s390/qeth: free netdevice when removing a card
[pandora-kernel.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 #include <linux/socket.h>
35
36 /*
37  * Attempt to steal a page from a pipe buffer. This should perhaps go into
38  * a vm helper function, it's already simplified quite a bit by the
39  * addition of remove_mapping(). If success is returned, the caller may
40  * attempt to reuse this page for another destination.
41  */
42 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
43                                      struct pipe_buffer *buf)
44 {
45         struct page *page = buf->page;
46         struct address_space *mapping;
47
48         lock_page(page);
49
50         mapping = page_mapping(page);
51         if (mapping) {
52                 WARN_ON(!PageUptodate(page));
53
54                 /*
55                  * At least for ext2 with nobh option, we need to wait on
56                  * writeback completing on this page, since we'll remove it
57                  * from the pagecache.  Otherwise truncate wont wait on the
58                  * page, allowing the disk blocks to be reused by someone else
59                  * before we actually wrote our data to them. fs corruption
60                  * ensues.
61                  */
62                 wait_on_page_writeback(page);
63
64                 if (page_has_private(page) &&
65                     !try_to_release_page(page, GFP_KERNEL))
66                         goto out_unlock;
67
68                 /*
69                  * If we succeeded in removing the mapping, set LRU flag
70                  * and return good.
71                  */
72                 if (remove_mapping(mapping, page)) {
73                         buf->flags |= PIPE_BUF_FLAG_LRU;
74                         return 0;
75                 }
76         }
77
78         /*
79          * Raced with truncate or failed to remove page from current
80          * address space, unlock and return failure.
81          */
82 out_unlock:
83         unlock_page(page);
84         return 1;
85 }
86
87 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
88                                         struct pipe_buffer *buf)
89 {
90         page_cache_release(buf->page);
91         buf->flags &= ~PIPE_BUF_FLAG_LRU;
92 }
93
94 /*
95  * Check whether the contents of buf is OK to access. Since the content
96  * is a page cache page, IO may be in flight.
97  */
98 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
99                                        struct pipe_buffer *buf)
100 {
101         struct page *page = buf->page;
102         int err;
103
104         if (!PageUptodate(page)) {
105                 lock_page(page);
106
107                 /*
108                  * Page got truncated/unhashed. This will cause a 0-byte
109                  * splice, if this is the first page.
110                  */
111                 if (!page->mapping) {
112                         err = -ENODATA;
113                         goto error;
114                 }
115
116                 /*
117                  * Uh oh, read-error from disk.
118                  */
119                 if (!PageUptodate(page)) {
120                         err = -EIO;
121                         goto error;
122                 }
123
124                 /*
125                  * Page is ok afterall, we are done.
126                  */
127                 unlock_page(page);
128         }
129
130         return 0;
131 error:
132         unlock_page(page);
133         return err;
134 }
135
136 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137         .can_merge = 0,
138         .map = generic_pipe_buf_map,
139         .unmap = generic_pipe_buf_unmap,
140         .confirm = page_cache_pipe_buf_confirm,
141         .release = page_cache_pipe_buf_release,
142         .steal = page_cache_pipe_buf_steal,
143         .get = generic_pipe_buf_get,
144 };
145
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147                                     struct pipe_buffer *buf)
148 {
149         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150                 return 1;
151
152         buf->flags |= PIPE_BUF_FLAG_LRU;
153         return generic_pipe_buf_steal(pipe, buf);
154 }
155
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157         .can_merge = 0,
158         .map = generic_pipe_buf_map,
159         .unmap = generic_pipe_buf_unmap,
160         .confirm = generic_pipe_buf_confirm,
161         .release = page_cache_pipe_buf_release,
162         .steal = user_page_pipe_buf_steal,
163         .get = generic_pipe_buf_get,
164 };
165
166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 {
168         smp_mb();
169         if (waitqueue_active(&pipe->wait))
170                 wake_up_interruptible(&pipe->wait);
171         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 }
173
174 /**
175  * splice_to_pipe - fill passed data into a pipe
176  * @pipe:       pipe to fill
177  * @spd:        data to fill
178  *
179  * Description:
180  *    @spd contains a map of pages and len/offset tuples, along with
181  *    the struct pipe_buf_operations associated with these pages. This
182  *    function will link that data to the pipe.
183  *
184  */
185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186                        struct splice_pipe_desc *spd)
187 {
188         unsigned int spd_pages = spd->nr_pages;
189         int ret, do_wakeup, page_nr;
190
191         if (!spd_pages)
192                 return 0;
193
194         ret = 0;
195         do_wakeup = 0;
196         page_nr = 0;
197
198         pipe_lock(pipe);
199
200         for (;;) {
201                 if (!pipe->readers) {
202                         send_sig(SIGPIPE, current, 0);
203                         if (!ret)
204                                 ret = -EPIPE;
205                         break;
206                 }
207
208                 if (pipe->nrbufs < pipe->buffers) {
209                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
210                         struct pipe_buffer *buf = pipe->bufs + newbuf;
211
212                         buf->page = spd->pages[page_nr];
213                         buf->offset = spd->partial[page_nr].offset;
214                         buf->len = spd->partial[page_nr].len;
215                         buf->private = spd->partial[page_nr].private;
216                         buf->ops = spd->ops;
217                         buf->flags = 0;
218                         if (spd->flags & SPLICE_F_GIFT)
219                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
220
221                         pipe->nrbufs++;
222                         page_nr++;
223                         ret += buf->len;
224
225                         if (pipe->inode)
226                                 do_wakeup = 1;
227
228                         if (!--spd->nr_pages)
229                                 break;
230                         if (pipe->nrbufs < pipe->buffers)
231                                 continue;
232
233                         break;
234                 }
235
236                 if (spd->flags & SPLICE_F_NONBLOCK) {
237                         if (!ret)
238                                 ret = -EAGAIN;
239                         break;
240                 }
241
242                 if (signal_pending(current)) {
243                         if (!ret)
244                                 ret = -ERESTARTSYS;
245                         break;
246                 }
247
248                 if (do_wakeup) {
249                         smp_mb();
250                         if (waitqueue_active(&pipe->wait))
251                                 wake_up_interruptible_sync(&pipe->wait);
252                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
253                         do_wakeup = 0;
254                 }
255
256                 pipe->waiting_writers++;
257                 pipe_wait(pipe);
258                 pipe->waiting_writers--;
259         }
260
261         pipe_unlock(pipe);
262
263         if (do_wakeup)
264                 wakeup_pipe_readers(pipe);
265
266         while (page_nr < spd_pages)
267                 spd->spd_release(spd, page_nr++);
268
269         return ret;
270 }
271
272 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
273 {
274         page_cache_release(spd->pages[i]);
275 }
276
277 /*
278  * Check if we need to grow the arrays holding pages and partial page
279  * descriptions.
