubifs_tnc_read_node(c, zbr, node);
1996         if (err) {
1997                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1998                           zbr->lnum, zbr->offs, err);
1999                 goto out_free;
2000         }
2001
2002         /* If this is an inode node, add it to RB-tree of inodes */
2003         if (type == UBIFS_INO_KEY) {
2004                 fscki = add_inode(c, priv, node);
2005                 if (IS_ERR(fscki)) {
2006                         err = PTR_ERR(fscki);
2007                         ubifs_err("error %d while adding inode node", err);
2008                         goto out_dump;
2009                 }
2010                 goto out;
2011         }
2012
2013         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2014             type != UBIFS_DATA_KEY) {
2015                 ubifs_err("unexpected node type %d at LEB %d:%d",
2016                           type, zbr->lnum, zbr->offs);
2017                 err = -EINVAL;
2018                 goto out_free;
2019         }
2020
2021         ch = node;
2022         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2023                 ubifs_err("too high sequence number, max. is %llu",
2024                           c->max_sqnum);
2025                 err = -EINVAL;
2026                 goto out_dump;
2027         }
2028
2029         if (type == UBIFS_DATA_KEY) {
2030                 long long blk_offs;
2031                 struct ubifs_data_node *dn = node;
2032
2033                 /*
2034                  * Search the inode node this data node belongs to and insert
2035                  * it to the RB-tree of inodes.
2036                  */
2037                 inum = key_inum_flash(c, &dn->key);
2038                 fscki = read_add_inode(c, priv, inum);
2039                 if (IS_ERR(fscki)) {
2040                         err = PTR_ERR(fscki);
2041                         ubifs_err("error %d while processing data node and trying to find inode node %lu",
2042                                   err, (unsigned long)inum);
2043                         goto out_dump;
2044                 }
2045
2046                 /* Make sure the data node is within inode size */
2047                 blk_offs = key_block_flash(c, &dn->key);
2048                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2049                 blk_offs += le32_to_cpu(dn->size);
2050                 if (blk_offs > fscki->size) {
2051                         ubifs_err("data node at LEB %d:%d is not within inode size %lld",
2052                                   zbr->lnum, zbr->offs, fscki->size);
2053                         err = -EINVAL;
2054                         goto out_dump;
2055                 }
2056         } else {
2057                 int nlen;
2058                 struct ubifs_dent_node *dent = node;
2059                 struct fsck_inode *fscki1;
2060
2061                 err = ubifs_validate_entry(c, dent);
2062                 if (err)
2063                         goto out_dump;
2064
2065                 /*
2066                  * Search the inode node this entry refers to and the parent
2067                  * inode node and insert them to the RB-tree of inodes.
2068                  */
2069                 inum = le64_to_cpu(dent->inum);
2070                 fscki = read_add_inode(c, priv, inum);
2071                 if (IS_ERR(fscki)) {
2072                         err = PTR_ERR(fscki);
2073                         ubifs_err("error %d while processing entry node and trying to find inode node %lu",
2074                                   err, (unsigned long)inum);
2075                         goto out_dump;
2076                 }
2077
2078                 /* Count how many direntries or xentries refers this inode */
2079                 fscki->references += 1;
2080
2081                 inum = key_inum_flash(c, &dent->key);
2082                 fscki1 = read_add_inode(c, priv, inum);
2083                 if (IS_ERR(fscki1)) {
2084                         err = PTR_ERR(fscki1);
2085                         ubifs_err("error %d while processing entry node and trying to find parent inode node %lu",
2086                                   err, (unsigned long)inum);
2087                         goto out_dump;
2088                 }
2089
2090                 nlen = le16_to_cpu(dent->nlen);
2091                 if (type == UBIFS_XENT_KEY) {
2092                         fscki1->calc_xcnt += 1;
2093                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2094                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2095                         fscki1->calc_xnms += nlen;
2096                 } else {
2097                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2098                         if (dent->type == UBIFS_ITYPE_DIR)
2099                                 fscki1->calc_cnt += 1;
2100                 }
2101         }
2102
2103 out:
2104         kfree(node);
2105         return 0;
2106
2107 out_dump:
2108         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2109         ubifs_dump_node(c, node);
2110 out_free:
2111         kfree(node);
2112         return err;
2113 }
2114
2115 /**
2116  * free_inodes - free RB-tree of inodes.
