Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 #include <linux/socket.h>
35
36 /*
37  * Attempt to steal a page from a pipe buffer. This should perhaps go into
38  * a vm helper function, it's already simplified quite a bit by the
39  * addition of remove_mapping(). If success is returned, the caller may
40  * attempt to reuse this page for another destination.
41  */
42 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
43                                      struct pipe_buffer *buf)
44 {
45         struct page *page = buf->page;
46         struct address_space *mapping;
47
48         lock_page(page);
49
50         mapping = page_mapping(page);
51         if (mapping) {
52                 WARN_ON(!PageUptodate(page));
53
54                 /*
55                  * At least for ext2 with nobh option, we need to wait on
56                  * writeback completing on this page, since we'll remove it
57                  * from the pagecache.  Otherwise truncate wont wait on the
58                  * page, allowing the disk blocks to be reused by someone else
59                  * before we actually wrote our data to them. fs corruption
60                  * ensues.
61                  */
62                 wait_on_page_writeback(page);
63
64                 if (page_has_private(page) &&
65                     !try_to_release_page(page, GFP_KERNEL))
66                         goto out_unlock;
67
68                 /*
69                  * If we succeeded in removing the mapping, set LRU flag
70                  * and return good.
71                  */
72                 if (remove_mapping(mapping, page)) {
73                         buf->flags |= PIPE_BUF_FLAG_LRU;
74                         return 0;
75                 }
76         }
77
78         /*
79          * Raced with truncate or failed to remove page from current
80          * address space, unlock and return failure.
81          */
82 out_unlock:
83         unlock_page(page);
84         return 1;
85 }
86
87 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
88                                         struct pipe_buffer *buf)
89 {
90         page_cache_release(buf->page);
91         buf->flags &= ~PIPE_BUF_FLAG_LRU;
92 }
93
94 /*
95  * Check whether the contents of buf is OK to access. Since the content
96  * is a page cache page, IO may be in flight.
97  */
98 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
99                                        struct pipe_buffer *buf)
100 {
101         struct page *page = buf->page;
102         int err;
103
104         if (!PageUptodate(page)) {
105                 lock_page(page);
106
107                 /*
108                  * Page got truncated/unhashed. This will cause a 0-byte
109                  * splice, if this is the first page.
110                  */
111                 if (!page->mapping) {
112                         err = -ENODATA;
113                         goto error;
114                 }
115
116                 /*
117                  * Uh oh, read-error from disk.
118                  */
119                 if (!PageUptodate(page)) {
120                         err = -EIO;
121                         goto error;
122                 }
123
124                 /*
125                  * Page is ok afterall, we are done.
126                  */
127                 unlock_page(page);
128         }
129
130         return 0;
131 error:
132         unlock_page(page);
133         return err;
134 }
135
136 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137         .can_merge = 0,
138         .map = generic_pipe_buf_map,
139         .unmap = generic_pipe_buf_unmap,
140         .confirm = page_cache_pipe_buf_confirm,
141         .release = page_cache_pipe_buf_release,
142         .steal = page_cache_pipe_buf_steal,
143         .get = generic_pipe_buf_get,
144 };
145
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147                                     struct pipe_buffer *buf)
148 {
149         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150                 return 1;
151
152         buf->flags |= PIPE_BUF_FLAG_LRU;
153         return generic_pipe_buf_steal(pipe, buf);
154 }
155
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157         .can_merge = 0,
158         .map = generic_pipe_buf_map,
159         .unmap = generic_pipe_buf_unmap,
160         .confirm = generic_pipe_buf_confirm,
161         .release = page_cache_pipe_buf_release,
162         .steal = user_page_pipe_buf_steal,
163         .get = generic_pipe_buf_get,
164 };
165
166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 {
168         smp_mb();
169         if (waitqueue_active(&pipe->wait))
170                 wake_up_interruptible(&pipe->wait);
171         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 }
173
174 /**
175  * splice_to_pipe - fill passed data into a pipe
176  * @pipe:       pipe to fill
177  * @spd:        data to fill
178  *
179  * Description:
180  *    @spd contains a map of pages and len/offset tuples, along with
181  *    the struct pipe_buf_operations associated with these pages. This
182  *    function will link that data to the pipe.
183  *
184  */
185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186                        struct splice_pipe_desc *spd)
187 {
188         unsigned int spd_pages = spd->nr_pages;
189         int ret, do_wakeup, page_nr;
190
191         ret = 0;
192         do_wakeup = 0;
193         page_nr = 0;
194
195         pipe_lock(pipe);
196
197         for (;;) {
198                 if (!pipe->readers) {
199                         send_sig(SIGPIPE, current, 0);
200                         if (!ret)
201                                 ret = -EPIPE;
202                         break;
203                 }
204
205                 if (pipe->nrbufs < pipe->buffers) {
206                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207                         struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209                         buf->page = spd->pages[page_nr];
210                         buf->offset = spd->partial[page_nr].offset;
211                         buf->len = spd->partial[page_nr].len;
212                         buf->private = spd->partial[page_nr].private;
213                         buf->ops = spd->ops;
214                         if (spd->flags & SPLICE_F_GIFT)
215                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
216
217                         pipe->nrbufs++;
218                         page_nr++;
219                         ret += buf->len;
220
221                         if (pipe->inode)
222                                 do_wakeup = 1;
223
224                         if (!--spd->nr_pages)
225                                 break;
226                         if (pipe->nrbufs < pipe->buffers)
227                                 continue;
228
229                         break;
230                 }
231
232                 if (spd->flags & SPLICE_F_NONBLOCK) {
233                         if (!ret)
234                                 ret = -EAGAIN;
235                         break;
236                 }
237
238                 if (signal_pending(current)) {
239                         if (!ret)
240                                 ret = -ERESTARTSYS;
241                         break;
242                 }
243
244                 if (do_wakeup) {
245                         smp_mb();
246                         if (waitqueue_active(&pipe->wait))
247                                 wake_up_interruptible_sync(&pipe->wait);
248                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249                         do_wakeup = 0;
250                 }
251
252                 pipe->waiting_writers++;
253                 pipe_wait(pipe);
254                 pipe->waiting_writers--;
255         }
256
257         pipe_unlock(pipe);
258
259         if (do_wakeup)
260                 wakeup_pipe_readers(pipe);
261
262         while (page_nr < spd_pages)
263                 spd->spd_release(spd, page_nr++);
264
265         return ret;
266 }
267
268 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
269 {
270         page_cache_release(spd->pages[i]);
271 }
272
273 /*
274  * Check if we need to grow the arrays holding pages and partial page
275  * descriptions.
