Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 #include <linux/socket.h>
35
36 /*
37  * Attempt to steal a page from a pipe buffer. This should perhaps go into
38  * a vm helper function, it's already simplified quite a bit by the
39  * addition of remove_mapping(). If success is returned, the caller may
40  * attempt to reuse this page for another destination.
41  */
42 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
43                                      struct pipe_buffer *buf)
44 {
45         struct page *page = buf->page;
46         struct address_space *mapping;
47
48         lock_page(page);
49
50         mapping = page_mapping(page);
51         if (mapping) {
52                 WARN_ON(!PageUptodate(page));
53
54                 /*
55                  * At least for ext2 with nobh option, we need to wait on
56                  * writeback completing on this page, since we'll remove it
57                  * from the pagecache.  Otherwise truncate wont wait on the
58                  * page, allowing the disk blocks to be reused by someone else
59                  * before we actually wrote our data to them. fs corruption
60                  * ensues.
61                  */
62                 wait_on_page_writeback(page);
63
64                 if (page_has_private(page) &&
65                     !try_to_release_page(page, GFP_KERNEL))
66                         goto out_unlock;
67
68                 /*
69                  * If we succeeded in removing the mapping, set LRU flag
70                  * and return good.
71                  */
72                 if (remove_mapping(mapping, page)) {
73                         buf->flags |= PIPE_BUF_FLAG_LRU;
74                         return 0;
75                 }
76         }
77
78         /*
79          * Raced with truncate or failed to remove page from current
80          * address space, unlock and return failure.
81          */
82 out_unlock:
83         unlock_page(page);
84         return 1;
85 }
86
87 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
88                                         struct pipe_buffer *buf)
89 {
90         page_cache_release(buf->page);
91         buf->flags &= ~PIPE_BUF_FLAG_LRU;
92 }
93
94 /*
95  * Check whether the contents of buf is OK to access. Since the content
96  * is a page cache page, IO may be in flight.
97  */
98 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
99                                        struct pipe_buffer *buf)
100 {
101         struct page *page = buf->page;
102         int err;
103
104         if (!PageUptodate(page)) {
105                 lock_page(page);
106
107                 /*
108                  * Page got truncated/unhashed. This will cause a 0-byte
109                  * splice, if this is the first page.
110                  */
111                 if (!page->mapping) {
112                         err = -ENODATA;
113                         goto error;
114                 }
115
116                 /*
117                  * Uh oh, read-error from disk.
118                  */
119                 if (!PageUptodate(page)) {
120                         err = -EIO;
121                         goto error;
122                 }
123
124                 /*
125                  * Page is ok afterall, we are done.
126                  */
127                 unlock_page(page);
128         }
129
130         return 0;
131 error:
132         unlock_page(page);
133         return err;
134 }
135
136 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137         .can_merge = 0,
138         .map = generic_pipe_buf_map,
139         .unmap = generic_pipe_buf_unmap,
140         .confirm = page_cache_pipe_buf_confirm,
141         .release = page_cache_pipe_buf_release,
142         .steal = page_cache_pipe_buf_steal,
143         .get = generic_pipe_buf_get,
144 };
145
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147                                     struct pipe_buffer *buf)
148 {
149         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150                 return 1;
151
152         buf->flags |= PIPE_BUF_FLAG_LRU;
153         return generic_pipe_buf_steal(pipe, buf);
154 }
155
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157         .can_merge = 0,
158         .map = generic_pipe_buf_map,
159         .unmap = generic_pipe_buf_unmap,
160         .confirm = generic_pipe_buf_confirm,
161         .release = page_cache_pipe_buf_release,
162         .steal = user_page_pipe_buf_steal,
163         .get = generic_pipe_buf_get,
164 };
165
166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 {
168         smp_mb();
169         if (waitqueue_active(&pipe->wait))
170                 wake_up_interruptible(&pipe->wait);
171         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 }
173
174 /**
175  * splice_to_pipe - fill passed data into a pipe
176  * @pipe:       pipe to fill
177  * @spd:        data to fill
178  *
179  * Description:
180  *    @spd contains a map of pages and len/offset tuples, along with
181  *    the struct pipe_buf_operations associated with these pages. This
182  *    function will link that data to the pipe.
183  *
184  */
185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186                        struct splice_pipe_desc *spd)
187 {
188         unsigned int spd_pages = spd->nr_pages;
189         int ret, do_wakeup, page_nr;
190
191         ret = 0;
192         do_wakeup = 0;
193         page_nr = 0;
194
195         pipe_lock(pipe);
196
197         for (;;) {
198                 if (!pipe->readers) {
199                         send_sig(SIGPIPE, current, 0);
200                         if (!ret)
201                                 ret = -EPIPE;
202                         break;
203                 }
204
205                 if (pipe->nrbufs < pipe->buffers) {
206                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207                         struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209                         buf->page = spd->pages[page_nr];
210                         buf->offset = spd->partial[page_nr].offset;
211                         buf->len = spd->partial[page_nr].len;
212                         buf->private = spd->partial[page_nr].private;
213                         buf->ops = spd->ops;
214                         if (spd->flags & SPLICE_F_GIFT)
215                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
216
217                         pipe->nrbufs++;
218                         page_nr++;
219                         ret += buf->len;
220
221                         if (pipe->inode)
222                                 do_wakeup = 1;
223
224                         if (!--spd->nr_pages)
225                                 break;
226                         if (pipe->nrbufs < pipe->buffers)
227                                 continue;
228
229                         break;
230                 }
231
232                 if (spd->flags & SPLICE_F_NONBLOCK) {
233                         if (!ret)
234                                 ret = -EAGAIN;
235                         break;
236                 }
237
238                 if (signal_pending(current)) {
239                         if (!ret)
240                                 ret = -ERESTARTSYS;
241                         break;
242                 }
243
244                 if (do_wakeup) {
245                         smp_mb();
246                         if (waitqueue_active(&pipe->wait))
247                                 wake_up_interruptible_sync(&pipe->wait);
248                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249                         do_wakeup = 0;
250                 }
251
252                 pipe->waiting_writers++;
253                 pipe_wait(pipe);
254                 pipe->waiting_writers--;
255         }
256
257         pipe_unlock(pipe);
258
259         if (do_wakeup)
260                 wakeup_pipe_readers(pipe);
261
262         while (page_nr < spd_pages)
263                 spd->spd_release(spd, page_nr++);
264
265         return ret;
266 }
267
268 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
269 {
270         page_cache_release(spd->pages[i]);
271 }
272
273 /*
274  * Check if we need to grow the arrays holding pages and partial page
275  * descriptions.