280  */
281 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
282 {
283         unsigned int buffers = ACCESS_ONCE(pipe->buffers);
284
285         spd->nr_pages_max = buffers;
286         if (buffers <= PIPE_DEF_BUFFERS)
287                 return 0;
288
289         spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
290         spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
291
292         if (spd->pages && spd->partial)
293                 return 0;
294
295         kfree(spd->pages);
296         kfree(spd->partial);
297         return -ENOMEM;
298 }
299
300 void splice_shrink_spd(struct splice_pipe_desc *spd)
301 {
302         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
303                 return;
304
305         kfree(spd->pages);
306         kfree(spd->partial);
307 }
308
309 static int
310 __generic_file_splice_read(struct file *in, loff_t *ppos,
311                            struct pipe_inode_info *pipe, size_t len,
312                            unsigned int flags)
313 {
314         struct address_space *mapping = in->f_mapping;
315         unsigned int loff, nr_pages, req_pages;
316         struct page *pages[PIPE_DEF_BUFFERS];
317         struct partial_page partial[PIPE_DEF_BUFFERS];
318         struct page *page;
319         pgoff_t index, end_index;
320         loff_t isize;
321         int error, page_nr;
322         struct splice_pipe_desc spd = {
323                 .pages = pages,
324                 .partial = partial,
325                 .nr_pages_max = PIPE_DEF_BUFFERS,
326                 .flags = flags,
327                 .ops = &page_cache_pipe_buf_ops,
328                 .spd_release = spd_release_page,
329         };
330
331         if (splice_grow_spd(pipe, &spd))
332                 return -ENOMEM;
333
334         index = *ppos >> PAGE_CACHE_SHIFT;
335         loff = *ppos & ~PAGE_CACHE_MASK;
336         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
337         nr_pages = min(req_pages, spd.nr_pages_max);
338
339         /*
340          * Lookup the (hopefully) full range of pages we need.
341          */
342         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
343         index += spd.nr_pages;
344
345         /*
346          * If find_get_pages_contig() returned fewer pages than we needed,
347          * readahead/allocate the rest and fill in the holes.
348          */
349         if (spd.nr_pages < nr_pages)
350                 page_cache_sync_readahead(mapping, &in->f_ra, in,
351                                 index, req_pages - spd.nr_pages);
352
353         error = 0;
354         while (spd.nr_pages < nr_pages) {
355                 /*
356                  * Page could be there, find_get_pages_contig() breaks on
357                  * the first hole.
358                  */
359                 page = find_get_page(mapping, index);
360                 if (!page) {
361                         /*
362                          * page didn't exist, allocate one.
363                          */
364                         page = page_cache_alloc_cold(mapping);
365                         if (!page)
366                                 break;
367
368                         error = add_to_page_cache_lru(page, mapping, index,
369                                                 GFP_KERNEL);
370                         if (unlikely(error)) {
371                                 page_cache_release(page);
372                                 if (error == -EEXIST)
373                                         continue;
374                                 break;
375                         }
376                         /*
377                          * add_to_page_cache() locks the page, unlock it
378                          * to avoid convoluting the logic below even more.
379                          */
380                         unlock_page(page);
381                 }
382
383                 spd.pages[spd.nr_pages++] = page;
384                 index++;
385         }
386
387         /*
388          * Now loop over the map and see if we need to start IO on any
389          * pages, fill in the partial map, etc.
390          */
391         index = *ppos >> PAGE_CACHE_SHIFT;
392         nr_pages = spd.nr_pages;
393         spd.nr_pages = 0;
394         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
395                 unsigned int this_len;
396
397                 if (!len)
398                         break;
399
400                 /*
401                  * this_len is the max we'll use from this page
402                  */
403                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
404                 page = spd.pages[page_nr];
405
406                 if (PageReadahead(page))
407                         page_cache_async_readahead(mapping, &in->f_ra, in,
408                                         page, index, req_pages - page_nr);
409
410                 /*
411                  * If the page isn't uptodate, we may need to start io on it
412                  */
413                 if (!PageUptodate(page)) {
414                         lock_page(page);
415
416                         /*
417                          * Page was truncated, or invalidated by the
418                          * filesystem.  Redo the find/create, but this time the
419                          * page is kept locked, so there's no chance of another
420                          * race with truncate/invalidate.
421                          */
422                         if (!page->mapping) {
423                                 unlock_page(page);
424                                 page = find_or_create_page(mapping, index,
425                                                 mapping_gfp_mask(mapping));
426
427                                 if (!page) {
428                                         error = -ENOMEM;
429                                         break;
430                                 }
431                                 page_cache_release(spd.pages[page_nr]);
432                                 spd.pages[page_nr] = page;
433                         }
434                         /*
435                          * page was already under io and is now done, great
436                          */
437                         if (PageUptodate(page)) {
438                                 unlock_page(page);
439                                 goto fill_it;
440                         }
441
442                         /*
443                          * need to read in the page
444                          */
445                         error = mapping->a_ops->readpage(in, page);
446                         if (unlikely(error)) {
447                                 /*
448                                  * We really should re-lookup the page here,
449                                  * but it complicates things a lot. Instead
450                                  * lets just do what we already stored, and
451                                  * we'll get it the next time we are called.
452                                  */
453                                 if (error == AOP_TRUNCATED_PAGE)
454                                         error = 0;
455
456                                 break;
457                         }
458                 }
459 fill_it:
460                 /*
461                  * i_size must be checked after PageUptodate.
462                  */
463                 isize = i_size_read(mapping->host);
464                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
465                 if (unlikely(!isize || index > end_index))
466                         break;
467
468                 /*
469                  * if this is the last page, see if we need to shrink
470                  * the length and stop
471                  */
472                 if (end_index == index) {
473                         unsigned int plen;
474
475                         /*
476                          * max good bytes in this page
477                          */
478                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
479                         if (plen <= loff)
480                                 break;
481
482                         /*
483                          * force quit after adding this page
484                          */
485                         this_len = min(this_len, plen - loff);
486                         len = this_len;
487                 }
488
489                 spd.partial[page_nr].offset = loff;
490                 spd.partial[page_nr].len = this_len;
491                 len -= this_len;
492                 loff = 0;
493                 spd.nr_pages++;
494                 index++;
495         }
496
497         /*
498          * Release any pages at the end, if we quit early. 'page_nr' is how far
499          * we got, 'nr_pages' is how many pages are in the map.
500          */
501         while (page_nr < nr_pages)
502                 page_cache_release(spd.pages[page_nr++]);
503         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
504
505         if (spd.nr_pages)
506                 error = splice_to_pipe(pipe, &spd);
507
508         splice_shrink_spd(&spd);
509         return error;
510 }
511
512 /**
513  * generic_file_splice_read - splice data from file to a pipe
514  * @in:         file to splice from
515  * @ppos:       position in @in
516  * @pipe:       pipe to splice to
517  * @len:        number of bytes to splice
518  * @flags:      splice modifier flags
519  *
520  * Description:
521  *    Will read pages from given file and fill them into a pipe. Can be
522  *    used as long as the address_space operations for the source implements
523  *    a readpage() hook.