276  */
277 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
278 {
279         unsigned int buffers = ACCESS_ONCE(pipe->buffers);
280
281         spd->nr_pages_max = buffers;
282         if (buffers <= PIPE_DEF_BUFFERS)
283                 return 0;
284
285         spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
286         spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
287
288         if (spd->pages && spd->partial)
289                 return 0;
290
291         kfree(spd->pages);
292         kfree(spd->partial);
293         return -ENOMEM;
294 }
295
296 void splice_shrink_spd(struct splice_pipe_desc *spd)
297 {
298         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
299                 return;
300
301         kfree(spd->pages);
302         kfree(spd->partial);
303 }
304
305 static int
306 __generic_file_splice_read(struct file *in, loff_t *ppos,
307                            struct pipe_inode_info *pipe, size_t len,
308                            unsigned int flags)
309 {
310         struct address_space *mapping = in->f_mapping;
311         unsigned int loff, nr_pages, req_pages;
312         struct page *pages[PIPE_DEF_BUFFERS];
313         struct partial_page partial[PIPE_DEF_BUFFERS];
314         struct page *page;
315         pgoff_t index, end_index;
316         loff_t isize;
317         int error, page_nr;
318         struct splice_pipe_desc spd = {
319                 .pages = pages,
320                 .partial = partial,
321                 .nr_pages_max = PIPE_DEF_BUFFERS,
322                 .flags = flags,
323                 .ops = &page_cache_pipe_buf_ops,
324                 .spd_release = spd_release_page,
325         };
326
327         if (splice_grow_spd(pipe, &spd))
328                 return -ENOMEM;
329
330         index = *ppos >> PAGE_CACHE_SHIFT;
331         loff = *ppos & ~PAGE_CACHE_MASK;
332         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
333         nr_pages = min(req_pages, spd.nr_pages_max);
334
335         /*
336          * Lookup the (hopefully) full range of pages we need.
337          */
338         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
339         index += spd.nr_pages;
340
341         /*
342          * If find_get_pages_contig() returned fewer pages than we needed,
343          * readahead/allocate the rest and fill in the holes.
344          */
345         if (spd.nr_pages < nr_pages)
346                 page_cache_sync_readahead(mapping, &in->f_ra, in,
347                                 index, req_pages - spd.nr_pages);
348
349         error = 0;
350         while (spd.nr_pages < nr_pages) {
351                 /*
352                  * Page could be there, find_get_pages_contig() breaks on
353                  * the first hole.
354                  */
355                 page = find_get_page(mapping, index);
356                 if (!page) {
357                         /*
358                          * page didn't exist, allocate one.
359                          */
360                         page = page_cache_alloc_cold(mapping);
361                         if (!page)
362                                 break;
363
364                         error = add_to_page_cache_lru(page, mapping, index,
365                                                 GFP_KERNEL);
366                         if (unlikely(error)) {
367                                 page_cache_release(page);
368                                 if (error == -EEXIST)
369                                         continue;
370                                 break;
371                         }
372                         /*
373                          * add_to_page_cache() locks the page, unlock it
374                          * to avoid convoluting the logic below even more.
375                          */
376                         unlock_page(page);
377                 }
378
379                 spd.pages[spd.nr_pages++] = page;
380                 index++;
381         }
382
383         /*
384          * Now loop over the map and see if we need to start IO on any
385          * pages, fill in the partial map, etc.
386          */
387         index = *ppos >> PAGE_CACHE_SHIFT;
388         nr_pages = spd.nr_pages;
389         spd.nr_pages = 0;
390         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
391                 unsigned int this_len;
392
393                 if (!len)
394                         break;
395
396                 /*
397                  * this_len is the max we'll use from this page
398                  */
399                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
400                 page = spd.pages[page_nr];
401
402                 if (PageReadahead(page))
403                         page_cache_async_readahead(mapping, &in->f_ra, in,
404                                         page, index, req_pages - page_nr);
405
406                 /*
407                  * If the page isn't uptodate, we may need to start io on it
408                  */
409                 if (!PageUptodate(page)) {
410                         lock_page(page);
411
412                         /*
413                          * Page was truncated, or invalidated by the
414                          * filesystem.  Redo the find/create, but this time the
415                          * page is kept locked, so there's no chance of another
416                          * race with truncate/invalidate.
417                          */
418                         if (!page->mapping) {
419                                 unlock_page(page);
420                                 page = find_or_create_page(mapping, index,
421                                                 mapping_gfp_mask(mapping));
422
423                                 if (!page) {
424                                         error = -ENOMEM;
425                                         break;
426                                 }
427                                 page_cache_release(spd.pages[page_nr]);
428                                 spd.pages[page_nr] = page;
429                         }
430                         /*
431                          * page was already under io and is now done, great
432                          */
433                         if (PageUptodate(page)) {
434                                 unlock_page(page);
435                                 goto fill_it;
436                         }
437
438                         /*
439                          * need to read in the page
440                          */
441                         error = mapping->a_ops->readpage(in, page);
442                         if (unlikely(error)) {
443                                 /*
444                                  * We really should re-lookup the page here,
445                                  * but it complicates things a lot. Instead
446                                  * lets just do what we already stored, and
447                                  * we'll get it the next time we are called.
448                                  */
449                                 if (error == AOP_TRUNCATED_PAGE)
450                                         error = 0;
451
452                                 break;
453                         }
454                 }
455 fill_it:
456                 /*
457                  * i_size must be checked after PageUptodate.
458                  */
459                 isize = i_size_read(mapping->host);
460                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
461                 if (unlikely(!isize || index > end_index))
462                         break;
463
464                 /*
465                  * if this is the last page, see if we need to shrink
466                  * the length and stop
467                  */
468                 if (end_index == index) {
469                         unsigned int plen;
470
471                         /*
472                          * max good bytes in this page
473                          */
474                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
475                         if (plen <= loff)
476                                 break;
477
478                         /*
479                          * force quit after adding this page
480                          */
481                         this_len = min(this_len, plen - loff);
482                         len = this_len;
483                 }
484
485                 spd.partial[page_nr].offset = loff;
486                 spd.partial[page_nr].len = this_len;
487                 len -= this_len;
488                 loff = 0;
489                 spd.nr_pages++;
490                 index++;
491         }
492
493         /*
494          * Release any pages at the end, if we quit early. 'page_nr' is how far
495          * we got, 'nr_pages' is how many pages are in the map.
496          */
497         while (page_nr < nr_pages)
498                 page_cache_release(spd.pages[page_nr++]);
499         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
500
501         if (spd.nr_pages)
502                 error = splice_to_pipe(pipe, &spd);
503
504         splice_shrink_spd(&spd);
505         return error;
506 }
507
508 /**
509  * generic_file_splice_read - splice data from file to a pipe
510  * @in:         file to splice from
511  * @ppos:       position in @in
512  * @pipe:       pipe to splice to
513  * @len:        number of bytes to splice
514  * @flags:      splice modifier flags
515  *
516  * Description:
517  *    Will read pages from given file and fill them into a pipe. Can be
518  *    used as long as the address_space operations for the source implements
519  *    a readpage() hook.
