Linux 3.2.82
[pandora-kernel.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 #include <linux/socket.h>
35
36 /*
37  * Attempt to steal a page from a pipe buffer. This should perhaps go into
38  * a vm helper function, it's already simplified quite a bit by the
39  * addition of remove_mapping(). If success is returned, the caller may
40  * attempt to reuse this page for another destination.
41  */
42 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
43                                      struct pipe_buffer *buf)
44 {
45         struct page *page = buf->page;
46         struct address_space *mapping;
47
48         lock_page(page);
49
50         mapping = page_mapping(page);
51         if (mapping) {
52                 WARN_ON(!PageUptodate(page));
53
54                 /*
55                  * At least for ext2 with nobh option, we need to wait on
56                  * writeback completing on this page, since we'll remove it
57                  * from the pagecache.  Otherwise truncate wont wait on the
58                  * page, allowing the disk blocks to be reused by someone else
59                  * before we actually wrote our data to them. fs corruption
60                  * ensues.
61                  */
62                 wait_on_page_writeback(page);
63
64                 if (page_has_private(page) &&
65                     !try_to_release_page(page, GFP_KERNEL))
66                         goto out_unlock;
67
68                 /*
69                  * If we succeeded in removing the mapping, set LRU flag
70                  * and return good.
71                  */
72                 if (remove_mapping(mapping, page)) {
73                         buf->flags |= PIPE_BUF_FLAG_LRU;
74                         return 0;
75                 }
76         }
77
78         /*
79          * Raced with truncate or failed to remove page from current
80          * address space, unlock and return failure.
81          */
82 out_unlock:
83         unlock_page(page);
84         return 1;
85 }
86
87 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
88                                         struct pipe_buffer *buf)
89 {
90         page_cache_release(buf->page);
91         buf->flags &= ~PIPE_BUF_FLAG_LRU;
92 }
93
94 /*
95  * Check whether the contents of buf is OK to access. Since the content
96  * is a page cache page, IO may be in flight.
97  */
98 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
99                                        struct pipe_buffer *buf)
100 {
101         struct page *page = buf->page;
102         int err;
103
104         if (!PageUptodate(page)) {
105                 lock_page(page);
106
107                 /*
108                  * Page got truncated/unhashed. This will cause a 0-byte
109                  * splice, if this is the first page.
110                  */
111                 if (!page->mapping) {
112                         err = -ENODATA;
113                         goto error;
114                 }
115
116                 /*
117                  * Uh oh, read-error from disk.
118                  */
119                 if (!PageUptodate(page)) {
120                         err = -EIO;
121                         goto error;
122                 }
123
124                 /*
125                  * Page is ok afterall, we are done.
126                  */
127                 unlock_page(page);
128         }
129
130         return 0;
131 error:
132         unlock_page(page);
133         return err;
134 }
135
136 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137         .can_merge = 0,
138         .map = generic_pipe_buf_map,
139         .unmap = generic_pipe_buf_unmap,
140         .confirm = page_cache_pipe_buf_confirm,
141         .release = page_cache_pipe_buf_release,
142         .steal = page_cache_pipe_buf_steal,
143         .get = generic_pipe_buf_get,
144 };
145
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147                                     struct pipe_buffer *buf)
148 {
149         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150                 return 1;
151
152         buf->flags |= PIPE_BUF_FLAG_LRU;
153         return generic_pipe_buf_steal(pipe, buf);
154 }
155
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157         .can_merge = 0,
158         .map = generic_pipe_buf_map,
159         .unmap = generic_pipe_buf_unmap,
160         .confirm = generic_pipe_buf_confirm,
161         .release = page_cache_pipe_buf_release,
162         .steal = user_page_pipe_buf_steal,
163         .get = generic_pipe_buf_get,
164 };
165
166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 {
168         smp_mb();
169         if (waitqueue_active(&pipe->wait))
170                 wake_up_interruptible(&pipe->wait);
171         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 }
173
174 /**
175  * splice_to_pipe - fill passed data into a pipe
176  * @pipe:       pipe to fill
177  * @spd:        data to fill
178  *
179  * Description:
180  *    @spd contains a map of pages and len/offset tuples, along with
181  *    the struct pipe_buf_operations associated with these pages. This
182  *    function will link that data to the pipe.
183  *
184  */
185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186                        struct splice_pipe_desc *spd)
187 {
188         unsigned int spd_pages = spd->nr_pages;
189         int ret, do_wakeup, page_nr;
190
191         if (!spd_pages)
192                 return 0;
193
194         ret = 0;
195         do_wakeup = 0;
196         page_nr = 0;
197
198         pipe_lock(pipe);
199
200         for (;;) {
201                 if (!pipe->readers) {
202                         send_sig(SIGPIPE, current, 0);
203                         if (!ret)
204                                 ret = -EPIPE;
205                         break;
206                 }
207
208                 if (pipe->nrbufs < pipe->buffers) {
209                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
210                         struct pipe_buffer *buf = pipe->bufs + newbuf;
211
212                         buf->page = spd->pages[page_nr];
213                         buf->offset = spd->partial[page_nr].offset;
214                         buf->len = spd->partial[page_nr].len;
215                         buf->private = spd->partial[page_nr].private;
216                         buf->ops = spd->ops;
217                         if (spd->flags & SPLICE_F_GIFT)
218                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
219
220                         pipe->nrbufs++;
221                         page_nr++;
222                         ret += buf->len;
223
224                         if (pipe->inode)
225                                 do_wakeup = 1;
226
227                         if (!--spd->nr_pages)
228                                 break;
229                         if (pipe->nrbufs < pipe->buffers)
230                                 continue;
231
232                         break;
233                 }
234
235                 if (spd->flags & SPLICE_F_NONBLOCK) {
236                         if (!ret)
237                                 ret = -EAGAIN;
238                         break;
239                 }
240
241                 if (signal_pending(current)) {
242                         if (!ret)
243                                 ret = -ERESTARTSYS;
244                         break;
245                 }
246
247                 if (do_wakeup) {
248                         smp_mb();
249                         if (waitqueue_active(&pipe->wait))
250                                 wake_up_interruptible_sync(&pipe->wait);
251                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
252                         do_wakeup = 0;
253                 }
254
255                 pipe->waiting_writers++;
256                 pipe_wait(pipe);
257                 pipe->waiting_writers--;
258         }
259
260         pipe_unlock(pipe);
261
262         if (do_wakeup)
263                 wakeup_pipe_readers(pipe);
264
265         while (page_nr < spd_pages)
266                 spd->spd_release(spd, page_nr++);
267
268         return ret;
269 }
270
271 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
272 {
273         page_cache_release(spd->pages[i]);
274 }
275
276 /*
277  * Check if we need to grow the arrays holding pages and partial page
278  * descriptions.