276  */
277 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
278 {
279         unsigned int buffers = ACCESS_ONCE(pipe->buffers);
280
281         spd->nr_pages_max = buffers;
282         if (buffers <= PIPE_DEF_BUFFERS)
283                 return 0;
284
285         spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
286         spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
287
288         if (spd->pages && spd->partial)
289                 return 0;
290
291         kfree(spd->pages);
292         kfree(spd->partial);
293         return -ENOMEM;
294 }
295
296 void splice_shrink_spd(struct splice_pipe_desc *spd)
297 {
298         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
299                 return;
300
301         kfree(spd->pages);
302         kfree(spd->partial);
303 }
304
305 static int
306 __generic_file_splice_read(struct file *in, loff_t *ppos,
307                            struct pipe_inode_info *pipe, size_t len,
308                            unsigned int flags)
309 {
310         struct address_space *mapping = in->f_mapping;
311         unsigned int loff, nr_pages, req_pages;
312         struct page *pages[PIPE_DEF_BUFFERS];
313         struct partial_page partial[PIPE_DEF_BUFFERS];
314         struct page *page;
315         pgoff_t index, end_index;
316         loff_t isize;
317         int error, page_nr;
318         struct splice_pipe_desc spd = {
319                 .pages = pages,
320                 .partial = partial,
321                 .nr_pages_max = PIPE_DEF_BUFFERS,
322                 .flags = flags,
323                 .ops = &page_cache_pipe_buf_ops,
324                 .spd_release = spd_release_page,
325         };
326
327         if (splice_grow_spd(pipe, &spd))
328                 return -ENOMEM;
329
330         index = *ppos >> PAGE_CACHE_SHIFT;
331         loff = *ppos & ~PAGE_CACHE_MASK;
332         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
333         nr_pages = min(req_pages, spd.nr_pages_max);
334
335         /*
336          * Lookup the (hopefully) full range of pages we need.
337          */
338         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
339         index += spd.nr_pages;
340
341         /*
342          * If find_get_pages_contig() returned fewer pages than we needed,
343          * readahead/allocate the rest and fill in the holes.
344          */
345         if (spd.nr_pages < nr_pages)
346                 page_cache_sync_readahead(mapping, &in->f_ra, in,
347                                 index, req_pages - spd.nr_pages);
348
349         error = 0;
350         while (spd.nr_pages < nr_pages) {
351                 /*
352                  * Page could be there, find_get_pages_contig() breaks on
353                  * the first hole.
354                  */
355                 page = find_get_page(mapping, index);
356                 if (!page) {
357                         /*
358                          * page didn't exist, allocate one.
359                          */
360                         page = page_cache_alloc_cold(mapping);
361                         if (!page)
362                                 break;
363
364                         error = add_to_page_cache_lru(page, mapping, index,
365                                                 GFP_KERNEL);
366                         if (unlikely(error)) {
367                                 page_cache_release(page);
368                                 if (error == -EEXIST)
369                                         continue;
370                                 break;
371                         }
372                         /*
373                          * add_to_page_cache() locks the page, unlock it
374                          * to avoid convoluting the logic below even more.
375                          */
376                         unlock_page(page);
377                 }
378
379                 spd.pages[spd.nr_pages++] = page;
380                 index++;
381         }
382
383         /*
384          * Now loop over the map and see if we need to start IO on any
385          * pages, fill in the partial map, etc.
386          */
387         index = *ppos >> PAGE_CACHE_SHIFT;
388         nr_pages = spd.nr_pages;
389         spd.nr_pages = 0;
390         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
391                 unsigned int this_len;
392
393                 if (!len)
394                         break;
395
396                 /*
397                  * this_len is the max we'll use from this page
398                  */
399                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
400                 page = spd.pages[page_nr];
401
402                 if (PageReadahead(page))
403                         page_cache_async_readahead(mapping, &in->f_ra, in,
404                                         page, index, req_pages - page_nr);
405
406                 /*
407                  * If the page isn't uptodate, we may need to start io on it
408                  */
409                 if (!PageUptodate(page)) {
410                         lock_page(page);
411
412                         /*
413                          * Page was truncated, or invalidated by the
414                          * filesystem.  Redo the find/create, but this time the
415                          * page is kept locked, so there's no chance of another
416                          * race with truncate/invalidate.
417                          */
418                         if (!page->mapping) {
419                                 unlock_page(page);
420                                 page = find_or_create_page(mapping, index,
421                                                 mapping_gfp_mask(mapping));
422
423                                 if (!page) {
424                                         error = -ENOMEM;
425                                         break;
426                                 }
427                                 page_cache_release(spd.pages[page_nr]);
428                                 spd.pages[page_nr] = page;
429                         }
430                         /*
431                          * page was already under io and is now done, great
432                          */
433                         if (PageUptodate(page)) {
434                                 unlock_page(page);
435                                 goto fill_it;
436                         }
437
438                         /*
439                          * need to read in the page
440                          */
441                         error = mapping->a_ops->readpage(in, page);
442                         if (unlikely(error)) {
443                                 /*
444                                  * We really should re-lookup the page here,
445                                  * but it complicates things a lot. Instead
446                                  * lets just do what we already stored, and
447                                  * we'll get it the next time we are called.
448                                  */
449                                 if (error == AOP_TRUNCATED_PAGE)
450                                         error = 0;
451
452                                 break;
453                         }
454                 }
455 fill_it:
456                 /*
457                  * i_size must be checked after PageUptodate.
458                  */
459                 isize = i_size_read(mapping->host);
460                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
461                 if (unlikely(!isize || index > end_index))
462                         break;
463
464                 /*
465                  * if this is the last page, see if we need to shrink
466                  * the length and stop
467                  */
468                 if (end_index == index) {
469                         unsigned int plen;
470
471                         /*
472                          * max good bytes in this page
473                          */
474                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
475                         if (plen <= loff)
476                                 break;
477
478                         /*
479                          * force quit after adding this page
480                          */
481                         this_len = min(this_len, plen - loff);
482                         len = this_len;
483                 }
484
485                 spd.partial[page_nr].offset = loff;
486                 spd.partial[page_nr].len = this_len;
487                 len -= this_len;
488                 loff = 0;
489                 spd.nr_pages++;
490                 index++;
491         }
492
493         /*
494          * Release any pages at the end, if we quit early. 'page_nr' is how far
495          * we got, 'nr_pages' is how many pages are in the map.
496          */
497         while (page_nr < nr_pages)
498                 page_cache_release(spd.pages[page_nr++]);
499         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
500
501         if (spd.nr_pages)
502                 error = splice_to_pipe(pipe, &spd);
503
504         splice_shrink_spd(&spd);
505         return error;
506 }
507
508 /**
509  * generic_file_splice_read - splice data from file to a pipe
510  * @in:         file to splice from
511  * @ppos:       position in @in
512  * @pipe:       pipe to splice to
513  * @len:        number of bytes to splice
514  * @flags:      splice modifier flags
515  *
516  * Description:
517  *    Will read pages from given file and fill them into a pipe. Can be
518  *    used as long as the address_space operations for the source implements
519  *    a readpage() hook.