2117  * @fsckd: FS checking information
2118  */
2119 static void free_inodes(struct fsck_data *fsckd)
2120 {
2121         struct rb_node *this = fsckd->inodes.rb_node;
2122         struct fsck_inode *fscki;
2123
2124         while (this) {
2125                 if (this->rb_left)
2126                         this = this->rb_left;
2127                 else if (this->rb_right)
2128                         this = this->rb_right;
2129                 else {
2130                         fscki = rb_entry(this, struct fsck_inode, rb);
2131                         this = rb_parent(this);
2132                         if (this) {
2133                                 if (this->rb_left == &fscki->rb)
2134                                         this->rb_left = NULL;
2135                                 else
2136                                         this->rb_right = NULL;
2137                         }
2138                         kfree(fscki);
2139                 }
2140         }
2141 }
2142
2143 /**
2144  * check_inodes - checks all inodes.
2145  * @c: UBIFS file-system description object
2146  * @fsckd: FS checking information
2147  *
2148  * This is a helper function for 'dbg_check_filesystem()' which walks the
2149  * RB-tree of inodes after the index scan has been finished, and checks that
2150  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2151  * %-EINVAL if not, and a negative error code in case of failure.
2152  */
2153 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2154 {
2155         int n, err;
2156         union ubifs_key key;
2157         struct ubifs_znode *znode;
2158         struct ubifs_zbranch *zbr;
2159         struct ubifs_ino_node *ino;
2160         struct fsck_inode *fscki;
2161         struct rb_node *this = rb_first(&fsckd->inodes);
2162
2163         while (this) {
2164                 fscki = rb_entry(this, struct fsck_inode, rb);
2165                 this = rb_next(this);
2166
2167                 if (S_ISDIR(fscki->mode)) {
2168                         /*
2169                          * Directories have to have exactly one reference (they
2170                          * cannot have hardlinks), although root inode is an
2171                          * exception.
2172                          */
2173                         if (fscki->inum != UBIFS_ROOT_INO &&
2174                             fscki->references != 1) {
2175                                 ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1",
2176                                           (unsigned long)fscki->inum,
2177                                           fscki->references);
2178                                 goto out_dump;
2179                         }
2180                         if (fscki->inum == UBIFS_ROOT_INO &&
2181                             fscki->references != 0) {
2182                                 ubifs_err("root inode %lu has non-zero (%d) direntries which refer it",
2183                                           (unsigned long)fscki->inum,
2184                                           fscki->references);
2185                                 goto out_dump;
2186                         }
2187                         if (fscki->calc_sz != fscki->size) {
2188                                 ubifs_err("directory inode %lu size is %lld, but calculated size is %lld",
2189                                           (unsigned long)fscki->inum,
2190                                           fscki->size, fscki->calc_sz);
2191                                 goto out_dump;
2192                         }
2193                         if (fscki->calc_cnt != fscki->nlink) {
2194                                 ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d",
2195                                           (unsigned long)fscki->inum,
2196                                           fscki->nlink, fscki->calc_cnt);
2197                                 goto out_dump;
2198                         }
2199                 } else {
2200                         if (fscki->references != fscki->nlink) {
2201                                 ubifs_err("inode %lu nlink is %d, but calculated nlink is %d",
2202                                           (unsigned long)fscki->inum,
2203                                           fscki->nlink, fscki->references);
2204                                 goto out_dump;
2205                         }
2206                 }
2207                 if (fscki->xattr_sz != fscki->calc_xsz) {
2208                         ubifs_err("inode %lu has xattr size %u, but calculated size is %lld",
2209                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2210                                   fscki->calc_xsz);
2211                         goto out_dump;
2212                 }
2213                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2214                         ubifs_err("inode %lu has %u xattrs, but calculated count is %lld",
2215                                   (unsigned long)fscki->inum,
2216                                   fscki->xattr_cnt, fscki->calc_xcnt);
2217                         goto out_dump;
2218                 }
2219                 if (fscki->xattr_nms != fscki->calc_xnms) {
2220                         ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld",
2221                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2222                                   fscki->calc_xnms);
2223                         goto out_dump;
2224                 }
2225         }
2226
2227         return 0;
2228
2229 out_dump:
2230         /* Read the bad inode and dump it */
2231         ino_key_init(c, &key, fscki->inum);
2232         err = ubifs_lookup_level0(c, &key, &znode, &n);
2233         if (!err) {
2234                 ubifs_err("inode %lu not found in index",
2235                           (unsigned long)fscki->inum);
2236                 return -ENOENT;
2237         } else if (err < 0) {
2238                 ubifs_err("error %d while looking up inode %lu",
2239                           err, (unsigned long)fscki->inum);
2240                 return err;
2241         }
2242
2243         zbr = &znode->zbranch[n];
2244         ino = kmalloc(zbr->len, GFP_NOFS);
2245         if (!ino)
2246                 return -ENOMEM;
2247
2248         err = ubifs_tnc_read_node(c, zbr, ino);
2249         if (err) {
2250                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2251                           zbr->lnum, zbr->offs, err);
2252                 kfree(ino);
2253                 return err;
2254         }
2255
2256         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2257                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2258         ubifs_dump_node(c, ino);
2259         kfree(ino);
2260         return -EINVAL;
2261 }
2262
2263 /**
2264  * dbg_check_filesystem - check the file-system.