279  */
280 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
281 {
282         unsigned int buffers = ACCESS_ONCE(pipe->buffers);
283
284         spd->nr_pages_max = buffers;
285         if (buffers <= PIPE_DEF_BUFFERS)
286                 return 0;
287
288         spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
289         spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
290
291         if (spd->pages && spd->partial)
292                 return 0;
293
294         kfree(spd->pages);
295         kfree(spd->partial);
296         return -ENOMEM;
297 }
298
299 void splice_shrink_spd(struct splice_pipe_desc *spd)
300 {
301         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
302                 return;
303
304         kfree(spd->pages);
305         kfree(spd->partial);
306 }
307
308 static int
309 __generic_file_splice_read(struct file *in, loff_t *ppos,
310                            struct pipe_inode_info *pipe, size_t len,
311                            unsigned int flags)
312 {
313         struct address_space *mapping = in->f_mapping;
314         unsigned int loff, nr_pages, req_pages;
315         struct page *pages[PIPE_DEF_BUFFERS];
316         struct partial_page partial[PIPE_DEF_BUFFERS];
317         struct page *page;
318         pgoff_t index, end_index;
319         loff_t isize;
320         int error, page_nr;
321         struct splice_pipe_desc spd = {
322                 .pages = pages,
323                 .partial = partial,
324                 .nr_pages_max = PIPE_DEF_BUFFERS,
325                 .flags = flags,
326                 .ops = &page_cache_pipe_buf_ops,
327                 .spd_release = spd_release_page,
328         };
329
330         if (splice_grow_spd(pipe, &spd))
331                 return -ENOMEM;
332
333         index = *ppos >> PAGE_CACHE_SHIFT;
334         loff = *ppos & ~PAGE_CACHE_MASK;
335         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
336         nr_pages = min(req_pages, spd.nr_pages_max);
337
338         /*
339          * Lookup the (hopefully) full range of pages we need.
340          */
341         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
342         index += spd.nr_pages;
343
344         /*
345          * If find_get_pages_contig() returned fewer pages than we needed,
346          * readahead/allocate the rest and fill in the holes.
347          */
348         if (spd.nr_pages < nr_pages)
349                 page_cache_sync_readahead(mapping, &in->f_ra, in,
350                                 index, req_pages - spd.nr_pages);
351
352         error = 0;
353         while (spd.nr_pages < nr_pages) {
354                 /*
355                  * Page could be there, find_get_pages_contig() breaks on
356                  * the first hole.
357                  */
358                 page = find_get_page(mapping, index);
359                 if (!page) {
360                         /*
361                          * page didn't exist, allocate one.
362                          */
363                         page = page_cache_alloc_cold(mapping);
364                         if (!page)
365                                 break;
366
367                         error = add_to_page_cache_lru(page, mapping, index,
368                                                 GFP_KERNEL);
369                         if (unlikely(error)) {
370                                 page_cache_release(page);
371                                 if (error == -EEXIST)
372                                         continue;
373                                 break;
374                         }
375                         /*
376                          * add_to_page_cache() locks the page, unlock it
377                          * to avoid convoluting the logic below even more.
378                          */
379                         unlock_page(page);
380                 }
381
382                 spd.pages[spd.nr_pages++] = page;
383                 index++;
384         }
385
386         /*
387          * Now loop over the map and see if we need to start IO on any
388          * pages, fill in the partial map, etc.
389          */
390         index = *ppos >> PAGE_CACHE_SHIFT;
391         nr_pages = spd.nr_pages;
392         spd.nr_pages = 0;
393         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
394                 unsigned int this_len;
395
396                 if (!len)
397                         break;
398
399                 /*
400                  * this_len is the max we'll use from this page
401                  */
402                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
403                 page = spd.pages[page_nr];
404
405                 if (PageReadahead(page))
406                         page_cache_async_readahead(mapping, &in->f_ra, in,
407                                         page, index, req_pages - page_nr);
408
409                 /*
410                  * If the page isn't uptodate, we may need to start io on it
411                  */
412                 if (!PageUptodate(page)) {
413                         lock_page(page);
414
415                         /*
416                          * Page was truncated, or invalidated by the
417                          * filesystem.  Redo the find/create, but this time the
418                          * page is kept locked, so there's no chance of another
419                          * race with truncate/invalidate.
420                          */
421                         if (!page->mapping) {
422                                 unlock_page(page);
423                                 page = find_or_create_page(mapping, index,
424                                                 mapping_gfp_mask(mapping));
425
426                                 if (!page) {
427                                         error = -ENOMEM;
428                                         break;
429                                 }
430                                 page_cache_release(spd.pages[page_nr]);
431                                 spd.pages[page_nr] = page;
432                         }
433                         /*
434                          * page was already under io and is now done, great
435                          */
436                         if (PageUptodate(page)) {
437                                 unlock_page(page);
438                                 goto fill_it;
439                         }
440
441                         /*
442                          * need to read in the page
443                          */
444                         error = mapping->a_ops->readpage(in, page);
445                         if (unlikely(error)) {
446                                 /*
447                                  * We really should re-lookup the page here,
448                                  * but it complicates things a lot. Instead
449                                  * lets just do what we already stored, and
450                                  * we'll get it the next time we are called.
451                                  */
452                                 if (error == AOP_TRUNCATED_PAGE)
453                                         error = 0;
454
455                                 break;
456                         }
457                 }
458 fill_it:
459                 /*
460                  * i_size must be checked after PageUptodate.
461                  */
462                 isize = i_size_read(mapping->host);
463                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
464                 if (unlikely(!isize || index > end_index))
465                         break;
466
467                 /*
468                  * if this is the last page, see if we need to shrink
469                  * the length and stop
470                  */
471                 if (end_index == index) {
472                         unsigned int plen;
473
474                         /*
475                          * max good bytes in this page
476                          */
477                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
478                         if (plen <= loff)
479                                 break;
480
481                         /*
482                          * force quit after adding this page
483                          */
484                         this_len = min(this_len, plen - loff);
485                         len = this_len;
486                 }
487
488                 spd.partial[page_nr].offset = loff;
489                 spd.partial[page_nr].len = this_len;
490                 len -= this_len;
491                 loff = 0;
492                 spd.nr_pages++;
493                 index++;
494         }
495
496         /*
497          * Release any pages at the end, if we quit early. 'page_nr' is how far
498          * we got, 'nr_pages' is how many pages are in the map.
499          */
500         while (page_nr < nr_pages)
501                 page_cache_release(spd.pages[page_nr++]);
502         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
503
504         if (spd.nr_pages)
505                 error = splice_to_pipe(pipe, &spd);
506
507         splice_shrink_spd(&spd);
508         return error;
509 }
510
511 /**
512  * generic_file_splice_read - splice data from file to a pipe
513  * @in:         file to splice from
514  * @ppos:       position in @in
515  * @pipe:       pipe to splice to
516  * @len:        number of bytes to splice
517  * @flags:      splice modifier flags
518  *
519  * Description:
520  *    Will read pages from given file and fill them into a pipe. Can be
521  *    used as long as the address_space operations for the source implements
522  *    a readpage() hook.