524  *
525  */
526 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
527                                  struct pipe_inode_info *pipe, size_t len,
528                                  unsigned int flags)
529 {
530         loff_t isize, left;
531         int ret;
532
533         isize = i_size_read(in->f_mapping->host);
534         if (unlikely(*ppos >= isize))
535                 return 0;
536
537         left = isize - *ppos;
538         if (unlikely(left < len))
539                 len = left;
540
541         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
542         if (ret > 0) {
543                 *ppos += ret;
544                 file_accessed(in);
545         }
546
547         return ret;
548 }
549 EXPORT_SYMBOL(generic_file_splice_read);
550
551 static const struct pipe_buf_operations default_pipe_buf_ops = {
552         .can_merge = 0,
553         .map = generic_pipe_buf_map,
554         .unmap = generic_pipe_buf_unmap,
555         .confirm = generic_pipe_buf_confirm,
556         .release = generic_pipe_buf_release,
557         .steal = generic_pipe_buf_steal,
558         .get = generic_pipe_buf_get,
559 };
560
561 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
562                                     struct pipe_buffer *buf)
563 {
564         return 1;
565 }
566
567 /* Pipe buffer operations for a socket and similar. */
568 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
569         .can_merge = 0,
570         .map = generic_pipe_buf_map,
571         .unmap = generic_pipe_buf_unmap,
572         .confirm = generic_pipe_buf_confirm,
573         .release = generic_pipe_buf_release,
574         .steal = generic_pipe_buf_nosteal,
575         .get = generic_pipe_buf_get,
576 };
577 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
578
579 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
580                             unsigned long vlen, loff_t offset)
581 {
582         mm_segment_t old_fs;
583         loff_t pos = offset;
584         ssize_t res;
585
586         old_fs = get_fs();
587         set_fs(get_ds());
588         /* The cast to a user pointer is valid due to the set_fs() */
589         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
590         set_fs(old_fs);
591
592         return res;
593 }
594
595 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
596                             loff_t pos)
597 {
598         mm_segment_t old_fs;
599         ssize_t res;
600
601         old_fs = get_fs();
602         set_fs(get_ds());
603         /* The cast to a user pointer is valid due to the set_fs() */
604         res = vfs_write(file, (const char __user *)buf, count, &pos);
605         set_fs(old_fs);
606
607         return res;
608 }
609
610 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
611                                  struct pipe_inode_info *pipe, size_t len,
612                                  unsigned int flags)
613 {
614         unsigned int nr_pages;
615         unsigned int nr_freed;
616         size_t offset;
617         struct page *pages[PIPE_DEF_BUFFERS];
618         struct partial_page partial[PIPE_DEF_BUFFERS];
619         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
620         ssize_t res;
621         size_t this_len;
622         int error;
623         int i;
624         struct splice_pipe_desc spd = {
625                 .pages = pages,
626                 .partial = partial,
627                 .nr_pages_max = PIPE_DEF_BUFFERS,
628                 .flags = flags,
629                 .ops = &default_pipe_buf_ops,
630                 .spd_release = spd_release_page,
631         };
632
633         if (splice_grow_spd(pipe, &spd))
634                 return -ENOMEM;
635
636         res = -ENOMEM;
637         vec = __vec;
638         if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
639                 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
640                 if (!vec)
641                         goto shrink_ret;
642         }
643
644         offset = *ppos & ~PAGE_CACHE_MASK;
645         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
646
647         for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
648                 struct page *page;
649
650                 page = alloc_page(GFP_USER);
651                 error = -ENOMEM;
652                 if (!page)
653                         goto err;
654
655                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
656                 vec[i].iov_base = (void __user *) page_address(page);
657                 vec[i].iov_len = this_len;
658                 spd.pages[i] = page;
659                 spd.nr_pages++;
660                 len -= this_len;
661                 offset = 0;
662         }
663
664         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
665         if (res < 0) {
666                 error = res;
667                 goto err;
668         }
669
670         error = 0;
671         if (!res)
672                 goto err;
673
674         nr_freed = 0;
675         for (i = 0; i < spd.nr_pages; i++) {
676                 this_len = min_t(size_t, vec[i].iov_len, res);
677                 spd.partial[i].offset = 0;
678                 spd.partial[i].len = this_len;
679                 if (!this_len) {
680                         __free_page(spd.pages[i]);
681                         spd.pages[i] = NULL;
682                         nr_freed++;
683                 }
684                 res -= this_len;
685         }
686         spd.nr_pages -= nr_freed;
687
688         res = splice_to_pipe(pipe, &spd);
689         if (res > 0)
690                 *ppos += res;
691
692 shrink_ret:
693         if (vec != __vec)
694                 kfree(vec);
695         splice_shrink_spd(&spd);
696         return res;
697
698 err:
699         for (i = 0; i < spd.nr_pages; i++)
700                 __free_page(spd.pages[i]);
701
702         res = error;
703         goto shrink_ret;
704 }
705 EXPORT_SYMBOL(default_file_splice_read);
706
707 /*
708  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
709  * using sendpage(). Return the number of bytes sent.
710  */
711 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
712                             struct pipe_buffer *buf, struct splice_desc *sd)
713 {
714         struct file *file = sd->u.file;
715         loff_t pos = sd->pos;
716         int more;
717
718         if (!likely(file->f_op && file->f_op->sendpage))
719                 return -EINVAL;
720
721         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
722
723         if (sd->len < sd->total_len && pipe->nrbufs > 1)
724                 more |= MSG_SENDPAGE_NOTLAST;
725
726         return file->f_op->sendpage(file, buf->page, buf->offset,
727                                     sd->len, &pos, more);
728 }
729
730 /*
731  * This is a little more tricky than the file -> pipe splicing. There are
732  * basically three cases:
733  *
734  *      - Destination page already exists in the address space and there
735  *        are users of it. For that case we have no other option that
736  *        copying the data. Tough luck.
737  *      - Destination page already exists in the address space, but there
738  *        are no users of it. Make sure it's uptodate, then drop it. Fall
739  *        through to last case.
740  *      - Destination page does not exist, we can add the pipe page to
741  *        the page cache and avoid the copy.
742  *
743  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
744  * sd->flags), we attempt to migrate pages from the pipe to the output
745  * file address space page cache. This is possible if no one else has
746  * the pipe page referenced outside of the pipe and page cache. If
747  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
748  * a new page in the output file page cache and fill/dirty that.
749  */
750 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
751                  struct splice_desc *sd)
752 {
753         struct file *file = sd->u.file;
754         struct address_space *mapping = file->f_mapping;
755         unsigned int offset, this_len;
756         struct page *page;
757         void *fsdata;
758         int ret;
759
760         offset = sd->pos & ~PAGE_CACHE_MASK;
761
762         this_len = sd->len;
763         if (this_len + offset > PAGE_CACHE_SIZE)
764                 this_len = PAGE_CACHE_SIZE - offset;
765
766         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
767                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
768         if (unlikely(ret))
769                 goto out;
770
771         if (buf->page != page) {
772                 /*
773                  * Careful, ->map() uses KM_USER0!
774                  */
775                 char *src = buf->ops->map(pipe, buf, 1);
776                 char *dst = kmap_atomic(page, KM_USER1);
777
778                 memcpy(dst + offset, src + buf->offset, this_len);
779                 flush_dcache_page(page);
780                 kunmap_atomic(dst, KM_USER1);
781                 buf->ops->unmap(pipe, buf, src);
782         }
783         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
784                                 page, fsdata);
785 out:
786         return ret;
787 }
788 EXPORT_SYMBOL(pipe_to_file);
789
790 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
791 {
792         smp_mb();
793         if (waitqueue_active(&pipe->wait))
794                 wake_up_interruptible(&pipe->wait);
795         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
796 }
797
798 /**
799  * splice_from_pipe_feed - feed available data from a pipe to a file
800  * @pipe:       pipe to splice from
801  * @sd:         information to @actor
802  * @actor:      handler that splices the data
803  *
804  * Description:
805  *    This function loops over the pipe and calls @actor to do the
806  *    actual moving of a single struct pipe_buffer to the desired
807  *    destination.  It returns when there's no more buffers left in
808  *    the pipe or if the requested number of bytes (@sd->total_len)
809  *    have been copied.  It returns a positive number (one) if the
810  *    pipe needs to be filled with more data, zero if the required
811  *    number of bytes have been copied and -errno on error.
812  *
813  *    This, together with splice_from_pipe_{begin,end,next}, may be
814  *    used to implement the functionality of __splice_from_pipe() when
815  *    locking is required around copying the pipe buffers to the
816  *    destination.