2265  * @c: UBIFS file-system description object
2266  *
2267  * This function checks the file system, namely:
2268  * o makes sure that all leaf nodes exist and their CRCs are correct;
2269  * o makes sure inode nlink, size, xattr size/count are correct (for all
2270  *   inodes).
2271  *
2272  * The function reads whole indexing tree and all nodes, so it is pretty
2273  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2274  * not, and a negative error code in case of failure.
2275  */
2276 int dbg_check_filesystem(struct ubifs_info *c)
2277 {
2278         int err;
2279         struct fsck_data fsckd;
2280
2281         if (!dbg_is_chk_fs(c))
2282                 return 0;
2283
2284         fsckd.inodes = RB_ROOT;
2285         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2286         if (err)
2287                 goto out_free;
2288
2289         err = check_inodes(c, &fsckd);
2290         if (err)
2291                 goto out_free;
2292
2293         free_inodes(&fsckd);
2294         return 0;
2295
2296 out_free:
2297         ubifs_err("file-system check failed with error %d", err);
2298         dump_stack();
2299         free_inodes(&fsckd);
2300         return err;
2301 }
2302
2303 /**
2304  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2305  * @c: UBIFS file-system description object
2306  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2307  *
2308  * This function returns zero if the list of data nodes is sorted correctly,
2309  * and %-EINVAL if not.
2310  */
2311 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2312 {
2313         struct list_head *cur;
2314         struct ubifs_scan_node *sa, *sb;
2315
2316         if (!dbg_is_chk_gen(c))
2317                 return 0;
2318
2319         for (cur = head->next; cur->next != head; cur = cur->next) {
2320                 ino_t inuma, inumb;
2321                 uint32_t blka, blkb;
2322
2323                 cond_resched();
2324                 sa = container_of(cur, struct ubifs_scan_node, list);
2325                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2326
2327                 if (sa->type != UBIFS_DATA_NODE) {
2328                         ubifs_err("bad node type %d", sa->type);
2329                         ubifs_dump_node(c, sa->node);
2330                         return -EINVAL;
2331                 }
2332                 if (sb->type != UBIFS_DATA_NODE) {
2333                         ubifs_err("bad node type %d", sb->type);
2334                         ubifs_dump_node(c, sb->node);
2335                         return -EINVAL;
2336                 }
2337
2338                 inuma = key_inum(c, &sa->key);
2339                 inumb = key_inum(c, &sb->key);
2340
2341                 if (inuma < inumb)
2342                         continue;
2343                 if (inuma > inumb) {
2344                         ubifs_err("larger inum %lu goes before inum %lu",
2345                                   (unsigned long)inuma, (unsigned long)inumb);
2346                         goto error_dump;
2347                 }
2348
2349                 blka = key_block(c, &sa->key);
2350                 blkb = key_block(c, &sb->key);
2351
2352                 if (blka > blkb) {
2353                         ubifs_err("larger block %u goes before %u", blka, blkb);
2354                         goto error_dump;
2355                 }
2356                 if (blka == blkb) {
2357                         ubifs_err("two data nodes for the same block");
2358                         goto error_dump;
2359                 }
2360         }
2361
2362         return 0;
2363
2364 error_dump:
2365         ubifs_dump_node(c, sa->node);
2366         ubifs_dump_node(c, sb->node);
2367         return -EINVAL;
2368 }
2369
2370 /**
2371  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2372  * @c: UBIFS file-system description object
2373  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2374  *
2375  * This function returns zero if the list of non-data nodes is sorted correctly,
2376  * and %-EINVAL if not.