523  *
524  */
525 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
526                                  struct pipe_inode_info *pipe, size_t len,
527                                  unsigned int flags)
528 {
529         loff_t isize, left;
530         int ret;
531
532         isize = i_size_read(in->f_mapping->host);
533         if (unlikely(*ppos >= isize))
534                 return 0;
535
536         left = isize - *ppos;
537         if (unlikely(left < len))
538                 len = left;
539
540         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
541         if (ret > 0) {
542                 *ppos += ret;
543                 file_accessed(in);
544         }
545
546         return ret;
547 }
548 EXPORT_SYMBOL(generic_file_splice_read);
549
550 static const struct pipe_buf_operations default_pipe_buf_ops = {
551         .can_merge = 0,
552         .map = generic_pipe_buf_map,
553         .unmap = generic_pipe_buf_unmap,
554         .confirm = generic_pipe_buf_confirm,
555         .release = generic_pipe_buf_release,
556         .steal = generic_pipe_buf_steal,
557         .get = generic_pipe_buf_get,
558 };
559
560 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
561                                     struct pipe_buffer *buf)
562 {
563         return 1;
564 }
565
566 /* Pipe buffer operations for a socket and similar. */
567 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
568         .can_merge = 0,
569         .map = generic_pipe_buf_map,
570         .unmap = generic_pipe_buf_unmap,
571         .confirm = generic_pipe_buf_confirm,
572         .release = generic_pipe_buf_release,
573         .steal = generic_pipe_buf_nosteal,
574         .get = generic_pipe_buf_get,
575 };
576 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
577
578 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
579                             unsigned long vlen, loff_t offset)
580 {
581         mm_segment_t old_fs;
582         loff_t pos = offset;
583         ssize_t res;
584
585         old_fs = get_fs();
586         set_fs(get_ds());
587         /* The cast to a user pointer is valid due to the set_fs() */
588         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
589         set_fs(old_fs);
590
591         return res;
592 }
593
594 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
595                             loff_t pos)
596 {
597         mm_segment_t old_fs;
598         ssize_t res;
599
600         old_fs = get_fs();
601         set_fs(get_ds());
602         /* The cast to a user pointer is valid due to the set_fs() */
603         res = vfs_write(file, (const char __user *)buf, count, &pos);
604         set_fs(old_fs);
605
606         return res;
607 }
608
609 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
610                                  struct pipe_inode_info *pipe, size_t len,
611                                  unsigned int flags)
612 {
613         unsigned int nr_pages;
614         unsigned int nr_freed;
615         size_t offset;
616         struct page *pages[PIPE_DEF_BUFFERS];
617         struct partial_page partial[PIPE_DEF_BUFFERS];
618         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
619         ssize_t res;
620         size_t this_len;
621         int error;
622         int i;
623         struct splice_pipe_desc spd = {
624                 .pages = pages,
625                 .partial = partial,
626                 .nr_pages_max = PIPE_DEF_BUFFERS,
627                 .flags = flags,
628                 .ops = &default_pipe_buf_ops,
629                 .spd_release = spd_release_page,
630         };
631
632         if (splice_grow_spd(pipe, &spd))
633                 return -ENOMEM;
634
635         res = -ENOMEM;
636         vec = __vec;
637         if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
638                 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
639                 if (!vec)
640                         goto shrink_ret;
641         }
642
643         offset = *ppos & ~PAGE_CACHE_MASK;
644         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
645
646         for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
647                 struct page *page;
648
649                 page = alloc_page(GFP_USER);
650                 error = -ENOMEM;
651                 if (!page)
652                         goto err;
653
654                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
655                 vec[i].iov_base = (void __user *) page_address(page);
656                 vec[i].iov_len = this_len;
657                 spd.pages[i] = page;
658                 spd.nr_pages++;
659                 len -= this_len;
660                 offset = 0;
661         }
662
663         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
664         if (res < 0) {
665                 error = res;
666                 goto err;
667         }
668
669         error = 0;
670         if (!res)
671                 goto err;
672
673         nr_freed = 0;
674         for (i = 0; i < spd.nr_pages; i++) {
675                 this_len = min_t(size_t, vec[i].iov_len, res);
676                 spd.partial[i].offset = 0;
677                 spd.partial[i].len = this_len;
678                 if (!this_len) {
679                         __free_page(spd.pages[i]);
680                         spd.pages[i] = NULL;
681                         nr_freed++;
682                 }
683                 res -= this_len;
684         }
685         spd.nr_pages -= nr_freed;
686
687         res = splice_to_pipe(pipe, &spd);
688         if (res > 0)
689                 *ppos += res;
690
691 shrink_ret:
692         if (vec != __vec)
693                 kfree(vec);
694         splice_shrink_spd(&spd);
695         return res;
696
697 err:
698         for (i = 0; i < spd.nr_pages; i++)
699                 __free_page(spd.pages[i]);
700
701         res = error;
702         goto shrink_ret;
703 }
704 EXPORT_SYMBOL(default_file_splice_read);
705
706 /*
707  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
708  * using sendpage(). Return the number of bytes sent.
709  */
710 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
711                             struct pipe_buffer *buf, struct splice_desc *sd)
712 {
713         struct file *file = sd->u.file;
714         loff_t pos = sd->pos;
715         int more;
716
717         if (!likely(file->f_op && file->f_op->sendpage))
718                 return -EINVAL;
719
720         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
721
722         if (sd->len < sd->total_len && pipe->nrbufs > 1)
723                 more |= MSG_SENDPAGE_NOTLAST;
724
725         return file->f_op->sendpage(file, buf->page, buf->offset,
726                                     sd->len, &pos, more);
727 }
728
729 /*
730  * This is a little more tricky than the file -> pipe splicing. There are
731  * basically three cases:
732  *
733  *      - Destination page already exists in the address space and there
734  *        are users of it. For that case we have no other option that
735  *        copying the data. Tough luck.
736  *      - Destination page already exists in the address space, but there
737  *        are no users of it. Make sure it's uptodate, then drop it. Fall
738  *        through to last case.
739  *      - Destination page does not exist, we can add the pipe page to
740  *        the page cache and avoid the copy.
741  *
742  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
743  * sd->flags), we attempt to migrate pages from the pipe to the output
744  * file address space page cache. This is possible if no one else has
745  * the pipe page referenced outside of the pipe and page cache. If
746  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
747  * a new page in the output file page cache and fill/dirty that.
748  */
749 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
750                  struct splice_desc *sd)
751 {
752         struct file *file = sd->u.file;
753         struct address_space *mapping = file->f_mapping;
754         unsigned int offset, this_len;
755         struct page *page;
756         void *fsdata;
757         int ret;
758
759         offset = sd->pos & ~PAGE_CACHE_MASK;
760
761         this_len = sd->len;
762         if (this_len + offset > PAGE_CACHE_SIZE)
763                 this_len = PAGE_CACHE_SIZE - offset;
764
765         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
766                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
767         if (unlikely(ret))
768                 goto out;
769
770         if (buf->page != page) {
771                 /*
772                  * Careful, ->map() uses KM_USER0!
773                  */
774                 char *src = buf->ops->map(pipe, buf, 1);
775                 char *dst = kmap_atomic(page, KM_USER1);
776
777                 memcpy(dst + offset, src + buf->offset, this_len);
778                 flush_dcache_page(page);
779                 kunmap_atomic(dst, KM_USER1);
780                 buf->ops->unmap(pipe, buf, src);
781         }
782         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
783                                 page, fsdata);
784 out:
785         return ret;
786 }
787 EXPORT_SYMBOL(pipe_to_file);
788
789 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
790 {
791         smp_mb();
792         if (waitqueue_active(&pipe->wait))
793                 wake_up_interruptible(&pipe->wait);
794         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
795 }
796
797 /**
798  * splice_from_pipe_feed - feed available data from a pipe to a file
799  * @pipe:       pipe to splice from
800  * @sd:         information to @actor
801  * @actor:      handler that splices the data
802  *
803  * Description:
804  *    This function loops over the pipe and calls @actor to do the
805  *    actual moving of a single struct pipe_buffer to the desired
806  *    destination.  It returns when there's no more buffers left in
807  *    the pipe or if the requested number of bytes (@sd->total_len)
808  *    have been copied.  It returns a positive number (one) if the
809  *    pipe needs to be filled with more data, zero if the required
810  *    number of bytes have been copied and -errno on error.
811  *
812  *    This, together with splice_from_pipe_{begin,end,next}, may be
813  *    used to implement the functionality of __splice_from_pipe() when
814  *    locking is required around copying the pipe buffers to the
815  *    destination.