520  *
521  */
522 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
523                                  struct pipe_inode_info *pipe, size_t len,
524                                  unsigned int flags)
525 {
526         loff_t isize, left;
527         int ret;
528
529         isize = i_size_read(in->f_mapping->host);
530         if (unlikely(*ppos >= isize))
531                 return 0;
532
533         left = isize - *ppos;
534         if (unlikely(left < len))
535                 len = left;
536
537         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
538         if (ret > 0) {
539                 *ppos += ret;
540                 file_accessed(in);
541         }
542
543         return ret;
544 }
545 EXPORT_SYMBOL(generic_file_splice_read);
546
547 static const struct pipe_buf_operations default_pipe_buf_ops = {
548         .can_merge = 0,
549         .map = generic_pipe_buf_map,
550         .unmap = generic_pipe_buf_unmap,
551         .confirm = generic_pipe_buf_confirm,
552         .release = generic_pipe_buf_release,
553         .steal = generic_pipe_buf_steal,
554         .get = generic_pipe_buf_get,
555 };
556
557 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
558                             unsigned long vlen, loff_t offset)
559 {
560         mm_segment_t old_fs;
561         loff_t pos = offset;
562         ssize_t res;
563
564         old_fs = get_fs();
565         set_fs(get_ds());
566         /* The cast to a user pointer is valid due to the set_fs() */
567         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
568         set_fs(old_fs);
569
570         return res;
571 }
572
573 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
574                             loff_t pos)
575 {
576         mm_segment_t old_fs;
577         ssize_t res;
578
579         old_fs = get_fs();
580         set_fs(get_ds());
581         /* The cast to a user pointer is valid due to the set_fs() */
582         res = vfs_write(file, (const char __user *)buf, count, &pos);
583         set_fs(old_fs);
584
585         return res;
586 }
587
588 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
589                                  struct pipe_inode_info *pipe, size_t len,
590                                  unsigned int flags)
591 {
592         unsigned int nr_pages;
593         unsigned int nr_freed;
594         size_t offset;
595         struct page *pages[PIPE_DEF_BUFFERS];
596         struct partial_page partial[PIPE_DEF_BUFFERS];
597         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
598         ssize_t res;
599         size_t this_len;
600         int error;
601         int i;
602         struct splice_pipe_desc spd = {
603                 .pages = pages,
604                 .partial = partial,
605                 .nr_pages_max = PIPE_DEF_BUFFERS,
606                 .flags = flags,
607                 .ops = &default_pipe_buf_ops,
608                 .spd_release = spd_release_page,
609         };
610
611         if (splice_grow_spd(pipe, &spd))
612                 return -ENOMEM;
613
614         res = -ENOMEM;
615         vec = __vec;
616         if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
617                 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
618                 if (!vec)
619                         goto shrink_ret;
620         }
621
622         offset = *ppos & ~PAGE_CACHE_MASK;
623         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
624
625         for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
626                 struct page *page;
627
628                 page = alloc_page(GFP_USER);
629                 error = -ENOMEM;
630                 if (!page)
631                         goto err;
632
633                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
634                 vec[i].iov_base = (void __user *) page_address(page);
635                 vec[i].iov_len = this_len;
636                 spd.pages[i] = page;
637                 spd.nr_pages++;
638                 len -= this_len;
639                 offset = 0;
640         }
641
642         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
643         if (res < 0) {
644                 error = res;
645                 goto err;
646         }
647
648         error = 0;
649         if (!res)
650                 goto err;
651
652         nr_freed = 0;
653         for (i = 0; i < spd.nr_pages; i++) {
654                 this_len = min_t(size_t, vec[i].iov_len, res);
655                 spd.partial[i].offset = 0;
656                 spd.partial[i].len = this_len;
657                 if (!this_len) {
658                         __free_page(spd.pages[i]);
659                         spd.pages[i] = NULL;
660                         nr_freed++;
661                 }
662                 res -= this_len;
663         }
664         spd.nr_pages -= nr_freed;
665
666         res = splice_to_pipe(pipe, &spd);
667         if (res > 0)
668                 *ppos += res;
669
670 shrink_ret:
671         if (vec != __vec)
672                 kfree(vec);
673         splice_shrink_spd(&spd);
674         return res;
675
676 err:
677         for (i = 0; i < spd.nr_pages; i++)
678                 __free_page(spd.pages[i]);
679
680         res = error;
681         goto shrink_ret;
682 }
683 EXPORT_SYMBOL(default_file_splice_read);
684
685 /*
686  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
687  * using sendpage(). Return the number of bytes sent.
688  */
689 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
690                             struct pipe_buffer *buf, struct splice_desc *sd)
691 {
692         struct file *file = sd->u.file;
693         loff_t pos = sd->pos;
694         int more;
695
696         if (!likely(file->f_op && file->f_op->sendpage))
697                 return -EINVAL;
698
699         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
700         if (sd->len < sd->total_len)
701                 more |= MSG_SENDPAGE_NOTLAST;
702         return file->f_op->sendpage(file, buf->page, buf->offset,
703                                     sd->len, &pos, more);
704 }
705
706 /*
707  * This is a little more tricky than the file -> pipe splicing. There are
708  * basically three cases:
709  *
710  *      - Destination page already exists in the address space and there
711  *        are users of it. For that case we have no other option that
712  *        copying the data. Tough luck.
713  *      - Destination page already exists in the address space, but there
714  *        are no users of it. Make sure it's uptodate, then drop it. Fall
715  *        through to last case.
716  *      - Destination page does not exist, we can add the pipe page to
717  *        the page cache and avoid the copy.
718  *
719  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
720  * sd->flags), we attempt to migrate pages from the pipe to the output
721  * file address space page cache. This is possible if no one else has
722  * the pipe page referenced outside of the pipe and page cache. If
723  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
724  * a new page in the output file page cache and fill/dirty that.
725  */
726 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
727                  struct splice_desc *sd)
728 {
729         struct file *file = sd->u.file;
730         struct address_space *mapping = file->f_mapping;
731         unsigned int offset, this_len;
732         struct page *page;
733         void *fsdata;
734         int ret;
735
736         offset = sd->pos & ~PAGE_CACHE_MASK;
737
738         this_len = sd->len;
739         if (this_len + offset > PAGE_CACHE_SIZE)
740                 this_len = PAGE_CACHE_SIZE - offset;
741
742         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
743                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
744         if (unlikely(ret))
745                 goto out;
746
747         if (buf->page != page) {
748                 /*
749                  * Careful, ->map() uses KM_USER0!
750                  */
751                 char *src = buf->ops->map(pipe, buf, 1);
752                 char *dst = kmap_atomic(page, KM_USER1);
753
754                 memcpy(dst + offset, src + buf->offset, this_len);
755                 flush_dcache_page(page);
756                 kunmap_atomic(dst, KM_USER1);
757                 buf->ops->unmap(pipe, buf, src);
758         }
759         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
760                                 page, fsdata);
761 out:
762         return ret;
763 }
764 EXPORT_SYMBOL(pipe_to_file);
765
766 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
767 {
768         smp_mb();
769         if (waitqueue_active(&pipe->wait))
770                 wake_up_interruptible(&pipe->wait);
771         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
772 }
773
774 /**
775  * splice_from_pipe_feed - feed available data from a pipe to a file
776  * @pipe:       pipe to splice from
777  * @sd:         information to @actor
778  * @actor:      handler that splices the data
779  *
780  * Description:
781  *    This function loops over the pipe and calls @actor to do the
782  *    actual moving of a single struct pipe_buffer to the desired
783  *    destination.  It returns when there's no more buffers left in
784  *    the pipe or if the requested number of bytes (@sd->total_len)
785  *    have been copied.  It returns a positive number (one) if the
786  *    pipe needs to be filled with more data, zero if the required
787  *    number of bytes have been copied and -errno on error.
788  *
789  *    This, together with splice_from_pipe_{begin,end,next}, may be
790  *    used to implement the functionality of __splice_from_pipe() when
791  *    locking is required around copying the pipe buffers to the
792  *    destination.