2377  */
2378 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2379 {
2380         struct list_head *cur;
2381         struct ubifs_scan_node *sa, *sb;
2382
2383         if (!dbg_is_chk_gen(c))
2384                 return 0;
2385
2386         for (cur = head->next; cur->next != head; cur = cur->next) {
2387                 ino_t inuma, inumb;
2388                 uint32_t hasha, hashb;
2389
2390                 cond_resched();
2391                 sa = container_of(cur, struct ubifs_scan_node, list);
2392                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2393
2394                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2395                     sa->type != UBIFS_XENT_NODE) {
2396                         ubifs_err("bad node type %d", sa->type);
2397                         ubifs_dump_node(c, sa->node);
2398                         return -EINVAL;
2399                 }
2400                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2401                     sa->type != UBIFS_XENT_NODE) {
2402                         ubifs_err("bad node type %d", sb->type);
2403                         ubifs_dump_node(c, sb->node);
2404                         return -EINVAL;
2405                 }
2406
2407                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2408                         ubifs_err("non-inode node goes before inode node");
2409                         goto error_dump;
2410                 }
2411
2412                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2413                         continue;
2414
2415                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2416                         /* Inode nodes are sorted in descending size order */
2417                         if (sa->len < sb->len) {
2418                                 ubifs_err("smaller inode node goes first");
2419                                 goto error_dump;
2420                         }
2421                         continue;
2422                 }
2423
2424                 /*
2425                  * This is either a dentry or xentry, which should be sorted in
2426                  * ascending (parent ino, hash) order.
2427                  */
2428                 inuma = key_inum(c, &sa->key);
2429                 inumb = key_inum(c, &sb->key);
2430
2431                 if (inuma < inumb)
2432                         continue;
2433                 if (inuma > inumb) {
2434                         ubifs_err("larger inum %lu goes before inum %lu",
2435                                   (unsigned long)inuma, (unsigned long)inumb);
2436                         goto error_dump;
2437                 }
2438
2439                 hasha = key_block(c, &sa->key);
2440                 hashb = key_block(c, &sb->key);
2441
2442                 if (hasha > hashb) {
2443                         ubifs_err("larger hash %u goes before %u",
2444                                   hasha, hashb);
2445                         goto error_dump;
2446                 }
2447         }
2448
2449         return 0;
2450
2451 error_dump:
2452         ubifs_msg("dumping first node");
2453         ubifs_dump_node(c, sa->node);
2454         ubifs_msg("dumping second node");
2455         ubifs_dump_node(c, sb->node);
2456         return -EINVAL;
2457         return 0;
2458 }
2459
2460 static inline int chance(unsigned int n, unsigned int out_of)
2461 {
2462         return !!((random32() % out_of) + 1 <= n);
2463
2464 }
2465
2466 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2467 {
2468         struct ubifs_debug_info *d = c->dbg;
2469
2470         ubifs_assert(dbg_is_tst_rcvry(c));
2471
2472         if (!d->pc_cnt) {
2473                 /* First call - decide delay to the power cut */
2474                 if (chance(1, 2)) {
2475                         unsigned long delay;
2476
2477                         if (chance(1, 2)) {
2478                                 d->pc_delay = 1;
2479                                 /* Fail withing 1 minute */
2480                                 delay = random32() % 60000;
2481                                 d->pc_timeout = jiffies;
2482                                 d->pc_timeout += msecs_to_jiffies(delay);
2483                                 ubifs_warn("failing after %lums", delay);
2484                         } else {
2485                                 d->pc_delay = 2;
2486                                 delay = random32() % 10000;
2487                                 /* Fail within 10000 operations */
2488                                 d->pc_cnt_max = delay;
2489                                 ubifs_warn("failing after %lu calls", delay);
2490                         }
2491                 }
2492
2493                 d->pc_cnt += 1;
2494         }
2495
2496         /* Determine if failure delay has expired */
2497         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2498                         return 0;
2499         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2500                         return 0;
2501
2502         if (lnum == UBIFS_SB_LNUM) {
2503                 if (write && chance(1, 2))
2504                         return 0;
2505                 if (chance(19, 20))
2506                         return 0;
2507                 ubifs_warn("failing in super block LEB %d", lnum);
2508         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2509                 if (chance(19, 20))
2510                         return 0;
2511                 ubifs_warn("failing in master LEB %d", lnum);
2512         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2513                 if (write && chance(99, 100))
2514                         return 0;
2515                 if (chance(399, 400))