816  */
817 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
818                           splice_actor *actor)
819 {
820         int ret;
821
822         while (pipe->nrbufs) {
823                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
824                 const struct pipe_buf_operations *ops = buf->ops;
825
826                 sd->len = buf->len;
827                 if (sd->len > sd->total_len)
828                         sd->len = sd->total_len;
829
830                 ret = buf->ops->confirm(pipe, buf);
831                 if (unlikely(ret)) {
832                         if (ret == -ENODATA)
833                                 ret = 0;
834                         return ret;
835                 }
836
837                 ret = actor(pipe, buf, sd);
838                 if (ret <= 0)
839                         return ret;
840
841                 buf->offset += ret;
842                 buf->len -= ret;
843
844                 sd->num_spliced += ret;
845                 sd->len -= ret;
846                 sd->pos += ret;
847                 sd->total_len -= ret;
848
849                 if (!buf->len) {
850                         buf->ops = NULL;
851                         ops->release(pipe, buf);
852                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
853                         pipe->nrbufs--;
854                         if (pipe->inode)
855                                 sd->need_wakeup = true;
856                 }
857
858                 if (!sd->total_len)
859                         return 0;
860         }
861
862         return 1;
863 }
864 EXPORT_SYMBOL(splice_from_pipe_feed);
865
866 /**
867  * splice_from_pipe_next - wait for some data to splice from
868  * @pipe:       pipe to splice from
869  * @sd:         information about the splice operation
870  *
871  * Description:
872  *    This function will wait for some data and return a positive
873  *    value (one) if pipe buffers are available.  It will return zero
874  *    or -errno if no more data needs to be spliced.
875  */
876 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
877 {
878         /*
879          * Check for signal early to make process killable when there are
880          * always buffers available
881          */
882         if (signal_pending(current))
883                 return -ERESTARTSYS;
884
885         while (!pipe->nrbufs) {
886                 if (!pipe->writers)
887                         return 0;
888
889                 if (!pipe->waiting_writers && sd->num_spliced)
890                         return 0;
891
892                 if (sd->flags & SPLICE_F_NONBLOCK)
893                         return -EAGAIN;
894
895                 if (signal_pending(current))
896                         return -ERESTARTSYS;
897
898                 if (sd->need_wakeup) {
899                         wakeup_pipe_writers(pipe);
900                         sd->need_wakeup = false;
901                 }
902
903                 pipe_wait(pipe);
904         }
905
906         return 1;
907 }
908 EXPORT_SYMBOL(splice_from_pipe_next);
909
910 /**
911  * splice_from_pipe_begin - start splicing from pipe
912  * @sd:         information about the splice operation
913  *
914  * Description:
915  *    This function should be called before a loop containing
916  *    splice_from_pipe_next() and splice_from_pipe_feed() to
917  *    initialize the necessary fields of @sd.
918  */
919 void splice_from_pipe_begin(struct splice_desc *sd)
920 {
921         sd->num_spliced = 0;
922         sd->need_wakeup = false;
923 }
924 EXPORT_SYMBOL(splice_from_pipe_begin);
925
926 /**
927  * splice_from_pipe_end - finish splicing from pipe
928  * @pipe:       pipe to splice from
929  * @sd:         information about the splice operation
930  *
931  * Description:
932  *    This function will wake up pipe writers if necessary.  It should
933  *    be called after a loop containing splice_from_pipe_next() and
934  *    splice_from_pipe_feed().
935  */
936 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
937 {
938         if (sd->need_wakeup)
939                 wakeup_pipe_writers(pipe);
940 }
941 EXPORT_SYMBOL(splice_from_pipe_end);
942
943 /**
944  * __splice_from_pipe - splice data from a pipe to given actor
945  * @pipe:       pipe to splice from
946  * @sd:         information to @actor
947  * @actor:      handler that splices the data
948  *
949  * Description:
950  *    This function does little more than loop over the pipe and call
951  *    @actor to do the actual moving of a single struct pipe_buffer to
952  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
953  *    pipe_to_user.
954  *
955  */
956 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
957                            splice_actor *actor)
958 {
959         int ret;
960
961         splice_from_pipe_begin(sd);
962         do {
963                 cond_resched();
964                 ret = splice_from_pipe_next(pipe, sd);
965                 if (ret > 0)
966                         ret = splice_from_pipe_feed(pipe, sd, actor);
967         } while (ret > 0);
968         splice_from_pipe_end(pipe, sd);
969
970         return sd->num_spliced ? sd->num_spliced : ret;
971 }
972 EXPORT_SYMBOL(__splice_from_pipe);
973
974 /**
975  * splice_from_pipe - splice data from a pipe to a file
976  * @pipe:       pipe to splice from
977  * @out:        file to splice to
978  * @ppos:       position in @out
979  * @len:        how many bytes to splice
980  * @flags:      splice modifier flags
981  * @actor:      handler that splices the data
982  *
983  * Description:
984  *    See __splice_from_pipe. This function locks the pipe inode,
985  *    otherwise it's identical to __splice_from_pipe().
986  *
987  */
988 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
989                          loff_t *ppos, size_t len, unsigned int flags,
990                          splice_actor *actor)
991 {
992         ssize_t ret;
993         struct splice_desc sd = {
994                 .total_len = len,
995                 .flags = flags,
996                 .pos = *ppos,
997                 .u.file = out,
998         };
999
1000         pipe_lock(pipe);
1001         ret = __splice_from_pipe(pipe, &sd, actor);
1002         pipe_unlock(pipe);
1003
1004         return ret;
1005 }
1006
1007 /**
1008  * generic_file_splice_write - splice data from a pipe to a file
1009  * @pipe:       pipe info
1010  * @out:        file to write to
1011  * @ppos:       position in @out
1012  * @len:        number of bytes to splice
1013  * @flags:      splice modifier flags
1014  *
1015  * Description:
1016  *    Will either move or copy pages (determined by @flags options) from
1017  *    the given pipe inode to the given file.
1018  *
1019  */
1020 ssize_t
1021 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
1022                           loff_t *ppos, size_t len, unsigned int flags)
1023 {
1024         struct address_space *mapping = out->f_mapping;
1025         struct inode *inode = mapping->host;
1026         struct splice_desc sd = {
1027                 .flags = flags,
1028                 .u.file = out,
1029         };
1030         ssize_t ret;
1031
1032         ret = generic_write_checks(out, ppos, &len, S_ISBLK(inode->i_mode));
1033         if (ret)
1034                 return ret;
1035         sd.total_len = len;
1036         sd.pos = *ppos;
1037
1038         pipe_lock(pipe);
1039
1040         splice_from_pipe_begin(&sd);
1041         do {
1042                 ret = splice_from_pipe_next(pipe, &sd);
1043                 if (ret <= 0)
1044                         break;
1045
1046                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1047                 ret = file_remove_suid(out);
1048                 if (!ret) {
1049                         file_update_time(out);
1050                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1051                 }
1052                 mutex_unlock(&inode->i_mutex);
1053         } while (ret > 0);
1054         splice_from_pipe_end(pipe, &sd);
1055
1056         pipe_unlock(pipe);
1057
1058         if (sd.num_spliced)
1059                 ret = sd.num_spliced;
1060
1061         if (ret > 0) {
1062                 unsigned long nr_pages;
1063                 int err;
1064
1065                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1066
1067                 err = generic_write_sync(out, *ppos, ret);
1068                 if (err)
1069                         ret = err;
1070                 else
1071                         *ppos += ret;
1072                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1073         }
1074
1075         return ret;
1076 }
1077
1078 EXPORT_SYMBOL(generic_file_splice_write);
1079
1080 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1081                           struct splice_desc *sd)
1082 {
1083         int ret;
1084         void *data;
1085
1086         data = buf->ops->map(pipe, buf, 0);
1087         ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1088         buf->ops->unmap(pipe, buf, data);
1089
1090         return ret;
1091 }
1092
1093 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1094                                          struct file *out, loff_t *ppos,
1095                                          size_t len, unsigned int flags)
1096 {
1097         ssize_t ret;
1098
1099         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1100         if (ret > 0)
1101                 *ppos += ret;
1102
1103         return ret;
1104 }
1105
1106 /**
1107  * generic_splice_sendpage - splice data from a pipe to a socket
1108  * @pipe:       pipe to splice from
1109  * @out:        socket to write to
1110  * @ppos:       position in @out
1111  * @len:        number of bytes to splice
1112  * @flags:      splice modifier flags
1113  *
1114  * Description:
1115  *    Will send @len bytes from the pipe to a network socket. No data copying
1116  *    is involved.