817  */
818 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
819                           splice_actor *actor)
820 {
821         int ret;
822
823         while (pipe->nrbufs) {
824                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
825                 const struct pipe_buf_operations *ops = buf->ops;
826
827                 sd->len = buf->len;
828                 if (sd->len > sd->total_len)
829                         sd->len = sd->total_len;
830
831                 ret = buf->ops->confirm(pipe, buf);
832                 if (unlikely(ret)) {
833                         if (ret == -ENODATA)
834                                 ret = 0;
835                         return ret;
836                 }
837
838                 ret = actor(pipe, buf, sd);
839                 if (ret <= 0)
840                         return ret;
841
842                 buf->offset += ret;
843                 buf->len -= ret;
844
845                 sd->num_spliced += ret;
846                 sd->len -= ret;
847                 sd->pos += ret;
848                 sd->total_len -= ret;
849
850                 if (!buf->len) {
851                         buf->ops = NULL;
852                         ops->release(pipe, buf);
853                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
854                         pipe->nrbufs--;
855                         if (pipe->inode)
856                                 sd->need_wakeup = true;
857                 }
858
859                 if (!sd->total_len)
860                         return 0;
861         }
862
863         return 1;
864 }
865 EXPORT_SYMBOL(splice_from_pipe_feed);
866
867 /**
868  * splice_from_pipe_next - wait for some data to splice from
869  * @pipe:       pipe to splice from
870  * @sd:         information about the splice operation
871  *
872  * Description:
873  *    This function will wait for some data and return a positive
874  *    value (one) if pipe buffers are available.  It will return zero
875  *    or -errno if no more data needs to be spliced.
876  */
877 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
878 {
879         /*
880          * Check for signal early to make process killable when there are
881          * always buffers available
882          */
883         if (signal_pending(current))
884                 return -ERESTARTSYS;
885
886         while (!pipe->nrbufs) {
887                 if (!pipe->writers)
888                         return 0;
889
890                 if (!pipe->waiting_writers && sd->num_spliced)
891                         return 0;
892
893                 if (sd->flags & SPLICE_F_NONBLOCK)
894                         return -EAGAIN;
895
896                 if (signal_pending(current))
897                         return -ERESTARTSYS;
898
899                 if (sd->need_wakeup) {
900                         wakeup_pipe_writers(pipe);
901                         sd->need_wakeup = false;
902                 }
903
904                 pipe_wait(pipe);
905         }
906
907         return 1;
908 }
909 EXPORT_SYMBOL(splice_from_pipe_next);
910
911 /**
912  * splice_from_pipe_begin - start splicing from pipe
913  * @sd:         information about the splice operation
914  *
915  * Description:
916  *    This function should be called before a loop containing
917  *    splice_from_pipe_next() and splice_from_pipe_feed() to
918  *    initialize the necessary fields of @sd.
919  */
920 void splice_from_pipe_begin(struct splice_desc *sd)
921 {
922         sd->num_spliced = 0;
923         sd->need_wakeup = false;
924 }
925 EXPORT_SYMBOL(splice_from_pipe_begin);
926
927 /**
928  * splice_from_pipe_end - finish splicing from pipe
929  * @pipe:       pipe to splice from
930  * @sd:         information about the splice operation
931  *
932  * Description:
933  *    This function will wake up pipe writers if necessary.  It should
934  *    be called after a loop containing splice_from_pipe_next() and
935  *    splice_from_pipe_feed().
936  */
937 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
938 {
939         if (sd->need_wakeup)
940                 wakeup_pipe_writers(pipe);
941 }
942 EXPORT_SYMBOL(splice_from_pipe_end);
943
944 /**
945  * __splice_from_pipe - splice data from a pipe to given actor
946  * @pipe:       pipe to splice from
947  * @sd:         information to @actor
948  * @actor:      handler that splices the data
949  *
950  * Description:
951  *    This function does little more than loop over the pipe and call
952  *    @actor to do the actual moving of a single struct pipe_buffer to
953  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
954  *    pipe_to_user.
955  *
956  */
957 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
958                            splice_actor *actor)
959 {
960         int ret;
961
962         splice_from_pipe_begin(sd);
963         do {
964                 cond_resched();
965                 ret = splice_from_pipe_next(pipe, sd);
966                 if (ret > 0)
967                         ret = splice_from_pipe_feed(pipe, sd, actor);
968         } while (ret > 0);
969         splice_from_pipe_end(pipe, sd);
970
971         return sd->num_spliced ? sd->num_spliced : ret;
972 }
973 EXPORT_SYMBOL(__splice_from_pipe);
974
975 /**
976  * splice_from_pipe - splice data from a pipe to a file
977  * @pipe:       pipe to splice from
978  * @out:        file to splice to
979  * @ppos:       position in @out
980  * @len:        how many bytes to splice
981  * @flags:      splice modifier flags
982  * @actor:      handler that splices the data
983  *
984  * Description:
985  *    See __splice_from_pipe. This function locks the pipe inode,
986  *    otherwise it's identical to __splice_from_pipe().
987  *
988  */
989 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
990                          loff_t *ppos, size_t len, unsigned int flags,
991                          splice_actor *actor)
992 {
993         ssize_t ret;
994         struct splice_desc sd = {
995                 .total_len = len,
996                 .flags = flags,
997                 .pos = *ppos,
998                 .u.file = out,
999         };
1000
1001         pipe_lock(pipe);
1002         ret = __splice_from_pipe(pipe, &sd, actor);
1003         pipe_unlock(pipe);
1004
1005         return ret;
1006 }
1007
1008 /**
1009  * generic_file_splice_write - splice data from a pipe to a file
1010  * @pipe:       pipe info
1011  * @out:        file to write to
1012  * @ppos:       position in @out
1013  * @len:        number of bytes to splice
1014  * @flags:      splice modifier flags
1015  *
1016  * Description:
1017  *    Will either move or copy pages (determined by @flags options) from
1018  *    the given pipe inode to the given file.
1019  *
1020  */
1021 ssize_t
1022 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
1023                           loff_t *ppos, size_t len, unsigned int flags)
1024 {
1025         struct address_space *mapping = out->f_mapping;
1026         struct inode *inode = mapping->host;
1027         struct splice_desc sd = {
1028                 .flags = flags,
1029                 .u.file = out,
1030         };
1031         ssize_t ret;
1032
1033         ret = generic_write_checks(out, ppos, &len, S_ISBLK(inode->i_mode));
1034         if (ret)
1035                 return ret;
1036         sd.total_len = len;
1037         sd.pos = *ppos;
1038
1039         pipe_lock(pipe);
1040
1041         splice_from_pipe_begin(&sd);
1042         do {
1043                 ret = splice_from_pipe_next(pipe, &sd);
1044                 if (ret <= 0)
1045                         break;
1046
1047                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1048                 ret = file_remove_suid(out);
1049                 if (!ret) {
1050                         file_update_time(out);
1051                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1052                 }
1053                 mutex_unlock(&inode->i_mutex);
1054         } while (ret > 0);
1055         splice_from_pipe_end(pipe, &sd);
1056
1057         pipe_unlock(pipe);
1058
1059         if (sd.num_spliced)
1060                 ret = sd.num_spliced;
1061
1062         if (ret > 0) {
1063                 unsigned long nr_pages;
1064                 int err;
1065
1066                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1067
1068                 err = generic_write_sync(out, *ppos, ret);
1069                 if (err)
1070                         ret = err;
1071                 else
1072                         *ppos += ret;
1073                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1074         }
1075
1076         return ret;
1077 }
1078
1079 EXPORT_SYMBOL(generic_file_splice_write);
1080
1081 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1082                           struct splice_desc *sd)
1083 {
1084         int ret;
1085         void *data;
1086
1087         data = buf->ops->map(pipe, buf, 0);
1088         ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1089         buf->ops->unmap(pipe, buf, data);
1090
1091         return ret;
1092 }
1093
1094 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1095                                          struct file *out, loff_t *ppos,
1096                                          size_t len, unsigned int flags)
1097 {
1098         ssize_t ret;
1099
1100         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1101         if (ret > 0)
1102                 *ppos += ret;
1103
1104         return ret;
1105 }
1106
1107 /**
1108  * generic_splice_sendpage - splice data from a pipe to a socket
1109  * @pipe:       pipe to splice from
1110  * @out:        socket to write to
1111  * @ppos:       position in @out
1112  * @len:        number of bytes to splice
1113  * @flags:      splice modifier flags
1114  *
1115  * Description:
1116  *    Will send @len bytes from the pipe to a network socket. No data copying
1117  *    is involved.