520  *
521  */
522 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
523                                  struct pipe_inode_info *pipe, size_t len,
524                                  unsigned int flags)
525 {
526         loff_t isize, left;
527         int ret;
528
529         isize = i_size_read(in->f_mapping->host);
530         if (unlikely(*ppos >= isize))
531                 return 0;
532
533         left = isize - *ppos;
534         if (unlikely(left < len))
535                 len = left;
536
537         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
538         if (ret > 0) {
539                 *ppos += ret;
540                 file_accessed(in);
541         }
542
543         return ret;
544 }
545 EXPORT_SYMBOL(generic_file_splice_read);
546
547 static const struct pipe_buf_operations default_pipe_buf_ops = {
548         .can_merge = 0,
549         .map = generic_pipe_buf_map,
550         .unmap = generic_pipe_buf_unmap,
551         .confirm = generic_pipe_buf_confirm,
552         .release = generic_pipe_buf_release,
553         .steal = generic_pipe_buf_steal,
554         .get = generic_pipe_buf_get,
555 };
556
557 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
558                             unsigned long vlen, loff_t offset)
559 {
560         mm_segment_t old_fs;
561         loff_t pos = offset;
562         ssize_t res;
563
564         old_fs = get_fs();
565         set_fs(get_ds());
566         /* The cast to a user pointer is valid due to the set_fs() */
567         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
568         set_fs(old_fs);
569
570         return res;
571 }
572
573 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
574                             loff_t pos)
575 {
576         mm_segment_t old_fs;
577         ssize_t res;
578
579         old_fs = get_fs();
580         set_fs(get_ds());
581         /* The cast to a user pointer is valid due to the set_fs() */
582         res = vfs_write(file, (const char __user *)buf, count, &pos);
583         set_fs(old_fs);
584
585         return res;
586 }
587
588 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
589                                  struct pipe_inode_info *pipe, size_t len,
590                                  unsigned int flags)
591 {
592         unsigned int nr_pages;
593         unsigned int nr_freed;
594         size_t offset;
595         struct page *pages[PIPE_DEF_BUFFERS];
596         struct partial_page partial[PIPE_DEF_BUFFERS];
597         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
598         ssize_t res;
599         size_t this_len;
600         int error;
601         int i;
602         struct splice_pipe_desc spd = {
603                 .pages = pages,
604                 .partial = partial,
605                 .nr_pages_max = PIPE_DEF_BUFFERS,
606                 .flags = flags,
607                 .ops = &default_pipe_buf_ops,
608                 .spd_release = spd_release_page,
609         };
610
611         if (splice_grow_spd(pipe, &spd))
612                 return -ENOMEM;
613
614         res = -ENOMEM;
615         vec = __vec;
616         if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
617                 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
618                 if (!vec)
619                         goto shrink_ret;
620         }
621
622         offset = *ppos & ~PAGE_CACHE_MASK;
623         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
624
625         for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
626                 struct page *page;
627
628                 page = alloc_page(GFP_USER);
629                 error = -ENOMEM;
630                 if (!page)
631                         goto err;
632
633                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
634                 vec[i].iov_base = (void __user *) page_address(page);
635                 vec[i].iov_len = this_len;
636                 spd.pages[i] = page;
637                 spd.nr_pages++;
638                 len -= this_len;
639                 offset = 0;
640         }
641
642         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
643         if (res < 0) {
644                 error = res;
645                 goto err;
646         }
647
648         error = 0;
649         if (!res)
650                 goto err;
651
652         nr_freed = 0;
653         for (i = 0; i < spd.nr_pages; i++) {
654                 this_len = min_t(size_t, vec[i].iov_len, res);
655                 spd.partial[i].offset = 0;
656                 spd.partial[i].len = this_len;
657                 if (!this_len) {
658                         __free_page(spd.pages[i]);
659                         spd.pages[i] = NULL;
660                         nr_freed++;
661                 }
662                 res -= this_len;
663         }
664         spd.nr_pages -= nr_freed;
665
666         res = splice_to_pipe(pipe, &spd);
667         if (res > 0)
668                 *ppos += res;
669
670 shrink_ret:
671         if (vec != __vec)
672                 kfree(vec);
673         splice_shrink_spd(&spd);
674         return res;
675
676 err:
677         for (i = 0; i < spd.nr_pages; i++)
678                 __free_page(spd.pages[i]);
679
680         res = error;
681         goto shrink_ret;
682 }
683 EXPORT_SYMBOL(default_file_splice_read);
684
685 /*
686  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
687  * using sendpage(). Return the number of bytes sent.
688  */
689 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
690                             struct pipe_buffer *buf, struct splice_desc *sd)
691 {
692         struct file *file = sd->u.file;
693         loff_t pos = sd->pos;
694         int more;
695
696         if (!likely(file->f_op && file->f_op->sendpage))
697                 return -EINVAL;
698
699         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
700
701         if (sd->len < sd->total_len && pipe->nrbufs > 1)
702                 more |= MSG_SENDPAGE_NOTLAST;
703
704         return file->f_op->sendpage(file, buf->page, buf->offset,
705                                     sd->len, &pos, more);
706 }
707
708 /*
709  * This is a little more tricky than the file -> pipe splicing. There are
710  * basically three cases:
711  *
712  *      - Destination page already exists in the address space and there
713  *        are users of it. For that case we have no other option that
714  *        copying the data. Tough luck.
715  *      - Destination page already exists in the address space, but there
716  *        are no users of it. Make sure it's uptodate, then drop it. Fall
717  *        through to last case.
718  *      - Destination page does not exist, we can add the pipe page to
719  *        the page cache and avoid the copy.
720  *
721  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
722  * sd->flags), we attempt to migrate pages from the pipe to the output
723  * file address space page cache. This is possible if no one else has
724  * the pipe page referenced outside of the pipe and page cache. If
725  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
726  * a new page in the output file page cache and fill/dirty that.
727  */
728 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
729                  struct splice_desc *sd)
730 {
731         struct file *file = sd->u.file;
732         struct address_space *mapping = file->f_mapping;
733         unsigned int offset, this_len;
734         struct page *page;
735         void *fsdata;
736         int ret;
737
738         offset = sd->pos & ~PAGE_CACHE_MASK;
739
740         this_len = sd->len;
741         if (this_len + offset > PAGE_CACHE_SIZE)
742                 this_len = PAGE_CACHE_SIZE - offset;
743
744         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
745                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
746         if (unlikely(ret))
747                 goto out;
748
749         if (buf->page != page) {
750                 /*
751                  * Careful, ->map() uses KM_USER0!
752                  */
753                 char *src = buf->ops->map(pipe, buf, 1);
754                 char *dst = kmap_atomic(page, KM_USER1);
755
756                 memcpy(dst + offset, src + buf->offset, this_len);
757                 flush_dcache_page(page);
758                 kunmap_atomic(dst, KM_USER1);
759                 buf->ops->unmap(pipe, buf, src);
760         }
761         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
762                                 page, fsdata);
763 out:
764         return ret;
765 }
766 EXPORT_SYMBOL(pipe_to_file);
767
768 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
769 {
770         smp_mb();
771         if (waitqueue_active(&pipe->wait))
772                 wake_up_interruptible(&pipe->wait);
773         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
774 }
775
776 /**
777  * splice_from_pipe_feed - feed available data from a pipe to a file
778  * @pipe:       pipe to splice from
779  * @sd:         information to @actor
780  * @actor:      handler that splices the data
781  *
782  * Description:
783  *    This function loops over the pipe and calls @actor to do the
784  *    actual moving of a single struct pipe_buffer to the desired
785  *    destination.  It returns when there's no more buffers left in
786  *    the pipe or if the requested number of bytes (@sd->total_len)
787  *    have been copied.  It returns a positive number (one) if the
788  *    pipe needs to be filled with more data, zero if the required
789  *    number of bytes have been copied and -errno on error.
790  *
791  *    This, together with splice_from_pipe_{begin,end,next}, may be
792  *    used to implement the functionality of __splice_from_pipe() when
793  *    locking is required around copying the pipe buffers to the
794  *    destination.