1117  *
1118  */
1119 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1120                                 loff_t *ppos, size_t len, unsigned int flags)
1121 {
1122         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1123 }
1124
1125 EXPORT_SYMBOL(generic_splice_sendpage);
1126
1127 /*
1128  * Attempt to initiate a splice from pipe to file.
1129  */
1130 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1131                            loff_t *ppos, size_t len, unsigned int flags)
1132 {
1133         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1134                                 loff_t *, size_t, unsigned int);
1135         int ret;
1136
1137         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1138                 return -EBADF;
1139
1140         if (unlikely(out->f_flags & O_APPEND))
1141                 return -EINVAL;
1142
1143         ret = rw_verify_area(WRITE, out, ppos, len);
1144         if (unlikely(ret < 0))
1145                 return ret;
1146
1147         if (out->f_op && out->f_op->splice_write)
1148                 splice_write = out->f_op->splice_write;
1149         else
1150                 splice_write = default_file_splice_write;
1151
1152         return splice_write(pipe, out, ppos, len, flags);
1153 }
1154
1155 /*
1156  * Attempt to initiate a splice from a file to a pipe.
1157  */
1158 static long do_splice_to(struct file *in, loff_t *ppos,
1159                          struct pipe_inode_info *pipe, size_t len,
1160                          unsigned int flags)
1161 {
1162         ssize_t (*splice_read)(struct file *, loff_t *,
1163                                struct pipe_inode_info *, size_t, unsigned int);
1164         int ret;
1165
1166         if (unlikely(!(in->f_mode & FMODE_READ)))
1167                 return -EBADF;
1168
1169         ret = rw_verify_area(READ, in, ppos, len);
1170         if (unlikely(ret < 0))
1171                 return ret;
1172
1173         if (in->f_op && in->f_op->splice_read)
1174                 splice_read = in->f_op->splice_read;
1175         else
1176                 splice_read = default_file_splice_read;
1177
1178         return splice_read(in, ppos, pipe, len, flags);
1179 }
1180
1181 /**
1182  * splice_direct_to_actor - splices data directly between two non-pipes
1183  * @in:         file to splice from
1184  * @sd:         actor information on where to splice to
1185  * @actor:      handles the data splicing
1186  *
1187  * Description:
1188  *    This is a special case helper to splice directly between two
1189  *    points, without requiring an explicit pipe. Internally an allocated
1190  *    pipe is cached in the process, and reused during the lifetime of
1191  *    that process.
1192  *
1193  */
1194 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1195                                splice_direct_actor *actor)
1196 {
1197         struct pipe_inode_info *pipe;
1198         long ret, bytes;
1199         umode_t i_mode;
1200         size_t len;
1201         int i, flags, more;
1202
1203         /*
1204          * We require the input being a regular file, as we don't want to
1205          * randomly drop data for eg socket -> socket splicing. Use the
1206          * piped splicing for that!
1207          */
1208         i_mode = in->f_path.dentry->d_inode->i_mode;
1209         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1210                 return -EINVAL;
1211
1212         /*
1213          * neither in nor out is a pipe, setup an internal pipe attached to
1214          * 'out' and transfer the wanted data from 'in' to 'out' through that
1215          */
1216         pipe = current->splice_pipe;
1217         if (unlikely(!pipe)) {
1218                 pipe = alloc_pipe_info(NULL);
1219                 if (!pipe)
1220                         return -ENOMEM;
1221
1222                 /*
1223                  * We don't have an immediate reader, but we'll read the stuff
1224                  * out of the pipe right after the splice_to_pipe(). So set
1225                  * PIPE_READERS appropriately.
1226                  */
1227                 pipe->readers = 1;
1228
1229                 current->splice_pipe = pipe;
1230         }
1231
1232         /*
1233          * Do the splice.
1234          */
1235         ret = 0;
1236         bytes = 0;
1237         len = sd->total_len;
1238         flags = sd->flags;
1239
1240         /*
1241          * Don't block on output, we have to drain the direct pipe.
1242          */
1243         sd->flags &= ~SPLICE_F_NONBLOCK;
1244         more = sd->flags & SPLICE_F_MORE;
1245
1246         while (len) {
1247                 size_t read_len;
1248                 loff_t pos = sd->pos, prev_pos = pos;
1249
1250                 ret = do_splice_to(in, &pos, pipe, len, flags);
1251                 if (unlikely(ret <= 0))
1252                         goto out_release;
1253
1254                 read_len = ret;
1255                 sd->total_len = read_len;
1256
1257                 /*
1258                  * If more data is pending, set SPLICE_F_MORE
1259                  * If this is the last data and SPLICE_F_MORE was not set
1260                  * initially, clears it.
1261                  */
1262                 if (read_len < len)
1263                         sd->flags |= SPLICE_F_MORE;
1264                 else if (!more)
1265                         sd->flags &= ~SPLICE_F_MORE;
1266                 /*
1267                  * NOTE: nonblocking mode only applies to the input. We
1268                  * must not do the output in nonblocking mode as then we
1269                  * could get stuck data in the internal pipe:
1270                  */
1271                 ret = actor(pipe, sd);
1272                 if (unlikely(ret <= 0)) {
1273                         sd->pos = prev_pos;
1274                         goto out_release;
1275                 }
1276
1277                 bytes += ret;
1278                 len -= ret;
1279                 sd->pos = pos;
1280
1281                 if (ret < read_len) {
1282                         sd->pos = prev_pos + ret;
1283                         goto out_release;
1284                 }
1285         }
1286
1287 done:
1288         pipe->nrbufs = pipe->curbuf = 0;
1289         file_accessed(in);
1290         return bytes;
1291
1292 out_release:
1293         /*
1294          * If we did an incomplete transfer we must release
1295          * the pipe buffers in question:
1296          */
1297         for (i = 0; i < pipe->buffers; i++) {
1298                 struct pipe_buffer *buf = pipe->bufs + i;
1299
1300                 if (buf->ops) {
1301                         buf->ops->release(pipe, buf);
1302                         buf->ops = NULL;
1303                 }
1304         }
1305
1306         if (!bytes)
1307                 bytes = ret;
1308
1309         goto done;
1310 }
1311 EXPORT_SYMBOL(splice_direct_to_actor);
1312
1313 static int direct_splice_actor(struct pipe_inode_info *pipe,
1314                                struct splice_desc *sd)
1315 {
1316         struct file *file = sd->u.file;
1317
1318         return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1319                               sd->flags);
1320 }
1321
1322 /**
1323  * do_splice_direct - splices data directly between two files
1324  * @in:         file to splice from
1325  * @ppos:       input file offset
1326  * @out:        file to splice to
1327  * @len:        number of bytes to splice
1328  * @flags:      splice modifier flags
1329  *
1330  * Description:
1331  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1332  *    doing it in the application would incur an extra system call
1333  *    (splice in + splice out, as compared to just sendfile()). So this helper
1334  *    can splice directly through a process-private pipe.