1118  *
1119  */
1120 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1121                                 loff_t *ppos, size_t len, unsigned int flags)
1122 {
1123         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1124 }
1125
1126 EXPORT_SYMBOL(generic_splice_sendpage);
1127
1128 /*
1129  * Attempt to initiate a splice from pipe to file.
1130  */
1131 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1132                            loff_t *ppos, size_t len, unsigned int flags)
1133 {
1134         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1135                                 loff_t *, size_t, unsigned int);
1136         int ret;
1137
1138         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1139                 return -EBADF;
1140
1141         if (unlikely(out->f_flags & O_APPEND))
1142                 return -EINVAL;
1143
1144         ret = rw_verify_area(WRITE, out, ppos, len);
1145         if (unlikely(ret < 0))
1146                 return ret;
1147
1148         if (out->f_op && out->f_op->splice_write)
1149                 splice_write = out->f_op->splice_write;
1150         else
1151                 splice_write = default_file_splice_write;
1152
1153         return splice_write(pipe, out, ppos, len, flags);
1154 }
1155
1156 /*
1157  * Attempt to initiate a splice from a file to a pipe.
1158  */
1159 static long do_splice_to(struct file *in, loff_t *ppos,
1160                          struct pipe_inode_info *pipe, size_t len,
1161                          unsigned int flags)
1162 {
1163         ssize_t (*splice_read)(struct file *, loff_t *,
1164                                struct pipe_inode_info *, size_t, unsigned int);
1165         int ret;
1166
1167         if (unlikely(!(in->f_mode & FMODE_READ)))
1168                 return -EBADF;
1169
1170         ret = rw_verify_area(READ, in, ppos, len);
1171         if (unlikely(ret < 0))
1172                 return ret;
1173
1174         if (in->f_op && in->f_op->splice_read)
1175                 splice_read = in->f_op->splice_read;
1176         else
1177                 splice_read = default_file_splice_read;
1178
1179         return splice_read(in, ppos, pipe, len, flags);
1180 }
1181
1182 /**
1183  * splice_direct_to_actor - splices data directly between two non-pipes
1184  * @in:         file to splice from
1185  * @sd:         actor information on where to splice to
1186  * @actor:      handles the data splicing
1187  *
1188  * Description:
1189  *    This is a special case helper to splice directly between two
1190  *    points, without requiring an explicit pipe. Internally an allocated
1191  *    pipe is cached in the process, and reused during the lifetime of
1192  *    that process.
1193  *
1194  */
1195 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1196                                splice_direct_actor *actor)
1197 {
1198         struct pipe_inode_info *pipe;
1199         long ret, bytes;
1200         umode_t i_mode;
1201         size_t len;
1202         int i, flags, more;
1203
1204         /*
1205          * We require the input being a regular file, as we don't want to
1206          * randomly drop data for eg socket -> socket splicing. Use the
1207          * piped splicing for that!
1208          */
1209         i_mode = in->f_path.dentry->d_inode->i_mode;
1210         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1211                 return -EINVAL;
1212
1213         /*
1214          * neither in nor out is a pipe, setup an internal pipe attached to
1215          * 'out' and transfer the wanted data from 'in' to 'out' through that
1216          */
1217         pipe = current->splice_pipe;
1218         if (unlikely(!pipe)) {
1219                 pipe = alloc_pipe_info(NULL);
1220                 if (!pipe)
1221                         return -ENOMEM;
1222
1223                 /*
1224                  * We don't have an immediate reader, but we'll read the stuff
1225                  * out of the pipe right after the splice_to_pipe(). So set
1226                  * PIPE_READERS appropriately.
1227                  */
1228                 pipe->readers = 1;
1229
1230                 current->splice_pipe = pipe;
1231         }
1232
1233         /*
1234          * Do the splice.
1235          */
1236         ret = 0;
1237         bytes = 0;
1238         len = sd->total_len;
1239         flags = sd->flags;
1240
1241         /*
1242          * Don't block on output, we have to drain the direct pipe.
1243          */
1244         sd->flags &= ~SPLICE_F_NONBLOCK;
1245         more = sd->flags & SPLICE_F_MORE;
1246
1247         while (len) {
1248                 size_t read_len;
1249                 loff_t pos = sd->pos, prev_pos = pos;
1250
1251                 ret = do_splice_to(in, &pos, pipe, len, flags);
1252                 if (unlikely(ret <= 0))
1253                         goto out_release;
1254
1255                 read_len = ret;
1256                 sd->total_len = read_len;
1257
1258                 /*
1259                  * If more data is pending, set SPLICE_F_MORE
1260                  * If this is the last data and SPLICE_F_MORE was not set
1261                  * initially, clears it.
1262                  */
1263                 if (read_len < len)
1264                         sd->flags |= SPLICE_F_MORE;
1265                 else if (!more)
1266                         sd->flags &= ~SPLICE_F_MORE;
1267                 /*
1268                  * NOTE: nonblocking mode only applies to the input. We
1269                  * must not do the output in nonblocking mode as then we
1270                  * could get stuck data in the internal pipe:
1271                  */
1272                 ret = actor(pipe, sd);
1273                 if (unlikely(ret <= 0)) {
1274                         sd->pos = prev_pos;
1275                         goto out_release;
1276                 }
1277
1278                 bytes += ret;
1279                 len -= ret;
1280                 sd->pos = pos;
1281
1282                 if (ret < read_len) {
1283                         sd->pos = prev_pos + ret;
1284                         goto out_release;
1285                 }
1286         }
1287
1288 done:
1289         pipe->nrbufs = pipe->curbuf = 0;
1290         file_accessed(in);
1291         return bytes;
1292
1293 out_release:
1294         /*
1295          * If we did an incomplete transfer we must release
1296          * the pipe buffers in question:
1297          */
1298         for (i = 0; i < pipe->buffers; i++) {
1299                 struct pipe_buffer *buf = pipe->bufs + i;
1300
1301                 if (buf->ops) {
1302                         buf->ops->release(pipe, buf);
1303                         buf->ops = NULL;
1304                 }
1305         }
1306
1307         if (!bytes)
1308                 bytes = ret;
1309
1310         goto done;
1311 }
1312 EXPORT_SYMBOL(splice_direct_to_actor);
1313
1314 static int direct_splice_actor(struct pipe_inode_info *pipe,
1315                                struct splice_desc *sd)
1316 {
1317         struct file *file = sd->u.file;
1318
1319         return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1320                               sd->flags);
1321 }
1322
1323 /**
1324  * do_splice_direct - splices data directly between two files
1325  * @in:         file to splice from
1326  * @ppos:       input file offset
1327  * @out:        file to splice to
1328  * @len:        number of bytes to splice
1329  * @flags:      splice modifier flags
1330  *
1331  * Description:
1332  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1333  *    doing it in the application would incur an extra system call
1334  *    (splice in + splice out, as compared to just sendfile()). So this helper
1335  *    can splice directly through a process-private pipe.