2516                         return 0;
2517                 ubifs_warn("failing in log LEB %d", lnum);
2518         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2519                 if (write && chance(7, 8))
2520                         return 0;
2521                 if (chance(19, 20))
2522                         return 0;
2523                 ubifs_warn("failing in LPT LEB %d", lnum);
2524         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2525                 if (write && chance(1, 2))
2526                         return 0;
2527                 if (chance(9, 10))
2528                         return 0;
2529                 ubifs_warn("failing in orphan LEB %d", lnum);
2530         } else if (lnum == c->ihead_lnum) {
2531                 if (chance(99, 100))
2532                         return 0;
2533                 ubifs_warn("failing in index head LEB %d", lnum);
2534         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2535                 if (chance(9, 10))
2536                         return 0;
2537                 ubifs_warn("failing in GC head LEB %d", lnum);
2538         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2539                    !ubifs_search_bud(c, lnum)) {
2540                 if (chance(19, 20))
2541                         return 0;
2542                 ubifs_warn("failing in non-bud LEB %d", lnum);
2543         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2544                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2545                 if (chance(999, 1000))
2546                         return 0;
2547                 ubifs_warn("failing in bud LEB %d commit running", lnum);
2548         } else {
2549                 if (chance(9999, 10000))
2550                         return 0;
2551                 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2552         }
2553
2554         d->pc_happened = 1;
2555         ubifs_warn("========== Power cut emulated ==========");
2556         dump_stack();
2557         return 1;
2558 }
2559
2560 static void cut_data(const void *buf, unsigned int len)
2561 {
2562         unsigned int from, to, i, ffs = chance(1, 2);
2563         unsigned char *p = (void *)buf;
2564
2565         from = random32() % (len + 1);
2566         if (chance(1, 2))
2567                 to = random32() % (len - from + 1);
2568         else
2569                 to = len;
2570
2571         if (from < to)
2572                 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2573                            ffs ? "0xFFs" : "random data");
2574
2575         if (ffs)
2576                 for (i = from; i < to; i++)
2577                         p[i] = 0xFF;
2578         else
2579                 for (i = from; i < to; i++)
2580                         p[i] = random32() % 0x100;
2581 }
2582
2583 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2584                   int offs, int len)
2585 {
2586         int err, failing;
2587
2588         if (c->dbg->pc_happened)
2589                 return -EROFS;
2590
2591         failing = power_cut_emulated(c, lnum, 1);
2592         if (failing)
2593                 cut_data(buf, len);
2594         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2595         if (err)
2596                 return err;
2597         if (failing)
2598                 return -EROFS;
2599         return 0;
2600 }
2601
2602 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2603                    int len)
2604 {
2605         int err;
2606
2607         if (c->dbg->pc_happened)
2608                 return -EROFS;
2609         if (power_cut_emulated(c, lnum, 1))
2610                 return -EROFS;
2611         err = ubi_leb_change(c->ubi, lnum, buf, len);
2612         if (err)
2613                 return err;
2614         if (power_cut_emulated(c, lnum, 1))
2615                 return -EROFS;
2616         return 0;
2617 }
2618
2619 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2620 {
2621         int err;
2622
2623         if (c->dbg->pc_happened)
2624                 return -EROFS;
2625         if (power_cut_emulated(c, lnum, 0))
2626                 return -EROFS;
2627         err = ubi_leb_unmap(c->ubi, lnum);
2628         if (err)
2629                 return err;
2630         if (power_cut_emulated(c, lnum, 0))
2631                 return -EROFS;
2632         return 0;
2633 }
2634
2635 int dbg_leb_map(struct ubifs_info *c, int lnum)
2636 {
2637         int err;
2638
2639         if (c->dbg->pc_happened)
2640                 return -EROFS;
2641         if (power_cut_emulated(c, lnum, 0))
2642                 return -EROFS;
2643         err = ubi_leb_map(c->ubi, lnum);
2644         if (err)
2645                 return err;
2646         if (power_cut_emulated(c, lnum, 0))
2647                 return -EROFS;
2648         return 0;
2649 }
2650
2651 /*
2652  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2653  * contain the stuff specific to particular file-system mounts.
2654  */
2655 static struct dentry *dfs_rootdir;
2656
2657 static int dfs_file_open(struct inode *inode, struct file *file)
2658 {
2659         file->private_data = inode->i_private;
2660         return nonseekable_open(inode, file);
2661 }
2662
2663 /**
2664  * provide_user_output - provide output to the user reading a debugfs file.
2665  * @val: boolean value for the answer
2666  * @u: the buffer to store the answer at
2667  * @count: size of the buffer
2668  * @ppos: position in the @u output buffer
2669  *
2670  * This is a simple helper function which stores @val boolean value in the user
2671  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2672  * bytes written to @u in case of success and a negative error code in case of
2673  * failure.