795  */
796 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
797                           splice_actor *actor)
798 {
799         int ret;
800
801         while (pipe->nrbufs) {
802                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
803                 const struct pipe_buf_operations *ops = buf->ops;
804
805                 sd->len = buf->len;
806                 if (sd->len > sd->total_len)
807                         sd->len = sd->total_len;
808
809                 ret = buf->ops->confirm(pipe, buf);
810                 if (unlikely(ret)) {
811                         if (ret == -ENODATA)
812                                 ret = 0;
813                         return ret;
814                 }
815
816                 ret = actor(pipe, buf, sd);
817                 if (ret <= 0)
818                         return ret;
819
820                 buf->offset += ret;
821                 buf->len -= ret;
822
823                 sd->num_spliced += ret;
824                 sd->len -= ret;
825                 sd->pos += ret;
826                 sd->total_len -= ret;
827
828                 if (!buf->len) {
829                         buf->ops = NULL;
830                         ops->release(pipe, buf);
831                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
832                         pipe->nrbufs--;
833                         if (pipe->inode)
834                                 sd->need_wakeup = true;
835                 }
836
837                 if (!sd->total_len)
838                         return 0;
839         }
840
841         return 1;
842 }
843 EXPORT_SYMBOL(splice_from_pipe_feed);
844
845 /**
846  * splice_from_pipe_next - wait for some data to splice from
847  * @pipe:       pipe to splice from
848  * @sd:         information about the splice operation
849  *
850  * Description:
851  *    This function will wait for some data and return a positive
852  *    value (one) if pipe buffers are available.  It will return zero
853  *    or -errno if no more data needs to be spliced.
854  */
855 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
856 {
857         while (!pipe->nrbufs) {
858                 if (!pipe->writers)
859                         return 0;
860
861                 if (!pipe->waiting_writers && sd->num_spliced)
862                         return 0;
863
864                 if (sd->flags & SPLICE_F_NONBLOCK)
865                         return -EAGAIN;
866
867                 if (signal_pending(current))
868                         return -ERESTARTSYS;
869
870                 if (sd->need_wakeup) {
871                         wakeup_pipe_writers(pipe);
872                         sd->need_wakeup = false;
873                 }
874
875                 pipe_wait(pipe);
876         }
877
878         return 1;
879 }
880 EXPORT_SYMBOL(splice_from_pipe_next);
881
882 /**
883  * splice_from_pipe_begin - start splicing from pipe
884  * @sd:         information about the splice operation
885  *
886  * Description:
887  *    This function should be called before a loop containing
888  *    splice_from_pipe_next() and splice_from_pipe_feed() to
889  *    initialize the necessary fields of @sd.
890  */
891 void splice_from_pipe_begin(struct splice_desc *sd)
892 {
893         sd->num_spliced = 0;
894         sd->need_wakeup = false;
895 }
896 EXPORT_SYMBOL(splice_from_pipe_begin);
897
898 /**
899  * splice_from_pipe_end - finish splicing from pipe
900  * @pipe:       pipe to splice from
901  * @sd:         information about the splice operation
902  *
903  * Description:
904  *    This function will wake up pipe writers if necessary.  It should
905  *    be called after a loop containing splice_from_pipe_next() and
906  *    splice_from_pipe_feed().
907  */
908 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
909 {
910         if (sd->need_wakeup)
911                 wakeup_pipe_writers(pipe);
912 }
913 EXPORT_SYMBOL(splice_from_pipe_end);
914
915 /**
916  * __splice_from_pipe - splice data from a pipe to given actor
917  * @pipe:       pipe to splice from
918  * @sd:         information to @actor
919  * @actor:      handler that splices the data
920  *
921  * Description:
922  *    This function does little more than loop over the pipe and call
923  *    @actor to do the actual moving of a single struct pipe_buffer to
924  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
925  *    pipe_to_user.
926  *
927  */
928 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
929                            splice_actor *actor)
930 {
931         int ret;
932
933         splice_from_pipe_begin(sd);
934         do {
935                 ret = splice_from_pipe_next(pipe, sd);
936                 if (ret > 0)
937                         ret = splice_from_pipe_feed(pipe, sd, actor);
938         } while (ret > 0);
939         splice_from_pipe_end(pipe, sd);
940
941         return sd->num_spliced ? sd->num_spliced : ret;
942 }
943 EXPORT_SYMBOL(__splice_from_pipe);
944
945 /**
946  * splice_from_pipe - splice data from a pipe to a file
947  * @pipe:       pipe to splice from
948  * @out:        file to splice to
949  * @ppos:       position in @out
950  * @len:        how many bytes to splice
951  * @flags:      splice modifier flags
952  * @actor:      handler that splices the data
953  *
954  * Description:
955  *    See __splice_from_pipe. This function locks the pipe inode,
956  *    otherwise it's identical to __splice_from_pipe().
957  *
958  */
959 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
960                          loff_t *ppos, size_t len, unsigned int flags,
961                          splice_actor *actor)
962 {
963         ssize_t ret;
964         struct splice_desc sd = {
965                 .total_len = len,
966                 .flags = flags,
967                 .pos = *ppos,
968                 .u.file = out,
969         };
970
971         pipe_lock(pipe);
972         ret = __splice_from_pipe(pipe, &sd, actor);
973         pipe_unlock(pipe);
974
975         return ret;
976 }
977
978 /**
979  * generic_file_splice_write - splice data from a pipe to a file
980  * @pipe:       pipe info
981  * @out:        file to write to
982  * @ppos:       position in @out
983  * @len:        number of bytes to splice
984  * @flags:      splice modifier flags
985  *
986  * Description:
987  *    Will either move or copy pages (determined by @flags options) from
988  *    the given pipe inode to the given file.
989  *
990  */
991 ssize_t
992 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
993                           loff_t *ppos, size_t len, unsigned int flags)
994 {
995         struct address_space *mapping = out->f_mapping;
996         struct inode *inode = mapping->host;
997         struct splice_desc sd = {
998                 .total_len = len,
999                 .flags = flags,
1000                 .pos = *ppos,
1001                 .u.file = out,
1002         };
1003         ssize_t ret;
1004
1005         pipe_lock(pipe);
1006
1007         splice_from_pipe_begin(&sd);
1008         do {
1009                 ret = splice_from_pipe_next(pipe, &sd);
1010                 if (ret <= 0)
1011                         break;
1012
1013                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1014                 ret = file_remove_suid(out);
1015                 if (!ret) {
1016                         file_update_time(out);
1017                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1018                 }
1019                 mutex_unlock(&inode->i_mutex);
1020         } while (ret > 0);
1021         splice_from_pipe_end(pipe, &sd);
1022
1023         pipe_unlock(pipe);
1024
1025         if (sd.num_spliced)
1026                 ret = sd.num_spliced;
1027
1028         if (ret > 0) {
1029                 unsigned long nr_pages;
1030                 int err;
1031
1032                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1033
1034                 err = generic_write_sync(out, *ppos, ret);
1035                 if (err)
1036                         ret = err;
1037                 else
1038                         *ppos += ret;
1039                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1040         }
1041
1042         return ret;
1043 }
1044
1045 EXPORT_SYMBOL(generic_file_splice_write);
1046
1047 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1048                           struct splice_desc *sd)
1049 {
1050         int ret;
1051         void *data;
1052
1053         data = buf->ops->map(pipe, buf, 0);
1054         ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1055         buf->ops->unmap(pipe, buf, data);
1056
1057         return ret;
1058 }
1059
1060 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1061                                          struct file *out, loff_t *ppos,
1062                                          size_t len, unsigned int flags)
1063 {
1064         ssize_t ret;
1065
1066         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1067         if (ret > 0)
1068                 *ppos += ret;
1069
1070         return ret;
1071 }
1072
1073 /**
1074  * generic_splice_sendpage - splice data from a pipe to a socket
1075  * @pipe:       pipe to splice from
1076  * @out:        socket to write to
1077  * @ppos:       position in @out
1078  * @len:        number of bytes to splice
1079  * @flags:      splice modifier flags
1080  *
1081  * Description:
1082  *    Will send @len bytes from the pipe to a network socket. No data copying
1083  *    is involved.