1336  *
1337  */
1338 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1339                       size_t len, unsigned int flags)
1340 {
1341         struct splice_desc sd = {
1342                 .len            = len,
1343                 .total_len      = len,
1344                 .flags          = flags,
1345                 .pos            = *ppos,
1346                 .u.file         = out,
1347         };
1348         long ret;
1349
1350         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1351         if (ret > 0)
1352                 *ppos = sd.pos;
1353
1354         return ret;
1355 }
1356
1357 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1358                                struct pipe_inode_info *opipe,
1359                                size_t len, unsigned int flags);
1360
1361 /*
1362  * Determine where to splice to/from.
1363  */
1364 static long do_splice(struct file *in, loff_t __user *off_in,
1365                       struct file *out, loff_t __user *off_out,
1366                       size_t len, unsigned int flags)
1367 {
1368         struct pipe_inode_info *ipipe;
1369         struct pipe_inode_info *opipe;
1370         loff_t offset, *off;
1371         long ret;
1372
1373         ipipe = get_pipe_info(in);
1374         opipe = get_pipe_info(out);
1375
1376         if (ipipe && opipe) {
1377                 if (off_in || off_out)
1378                         return -ESPIPE;
1379
1380                 if (!(in->f_mode & FMODE_READ))
1381                         return -EBADF;
1382
1383                 if (!(out->f_mode & FMODE_WRITE))
1384                         return -EBADF;
1385
1386                 /* Splicing to self would be fun, but... */
1387                 if (ipipe == opipe)
1388                         return -EINVAL;
1389
1390                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1391         }
1392
1393         if (ipipe) {
1394                 if (off_in)
1395                         return -ESPIPE;
1396                 if (off_out) {
1397                         if (!(out->f_mode & FMODE_PWRITE))
1398                                 return -EINVAL;
1399                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1400                                 return -EFAULT;
1401                         off = &offset;
1402                 } else
1403                         off = &out->f_pos;
1404
1405                 ret = do_splice_from(ipipe, out, off, len, flags);
1406
1407                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1408                         ret = -EFAULT;
1409
1410                 return ret;
1411         }
1412
1413         if (opipe) {
1414                 if (off_out)
1415                         return -ESPIPE;
1416                 if (off_in) {
1417                         if (!(in->f_mode & FMODE_PREAD))
1418                                 return -EINVAL;
1419                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1420                                 return -EFAULT;
1421                         off = &offset;
1422                 } else
1423                         off = &in->f_pos;
1424
1425                 ret = do_splice_to(in, off, opipe, len, flags);
1426
1427                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1428                         ret = -EFAULT;
1429
1430                 return ret;
1431         }
1432
1433         return -EINVAL;
1434 }
1435
1436 /*
1437  * Map an iov into an array of pages and offset/length tupples. With the
1438  * partial_page structure, we can map several non-contiguous ranges into
1439  * our ones pages[] map instead of splitting that operation into pieces.
1440  * Could easily be exported as a generic helper for other users, in which
1441  * case one would probably want to add a 'max_nr_pages' parameter as well.
1442  */
1443 static int get_iovec_page_array(const struct iovec __user *iov,
1444                                 unsigned int nr_vecs, struct page **pages,
1445                                 struct partial_page *partial, int aligned,
1446                                 unsigned int pipe_buffers)
1447 {
1448         int buffers = 0, error = 0;
1449
1450         while (nr_vecs) {
1451                 unsigned long off, npages;
1452                 struct iovec entry;
1453                 void __user *base;
1454                 size_t len;
1455                 int i;
1456
1457                 error = -EFAULT;
1458                 if (copy_from_user(&entry, iov, sizeof(entry)))
1459                         break;
1460
1461                 base = entry.iov_base;
1462                 len = entry.iov_len;
1463
1464                 /*
1465                  * Sanity check this iovec. 0 read succeeds.
1466                  */
1467                 error = 0;
1468                 if (unlikely(!len))
1469                         break;
1470                 error = -EFAULT;
1471                 if (!access_ok(VERIFY_READ, base, len))
1472                         break;
1473
1474                 /*
1475                  * Get this base offset and number of pages, then map
1476                  * in the user pages.
1477                  */
1478                 off = (unsigned long) base & ~PAGE_MASK;
1479
1480                 /*
1481                  * If asked for alignment, the offset must be zero and the
1482                  * length a multiple of the PAGE_SIZE.
1483                  */
1484                 error = -EINVAL;
1485                 if (aligned && (off || len & ~PAGE_MASK))
1486                         break;
1487
1488                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1489                 if (npages > pipe_buffers - buffers)
1490                         npages = pipe_buffers - buffers;
1491
1492                 error = get_user_pages_fast((unsigned long)base, npages,
1493                                         0, &pages[buffers]);
1494
1495                 if (unlikely(error <= 0))
1496                         break;
1497
1498                 /*
1499                  * Fill this contiguous range into the partial page map.
1500                  */
1501                 for (i = 0; i < error; i++) {
1502                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1503
1504                         partial[buffers].offset = off;
1505                         partial[buffers].len = plen;
1506
1507                         off = 0;
1508                         len -= plen;
1509                         buffers++;
1510                 }
1511
1512                 /*
1513                  * We didn't complete this iov, stop here since it probably
1514                  * means we have to move some of this into a pipe to
1515                  * be able to continue.
1516                  */
1517                 if (len)
1518                         break;
1519
1520                 /*
1521                  * Don't continue if we mapped fewer pages than we asked for,
1522                  * or if we mapped the max number of pages that we have
1523                  * room for.
1524                  */
1525                 if (error < npages || buffers == pipe_buffers)
1526                         break;
1527
1528                 nr_vecs--;
1529                 iov++;
1530         }
1531
1532         if (buffers)
1533                 return buffers;
1534
1535         return error;
1536 }
1537
1538 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1539                         struct splice_desc *sd)
1540 {
1541         char *src;
1542         int ret;
1543
1544         /*
1545          * See if we can use the atomic maps, by prefaulting in the
1546          * pages and doing an atomic copy
1547          */
1548         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1549                 src = buf->ops->map(pipe, buf, 1);
1550                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1551                                                         sd->len);
1552                 buf->ops->unmap(pipe, buf, src);
1553                 if (!ret) {
1554                         ret = sd->len;
1555                         goto out;
1556                 }
1557         }
1558
1559         /*
1560          * No dice, use slow non-atomic map and copy
1561          */
1562         src = buf->ops->map(pipe, buf, 0);
1563
1564         ret = sd->len;
1565         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1566                 ret = -EFAULT;
1567
1568         buf->ops->unmap(pipe, buf, src);
1569 out:
1570         if (ret > 0)
1571                 sd->u.userptr += ret;
1572         return ret;
1573 }
1574
1575 /*
1576  * For lack of a better implementation, implement vmsplice() to userspace
1577  * as a simple copy of the pipes pages to the user iov.