1335  *
1336  */
1337 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1338                       size_t len, unsigned int flags)
1339 {
1340         struct splice_desc sd = {
1341                 .len            = len,
1342                 .total_len      = len,
1343                 .flags          = flags,
1344                 .pos            = *ppos,
1345                 .u.file         = out,
1346         };
1347         long ret;
1348
1349         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1350         if (ret > 0)
1351                 *ppos = sd.pos;
1352
1353         return ret;
1354 }
1355
1356 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1357                                struct pipe_inode_info *opipe,
1358                                size_t len, unsigned int flags);
1359
1360 /*
1361  * Determine where to splice to/from.
1362  */
1363 static long do_splice(struct file *in, loff_t __user *off_in,
1364                       struct file *out, loff_t __user *off_out,
1365                       size_t len, unsigned int flags)
1366 {
1367         struct pipe_inode_info *ipipe;
1368         struct pipe_inode_info *opipe;
1369         loff_t offset, *off;
1370         long ret;
1371
1372         ipipe = get_pipe_info(in);
1373         opipe = get_pipe_info(out);
1374
1375         if (ipipe && opipe) {
1376                 if (off_in || off_out)
1377                         return -ESPIPE;
1378
1379                 if (!(in->f_mode & FMODE_READ))
1380                         return -EBADF;
1381
1382                 if (!(out->f_mode & FMODE_WRITE))
1383                         return -EBADF;
1384
1385                 /* Splicing to self would be fun, but... */
1386                 if (ipipe == opipe)
1387                         return -EINVAL;
1388
1389                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1390         }
1391
1392         if (ipipe) {
1393                 if (off_in)
1394                         return -ESPIPE;
1395                 if (off_out) {
1396                         if (!(out->f_mode & FMODE_PWRITE))
1397                                 return -EINVAL;
1398                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1399                                 return -EFAULT;
1400                         off = &offset;
1401                 } else
1402                         off = &out->f_pos;
1403
1404                 ret = do_splice_from(ipipe, out, off, len, flags);
1405
1406                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1407                         ret = -EFAULT;
1408
1409                 return ret;
1410         }
1411
1412         if (opipe) {
1413                 if (off_out)
1414                         return -ESPIPE;
1415                 if (off_in) {
1416                         if (!(in->f_mode & FMODE_PREAD))
1417                                 return -EINVAL;
1418                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1419                                 return -EFAULT;
1420                         off = &offset;
1421                 } else
1422                         off = &in->f_pos;
1423
1424                 ret = do_splice_to(in, off, opipe, len, flags);
1425
1426                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1427                         ret = -EFAULT;
1428
1429                 return ret;
1430         }
1431
1432         return -EINVAL;
1433 }
1434
1435 /*
1436  * Map an iov into an array of pages and offset/length tupples. With the
1437  * partial_page structure, we can map several non-contiguous ranges into
1438  * our ones pages[] map instead of splitting that operation into pieces.
1439  * Could easily be exported as a generic helper for other users, in which
1440  * case one would probably want to add a 'max_nr_pages' parameter as well.
1441  */
1442 static int get_iovec_page_array(const struct iovec __user *iov,
1443                                 unsigned int nr_vecs, struct page **pages,
1444                                 struct partial_page *partial, int aligned,
1445                                 unsigned int pipe_buffers)
1446 {
1447         int buffers = 0, error = 0;
1448
1449         while (nr_vecs) {
1450                 unsigned long off, npages;
1451                 struct iovec entry;
1452                 void __user *base;
1453                 size_t len;
1454                 int i;
1455
1456                 error = -EFAULT;
1457                 if (copy_from_user(&entry, iov, sizeof(entry)))
1458                         break;
1459
1460                 base = entry.iov_base;
1461                 len = entry.iov_len;
1462
1463                 /*
1464                  * Sanity check this iovec. 0 read succeeds.
1465                  */
1466                 error = 0;
1467                 if (unlikely(!len))
1468                         break;
1469                 error = -EFAULT;
1470                 if (!access_ok(VERIFY_READ, base, len))
1471                         break;
1472
1473                 /*
1474                  * Get this base offset and number of pages, then map
1475                  * in the user pages.
1476                  */
1477                 off = (unsigned long) base & ~PAGE_MASK;
1478
1479                 /*
1480                  * If asked for alignment, the offset must be zero and the
1481                  * length a multiple of the PAGE_SIZE.
1482                  */
1483                 error = -EINVAL;
1484                 if (aligned && (off || len & ~PAGE_MASK))
1485                         break;
1486
1487                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1488                 if (npages > pipe_buffers - buffers)
1489                         npages = pipe_buffers - buffers;
1490
1491                 error = get_user_pages_fast((unsigned long)base, npages,
1492                                         0, &pages[buffers]);
1493
1494                 if (unlikely(error <= 0))
1495                         break;
1496
1497                 /*
1498                  * Fill this contiguous range into the partial page map.
1499                  */
1500                 for (i = 0; i < error; i++) {
1501                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1502
1503                         partial[buffers].offset = off;
1504                         partial[buffers].len = plen;
1505
1506                         off = 0;
1507                         len -= plen;
1508                         buffers++;
1509                 }
1510
1511                 /*
1512                  * We didn't complete this iov, stop here since it probably
1513                  * means we have to move some of this into a pipe to
1514                  * be able to continue.
1515                  */
1516                 if (len)
1517                         break;
1518
1519                 /*
1520                  * Don't continue if we mapped fewer pages than we asked for,
1521                  * or if we mapped the max number of pages that we have
1522                  * room for.
1523                  */
1524                 if (error < npages || buffers == pipe_buffers)
1525                         break;
1526
1527                 nr_vecs--;
1528                 iov++;
1529         }
1530
1531         if (buffers)
1532                 return buffers;
1533
1534         return error;
1535 }
1536
1537 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1538                         struct splice_desc *sd)
1539 {
1540         char *src;
1541         int ret;
1542
1543         /*
1544          * See if we can use the atomic maps, by prefaulting in the
1545          * pages and doing an atomic copy
1546          */
1547         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1548                 src = buf->ops->map(pipe, buf, 1);
1549                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1550                                                         sd->len);
1551                 buf->ops->unmap(pipe, buf, src);
1552                 if (!ret) {
1553                         ret = sd->len;
1554                         goto out;
1555                 }
1556         }
1557
1558         /*
1559          * No dice, use slow non-atomic map and copy
1560          */
1561         src = buf->ops->map(pipe, buf, 0);
1562
1563         ret = sd->len;
1564         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1565                 ret = -EFAULT;
1566
1567         buf->ops->unmap(pipe, buf, src);
1568 out:
1569         if (ret > 0)
1570                 sd->u.userptr += ret;
1571         return ret;
1572 }
1573
1574 /*
1575  * For lack of a better implementation, implement vmsplice() to userspace
1576  * as a simple copy of the pipes pages to the user iov.