793  */
794 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
795                           splice_actor *actor)
796 {
797         int ret;
798
799         while (pipe->nrbufs) {
800                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
801                 const struct pipe_buf_operations *ops = buf->ops;
802
803                 sd->len = buf->len;
804                 if (sd->len > sd->total_len)
805                         sd->len = sd->total_len;
806
807                 ret = buf->ops->confirm(pipe, buf);
808                 if (unlikely(ret)) {
809                         if (ret == -ENODATA)
810                                 ret = 0;
811                         return ret;
812                 }
813
814                 ret = actor(pipe, buf, sd);
815                 if (ret <= 0)
816                         return ret;
817
818                 buf->offset += ret;
819                 buf->len -= ret;
820
821                 sd->num_spliced += ret;
822                 sd->len -= ret;
823                 sd->pos += ret;
824                 sd->total_len -= ret;
825
826                 if (!buf->len) {
827                         buf->ops = NULL;
828                         ops->release(pipe, buf);
829                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
830                         pipe->nrbufs--;
831                         if (pipe->inode)
832                                 sd->need_wakeup = true;
833                 }
834
835                 if (!sd->total_len)
836                         return 0;
837         }
838
839         return 1;
840 }
841 EXPORT_SYMBOL(splice_from_pipe_feed);
842
843 /**
844  * splice_from_pipe_next - wait for some data to splice from
845  * @pipe:       pipe to splice from
846  * @sd:         information about the splice operation
847  *
848  * Description:
849  *    This function will wait for some data and return a positive
850  *    value (one) if pipe buffers are available.  It will return zero
851  *    or -errno if no more data needs to be spliced.
852  */
853 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
854 {
855         while (!pipe->nrbufs) {
856                 if (!pipe->writers)
857                         return 0;
858
859                 if (!pipe->waiting_writers && sd->num_spliced)
860                         return 0;
861
862                 if (sd->flags & SPLICE_F_NONBLOCK)
863                         return -EAGAIN;
864
865                 if (signal_pending(current))
866                         return -ERESTARTSYS;
867
868                 if (sd->need_wakeup) {
869                         wakeup_pipe_writers(pipe);
870                         sd->need_wakeup = false;
871                 }
872
873                 pipe_wait(pipe);
874         }
875
876         return 1;
877 }
878 EXPORT_SYMBOL(splice_from_pipe_next);
879
880 /**
881  * splice_from_pipe_begin - start splicing from pipe
882  * @sd:         information about the splice operation
883  *
884  * Description:
885  *    This function should be called before a loop containing
886  *    splice_from_pipe_next() and splice_from_pipe_feed() to
887  *    initialize the necessary fields of @sd.
888  */
889 void splice_from_pipe_begin(struct splice_desc *sd)
890 {
891         sd->num_spliced = 0;
892         sd->need_wakeup = false;
893 }
894 EXPORT_SYMBOL(splice_from_pipe_begin);
895
896 /**
897  * splice_from_pipe_end - finish splicing from pipe
898  * @pipe:       pipe to splice from
899  * @sd:         information about the splice operation
900  *
901  * Description:
902  *    This function will wake up pipe writers if necessary.  It should
903  *    be called after a loop containing splice_from_pipe_next() and
904  *    splice_from_pipe_feed().
905  */
906 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
907 {
908         if (sd->need_wakeup)
909                 wakeup_pipe_writers(pipe);
910 }
911 EXPORT_SYMBOL(splice_from_pipe_end);
912
913 /**
914  * __splice_from_pipe - splice data from a pipe to given actor
915  * @pipe:       pipe to splice from
916  * @sd:         information to @actor
917  * @actor:      handler that splices the data
918  *
919  * Description:
920  *    This function does little more than loop over the pipe and call
921  *    @actor to do the actual moving of a single struct pipe_buffer to
922  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
923  *    pipe_to_user.
924  *
925  */
926 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
927                            splice_actor *actor)
928 {
929         int ret;
930
931         splice_from_pipe_begin(sd);
932         do {
933                 ret = splice_from_pipe_next(pipe, sd);
934                 if (ret > 0)
935                         ret = splice_from_pipe_feed(pipe, sd, actor);
936         } while (ret > 0);
937         splice_from_pipe_end(pipe, sd);
938
939         return sd->num_spliced ? sd->num_spliced : ret;
940 }
941 EXPORT_SYMBOL(__splice_from_pipe);
942
943 /**
944  * splice_from_pipe - splice data from a pipe to a file
945  * @pipe:       pipe to splice from
946  * @out:        file to splice to
947  * @ppos:       position in @out
948  * @len:        how many bytes to splice
949  * @flags:      splice modifier flags
950  * @actor:      handler that splices the data
951  *
952  * Description:
953  *    See __splice_from_pipe. This function locks the pipe inode,
954  *    otherwise it's identical to __splice_from_pipe().
955  *
956  */
957 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
958                          loff_t *ppos, size_t len, unsigned int flags,
959                          splice_actor *actor)
960 {
961         ssize_t ret;
962         struct splice_desc sd = {
963                 .total_len = len,
964                 .flags = flags,
965                 .pos = *ppos,
966                 .u.file = out,
967         };
968
969         pipe_lock(pipe);
970         ret = __splice_from_pipe(pipe, &sd, actor);
971         pipe_unlock(pipe);
972
973         return ret;
974 }
975
976 /**
977  * generic_file_splice_write - splice data from a pipe to a file
978  * @pipe:       pipe info
979  * @out:        file to write to
980  * @ppos:       position in @out
981  * @len:        number of bytes to splice
982  * @flags:      splice modifier flags
983  *
984  * Description:
985  *    Will either move or copy pages (determined by @flags options) from
986  *    the given pipe inode to the given file.
987  *
988  */
989 ssize_t
990 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
991                           loff_t *ppos, size_t len, unsigned int flags)
992 {
993         struct address_space *mapping = out->f_mapping;
994         struct inode *inode = mapping->host;
995         struct splice_desc sd = {
996                 .total_len = len,
997                 .flags = flags,
998                 .pos = *ppos,
999                 .u.file = out,
1000         };
1001         ssize_t ret;
1002
1003         pipe_lock(pipe);
1004
1005         splice_from_pipe_begin(&sd);
1006         do {
1007                 ret = splice_from_pipe_next(pipe, &sd);
1008                 if (ret <= 0)
1009                         break;
1010
1011                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1012                 ret = file_remove_suid(out);
1013                 if (!ret) {
1014                         file_update_time(out);
1015                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1016                 }
1017                 mutex_unlock(&inode->i_mutex);
1018         } while (ret > 0);
1019         splice_from_pipe_end(pipe, &sd);
1020
1021         pipe_unlock(pipe);
1022
1023         if (sd.num_spliced)
1024                 ret = sd.num_spliced;
1025
1026         if (ret > 0) {
1027                 unsigned long nr_pages;
1028                 int err;
1029
1030                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1031
1032                 err = generic_write_sync(out, *ppos, ret);
1033                 if (err)
1034                         ret = err;
1035                 else
1036                         *ppos += ret;
1037                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1038         }
1039
1040         return ret;
1041 }
1042
1043 EXPORT_SYMBOL(generic_file_splice_write);
1044
1045 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1046                           struct splice_desc *sd)
1047 {
1048         int ret;
1049         void *data;
1050
1051         data = buf->ops->map(pipe, buf, 0);
1052         ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1053         buf->ops->unmap(pipe, buf, data);
1054
1055         return ret;
1056 }
1057
1058 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1059                                          struct file *out, loff_t *ppos,
1060                                          size_t len, unsigned int flags)
1061 {
1062         ssize_t ret;
1063
1064         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1065         if (ret > 0)
1066                 *ppos += ret;
1067
1068         return ret;
1069 }
1070
1071 /**
1072  * generic_splice_sendpage - splice data from a pipe to a socket
1073  * @pipe:       pipe to splice from
1074  * @out:        socket to write to
1075  * @ppos:       position in @out
1076  * @len:        number of bytes to splice
1077  * @flags:      splice modifier flags
1078  *
1079  * Description:
1080  *    Will send @len bytes from the pipe to a network socket. No data copying
1081  *    is involved.