1578  */
1579 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1580                              unsigned long nr_segs, unsigned int flags)
1581 {
1582         struct pipe_inode_info *pipe;
1583         struct splice_desc sd;
1584         ssize_t size;
1585         int error;
1586         long ret;
1587
1588         pipe = get_pipe_info(file);
1589         if (!pipe)
1590                 return -EBADF;
1591
1592         pipe_lock(pipe);
1593
1594         error = ret = 0;
1595         while (nr_segs) {
1596                 void __user *base;
1597                 size_t len;
1598
1599                 /*
1600                  * Get user address base and length for this iovec.
1601                  */
1602                 error = get_user(base, &iov->iov_base);
1603                 if (unlikely(error))
1604                         break;
1605                 error = get_user(len, &iov->iov_len);
1606                 if (unlikely(error))
1607                         break;
1608
1609                 /*
1610                  * Sanity check this iovec. 0 read succeeds.
1611                  */
1612                 if (unlikely(!len))
1613                         break;
1614                 if (unlikely(!base)) {
1615                         error = -EFAULT;
1616                         break;
1617                 }
1618
1619                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1620                         error = -EFAULT;
1621                         break;
1622                 }
1623
1624                 sd.len = 0;
1625                 sd.total_len = len;
1626                 sd.flags = flags;
1627                 sd.u.userptr = base;
1628                 sd.pos = 0;
1629
1630                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1631                 if (size < 0) {
1632                         if (!ret)
1633                                 ret = size;
1634
1635                         break;
1636                 }
1637
1638                 ret += size;
1639
1640                 if (size < len)
1641                         break;
1642
1643                 nr_segs--;
1644                 iov++;
1645         }
1646
1647         pipe_unlock(pipe);
1648
1649         if (!ret)
1650                 ret = error;
1651
1652         return ret;
1653 }
1654
1655 /*
1656  * vmsplice splices a user address range into a pipe. It can be thought of
1657  * as splice-from-memory, where the regular splice is splice-from-file (or
1658  * to file). In both cases the output is a pipe, naturally.
1659  */
1660 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1661                              unsigned long nr_segs, unsigned int flags)
1662 {
1663         struct pipe_inode_info *pipe;
1664         struct page *pages[PIPE_DEF_BUFFERS];
1665         struct partial_page partial[PIPE_DEF_BUFFERS];
1666         struct splice_pipe_desc spd = {
1667                 .pages = pages,
1668                 .partial = partial,
1669                 .nr_pages_max = PIPE_DEF_BUFFERS,
1670                 .flags = flags,
1671                 .ops = &user_page_pipe_buf_ops,
1672                 .spd_release = spd_release_page,
1673         };
1674         long ret;
1675
1676         pipe = get_pipe_info(file);
1677         if (!pipe)
1678                 return -EBADF;
1679
1680         if (splice_grow_spd(pipe, &spd))
1681                 return -ENOMEM;
1682
1683         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1684                                             spd.partial, flags & SPLICE_F_GIFT,
1685                                             spd.nr_pages_max);
1686         if (spd.nr_pages <= 0)
1687                 ret = spd.nr_pages;
1688         else
1689                 ret = splice_to_pipe(pipe, &spd);
1690
1691         splice_shrink_spd(&spd);
1692         return ret;
1693 }
1694
1695 /*
1696  * Note that vmsplice only really supports true splicing _from_ user memory
1697  * to a pipe, not the other way around. Splicing from user memory is a simple
1698  * operation that can be supported without any funky alignment restrictions
1699  * or nasty vm tricks. We simply map in the user memory and fill them into
1700  * a pipe. The reverse isn't quite as easy, though. There are two possible
1701  * solutions for that:
1702  *
1703  *      - memcpy() the data internally, at which point we might as well just
1704  *        do a regular read() on the buffer anyway.
1705  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1706  *        has restriction limitations on both ends of the pipe).
1707  *
1708  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1709  *
1710  */
1711 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1712                 unsigned long, nr_segs, unsigned int, flags)
1713 {
1714         struct file *file;
1715         long error;
1716         int fput;
1717
1718         if (unlikely(nr_segs > UIO_MAXIOV))
1719                 return -EINVAL;
1720         else if (unlikely(!nr_segs))
1721                 return 0;
1722
1723         error = -EBADF;
1724         file = fget_light(fd, &fput);
1725         if (file) {
1726                 if (file->f_mode & FMODE_WRITE)
1727                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1728                 else if (file->f_mode & FMODE_READ)
1729                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1730
1731                 fput_light(file, fput);
1732         }
1733
1734         return error;
1735 }
1736
1737 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1738                 int, fd_out, loff_t __user *, off_out,
1739                 size_t, len, unsigned int, flags)
1740 {
1741         long error;
1742         struct file *in, *out;
1743         int fput_in, fput_out;
1744
1745         if (unlikely(!len))
1746                 return 0;
1747
1748         error = -EBADF;
1749         in = fget_light(fd_in, &fput_in);
1750         if (in) {
1751                 if (in->f_mode & FMODE_READ) {
1752                         out = fget_light(fd_out, &fput_out);
1753                         if (out) {
1754                                 if (out->f_mode & FMODE_WRITE)
1755                                         error = do_splice(in, off_in,
1756                                                           out, off_out,
1757                                                           len, flags);
1758                                 fput_light(out, fput_out);
1759                         }
1760                 }
1761
1762                 fput_light(in, fput_in);
1763         }
1764
1765         return error;
1766 }
1767
1768 /*
1769  * Make sure there's data to read. Wait for input if we can, otherwise
1770  * return an appropriate error.
1771  */
1772 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1773 {
1774         int ret;
1775
1776         /*
1777          * Check ->nrbufs without the inode lock first. This function
1778          * is speculative anyways, so missing one is ok.
1779          */
1780         if (pipe->nrbufs)
1781                 return 0;
1782
1783         ret = 0;
1784         pipe_lock(pipe);
1785
1786         while (!pipe->nrbufs) {
1787                 if (signal_pending(current)) {
1788                         ret = -ERESTARTSYS;
1789                         break;
1790                 }
1791                 if (!pipe->writers)
1792                         break;
1793                 if (!pipe->waiting_writers) {
1794                         if (flags & SPLICE_F_NONBLOCK) {
1795                                 ret = -EAGAIN;
1796                                 break;
1797                         }
1798                 }
1799                 pipe_wait(pipe);
1800         }
1801
1802         pipe_unlock(pipe);
1803         return ret;
1804 }
1805
1806 /*
1807  * Make sure there's writeable room. Wait for room if we can, otherwise
1808  * return an appropriate error.
1809  */
1810 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1811 {
1812         int ret;
1813
1814         /*
1815          * Check ->nrbufs without the inode lock first. This function
1816          * is speculative anyways, so missing one is ok.
1817          */
1818         if (pipe->nrbufs < pipe->buffers)
1819                 return 0;
1820
1821         ret = 0;
1822         pipe_lock(pipe);
1823
1824         while (pipe->nrbufs >= pipe->buffers) {
1825                 if (!pipe->readers) {
1826                         send_sig(SIGPIPE, current, 0);
1827                         ret = -EPIPE;
1828                         break;
1829                 }
1830                 if (flags & SPLICE_F_NONBLOCK) {
1831                         ret = -EAGAIN;
1832                         break;
1833                 }
1834                 if (signal_pending(current)) {
1835                         ret = -ERESTARTSYS;
1836                         break;
1837                 }
1838                 pipe->waiting_writers++;
1839                 pipe_wait(pipe);
1840                 pipe->waiting_writers--;
1841         }
1842
1843         pipe_unlock(pipe);
1844         return ret;
1845 }
1846
1847 /*
1848  * Splice contents of ipipe to opipe.