1084  *
1085  */
1086 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1087                                 loff_t *ppos, size_t len, unsigned int flags)
1088 {
1089         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1090 }
1091
1092 EXPORT_SYMBOL(generic_splice_sendpage);
1093
1094 /*
1095  * Attempt to initiate a splice from pipe to file.
1096  */
1097 long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1098                     loff_t *ppos, size_t len, unsigned int flags)
1099 {
1100         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1101                                 loff_t *, size_t, unsigned int);
1102         int ret;
1103
1104         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1105                 return -EBADF;
1106
1107         if (unlikely(out->f_flags & O_APPEND))
1108                 return -EINVAL;
1109
1110         ret = rw_verify_area(WRITE, out, ppos, len);
1111         if (unlikely(ret < 0))
1112                 return ret;
1113
1114         if (out->f_op && out->f_op->splice_write)
1115                 splice_write = out->f_op->splice_write;
1116         else
1117                 splice_write = default_file_splice_write;
1118
1119         return splice_write(pipe, out, ppos, len, flags);
1120 }
1121 EXPORT_SYMBOL(do_splice_from);
1122
1123 /*
1124  * Attempt to initiate a splice from a file to a pipe.
1125  */
1126 long do_splice_to(struct file *in, loff_t *ppos,
1127                   struct pipe_inode_info *pipe, size_t len,
1128                   unsigned int flags)
1129 {
1130         ssize_t (*splice_read)(struct file *, loff_t *,
1131                                struct pipe_inode_info *, size_t, unsigned int);
1132         int ret;
1133
1134         if (unlikely(!(in->f_mode & FMODE_READ)))
1135                 return -EBADF;
1136
1137         ret = rw_verify_area(READ, in, ppos, len);
1138         if (unlikely(ret < 0))
1139                 return ret;
1140
1141         if (in->f_op && in->f_op->splice_read)
1142                 splice_read = in->f_op->splice_read;
1143         else
1144                 splice_read = default_file_splice_read;
1145
1146         return splice_read(in, ppos, pipe, len, flags);
1147 }
1148 EXPORT_SYMBOL(do_splice_to);
1149
1150 /**
1151  * splice_direct_to_actor - splices data directly between two non-pipes
1152  * @in:         file to splice from
1153  * @sd:         actor information on where to splice to
1154  * @actor:      handles the data splicing
1155  *
1156  * Description:
1157  *    This is a special case helper to splice directly between two
1158  *    points, without requiring an explicit pipe. Internally an allocated
1159  *    pipe is cached in the process, and reused during the lifetime of
1160  *    that process.
1161  *
1162  */
1163 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1164                                splice_direct_actor *actor)
1165 {
1166         struct pipe_inode_info *pipe;
1167         long ret, bytes;
1168         umode_t i_mode;
1169         size_t len;
1170         int i, flags;
1171
1172         /*
1173          * We require the input being a regular file, as we don't want to
1174          * randomly drop data for eg socket -> socket splicing. Use the
1175          * piped splicing for that!
1176          */
1177         i_mode = in->f_path.dentry->d_inode->i_mode;
1178         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1179                 return -EINVAL;
1180
1181         /*
1182          * neither in nor out is a pipe, setup an internal pipe attached to
1183          * 'out' and transfer the wanted data from 'in' to 'out' through that
1184          */
1185         pipe = current->splice_pipe;
1186         if (unlikely(!pipe)) {
1187                 pipe = alloc_pipe_info(NULL);
1188                 if (!pipe)
1189                         return -ENOMEM;
1190
1191                 /*
1192                  * We don't have an immediate reader, but we'll read the stuff
1193                  * out of the pipe right after the splice_to_pipe(). So set
1194                  * PIPE_READERS appropriately.
1195                  */
1196                 pipe->readers = 1;
1197
1198                 current->splice_pipe = pipe;
1199         }
1200
1201         /*
1202          * Do the splice.
1203          */
1204         ret = 0;
1205         bytes = 0;
1206         len = sd->total_len;
1207         flags = sd->flags;
1208
1209         /*
1210          * Don't block on output, we have to drain the direct pipe.
1211          */
1212         sd->flags &= ~SPLICE_F_NONBLOCK;
1213
1214         while (len) {
1215                 size_t read_len;
1216                 loff_t pos = sd->pos, prev_pos = pos;
1217
1218                 ret = do_splice_to(in, &pos, pipe, len, flags);
1219                 if (unlikely(ret <= 0))
1220                         goto out_release;
1221
1222                 read_len = ret;
1223                 sd->total_len = read_len;
1224
1225                 /*
1226                  * NOTE: nonblocking mode only applies to the input. We
1227                  * must not do the output in nonblocking mode as then we
1228                  * could get stuck data in the internal pipe:
1229                  */
1230                 ret = actor(pipe, sd);
1231                 if (unlikely(ret <= 0)) {
1232                         sd->pos = prev_pos;
1233                         goto out_release;
1234                 }
1235
1236                 bytes += ret;
1237                 len -= ret;
1238                 sd->pos = pos;
1239
1240                 if (ret < read_len) {
1241                         sd->pos = prev_pos + ret;
1242                         goto out_release;
1243                 }
1244         }
1245
1246 done:
1247         pipe->nrbufs = pipe->curbuf = 0;
1248         file_accessed(in);
1249         return bytes;
1250
1251 out_release:
1252         /*
1253          * If we did an incomplete transfer we must release
1254          * the pipe buffers in question:
1255          */
1256         for (i = 0; i < pipe->buffers; i++) {
1257                 struct pipe_buffer *buf = pipe->bufs + i;
1258
1259                 if (buf->ops) {
1260                         buf->ops->release(pipe, buf);
1261                         buf->ops = NULL;
1262                 }
1263         }
1264
1265         if (!bytes)
1266                 bytes = ret;
1267
1268         goto done;
1269 }
1270 EXPORT_SYMBOL(splice_direct_to_actor);
1271
1272 static int direct_splice_actor(struct pipe_inode_info *pipe,
1273                                struct splice_desc *sd)
1274 {
1275         struct file *file = sd->u.file;
1276
1277         return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1278                               sd->flags);
1279 }
1280
1281 /**
1282  * do_splice_direct - splices data directly between two files
1283  * @in:         file to splice from
1284  * @ppos:       input file offset
1285  * @out:        file to splice to
1286  * @len:        number of bytes to splice
1287  * @flags:      splice modifier flags
1288  *
1289  * Description:
1290  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1291  *    doing it in the application would incur an extra system call
1292  *    (splice in + splice out, as compared to just sendfile()). So this helper
1293  *    can splice directly through a process-private pipe.