1082  *
1083  */
1084 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1085                                 loff_t *ppos, size_t len, unsigned int flags)
1086 {
1087         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1088 }
1089
1090 EXPORT_SYMBOL(generic_splice_sendpage);
1091
1092 /*
1093  * Attempt to initiate a splice from pipe to file.
1094  */
1095 long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1096                     loff_t *ppos, size_t len, unsigned int flags)
1097 {
1098         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1099                                 loff_t *, size_t, unsigned int);
1100         int ret;
1101
1102         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1103                 return -EBADF;
1104
1105         if (unlikely(out->f_flags & O_APPEND))
1106                 return -EINVAL;
1107
1108         ret = rw_verify_area(WRITE, out, ppos, len);
1109         if (unlikely(ret < 0))
1110                 return ret;
1111
1112         if (out->f_op && out->f_op->splice_write)
1113                 splice_write = out->f_op->splice_write;
1114         else
1115                 splice_write = default_file_splice_write;
1116
1117         return splice_write(pipe, out, ppos, len, flags);
1118 }
1119 EXPORT_SYMBOL(do_splice_from);
1120
1121 /*
1122  * Attempt to initiate a splice from a file to a pipe.
1123  */
1124 long do_splice_to(struct file *in, loff_t *ppos,
1125                   struct pipe_inode_info *pipe, size_t len,
1126                   unsigned int flags)
1127 {
1128         ssize_t (*splice_read)(struct file *, loff_t *,
1129                                struct pipe_inode_info *, size_t, unsigned int);
1130         int ret;
1131
1132         if (unlikely(!(in->f_mode & FMODE_READ)))
1133                 return -EBADF;
1134
1135         ret = rw_verify_area(READ, in, ppos, len);
1136         if (unlikely(ret < 0))
1137                 return ret;
1138
1139         if (in->f_op && in->f_op->splice_read)
1140                 splice_read = in->f_op->splice_read;
1141         else
1142                 splice_read = default_file_splice_read;
1143
1144         return splice_read(in, ppos, pipe, len, flags);
1145 }
1146 EXPORT_SYMBOL(do_splice_to);
1147
1148 /**
1149  * splice_direct_to_actor - splices data directly between two non-pipes
1150  * @in:         file to splice from
1151  * @sd:         actor information on where to splice to
1152  * @actor:      handles the data splicing
1153  *
1154  * Description:
1155  *    This is a special case helper to splice directly between two
1156  *    points, without requiring an explicit pipe. Internally an allocated
1157  *    pipe is cached in the process, and reused during the lifetime of
1158  *    that process.
1159  *
1160  */
1161 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1162                                splice_direct_actor *actor)
1163 {
1164         struct pipe_inode_info *pipe;
1165         long ret, bytes;
1166         umode_t i_mode;
1167         size_t len;
1168         int i, flags;
1169
1170         /*
1171          * We require the input being a regular file, as we don't want to
1172          * randomly drop data for eg socket -> socket splicing. Use the
1173          * piped splicing for that!
1174          */
1175         i_mode = in->f_path.dentry->d_inode->i_mode;
1176         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1177                 return -EINVAL;
1178
1179         /*
1180          * neither in nor out is a pipe, setup an internal pipe attached to
1181          * 'out' and transfer the wanted data from 'in' to 'out' through that
1182          */
1183         pipe = current->splice_pipe;
1184         if (unlikely(!pipe)) {
1185                 pipe = alloc_pipe_info(NULL);
1186                 if (!pipe)
1187                         return -ENOMEM;
1188
1189                 /*
1190                  * We don't have an immediate reader, but we'll read the stuff
1191                  * out of the pipe right after the splice_to_pipe(). So set
1192                  * PIPE_READERS appropriately.
1193                  */
1194                 pipe->readers = 1;
1195
1196                 current->splice_pipe = pipe;
1197         }
1198
1199         /*
1200          * Do the splice.
1201          */
1202         ret = 0;
1203         bytes = 0;
1204         len = sd->total_len;
1205         flags = sd->flags;
1206
1207         /*
1208          * Don't block on output, we have to drain the direct pipe.
1209          */
1210         sd->flags &= ~SPLICE_F_NONBLOCK;
1211
1212         while (len) {
1213                 size_t read_len;
1214                 loff_t pos = sd->pos, prev_pos = pos;
1215
1216                 ret = do_splice_to(in, &pos, pipe, len, flags);
1217                 if (unlikely(ret <= 0))
1218                         goto out_release;
1219
1220                 read_len = ret;
1221                 sd->total_len = read_len;
1222
1223                 /*
1224                  * NOTE: nonblocking mode only applies to the input. We
1225                  * must not do the output in nonblocking mode as then we
1226                  * could get stuck data in the internal pipe:
1227                  */
1228                 ret = actor(pipe, sd);
1229                 if (unlikely(ret <= 0)) {
1230                         sd->pos = prev_pos;
1231                         goto out_release;
1232                 }
1233
1234                 bytes += ret;
1235                 len -= ret;
1236                 sd->pos = pos;
1237
1238                 if (ret < read_len) {
1239                         sd->pos = prev_pos + ret;
1240                         goto out_release;
1241                 }
1242         }
1243
1244 done:
1245         pipe->nrbufs = pipe->curbuf = 0;
1246         file_accessed(in);
1247         return bytes;
1248
1249 out_release:
1250         /*
1251          * If we did an incomplete transfer we must release
1252          * the pipe buffers in question:
1253          */
1254         for (i = 0; i < pipe->buffers; i++) {
1255                 struct pipe_buffer *buf = pipe->bufs + i;
1256
1257                 if (buf->ops) {
1258                         buf->ops->release(pipe, buf);
1259                         buf->ops = NULL;
1260                 }
1261         }
1262
1263         if (!bytes)
1264                 bytes = ret;
1265
1266         goto done;
1267 }
1268 EXPORT_SYMBOL(splice_direct_to_actor);
1269
1270 static int direct_splice_actor(struct pipe_inode_info *pipe,
1271                                struct splice_desc *sd)
1272 {
1273         struct file *file = sd->u.file;
1274
1275         return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1276                               sd->flags);
1277 }
1278
1279 /**
1280  * do_splice_direct - splices data directly between two files
1281  * @in:         file to splice from
1282  * @ppos:       input file offset
1283  * @out:        file to splice to
1284  * @len:        number of bytes to splice
1285  * @flags:      splice modifier flags
1286  *
1287  * Description:
1288  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1289  *    doing it in the application would incur an extra system call
1290  *    (splice in + splice out, as compared to just sendfile()). So this helper
1291  *    can splice directly through a process-private pipe.