1577  */
1578 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1579                              unsigned long nr_segs, unsigned int flags)
1580 {
1581         struct pipe_inode_info *pipe;
1582         struct splice_desc sd;
1583         ssize_t size;
1584         int error;
1585         long ret;
1586
1587         pipe = get_pipe_info(file);
1588         if (!pipe)
1589                 return -EBADF;
1590
1591         pipe_lock(pipe);
1592
1593         error = ret = 0;
1594         while (nr_segs) {
1595                 void __user *base;
1596                 size_t len;
1597
1598                 /*
1599                  * Get user address base and length for this iovec.
1600                  */
1601                 error = get_user(base, &iov->iov_base);
1602                 if (unlikely(error))
1603                         break;
1604                 error = get_user(len, &iov->iov_len);
1605                 if (unlikely(error))
1606                         break;
1607
1608                 /*
1609                  * Sanity check this iovec. 0 read succeeds.
1610                  */
1611                 if (unlikely(!len))
1612                         break;
1613                 if (unlikely(!base)) {
1614                         error = -EFAULT;
1615                         break;
1616                 }
1617
1618                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1619                         error = -EFAULT;
1620                         break;
1621                 }
1622
1623                 sd.len = 0;
1624                 sd.total_len = len;
1625                 sd.flags = flags;
1626                 sd.u.userptr = base;
1627                 sd.pos = 0;
1628
1629                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1630                 if (size < 0) {
1631                         if (!ret)
1632                                 ret = size;
1633
1634                         break;
1635                 }
1636
1637                 ret += size;
1638
1639                 if (size < len)
1640                         break;
1641
1642                 nr_segs--;
1643                 iov++;
1644         }
1645
1646         pipe_unlock(pipe);
1647
1648         if (!ret)
1649                 ret = error;
1650
1651         return ret;
1652 }
1653
1654 /*
1655  * vmsplice splices a user address range into a pipe. It can be thought of
1656  * as splice-from-memory, where the regular splice is splice-from-file (or
1657  * to file). In both cases the output is a pipe, naturally.
1658  */
1659 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1660                              unsigned long nr_segs, unsigned int flags)
1661 {
1662         struct pipe_inode_info *pipe;
1663         struct page *pages[PIPE_DEF_BUFFERS];
1664         struct partial_page partial[PIPE_DEF_BUFFERS];
1665         struct splice_pipe_desc spd = {
1666                 .pages = pages,
1667                 .partial = partial,
1668                 .nr_pages_max = PIPE_DEF_BUFFERS,
1669                 .flags = flags,
1670                 .ops = &user_page_pipe_buf_ops,
1671                 .spd_release = spd_release_page,
1672         };
1673         long ret;
1674
1675         pipe = get_pipe_info(file);
1676         if (!pipe)
1677                 return -EBADF;
1678
1679         if (splice_grow_spd(pipe, &spd))
1680                 return -ENOMEM;
1681
1682         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1683                                             spd.partial, flags & SPLICE_F_GIFT,
1684                                             spd.nr_pages_max);
1685         if (spd.nr_pages <= 0)
1686                 ret = spd.nr_pages;
1687         else
1688                 ret = splice_to_pipe(pipe, &spd);
1689
1690         splice_shrink_spd(&spd);
1691         return ret;
1692 }
1693
1694 /*
1695  * Note that vmsplice only really supports true splicing _from_ user memory
1696  * to a pipe, not the other way around. Splicing from user memory is a simple
1697  * operation that can be supported without any funky alignment restrictions
1698  * or nasty vm tricks. We simply map in the user memory and fill them into
1699  * a pipe. The reverse isn't quite as easy, though. There are two possible
1700  * solutions for that:
1701  *
1702  *      - memcpy() the data internally, at which point we might as well just
1703  *        do a regular read() on the buffer anyway.
1704  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1705  *        has restriction limitations on both ends of the pipe).
1706  *
1707  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1708  *
1709  */
1710 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1711                 unsigned long, nr_segs, unsigned int, flags)
1712 {
1713         struct file *file;
1714         long error;
1715         int fput;
1716
1717         if (unlikely(nr_segs > UIO_MAXIOV))
1718                 return -EINVAL;
1719         else if (unlikely(!nr_segs))
1720                 return 0;
1721
1722         error = -EBADF;
1723         file = fget_light(fd, &fput);
1724         if (file) {
1725                 if (file->f_mode & FMODE_WRITE)
1726                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1727                 else if (file->f_mode & FMODE_READ)
1728                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1729
1730                 fput_light(file, fput);
1731         }
1732
1733         return error;
1734 }
1735
1736 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1737                 int, fd_out, loff_t __user *, off_out,
1738                 size_t, len, unsigned int, flags)
1739 {
1740         long error;
1741         struct file *in, *out;
1742         int fput_in, fput_out;
1743
1744         if (unlikely(!len))
1745                 return 0;
1746
1747         error = -EBADF;
1748         in = fget_light(fd_in, &fput_in);
1749         if (in) {
1750                 if (in->f_mode & FMODE_READ) {
1751                         out = fget_light(fd_out, &fput_out);
1752                         if (out) {
1753                                 if (out->f_mode & FMODE_WRITE)
1754                                         error = do_splice(in, off_in,
1755                                                           out, off_out,
1756                                                           len, flags);
1757                                 fput_light(out, fput_out);
1758                         }
1759                 }
1760
1761                 fput_light(in, fput_in);
1762         }
1763
1764         return error;
1765 }
1766
1767 /*
1768  * Make sure there's data to read. Wait for input if we can, otherwise
1769  * return an appropriate error.
1770  */
1771 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1772 {
1773         int ret;
1774
1775         /*
1776          * Check ->nrbufs without the inode lock first. This function
1777          * is speculative anyways, so missing one is ok.
1778          */
1779         if (pipe->nrbufs)
1780                 return 0;
1781
1782         ret = 0;
1783         pipe_lock(pipe);
1784
1785         while (!pipe->nrbufs) {
1786                 if (signal_pending(current)) {
1787                         ret = -ERESTARTSYS;
1788                         break;
1789                 }
1790                 if (!pipe->writers)
1791                         break;
1792                 if (!pipe->waiting_writers) {
1793                         if (flags & SPLICE_F_NONBLOCK) {
1794                                 ret = -EAGAIN;
1795                                 break;
1796                         }
1797                 }
1798                 pipe_wait(pipe);
1799         }
1800
1801         pipe_unlock(pipe);
1802         return ret;
1803 }
1804
1805 /*
1806  * Make sure there's writeable room. Wait for room if we can, otherwise
1807  * return an appropriate error.
1808  */
1809 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1810 {
1811         int ret;
1812
1813         /*
1814          * Check ->nrbufs without the inode lock first. This function
1815          * is speculative anyways, so missing one is ok.
1816          */
1817         if (pipe->nrbufs < pipe->buffers)
1818                 return 0;
1819
1820         ret = 0;
1821         pipe_lock(pipe);
1822
1823         while (pipe->nrbufs >= pipe->buffers) {
1824                 if (!pipe->readers) {
1825                         send_sig(SIGPIPE, current, 0);
1826                         ret = -EPIPE;
1827                         break;
1828                 }
1829                 if (flags & SPLICE_F_NONBLOCK) {
1830                         ret = -EAGAIN;
1831                         break;
1832                 }
1833                 if (signal_pending(current)) {
1834                         ret = -ERESTARTSYS;
1835                         break;
1836                 }
1837                 pipe->waiting_writers++;
1838                 pipe_wait(pipe);
1839                 pipe->waiting_writers--;
1840         }
1841
1842         pipe_unlock(pipe);
1843         return ret;
1844 }
1845
1846 /*
1847  * Splice contents of ipipe to opipe.