1294  *
1295  */
1296 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1297                       size_t len, unsigned int flags)
1298 {
1299         struct splice_desc sd = {
1300                 .len            = len,
1301                 .total_len      = len,
1302                 .flags          = flags,
1303                 .pos            = *ppos,
1304                 .u.file         = out,
1305         };
1306         long ret;
1307
1308         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1309         if (ret > 0)
1310                 *ppos = sd.pos;
1311
1312         return ret;
1313 }
1314
1315 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1316                                struct pipe_inode_info *opipe,
1317                                size_t len, unsigned int flags);
1318
1319 /*
1320  * Determine where to splice to/from.
1321  */
1322 static long do_splice(struct file *in, loff_t __user *off_in,
1323                       struct file *out, loff_t __user *off_out,
1324                       size_t len, unsigned int flags)
1325 {
1326         struct pipe_inode_info *ipipe;
1327         struct pipe_inode_info *opipe;
1328         loff_t offset, *off;
1329         long ret;
1330
1331         ipipe = get_pipe_info(in);
1332         opipe = get_pipe_info(out);
1333
1334         if (ipipe && opipe) {
1335                 if (off_in || off_out)
1336                         return -ESPIPE;
1337
1338                 if (!(in->f_mode & FMODE_READ))
1339                         return -EBADF;
1340
1341                 if (!(out->f_mode & FMODE_WRITE))
1342                         return -EBADF;
1343
1344                 /* Splicing to self would be fun, but... */
1345                 if (ipipe == opipe)
1346                         return -EINVAL;
1347
1348                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1349         }
1350
1351         if (ipipe) {
1352                 if (off_in)
1353                         return -ESPIPE;
1354                 if (off_out) {
1355                         if (!(out->f_mode & FMODE_PWRITE))
1356                                 return -EINVAL;
1357                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1358                                 return -EFAULT;
1359                         off = &offset;
1360                 } else
1361                         off = &out->f_pos;
1362
1363                 ret = do_splice_from(ipipe, out, off, len, flags);
1364
1365                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1366                         ret = -EFAULT;
1367
1368                 return ret;
1369         }
1370
1371         if (opipe) {
1372                 if (off_out)
1373                         return -ESPIPE;
1374                 if (off_in) {
1375                         if (!(in->f_mode & FMODE_PREAD))
1376                                 return -EINVAL;
1377                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1378                                 return -EFAULT;
1379                         off = &offset;
1380                 } else
1381                         off = &in->f_pos;
1382
1383                 ret = do_splice_to(in, off, opipe, len, flags);
1384
1385                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1386                         ret = -EFAULT;
1387
1388                 return ret;
1389         }
1390
1391         return -EINVAL;
1392 }
1393
1394 /*
1395  * Map an iov into an array of pages and offset/length tupples. With the
1396  * partial_page structure, we can map several non-contiguous ranges into
1397  * our ones pages[] map instead of splitting that operation into pieces.
1398  * Could easily be exported as a generic helper for other users, in which
1399  * case one would probably want to add a 'max_nr_pages' parameter as well.
1400  */
1401 static int get_iovec_page_array(const struct iovec __user *iov,
1402                                 unsigned int nr_vecs, struct page **pages,
1403                                 struct partial_page *partial, int aligned,
1404                                 unsigned int pipe_buffers)
1405 {
1406         int buffers = 0, error = 0;
1407
1408         while (nr_vecs) {
1409                 unsigned long off, npages;
1410                 struct iovec entry;
1411                 void __user *base;
1412                 size_t len;
1413                 int i;
1414
1415                 error = -EFAULT;
1416                 if (copy_from_user(&entry, iov, sizeof(entry)))
1417                         break;
1418
1419                 base = entry.iov_base;
1420                 len = entry.iov_len;
1421
1422                 /*
1423                  * Sanity check this iovec. 0 read succeeds.
1424                  */
1425                 error = 0;
1426                 if (unlikely(!len))
1427                         break;
1428                 error = -EFAULT;
1429                 if (!access_ok(VERIFY_READ, base, len))
1430                         break;
1431
1432                 /*
1433                  * Get this base offset and number of pages, then map
1434                  * in the user pages.
1435                  */
1436                 off = (unsigned long) base & ~PAGE_MASK;
1437
1438                 /*
1439                  * If asked for alignment, the offset must be zero and the
1440                  * length a multiple of the PAGE_SIZE.
1441                  */
1442                 error = -EINVAL;
1443                 if (aligned && (off || len & ~PAGE_MASK))
1444                         break;
1445
1446                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1447                 if (npages > pipe_buffers - buffers)
1448                         npages = pipe_buffers - buffers;
1449
1450                 error = get_user_pages_fast((unsigned long)base, npages,
1451                                         0, &pages[buffers]);
1452
1453                 if (unlikely(error <= 0))
1454                         break;
1455
1456                 /*
1457                  * Fill this contiguous range into the partial page map.
1458                  */
1459                 for (i = 0; i < error; i++) {
1460                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1461
1462                         partial[buffers].offset = off;
1463                         partial[buffers].len = plen;
1464
1465                         off = 0;
1466                         len -= plen;
1467                         buffers++;
1468                 }
1469
1470                 /*
1471                  * We didn't complete this iov, stop here since it probably
1472                  * means we have to move some of this into a pipe to
1473                  * be able to continue.
1474                  */
1475                 if (len)
1476                         break;
1477
1478                 /*
1479                  * Don't continue if we mapped fewer pages than we asked for,
1480                  * or if we mapped the max number of pages that we have
1481                  * room for.
1482                  */
1483                 if (error < npages || buffers == pipe_buffers)
1484                         break;
1485
1486                 nr_vecs--;
1487                 iov++;
1488         }
1489
1490         if (buffers)
1491                 return buffers;
1492
1493         return error;
1494 }
1495
1496 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1497                         struct splice_desc *sd)
1498 {
1499         char *src;
1500         int ret;
1501
1502         /*
1503          * See if we can use the atomic maps, by prefaulting in the
1504          * pages and doing an atomic copy
1505          */
1506         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1507                 src = buf->ops->map(pipe, buf, 1);
1508                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1509                                                         sd->len);
1510                 buf->ops->unmap(pipe, buf, src);
1511                 if (!ret) {
1512                         ret = sd->len;
1513                         goto out;
1514                 }
1515         }
1516
1517         /*
1518          * No dice, use slow non-atomic map and copy
1519          */
1520         src = buf->ops->map(pipe, buf, 0);
1521
1522         ret = sd->len;
1523         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1524                 ret = -EFAULT;
1525
1526         buf->ops->unmap(pipe, buf, src);
1527 out:
1528         if (ret > 0)
1529                 sd->u.userptr += ret;
1530         return ret;
1531 }
1532
1533 /*
1534  * For lack of a better implementation, implement vmsplice() to userspace
1535  * as a simple copy of the pipes pages to the user iov.
1536  */
1537 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1538                              unsigned long nr_segs, unsigned int flags)
1539 {
1540         struct pipe_inode_info *pipe;
1541         struct splice_desc sd;
1542         ssize_t size;
1543         int error;
1544         long ret;
1545
1546         pipe = get_pipe_info(file);
1547         if (!pipe)
1548                 return -EBADF;
1549
1550         pipe_lock(pipe);
1551
1552         error = ret = 0;
1553         while (nr_segs) {
1554                 void __user *base;
1555                 size_t len;
1556
1557                 /*
1558                  * Get user address base and length for this iovec.