1292  *
1293  */
1294 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1295                       size_t len, unsigned int flags)
1296 {
1297         struct splice_desc sd = {
1298                 .len            = len,
1299                 .total_len      = len,
1300                 .flags          = flags,
1301                 .pos            = *ppos,
1302                 .u.file         = out,
1303         };
1304         long ret;
1305
1306         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1307         if (ret > 0)
1308                 *ppos = sd.pos;
1309
1310         return ret;
1311 }
1312
1313 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1314                                struct pipe_inode_info *opipe,
1315                                size_t len, unsigned int flags);
1316
1317 /*
1318  * Determine where to splice to/from.
1319  */
1320 static long do_splice(struct file *in, loff_t __user *off_in,
1321                       struct file *out, loff_t __user *off_out,
1322                       size_t len, unsigned int flags)
1323 {
1324         struct pipe_inode_info *ipipe;
1325         struct pipe_inode_info *opipe;
1326         loff_t offset, *off;
1327         long ret;
1328
1329         ipipe = get_pipe_info(in);
1330         opipe = get_pipe_info(out);
1331
1332         if (ipipe && opipe) {
1333                 if (off_in || off_out)
1334                         return -ESPIPE;
1335
1336                 if (!(in->f_mode & FMODE_READ))
1337                         return -EBADF;
1338
1339                 if (!(out->f_mode & FMODE_WRITE))
1340                         return -EBADF;
1341
1342                 /* Splicing to self would be fun, but... */
1343                 if (ipipe == opipe)
1344                         return -EINVAL;
1345
1346                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1347         }
1348
1349         if (ipipe) {
1350                 if (off_in)
1351                         return -ESPIPE;
1352                 if (off_out) {
1353                         if (!(out->f_mode & FMODE_PWRITE))
1354                                 return -EINVAL;
1355                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1356                                 return -EFAULT;
1357                         off = &offset;
1358                 } else
1359                         off = &out->f_pos;
1360
1361                 ret = do_splice_from(ipipe, out, off, len, flags);
1362
1363                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1364                         ret = -EFAULT;
1365
1366                 return ret;
1367         }
1368
1369         if (opipe) {
1370                 if (off_out)
1371                         return -ESPIPE;
1372                 if (off_in) {
1373                         if (!(in->f_mode & FMODE_PREAD))
1374                                 return -EINVAL;
1375                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1376                                 return -EFAULT;
1377                         off = &offset;
1378                 } else
1379                         off = &in->f_pos;
1380
1381                 ret = do_splice_to(in, off, opipe, len, flags);
1382
1383                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1384                         ret = -EFAULT;
1385
1386                 return ret;
1387         }
1388
1389         return -EINVAL;
1390 }
1391
1392 /*
1393  * Map an iov into an array of pages and offset/length tupples. With the
1394  * partial_page structure, we can map several non-contiguous ranges into
1395  * our ones pages[] map instead of splitting that operation into pieces.
1396  * Could easily be exported as a generic helper for other users, in which
1397  * case one would probably want to add a 'max_nr_pages' parameter as well.
1398  */
1399 static int get_iovec_page_array(const struct iovec __user *iov,
1400                                 unsigned int nr_vecs, struct page **pages,
1401                                 struct partial_page *partial, int aligned,
1402                                 unsigned int pipe_buffers)
1403 {
1404         int buffers = 0, error = 0;
1405
1406         while (nr_vecs) {
1407                 unsigned long off, npages;
1408                 struct iovec entry;
1409                 void __user *base;
1410                 size_t len;
1411                 int i;
1412
1413                 error = -EFAULT;
1414                 if (copy_from_user(&entry, iov, sizeof(entry)))
1415                         break;
1416
1417                 base = entry.iov_base;
1418                 len = entry.iov_len;
1419
1420                 /*
1421                  * Sanity check this iovec. 0 read succeeds.
1422                  */
1423                 error = 0;
1424                 if (unlikely(!len))
1425                         break;
1426                 error = -EFAULT;
1427                 if (!access_ok(VERIFY_READ, base, len))
1428                         break;
1429
1430                 /*
1431                  * Get this base offset and number of pages, then map
1432                  * in the user pages.
1433                  */
1434                 off = (unsigned long) base & ~PAGE_MASK;
1435
1436                 /*
1437                  * If asked for alignment, the offset must be zero and the
1438                  * length a multiple of the PAGE_SIZE.
1439                  */
1440                 error = -EINVAL;
1441                 if (aligned && (off || len & ~PAGE_MASK))
1442                         break;
1443
1444                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1445                 if (npages > pipe_buffers - buffers)
1446                         npages = pipe_buffers - buffers;
1447
1448                 error = get_user_pages_fast((unsigned long)base, npages,
1449                                         0, &pages[buffers]);
1450
1451                 if (unlikely(error <= 0))
1452                         break;
1453
1454                 /*
1455                  * Fill this contiguous range into the partial page map.
1456                  */
1457                 for (i = 0; i < error; i++) {
1458                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1459
1460                         partial[buffers].offset = off;
1461                         partial[buffers].len = plen;
1462
1463                         off = 0;
1464                         len -= plen;
1465                         buffers++;
1466                 }
1467
1468                 /*
1469                  * We didn't complete this iov, stop here since it probably
1470                  * means we have to move some of this into a pipe to
1471                  * be able to continue.
1472                  */
1473                 if (len)
1474                         break;
1475
1476                 /*
1477                  * Don't continue if we mapped fewer pages than we asked for,
1478                  * or if we mapped the max number of pages that we have
1479                  * room for.
1480                  */
1481                 if (error < npages || buffers == pipe_buffers)
1482                         break;
1483
1484                 nr_vecs--;
1485                 iov++;
1486         }
1487
1488         if (buffers)
1489                 return buffers;
1490
1491         return error;
1492 }
1493
1494 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1495                         struct splice_desc *sd)
1496 {
1497         char *src;
1498         int ret;
1499
1500         /*
1501          * See if we can use the atomic maps, by prefaulting in the
1502          * pages and doing an atomic copy
1503          */
1504         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1505                 src = buf->ops->map(pipe, buf, 1);
1506                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1507                                                         sd->len);
1508                 buf->ops->unmap(pipe, buf, src);
1509                 if (!ret) {
1510                         ret = sd->len;
1511                         goto out;
1512                 }
1513         }
1514
1515         /*
1516          * No dice, use slow non-atomic map and copy
1517          */
1518         src = buf->ops->map(pipe, buf, 0);
1519
1520         ret = sd->len;
1521         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1522                 ret = -EFAULT;
1523
1524         buf->ops->unmap(pipe, buf, src);
1525 out:
1526         if (ret > 0)
1527                 sd->u.userptr += ret;
1528         return ret;
1529 }
1530
1531 /*
1532  * For lack of a better implementation, implement vmsplice() to userspace
1533  * as a simple copy of the pipes pages to the user iov.
1534  */
1535 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1536                              unsigned long nr_segs, unsigned int flags)
1537 {
1538         struct pipe_inode_info *pipe;
1539         struct splice_desc sd;
1540         ssize_t size;
1541         int error;
1542         long ret;
1543
1544         pipe = get_pipe_info(file);
1545         if (!pipe)
1546                 return -EBADF;
1547
1548         pipe_lock(pipe);
1549
1550         error = ret = 0;
1551         while (nr_segs) {
1552                 void __user *base;
1553                 size_t len;
1554
1555                 /*
1556                  * Get user address base and length for this iovec.