1848  */
1849 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1850                                struct pipe_inode_info *opipe,
1851                                size_t len, unsigned int flags)
1852 {
1853         struct pipe_buffer *ibuf, *obuf;
1854         int ret = 0, nbuf;
1855         bool input_wakeup = false;
1856
1857
1858 retry:
1859         ret = ipipe_prep(ipipe, flags);
1860         if (ret)
1861                 return ret;
1862
1863         ret = opipe_prep(opipe, flags);
1864         if (ret)
1865                 return ret;
1866
1867         /*
1868          * Potential ABBA deadlock, work around it by ordering lock
1869          * grabbing by pipe info address. Otherwise two different processes
1870          * could deadlock (one doing tee from A -> B, the other from B -> A).
1871          */
1872         pipe_double_lock(ipipe, opipe);
1873
1874         do {
1875                 if (!opipe->readers) {
1876                         send_sig(SIGPIPE, current, 0);
1877                         if (!ret)
1878                                 ret = -EPIPE;
1879                         break;
1880                 }
1881
1882                 if (!ipipe->nrbufs && !ipipe->writers)
1883                         break;
1884
1885                 /*
1886                  * Cannot make any progress, because either the input
1887                  * pipe is empty or the output pipe is full.
1888                  */
1889                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1890                         /* Already processed some buffers, break */
1891                         if (ret)
1892                                 break;
1893
1894                         if (flags & SPLICE_F_NONBLOCK) {
1895                                 ret = -EAGAIN;
1896                                 break;
1897                         }
1898
1899                         /*
1900                          * We raced with another reader/writer and haven't
1901                          * managed to process any buffers.  A zero return
1902                          * value means EOF, so retry instead.
1903                          */
1904                         pipe_unlock(ipipe);
1905                         pipe_unlock(opipe);
1906                         goto retry;
1907                 }
1908
1909                 ibuf = ipipe->bufs + ipipe->curbuf;
1910                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1911                 obuf = opipe->bufs + nbuf;
1912
1913                 if (len >= ibuf->len) {
1914                         /*
1915                          * Simply move the whole buffer from ipipe to opipe
1916                          */
1917                         *obuf = *ibuf;
1918                         ibuf->ops = NULL;
1919                         opipe->nrbufs++;
1920                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1921                         ipipe->nrbufs--;
1922                         input_wakeup = true;
1923                 } else {
1924                         /*
1925                          * Get a reference to this pipe buffer,
1926                          * so we can copy the contents over.
1927                          */
1928                         ibuf->ops->get(ipipe, ibuf);
1929                         *obuf = *ibuf;
1930
1931                         /*
1932                          * Don't inherit the gift flag, we need to
1933                          * prevent multiple steals of this page.
1934                          */
1935                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1936
1937                         obuf->len = len;
1938                         opipe->nrbufs++;
1939                         ibuf->offset += obuf->len;
1940                         ibuf->len -= obuf->len;
1941                 }
1942                 ret += obuf->len;
1943                 len -= obuf->len;
1944         } while (len);
1945
1946         pipe_unlock(ipipe);
1947         pipe_unlock(opipe);
1948
1949         /*
1950          * If we put data in the output pipe, wakeup any potential readers.
1951          */
1952         if (ret > 0)
1953                 wakeup_pipe_readers(opipe);
1954
1955         if (input_wakeup)
1956                 wakeup_pipe_writers(ipipe);
1957
1958         return ret;
1959 }
1960
1961 /*
1962  * Link contents of ipipe to opipe.
1963  */
1964 static int link_pipe(struct pipe_inode_info *ipipe,
1965                      struct pipe_inode_info *opipe,
1966                      size_t len, unsigned int flags)
1967 {
1968         struct pipe_buffer *ibuf, *obuf;
1969         int ret = 0, i = 0, nbuf;
1970
1971         /*
1972          * Potential ABBA deadlock, work around it by ordering lock
1973          * grabbing by pipe info address. Otherwise two different processes
1974          * could deadlock (one doing tee from A -> B, the other from B -> A).
1975          */
1976         pipe_double_lock(ipipe, opipe);
1977
1978         do {
1979                 if (!opipe->readers) {
1980                         send_sig(SIGPIPE, current, 0);
1981                         if (!ret)
1982                                 ret = -EPIPE;
1983                         break;
1984                 }
1985
1986                 /*
1987                  * If we have iterated all input buffers or ran out of
1988                  * output room, break.
1989                  */
1990                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1991                         break;
1992
1993                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1994                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1995
1996                 /*
1997                  * Get a reference to this pipe buffer,
1998                  * so we can copy the contents over.
1999                  */
2000                 ibuf->ops->get(ipipe, ibuf);
2001
2002                 obuf = opipe->bufs + nbuf;
2003                 *obuf = *ibuf;
2004
2005                 /*
2006                  * Don't inherit the gift flag, we need to
2007                  * prevent multiple steals of this page.
2008                  */
2009                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2010
2011                 if (obuf->len > len)
2012                         obuf->len = len;
2013
2014                 opipe->nrbufs++;
2015                 ret += obuf->len;
2016                 len -= obuf->len;
2017                 i++;
2018         } while (len);
2019
2020         /*
2021          * return EAGAIN if we have the potential of some data in the
2022          * future, otherwise just return 0
2023          */
2024         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
2025                 ret = -EAGAIN;
2026
2027         pipe_unlock(ipipe);
2028         pipe_unlock(opipe);
2029
2030         /*
2031          * If we put data in the output pipe, wakeup any potential readers.
2032          */
2033         if (ret > 0)
2034                 wakeup_pipe_readers(opipe);
2035
2036         return ret;
2037 }
2038
2039 /*
2040  * This is a tee(1) implementation that works on pipes. It doesn't copy
2041  * any data, it simply references the 'in' pages on the 'out' pipe.
2042  * The 'flags' used are the SPLICE_F_* variants, currently the only
2043  * applicable one is SPLICE_F_NONBLOCK.
2044  */
2045 static long do_tee(struct file *in, struct file *out, size_t len,
2046                    unsigned int flags)
2047 {
2048         struct pipe_inode_info *ipipe = get_pipe_info(in);
2049         struct pipe_inode_info *opipe = get_pipe_info(out);
2050         int ret = -EINVAL;
2051
2052         /*
2053          * Duplicate the contents of ipipe to opipe without actually
2054          * copying the data.
2055          */
2056         if (ipipe && opipe && ipipe != opipe) {
2057                 /*
2058                  * Keep going, unless we encounter an error. The ipipe/opipe
2059                  * ordering doesn't really matter.
2060                  */
2061                 ret = ipipe_prep(ipipe, flags);
2062                 if (!ret) {
2063                         ret = opipe_prep(opipe, flags);
2064                         if (!ret)
2065                                 ret = link_pipe(ipipe, opipe, len, flags);
2066                 }
2067         }
2068
2069         return ret;
2070 }
2071
2072 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2073 {
2074         struct file *in;
2075         int error, fput_in;
2076
2077         if (unlikely(!len))
2078                 return 0;
2079
2080         error = -EBADF;
2081         in = fget_light(fdin, &fput_in);
2082         if (in) {
2083                 if (in->f_mode & FMODE_READ) {
2084                         int fput_out;
2085                         struct file *out = fget_light(fdout, &fput_out);
2086
2087                         if (out) {
2088                                 if (out->f_mode & FMODE_WRITE)
2089                                         error = do_tee(in, out, len, flags);
2090                                 fput_light(out, fput_out);
2091                         }
2092                 }
2093                 fput_light(in, fput_in);
2094         }
2095
2096         return error;
2097 }