1559                  */
1560                 error = get_user(base, &iov->iov_base);
1561                 if (unlikely(error))
1562                         break;
1563                 error = get_user(len, &iov->iov_len);
1564                 if (unlikely(error))
1565                         break;
1566
1567                 /*
1568                  * Sanity check this iovec. 0 read succeeds.
1569                  */
1570                 if (unlikely(!len))
1571                         break;
1572                 if (unlikely(!base)) {
1573                         error = -EFAULT;
1574                         break;
1575                 }
1576
1577                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1578                         error = -EFAULT;
1579                         break;
1580                 }
1581
1582                 sd.len = 0;
1583                 sd.total_len = len;
1584                 sd.flags = flags;
1585                 sd.u.userptr = base;
1586                 sd.pos = 0;
1587
1588                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1589                 if (size < 0) {
1590                         if (!ret)
1591                                 ret = size;
1592
1593                         break;
1594                 }
1595
1596                 ret += size;
1597
1598                 if (size < len)
1599                         break;
1600
1601                 nr_segs--;
1602                 iov++;
1603         }
1604
1605         pipe_unlock(pipe);
1606
1607         if (!ret)
1608                 ret = error;
1609
1610         return ret;
1611 }
1612
1613 /*
1614  * vmsplice splices a user address range into a pipe. It can be thought of
1615  * as splice-from-memory, where the regular splice is splice-from-file (or
1616  * to file). In both cases the output is a pipe, naturally.
1617  */
1618 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1619                              unsigned long nr_segs, unsigned int flags)
1620 {
1621         struct pipe_inode_info *pipe;
1622         struct page *pages[PIPE_DEF_BUFFERS];
1623         struct partial_page partial[PIPE_DEF_BUFFERS];
1624         struct splice_pipe_desc spd = {
1625                 .pages = pages,
1626                 .partial = partial,
1627                 .nr_pages_max = PIPE_DEF_BUFFERS,
1628                 .flags = flags,
1629                 .ops = &user_page_pipe_buf_ops,
1630                 .spd_release = spd_release_page,
1631         };
1632         long ret;
1633
1634         pipe = get_pipe_info(file);
1635         if (!pipe)
1636                 return -EBADF;
1637
1638         if (splice_grow_spd(pipe, &spd))
1639                 return -ENOMEM;
1640
1641         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1642                                             spd.partial, flags & SPLICE_F_GIFT,
1643                                             spd.nr_pages_max);
1644         if (spd.nr_pages <= 0)
1645                 ret = spd.nr_pages;
1646         else
1647                 ret = splice_to_pipe(pipe, &spd);
1648
1649         splice_shrink_spd(&spd);
1650         return ret;
1651 }
1652
1653 /*
1654  * Note that vmsplice only really supports true splicing _from_ user memory
1655  * to a pipe, not the other way around. Splicing from user memory is a simple
1656  * operation that can be supported without any funky alignment restrictions
1657  * or nasty vm tricks. We simply map in the user memory and fill them into
1658  * a pipe. The reverse isn't quite as easy, though. There are two possible
1659  * solutions for that:
1660  *
1661  *      - memcpy() the data internally, at which point we might as well just
1662  *        do a regular read() on the buffer anyway.
1663  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1664  *        has restriction limitations on both ends of the pipe).
1665  *
1666  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1667  *
1668  */
1669 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1670                 unsigned long, nr_segs, unsigned int, flags)
1671 {
1672         struct file *file;
1673         long error;
1674         int fput;
1675
1676         if (unlikely(nr_segs > UIO_MAXIOV))
1677                 return -EINVAL;
1678         else if (unlikely(!nr_segs))
1679                 return 0;
1680
1681         error = -EBADF;
1682         file = fget_light(fd, &fput);
1683         if (file) {
1684                 if (file->f_mode & FMODE_WRITE)
1685                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1686                 else if (file->f_mode & FMODE_READ)
1687                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1688
1689                 fput_light(file, fput);
1690         }
1691
1692         return error;
1693 }
1694
1695 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1696                 int, fd_out, loff_t __user *, off_out,
1697                 size_t, len, unsigned int, flags)
1698 {
1699         long error;
1700         struct file *in, *out;
1701         int fput_in, fput_out;
1702
1703         if (unlikely(!len))
1704                 return 0;
1705
1706         error = -EBADF;
1707         in = fget_light(fd_in, &fput_in);
1708         if (in) {
1709                 if (in->f_mode & FMODE_READ) {
1710                         out = fget_light(fd_out, &fput_out);
1711                         if (out) {
1712                                 if (out->f_mode & FMODE_WRITE)
1713                                         error = do_splice(in, off_in,
1714                                                           out, off_out,
1715                                                           len, flags);
1716                                 fput_light(out, fput_out);
1717                         }
1718                 }
1719
1720                 fput_light(in, fput_in);
1721         }
1722
1723         return error;
1724 }
1725
1726 /*
1727  * Make sure there's data to read. Wait for input if we can, otherwise
1728  * return an appropriate error.
1729  */
1730 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1731 {
1732         int ret;
1733
1734         /*
1735          * Check ->nrbufs without the inode lock first. This function
1736          * is speculative anyways, so missing one is ok.
1737          */
1738         if (pipe->nrbufs)
1739                 return 0;
1740
1741         ret = 0;
1742         pipe_lock(pipe);
1743
1744         while (!pipe->nrbufs) {
1745                 if (signal_pending(current)) {
1746                         ret = -ERESTARTSYS;
1747                         break;
1748                 }
1749                 if (!pipe->writers)
1750                         break;
1751                 if (!pipe->waiting_writers) {
1752                         if (flags & SPLICE_F_NONBLOCK) {
1753                                 ret = -EAGAIN;
1754                                 break;
1755                         }
1756                 }
1757                 pipe_wait(pipe);
1758         }
1759
1760         pipe_unlock(pipe);
1761         return ret;
1762 }
1763
1764 /*
1765  * Make sure there's writeable room. Wait for room if we can, otherwise
1766  * return an appropriate error.
1767  */
1768 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1769 {
1770         int ret;
1771
1772         /*
1773          * Check ->nrbufs without the inode lock first. This function
1774          * is speculative anyways, so missing one is ok.
1775          */
1776         if (pipe->nrbufs < pipe->buffers)
1777                 return 0;
1778
1779         ret = 0;
1780         pipe_lock(pipe);
1781
1782         while (pipe->nrbufs >= pipe->buffers) {
1783                 if (!pipe->readers) {
1784                         send_sig(SIGPIPE, current, 0);
1785                         ret = -EPIPE;
1786                         break;
1787                 }
1788                 if (flags & SPLICE_F_NONBLOCK) {
1789                         ret = -EAGAIN;
1790                         break;
1791                 }
1792                 if (signal_pending(current)) {
1793                         ret = -ERESTARTSYS;
1794                         break;
1795                 }
1796                 pipe->waiting_writers++;
1797                 pipe_wait(pipe);
1798                 pipe->waiting_writers--;
1799         }
1800
1801         pipe_unlock(pipe);
1802         return ret;
1803 }
1804
1805 /*
1806  * Splice contents of ipipe to opipe.