1557                  */
1558                 error = get_user(base, &iov->iov_base);
1559                 if (unlikely(error))
1560                         break;
1561                 error = get_user(len, &iov->iov_len);
1562                 if (unlikely(error))
1563                         break;
1564
1565                 /*
1566                  * Sanity check this iovec. 0 read succeeds.
1567                  */
1568                 if (unlikely(!len))
1569                         break;
1570                 if (unlikely(!base)) {
1571                         error = -EFAULT;
1572                         break;
1573                 }
1574
1575                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1576                         error = -EFAULT;
1577                         break;
1578                 }
1579
1580                 sd.len = 0;
1581                 sd.total_len = len;
1582                 sd.flags = flags;
1583                 sd.u.userptr = base;
1584                 sd.pos = 0;
1585
1586                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1587                 if (size < 0) {
1588                         if (!ret)
1589                                 ret = size;
1590
1591                         break;
1592                 }
1593
1594                 ret += size;
1595
1596                 if (size < len)
1597                         break;
1598
1599                 nr_segs--;
1600                 iov++;
1601         }
1602
1603         pipe_unlock(pipe);
1604
1605         if (!ret)
1606                 ret = error;
1607
1608         return ret;
1609 }
1610
1611 /*
1612  * vmsplice splices a user address range into a pipe. It can be thought of
1613  * as splice-from-memory, where the regular splice is splice-from-file (or
1614  * to file). In both cases the output is a pipe, naturally.
1615  */
1616 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1617                              unsigned long nr_segs, unsigned int flags)
1618 {
1619         struct pipe_inode_info *pipe;
1620         struct page *pages[PIPE_DEF_BUFFERS];
1621         struct partial_page partial[PIPE_DEF_BUFFERS];
1622         struct splice_pipe_desc spd = {
1623                 .pages = pages,
1624                 .partial = partial,
1625                 .nr_pages_max = PIPE_DEF_BUFFERS,
1626                 .flags = flags,
1627                 .ops = &user_page_pipe_buf_ops,
1628                 .spd_release = spd_release_page,
1629         };
1630         long ret;
1631
1632         pipe = get_pipe_info(file);
1633         if (!pipe)
1634                 return -EBADF;
1635
1636         if (splice_grow_spd(pipe, &spd))
1637                 return -ENOMEM;
1638
1639         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1640                                             spd.partial, flags & SPLICE_F_GIFT,
1641                                             spd.nr_pages_max);
1642         if (spd.nr_pages <= 0)
1643                 ret = spd.nr_pages;
1644         else
1645                 ret = splice_to_pipe(pipe, &spd);
1646
1647         splice_shrink_spd(&spd);
1648         return ret;
1649 }
1650
1651 /*
1652  * Note that vmsplice only really supports true splicing _from_ user memory
1653  * to a pipe, not the other way around. Splicing from user memory is a simple
1654  * operation that can be supported without any funky alignment restrictions
1655  * or nasty vm tricks. We simply map in the user memory and fill them into
1656  * a pipe. The reverse isn't quite as easy, though. There are two possible
1657  * solutions for that:
1658  *
1659  *      - memcpy() the data internally, at which point we might as well just
1660  *        do a regular read() on the buffer anyway.
1661  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1662  *        has restriction limitations on both ends of the pipe).
1663  *
1664  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1665  *
1666  */
1667 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1668                 unsigned long, nr_segs, unsigned int, flags)
1669 {
1670         struct file *file;
1671         long error;
1672         int fput;
1673
1674         if (unlikely(nr_segs > UIO_MAXIOV))
1675                 return -EINVAL;
1676         else if (unlikely(!nr_segs))
1677                 return 0;
1678
1679         error = -EBADF;
1680         file = fget_light(fd, &fput);
1681         if (file) {
1682                 if (file->f_mode & FMODE_WRITE)
1683                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1684                 else if (file->f_mode & FMODE_READ)
1685                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1686
1687                 fput_light(file, fput);
1688         }
1689
1690         return error;
1691 }
1692
1693 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1694                 int, fd_out, loff_t __user *, off_out,
1695                 size_t, len, unsigned int, flags)
1696 {
1697         long error;
1698         struct file *in, *out;
1699         int fput_in, fput_out;
1700
1701         if (unlikely(!len))
1702                 return 0;
1703
1704         error = -EBADF;
1705         in = fget_light(fd_in, &fput_in);
1706         if (in) {
1707                 if (in->f_mode & FMODE_READ) {
1708                         out = fget_light(fd_out, &fput_out);
1709                         if (out) {
1710                                 if (out->f_mode & FMODE_WRITE)
1711                                         error = do_splice(in, off_in,
1712                                                           out, off_out,
1713                                                           len, flags);
1714                                 fput_light(out, fput_out);
1715                         }
1716                 }
1717
1718                 fput_light(in, fput_in);
1719         }
1720
1721         return error;
1722 }
1723
1724 /*
1725  * Make sure there's data to read. Wait for input if we can, otherwise
1726  * return an appropriate error.
1727  */
1728 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1729 {
1730         int ret;
1731
1732         /*
1733          * Check ->nrbufs without the inode lock first. This function
1734          * is speculative anyways, so missing one is ok.
1735          */
1736         if (pipe->nrbufs)
1737                 return 0;
1738
1739         ret = 0;
1740         pipe_lock(pipe);
1741
1742         while (!pipe->nrbufs) {
1743                 if (signal_pending(current)) {
1744                         ret = -ERESTARTSYS;
1745                         break;
1746                 }
1747                 if (!pipe->writers)
1748                         break;
1749                 if (!pipe->waiting_writers) {
1750                         if (flags & SPLICE_F_NONBLOCK) {
1751                                 ret = -EAGAIN;
1752                                 break;
1753                         }
1754                 }
1755                 pipe_wait(pipe);
1756         }
1757
1758         pipe_unlock(pipe);
1759         return ret;
1760 }
1761
1762 /*
1763  * Make sure there's writeable room. Wait for room if we can, otherwise
1764  * return an appropriate error.
1765  */
1766 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1767 {
1768         int ret;
1769
1770         /*
1771          * Check ->nrbufs without the inode lock first. This function
1772          * is speculative anyways, so missing one is ok.
1773          */
1774         if (pipe->nrbufs < pipe->buffers)
1775                 return 0;
1776
1777         ret = 0;
1778         pipe_lock(pipe);
1779
1780         while (pipe->nrbufs >= pipe->buffers) {
1781                 if (!pipe->readers) {
1782                         send_sig(SIGPIPE, current, 0);
1783                         ret = -EPIPE;
1784                         break;
1785                 }
1786                 if (flags & SPLICE_F_NONBLOCK) {
1787                         ret = -EAGAIN;
1788                         break;
1789                 }
1790                 if (signal_pending(current)) {
1791                         ret = -ERESTARTSYS;
1792                         break;
1793                 }
1794                 pipe->waiting_writers++;
1795                 pipe_wait(pipe);
1796                 pipe->waiting_writers--;
1797         }
1798
1799         pipe_unlock(pipe);
1800         return ret;
1801 }
1802
1803 /*
1804  * Splice contents of ipipe to opipe.