2674  */
2675 static int provide_user_output(int val, char __user *u, size_t count,
2676                                loff_t *ppos)
2677 {
2678         char buf[3];
2679
2680         if (val)
2681                 buf[0] = '1';
2682         else
2683                 buf[0] = '0';
2684         buf[1] = '\n';
2685         buf[2] = 0x00;
2686
2687         return simple_read_from_buffer(u, count, ppos, buf, 2);
2688 }
2689
2690 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2691                              loff_t *ppos)
2692 {
2693         struct dentry *dent = file->f_path.dentry;
2694         struct ubifs_info *c = file->private_data;
2695         struct ubifs_debug_info *d = c->dbg;
2696         int val;
2697
2698         if (dent == d->dfs_chk_gen)
2699                 val = d->chk_gen;
2700         else if (dent == d->dfs_chk_index)
2701                 val = d->chk_index;
2702         else if (dent == d->dfs_chk_orph)
2703                 val = d->chk_orph;
2704         else if (dent == d->dfs_chk_lprops)
2705                 val = d->chk_lprops;
2706         else if (dent == d->dfs_chk_fs)
2707                 val = d->chk_fs;
2708         else if (dent == d->dfs_tst_rcvry)
2709                 val = d->tst_rcvry;
2710         else
2711                 return -EINVAL;
2712
2713         return provide_user_output(val, u, count, ppos);
2714 }
2715
2716 /**
2717  * interpret_user_input - interpret user debugfs file input.
2718  * @u: user-provided buffer with the input
2719  * @count: buffer size
2720  *
2721  * This is a helper function which interpret user input to a boolean UBIFS
2722  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2723  * in case of failure.
2724  */
2725 static int interpret_user_input(const char __user *u, size_t count)
2726 {
2727         size_t buf_size;
2728         char buf[8];
2729
2730         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2731         if (copy_from_user(buf, u, buf_size))
2732                 return -EFAULT;
2733
2734         if (buf[0] == '1')
2735                 return 1;
2736         else if (buf[0] == '0')
2737                 return 0;
2738
2739         return -EINVAL;
2740 }
2741
2742 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2743                               size_t count, loff_t *ppos)
2744 {
2745         struct ubifs_info *c = file->private_data;
2746         struct ubifs_debug_info *d = c->dbg;
2747         struct dentry *dent = file->f_path.dentry;
2748         int val;
2749
2750         /*
2751          * TODO: this is racy - the file-system might have already been
2752          * unmounted and we'd oops in this case. The plan is to fix it with
2753          * help of 'iterate_supers_type()' which we should have in v3.0: when
2754          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2755          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2756          * superblocks and fine the one with the same UUID, and take the
2757          * locking right.
2758          *
2759          * The other way to go suggested by Al Viro is to create a separate
2760          * 'ubifs-debug' file-system instead.
2761          */
2762         if (file->f_path.dentry == d->dfs_dump_lprops) {
2763                 ubifs_dump_lprops(c);
2764                 return count;
2765         }
2766         if (file->f_path.dentry == d->dfs_dump_budg) {
2767                 ubifs_dump_budg(c, &c->bi);
2768                 return count;
2769         }
2770         if (file->f_path.dentry == d->dfs_dump_tnc) {
2771                 mutex_lock(&c->tnc_mutex);
2772                 ubifs_dump_tnc(c);
2773                 mutex_unlock(&c->tnc_mutex);
2774                 return count;
2775         }
2776
2777         val = interpret_user_input(u, count);
2778         if (val < 0)
2779                 return val;
2780
2781         if (dent == d->dfs_chk_gen)
2782                 d->chk_gen = val;
2783         else if (dent == d->dfs_chk_index)
2784                 d->chk_index = val;
2785         else if (dent == d->dfs_chk_orph)
2786                 d->chk_orph = val;
2787         else if (dent == d->dfs_chk_lprops)
2788                 d->chk_lprops = val;
2789         else if (dent == d->dfs_chk_fs)
2790                 d->chk_fs = val;
2791         else if (dent == d->dfs_tst_rcvry)
2792                 d->tst_rcvry = val;
2793         else
2794                 return -EINVAL;
2795
2796         return count;
2797 }
2798
2799 static const struct file_operations dfs_fops = {
2800         .open = dfs_file_open,
2801         .read = dfs_file_read,
2802         .write = dfs_file_write,
2803         .owner = THIS_MODULE,
2804         .llseek = no_llseek,
2805 };
2806
2807 /**
2808  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2809  * @c: UBIFS file-system description object
2810  *
2811  * This function creates all debugfs files for this instance of UBIFS. Returns
2812  * zero in case of success and a negative error code in case of failure.
2813  *
2814  * Note, the only reason we have not merged this function with the
2815  * 'ubifs_debugging_init()' function is because it is better to initialize
2816  * debugfs interfaces at the very end of the mount process, and remove them at
2817  * the very beginning of the mount process.