1807  */
1808 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1809                                struct pipe_inode_info *opipe,
1810                                size_t len, unsigned int flags)
1811 {
1812         struct pipe_buffer *ibuf, *obuf;
1813         int ret = 0, nbuf;
1814         bool input_wakeup = false;
1815
1816
1817 retry:
1818         ret = ipipe_prep(ipipe, flags);
1819         if (ret)
1820                 return ret;
1821
1822         ret = opipe_prep(opipe, flags);
1823         if (ret)
1824                 return ret;
1825
1826         /*
1827          * Potential ABBA deadlock, work around it by ordering lock
1828          * grabbing by pipe info address. Otherwise two different processes
1829          * could deadlock (one doing tee from A -> B, the other from B -> A).
1830          */
1831         pipe_double_lock(ipipe, opipe);
1832
1833         do {
1834                 if (!opipe->readers) {
1835                         send_sig(SIGPIPE, current, 0);
1836                         if (!ret)
1837                                 ret = -EPIPE;
1838                         break;
1839                 }
1840
1841                 if (!ipipe->nrbufs && !ipipe->writers)
1842                         break;
1843
1844                 /*
1845                  * Cannot make any progress, because either the input
1846                  * pipe is empty or the output pipe is full.
1847                  */
1848                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1849                         /* Already processed some buffers, break */
1850                         if (ret)
1851                                 break;
1852
1853                         if (flags & SPLICE_F_NONBLOCK) {
1854                                 ret = -EAGAIN;
1855                                 break;
1856                         }
1857
1858                         /*
1859                          * We raced with another reader/writer and haven't
1860                          * managed to process any buffers.  A zero return
1861                          * value means EOF, so retry instead.
1862                          */
1863                         pipe_unlock(ipipe);
1864                         pipe_unlock(opipe);
1865                         goto retry;
1866                 }
1867
1868                 ibuf = ipipe->bufs + ipipe->curbuf;
1869                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1870                 obuf = opipe->bufs + nbuf;
1871
1872                 if (len >= ibuf->len) {
1873                         /*
1874                          * Simply move the whole buffer from ipipe to opipe
1875                          */
1876                         *obuf = *ibuf;
1877                         ibuf->ops = NULL;
1878                         opipe->nrbufs++;
1879                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1880                         ipipe->nrbufs--;
1881                         input_wakeup = true;
1882                 } else {
1883                         /*
1884                          * Get a reference to this pipe buffer,
1885                          * so we can copy the contents over.
1886                          */
1887                         ibuf->ops->get(ipipe, ibuf);
1888                         *obuf = *ibuf;
1889
1890                         /*
1891                          * Don't inherit the gift flag, we need to
1892                          * prevent multiple steals of this page.
1893                          */
1894                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1895
1896                         obuf->len = len;
1897                         opipe->nrbufs++;
1898                         ibuf->offset += obuf->len;
1899                         ibuf->len -= obuf->len;
1900                 }
1901                 ret += obuf->len;
1902                 len -= obuf->len;
1903         } while (len);
1904
1905         pipe_unlock(ipipe);
1906         pipe_unlock(opipe);
1907
1908         /*
1909          * If we put data in the output pipe, wakeup any potential readers.
1910          */
1911         if (ret > 0)
1912                 wakeup_pipe_readers(opipe);
1913
1914         if (input_wakeup)
1915                 wakeup_pipe_writers(ipipe);
1916
1917         return ret;
1918 }
1919
1920 /*
1921  * Link contents of ipipe to opipe.
1922  */
1923 static int link_pipe(struct pipe_inode_info *ipipe,
1924                      struct pipe_inode_info *opipe,
1925                      size_t len, unsigned int flags)
1926 {
1927         struct pipe_buffer *ibuf, *obuf;
1928         int ret = 0, i = 0, nbuf;
1929
1930         /*
1931          * Potential ABBA deadlock, work around it by ordering lock
1932          * grabbing by pipe info address. Otherwise two different processes
1933          * could deadlock (one doing tee from A -> B, the other from B -> A).
1934          */
1935         pipe_double_lock(ipipe, opipe);
1936
1937         do {
1938                 if (!opipe->readers) {
1939                         send_sig(SIGPIPE, current, 0);
1940                         if (!ret)
1941                                 ret = -EPIPE;
1942                         break;
1943                 }
1944
1945                 /*
1946                  * If we have iterated all input buffers or ran out of
1947                  * output room, break.
1948                  */
1949                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1950                         break;
1951
1952                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1953                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1954
1955                 /*
1956                  * Get a reference to this pipe buffer,
1957                  * so we can copy the contents over.
1958                  */
1959                 ibuf->ops->get(ipipe, ibuf);
1960
1961                 obuf = opipe->bufs + nbuf;
1962                 *obuf = *ibuf;
1963
1964                 /*
1965                  * Don't inherit the gift flag, we need to
1966                  * prevent multiple steals of this page.
1967                  */
1968                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1969
1970                 if (obuf->len > len)
1971                         obuf->len = len;
1972
1973                 opipe->nrbufs++;
1974                 ret += obuf->len;
1975                 len -= obuf->len;
1976                 i++;
1977         } while (len);
1978
1979         /*
1980          * return EAGAIN if we have the potential of some data in the
1981          * future, otherwise just return 0
1982          */
1983         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1984                 ret = -EAGAIN;
1985
1986         pipe_unlock(ipipe);
1987         pipe_unlock(opipe);
1988
1989         /*
1990          * If we put data in the output pipe, wakeup any potential readers.
1991          */
1992         if (ret > 0)
1993                 wakeup_pipe_readers(opipe);
1994
1995         return ret;
1996 }
1997
1998 /*
1999  * This is a tee(1) implementation that works on pipes. It doesn't copy
2000  * any data, it simply references the 'in' pages on the 'out' pipe.
2001  * The 'flags' used are the SPLICE_F_* variants, currently the only
2002  * applicable one is SPLICE_F_NONBLOCK.
2003  */
2004 static long do_tee(struct file *in, struct file *out, size_t len,
2005                    unsigned int flags)
2006 {
2007         struct pipe_inode_info *ipipe = get_pipe_info(in);
2008         struct pipe_inode_info *opipe = get_pipe_info(out);
2009         int ret = -EINVAL;
2010
2011         /*
2012          * Duplicate the contents of ipipe to opipe without actually
2013          * copying the data.
2014          */
2015         if (ipipe && opipe && ipipe != opipe) {
2016                 /*
2017                  * Keep going, unless we encounter an error. The ipipe/opipe
2018                  * ordering doesn't really matter.
2019                  */
2020                 ret = ipipe_prep(ipipe, flags);
2021                 if (!ret) {
2022                         ret = opipe_prep(opipe, flags);
2023                         if (!ret)
2024                                 ret = link_pipe(ipipe, opipe, len, flags);
2025                 }
2026         }
2027
2028         return ret;
2029 }
2030
2031 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2032 {
2033         struct file *in;
2034         int error, fput_in;
2035
2036         if (unlikely(!len))
2037                 return 0;
2038
2039         error = -EBADF;
2040         in = fget_light(fdin, &fput_in);
2041         if (in) {
2042                 if (in->f_mode & FMODE_READ) {
2043                         int fput_out;
2044                         struct file *out = fget_light(fdout, &fput_out);
2045
2046                         if (out) {
2047                                 if (out->f_mode & FMODE_WRITE)
2048                                         error = do_tee(in, out, len, flags);
2049                                 fput_light(out, fput_out);
2050                         }
2051                 }
2052                 fput_light(in, fput_in);
2053         }
2054
2055         return error;
2056 }