1805  */
1806 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1807                                struct pipe_inode_info *opipe,
1808                                size_t len, unsigned int flags)
1809 {
1810         struct pipe_buffer *ibuf, *obuf;
1811         int ret = 0, nbuf;
1812         bool input_wakeup = false;
1813
1814
1815 retry:
1816         ret = ipipe_prep(ipipe, flags);
1817         if (ret)
1818                 return ret;
1819
1820         ret = opipe_prep(opipe, flags);
1821         if (ret)
1822                 return ret;
1823
1824         /*
1825          * Potential ABBA deadlock, work around it by ordering lock
1826          * grabbing by pipe info address. Otherwise two different processes
1827          * could deadlock (one doing tee from A -> B, the other from B -> A).
1828          */
1829         pipe_double_lock(ipipe, opipe);
1830
1831         do {
1832                 if (!opipe->readers) {
1833                         send_sig(SIGPIPE, current, 0);
1834                         if (!ret)
1835                                 ret = -EPIPE;
1836                         break;
1837                 }
1838
1839                 if (!ipipe->nrbufs && !ipipe->writers)
1840                         break;
1841
1842                 /*
1843                  * Cannot make any progress, because either the input
1844                  * pipe is empty or the output pipe is full.
1845                  */
1846                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1847                         /* Already processed some buffers, break */
1848                         if (ret)
1849                                 break;
1850
1851                         if (flags & SPLICE_F_NONBLOCK) {
1852                                 ret = -EAGAIN;
1853                                 break;
1854                         }
1855
1856                         /*
1857                          * We raced with another reader/writer and haven't
1858                          * managed to process any buffers.  A zero return
1859                          * value means EOF, so retry instead.
1860                          */
1861                         pipe_unlock(ipipe);
1862                         pipe_unlock(opipe);
1863                         goto retry;
1864                 }
1865
1866                 ibuf = ipipe->bufs + ipipe->curbuf;
1867                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1868                 obuf = opipe->bufs + nbuf;
1869
1870                 if (len >= ibuf->len) {
1871                         /*
1872                          * Simply move the whole buffer from ipipe to opipe
1873                          */
1874                         *obuf = *ibuf;
1875                         ibuf->ops = NULL;
1876                         opipe->nrbufs++;
1877                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1878                         ipipe->nrbufs--;
1879                         input_wakeup = true;
1880                 } else {
1881                         /*
1882                          * Get a reference to this pipe buffer,
1883                          * so we can copy the contents over.
1884                          */
1885                         ibuf->ops->get(ipipe, ibuf);
1886                         *obuf = *ibuf;
1887
1888                         /*
1889                          * Don't inherit the gift flag, we need to
1890                          * prevent multiple steals of this page.
1891                          */
1892                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1893
1894                         obuf->len = len;
1895                         opipe->nrbufs++;
1896                         ibuf->offset += obuf->len;
1897                         ibuf->len -= obuf->len;
1898                 }
1899                 ret += obuf->len;
1900                 len -= obuf->len;
1901         } while (len);
1902
1903         pipe_unlock(ipipe);
1904         pipe_unlock(opipe);
1905
1906         /*
1907          * If we put data in the output pipe, wakeup any potential readers.
1908          */
1909         if (ret > 0)
1910                 wakeup_pipe_readers(opipe);
1911
1912         if (input_wakeup)
1913                 wakeup_pipe_writers(ipipe);
1914
1915         return ret;
1916 }
1917
1918 /*
1919  * Link contents of ipipe to opipe.
1920  */
1921 static int link_pipe(struct pipe_inode_info *ipipe,
1922                      struct pipe_inode_info *opipe,
1923                      size_t len, unsigned int flags)
1924 {
1925         struct pipe_buffer *ibuf, *obuf;
1926         int ret = 0, i = 0, nbuf;
1927
1928         /*
1929          * Potential ABBA deadlock, work around it by ordering lock
1930          * grabbing by pipe info address. Otherwise two different processes
1931          * could deadlock (one doing tee from A -> B, the other from B -> A).
1932          */
1933         pipe_double_lock(ipipe, opipe);
1934
1935         do {
1936                 if (!opipe->readers) {
1937                         send_sig(SIGPIPE, current, 0);
1938                         if (!ret)
1939                                 ret = -EPIPE;
1940                         break;
1941                 }
1942
1943                 /*
1944                  * If we have iterated all input buffers or ran out of
1945                  * output room, break.
1946                  */
1947                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1948                         break;
1949
1950                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1951                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1952
1953                 /*
1954                  * Get a reference to this pipe buffer,
1955                  * so we can copy the contents over.
1956                  */
1957                 ibuf->ops->get(ipipe, ibuf);
1958
1959                 obuf = opipe->bufs + nbuf;
1960                 *obuf = *ibuf;
1961
1962                 /*
1963                  * Don't inherit the gift flag, we need to
1964                  * prevent multiple steals of this page.
1965                  */
1966                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1967
1968                 if (obuf->len > len)
1969                         obuf->len = len;
1970
1971                 opipe->nrbufs++;
1972                 ret += obuf->len;
1973                 len -= obuf->len;
1974                 i++;
1975         } while (len);
1976
1977         /*
1978          * return EAGAIN if we have the potential of some data in the
1979          * future, otherwise just return 0
1980          */
1981         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1982                 ret = -EAGAIN;
1983
1984         pipe_unlock(ipipe);
1985         pipe_unlock(opipe);
1986
1987         /*
1988          * If we put data in the output pipe, wakeup any potential readers.
1989          */
1990         if (ret > 0)
1991                 wakeup_pipe_readers(opipe);
1992
1993         return ret;
1994 }
1995
1996 /*
1997  * This is a tee(1) implementation that works on pipes. It doesn't copy
1998  * any data, it simply references the 'in' pages on the 'out' pipe.
1999  * The 'flags' used are the SPLICE_F_* variants, currently the only
2000  * applicable one is SPLICE_F_NONBLOCK.
2001  */
2002 static long do_tee(struct file *in, struct file *out, size_t len,
2003                    unsigned int flags)
2004 {
2005         struct pipe_inode_info *ipipe = get_pipe_info(in);
2006         struct pipe_inode_info *opipe = get_pipe_info(out);
2007         int ret = -EINVAL;
2008
2009         /*
2010          * Duplicate the contents of ipipe to opipe without actually
2011          * copying the data.
2012          */
2013         if (ipipe && opipe && ipipe != opipe) {
2014                 /*
2015                  * Keep going, unless we encounter an error. The ipipe/opipe
2016                  * ordering doesn't really matter.
2017                  */
2018                 ret = ipipe_prep(ipipe, flags);
2019                 if (!ret) {
2020                         ret = opipe_prep(opipe, flags);
2021                         if (!ret)
2022                                 ret = link_pipe(ipipe, opipe, len, flags);
2023                 }
2024         }
2025
2026         return ret;
2027 }
2028
2029 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2030 {
2031         struct file *in;
2032         int error, fput_in;
2033
2034         if (unlikely(!len))
2035                 return 0;
2036
2037         error = -EBADF;
2038         in = fget_light(fdin, &fput_in);
2039         if (in) {
2040                 if (in->f_mode & FMODE_READ) {
2041                         int fput_out;
2042                         struct file *out = fget_light(fdout, &fput_out);
2043
2044                         if (out) {
2045                                 if (out->f_mode & FMODE_WRITE)
2046                                         error = do_tee(in, out, len, flags);
2047                                 fput_light(out, fput_out);
2048                         }
2049                 }
2050                 fput_light(in, fput_in);
2051         }
2052
2053         return error;
2054 }