2818  */
2819 int dbg_debugfs_init_fs(struct ubifs_info *c)
2820 {
2821         int err, n;
2822         const char *fname;
2823         struct dentry *dent;
2824         struct ubifs_debug_info *d = c->dbg;
2825
2826         if (!IS_ENABLED(CONFIG_DEBUG_FS))
2827                 return 0;
2828
2829         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2830                      c->vi.ubi_num, c->vi.vol_id);
2831         if (n == UBIFS_DFS_DIR_LEN) {
2832                 /* The array size is too small */
2833                 fname = UBIFS_DFS_DIR_NAME;
2834                 dent = ERR_PTR(-EINVAL);
2835                 goto out;
2836         }
2837
2838         fname = d->dfs_dir_name;
2839         dent = debugfs_create_dir(fname, dfs_rootdir);
2840         if (IS_ERR_OR_NULL(dent))
2841                 goto out;
2842         d->dfs_dir = dent;
2843
2844         fname = "dump_lprops";
2845         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2846         if (IS_ERR_OR_NULL(dent))
2847                 goto out_remove;
2848         d->dfs_dump_lprops = dent;
2849
2850         fname = "dump_budg";
2851         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2852         if (IS_ERR_OR_NULL(dent))
2853                 goto out_remove;
2854         d->dfs_dump_budg = dent;
2855
2856         fname = "dump_tnc";
2857         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2858         if (IS_ERR_OR_NULL(dent))
2859                 goto out_remove;
2860         d->dfs_dump_tnc = dent;
2861
2862         fname = "chk_general";
2863         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2864                                    &dfs_fops);
2865         if (IS_ERR_OR_NULL(dent))
2866                 goto out_remove;
2867         d->dfs_chk_gen = dent;
2868
2869         fname = "chk_index";
2870         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2871                                    &dfs_fops);
2872         if (IS_ERR_OR_NULL(dent))
2873                 goto out_remove;
2874         d->dfs_chk_index = dent;
2875
2876         fname = "chk_orphans";
2877         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2878                                    &dfs_fops);
2879         if (IS_ERR_OR_NULL(dent))
2880                 goto out_remove;
2881         d->dfs_chk_orph = dent;
2882
2883         fname = "chk_lprops";
2884         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2885                                    &dfs_fops);
2886         if (IS_ERR_OR_NULL(dent))
2887                 goto out_remove;
2888         d->dfs_chk_lprops = dent;
2889
2890         fname = "chk_fs";
2891         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2892                                    &dfs_fops);
2893         if (IS_ERR_OR_NULL(dent))
2894                 goto out_remove;
2895         d->dfs_chk_fs = dent;
2896
2897         fname = "tst_recovery";
2898         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2899                                    &dfs_fops);
2900         if (IS_ERR_OR_NULL(dent))
2901                 goto out_remove;
2902         d->dfs_tst_rcvry = dent;
2903
2904         return 0;
2905
2906 out_remove:
2907         debugfs_remove_recursive(d->dfs_dir);
2908 out:
2909         err = dent ? PTR_ERR(dent) : -ENODEV;
2910         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2911                   fname, err);
2912         return err;
2913 }
2914
2915 /**
2916  * dbg_debugfs_exit_fs - remove all debugfs files.
2917  * @c: UBIFS file-system description object
2918  */
2919 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2920 {
2921         if (IS_ENABLED(CONFIG_DEBUG_FS))
2922                 debugfs_remove_recursive(c->dbg->dfs_dir);
2923 }
2924
2925 struct ubifs_global_debug_info ubifs_dbg;
2926
2927 static struct dentry *dfs_chk_gen;
2928 static struct dentry *dfs_chk_index;
2929 static struct dentry *dfs_chk_orph;
2930 static struct dentry *dfs_chk_lprops;
2931 static struct dentry *dfs_chk_fs;
2932 static struct dentry *dfs_tst_rcvry;
2933
2934 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2935                                     size_t count, loff_t *ppos)
2936 {
2937         struct dentry *dent = file->f_path.dentry;
2938         int val;
2939
2940         if (dent == dfs_chk_gen)
2941                 val = ubifs_dbg.chk_gen;
2942         else if (dent == dfs_chk_index)
2943                 val = ubifs_dbg.chk_index;
2944         else if (dent == dfs_chk_orph)
2945                 val = ubifs_dbg.chk_orph;
2946         else if (dent == dfs_chk_lprops)
2947                 val = ubifs_dbg.chk_lprops;
2948         else if (dent == dfs_chk_fs)
2949                 val = ubifs_dbg.chk_fs;
2950         else if (dent == dfs_tst_rcvry)
2951                 val = ubifs_dbg.tst_rcvry;
2952         else
2953                 return -EINVAL;
2954
2955         return provide_user_output(val, u, count, ppos);
2956 }
2957
2958 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2959                                      size_t count, loff_t *ppos)
2960 {
2961         struct dentry *dent = file->f_path.dentry;
2962         int val;
2963
2964         val = interpret_user_input(u, count);
2965         if (val < 0)
2966                 return val;
2967
2968         if (dent == dfs_chk_gen)
2969                 ubifs_dbg.chk_gen = val;
2970         else if (dent == dfs_chk_index)
2971                 ubifs_dbg.chk_index = val;
2972         else if (dent == dfs_chk_orph)
2973                 ubifs_dbg.chk_orph = val;
2974         else if (dent == dfs_chk_lprops)
2975                 ubifs_dbg.chk_lprops = val;
2976         else if (dent == dfs_chk_fs)
2977                 ubifs_dbg.chk_fs = val;
2978         else if (dent == dfs_tst_rcvry)
2979                 ubifs_dbg.tst_rcvry = val;
2980         else
2981                 return -EINVAL;
2982
2983         return count;
2984 }
2985
2986 static const struct file_operations dfs_global_fops = {
2987         .read = dfs_global_file_read,
2988         .write = dfs_global_file_write,
2989         .owner = THIS_MODULE,
2990         .llseek = no_llseek,
2991 };
2992
2993 /**
2994  * dbg_debugfs_init - initialize debugfs file-system.