1849  */
1850 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1851                                struct pipe_inode_info *opipe,
1852                                size_t len, unsigned int flags)
1853 {
1854         struct pipe_buffer *ibuf, *obuf;
1855         int ret = 0, nbuf;
1856         bool input_wakeup = false;
1857
1858
1859 retry:
1860         ret = ipipe_prep(ipipe, flags);
1861         if (ret)
1862                 return ret;
1863
1864         ret = opipe_prep(opipe, flags);
1865         if (ret)
1866                 return ret;
1867
1868         /*
1869          * Potential ABBA deadlock, work around it by ordering lock
1870          * grabbing by pipe info address. Otherwise two different processes
1871          * could deadlock (one doing tee from A -> B, the other from B -> A).
1872          */
1873         pipe_double_lock(ipipe, opipe);
1874
1875         do {
1876                 if (!opipe->readers) {
1877                         send_sig(SIGPIPE, current, 0);
1878                         if (!ret)
1879                                 ret = -EPIPE;
1880                         break;
1881                 }
1882
1883                 if (!ipipe->nrbufs && !ipipe->writers)
1884                         break;
1885
1886                 /*
1887                  * Cannot make any progress, because either the input
1888                  * pipe is empty or the output pipe is full.
1889                  */
1890                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1891                         /* Already processed some buffers, break */
1892                         if (ret)
1893                                 break;
1894
1895                         if (flags & SPLICE_F_NONBLOCK) {
1896                                 ret = -EAGAIN;
1897                                 break;
1898                         }
1899
1900                         /*
1901                          * We raced with another reader/writer and haven't
1902                          * managed to process any buffers.  A zero return
1903                          * value means EOF, so retry instead.
1904                          */
1905                         pipe_unlock(ipipe);
1906                         pipe_unlock(opipe);
1907                         goto retry;
1908                 }
1909
1910                 ibuf = ipipe->bufs + ipipe->curbuf;
1911                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1912                 obuf = opipe->bufs + nbuf;
1913
1914                 if (len >= ibuf->len) {
1915                         /*
1916                          * Simply move the whole buffer from ipipe to opipe
1917                          */
1918                         *obuf = *ibuf;
1919                         ibuf->ops = NULL;
1920                         opipe->nrbufs++;
1921                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1922                         ipipe->nrbufs--;
1923                         input_wakeup = true;
1924                 } else {
1925                         /*
1926                          * Get a reference to this pipe buffer,
1927                          * so we can copy the contents over.
1928                          */
1929                         ibuf->ops->get(ipipe, ibuf);
1930                         *obuf = *ibuf;
1931
1932                         /*
1933                          * Don't inherit the gift flag, we need to
1934                          * prevent multiple steals of this page.
1935                          */
1936                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1937
1938                         obuf->len = len;
1939                         opipe->nrbufs++;
1940                         ibuf->offset += obuf->len;
1941                         ibuf->len -= obuf->len;
1942                 }
1943                 ret += obuf->len;
1944                 len -= obuf->len;
1945         } while (len);
1946
1947         pipe_unlock(ipipe);
1948         pipe_unlock(opipe);
1949
1950         /*
1951          * If we put data in the output pipe, wakeup any potential readers.
1952          */
1953         if (ret > 0)
1954                 wakeup_pipe_readers(opipe);
1955
1956         if (input_wakeup)
1957                 wakeup_pipe_writers(ipipe);
1958
1959         return ret;
1960 }
1961
1962 /*
1963  * Link contents of ipipe to opipe.
1964  */
1965 static int link_pipe(struct pipe_inode_info *ipipe,
1966                      struct pipe_inode_info *opipe,
1967                      size_t len, unsigned int flags)
1968 {
1969         struct pipe_buffer *ibuf, *obuf;
1970         int ret = 0, i = 0, nbuf;
1971
1972         /*
1973          * Potential ABBA deadlock, work around it by ordering lock
1974          * grabbing by pipe info address. Otherwise two different processes
1975          * could deadlock (one doing tee from A -> B, the other from B -> A).
1976          */
1977         pipe_double_lock(ipipe, opipe);
1978
1979         do {
1980                 if (!opipe->readers) {
1981                         send_sig(SIGPIPE, current, 0);
1982                         if (!ret)
1983                                 ret = -EPIPE;
1984                         break;
1985                 }
1986
1987                 /*
1988                  * If we have iterated all input buffers or ran out of
1989                  * output room, break.
1990                  */
1991                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1992                         break;
1993
1994                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1995                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1996
1997                 /*
1998                  * Get a reference to this pipe buffer,
1999                  * so we can copy the contents over.
2000                  */
2001                 ibuf->ops->get(ipipe, ibuf);
2002
2003                 obuf = opipe->bufs + nbuf;
2004                 *obuf = *ibuf;
2005
2006                 /*
2007                  * Don't inherit the gift flag, we need to
2008                  * prevent multiple steals of this page.
2009                  */
2010                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2011
2012                 if (obuf->len > len)
2013                         obuf->len = len;
2014
2015                 opipe->nrbufs++;
2016                 ret += obuf->len;
2017                 len -= obuf->len;
2018                 i++;
2019         } while (len);
2020
2021         /*
2022          * return EAGAIN if we have the potential of some data in the
2023          * future, otherwise just return 0
2024          */
2025         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
2026                 ret = -EAGAIN;
2027
2028         pipe_unlock(ipipe);
2029         pipe_unlock(opipe);
2030
2031         /*
2032          * If we put data in the output pipe, wakeup any potential readers.
2033          */
2034         if (ret > 0)
2035                 wakeup_pipe_readers(opipe);
2036
2037         return ret;
2038 }
2039
2040 /*
2041  * This is a tee(1) implementation that works on pipes. It doesn't copy
2042  * any data, it simply references the 'in' pages on the 'out' pipe.
2043  * The 'flags' used are the SPLICE_F_* variants, currently the only
2044  * applicable one is SPLICE_F_NONBLOCK.
2045  */
2046 static long do_tee(struct file *in, struct file *out, size_t len,
2047                    unsigned int flags)
2048 {
2049         struct pipe_inode_info *ipipe = get_pipe_info(in);
2050         struct pipe_inode_info *opipe = get_pipe_info(out);
2051         int ret = -EINVAL;
2052
2053         /*
2054          * Duplicate the contents of ipipe to opipe without actually
2055          * copying the data.
2056          */
2057         if (ipipe && opipe && ipipe != opipe) {
2058                 /*
2059                  * Keep going, unless we encounter an error. The ipipe/opipe
2060                  * ordering doesn't really matter.
2061                  */
2062                 ret = ipipe_prep(ipipe, flags);
2063                 if (!ret) {
2064                         ret = opipe_prep(opipe, flags);
2065                         if (!ret)
2066                                 ret = link_pipe(ipipe, opipe, len, flags);
2067                 }
2068         }
2069
2070         return ret;
2071 }
2072
2073 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2074 {
2075         struct file *in;
2076         int error, fput_in;
2077
2078         if (unlikely(!len))
2079                 return 0;
2080
2081         error = -EBADF;
2082         in = fget_light(fdin, &fput_in);
2083         if (in) {
2084                 if (in->f_mode & FMODE_READ) {
2085                         int fput_out;
2086                         struct file *out = fget_light(fdout, &fput_out);
2087
2088                         if (out) {
2089                                 if (out->f_mode & FMODE_WRITE)
2090                                         error = do_tee(in, out, len, flags);
2091                                 fput_light(out, fput_out);
2092                         }
2093                 }
2094                 fput_light(in, fput_in);
2095         }
2096
2097         return error;
2098 }