2995  *
2996  * UBIFS uses debugfs file-system to expose various debugging knobs to
2997  * user-space. This function creates "ubifs" directory in the debugfs
2998  * file-system. Returns zero in case of success and a negative error code in
2999  * case of failure.
3000  */
3001 int dbg_debugfs_init(void)
3002 {
3003         int err;
3004         const char *fname;
3005         struct dentry *dent;
3006
3007         if (!IS_ENABLED(CONFIG_DEBUG_FS))
3008                 return 0;
3009
3010         fname = "ubifs";
3011         dent = debugfs_create_dir(fname, NULL);
3012         if (IS_ERR_OR_NULL(dent))
3013                 goto out;
3014         dfs_rootdir = dent;
3015
3016         fname = "chk_general";
3017         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3018                                    &dfs_global_fops);
3019         if (IS_ERR_OR_NULL(dent))
3020                 goto out_remove;
3021         dfs_chk_gen = dent;
3022
3023         fname = "chk_index";
3024         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3025                                    &dfs_global_fops);
3026         if (IS_ERR_OR_NULL(dent))
3027                 goto out_remove;
3028         dfs_chk_index = dent;
3029
3030         fname = "chk_orphans";
3031         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3032                                    &dfs_global_fops);
3033         if (IS_ERR_OR_NULL(dent))
3034                 goto out_remove;
3035         dfs_chk_orph = dent;
3036
3037         fname = "chk_lprops";
3038         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3039                                    &dfs_global_fops);
3040         if (IS_ERR_OR_NULL(dent))
3041                 goto out_remove;
3042         dfs_chk_lprops = dent;
3043
3044         fname = "chk_fs";
3045         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3046                                    &dfs_global_fops);
3047         if (IS_ERR_OR_NULL(dent))
3048                 goto out_remove;
3049         dfs_chk_fs = dent;
3050
3051         fname = "tst_recovery";
3052         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3053                                    &dfs_global_fops);
3054         if (IS_ERR_OR_NULL(dent))
3055                 goto out_remove;
3056         dfs_tst_rcvry = dent;
3057
3058         return 0;
3059
3060 out_remove:
3061         debugfs_remove_recursive(dfs_rootdir);
3062 out:
3063         err = dent ? PTR_ERR(dent) : -ENODEV;
3064         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3065                   fname, err);
3066         return err;
3067 }
3068
3069 /**
3070  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3071  */
3072 void dbg_debugfs_exit(void)
3073 {
3074         if (IS_ENABLED(CONFIG_DEBUG_FS))
3075                 debugfs_remove_recursive(dfs_rootdir);
3076 }
3077
3078 /**
3079  * ubifs_debugging_init - initialize UBIFS debugging.
3080  * @c: UBIFS file-system description object
3081  *
3082  * This function initializes debugging-related data for the file system.
3083  * Returns zero in case of success and a negative error code in case of
3084  * failure.
3085  */
3086 int ubifs_debugging_init(struct ubifs_info *c)
3087 {
3088         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3089         if (!c->dbg)
3090                 return -ENOMEM;
3091
3092         return 0;
3093 }
3094
3095 /**
3096  * ubifs_debugging_exit - free debugging data.
3097  * @c: UBIFS file-system description object
3098  */
3099 void ubifs_debugging_exit(struct ubifs_info *c)
3100 {
3101         kfree(c->dbg);
3102 }