Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[pandora-kernel.git] / fs / proc / base.c
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87
88 /* NOTE:
89  *      Implementing inode permission operations in /proc is almost
90  *      certainly an error.  Permission checks need to happen during
91  *      each system call not at open time.  The reason is that most of
92  *      what we wish to check for permissions in /proc varies at runtime.
93  *
94  *      The classic example of a problem is opening file descriptors
95  *      in /proc for a task before it execs a suid executable.
96  */
97
98 struct pid_entry {
99         char *name;
100         int len;
101         mode_t mode;
102         const struct inode_operations *iop;
103         const struct file_operations *fop;
104         union proc_op op;
105 };
106
107 #define NOD(NAME, MODE, IOP, FOP, OP) {                 \
108         .name = (NAME),                                 \
109         .len  = sizeof(NAME) - 1,                       \
110         .mode = MODE,                                   \
111         .iop  = IOP,                                    \
112         .fop  = FOP,                                    \
113         .op   = OP,                                     \
114 }
115
116 #define DIR(NAME, MODE, iops, fops)     \
117         NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link)                                     \
119         NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
120                 &proc_pid_link_inode_operations, NULL,          \
121                 { .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops)                           \
123         NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read)                           \
125         NOD(NAME, (S_IFREG|(MODE)),                     \
126                 NULL, &proc_info_file_operations,       \
127                 { .proc_read = read } )
128 #define ONE(NAME, MODE, show)                           \
129         NOD(NAME, (S_IFREG|(MODE)),                     \
130                 NULL, &proc_single_file_operations,     \
131                 { .proc_show = show } )
132
133 /*
134  * Count the number of hardlinks for the pid_entry table, excluding the .
135  * and .. links.
136  */
137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138         unsigned int n)
139 {
140         unsigned int i;
141         unsigned int count;
142
143         count = 0;
144         for (i = 0; i < n; ++i) {
145                 if (S_ISDIR(entries[i].mode))
146                         ++count;
147         }
148
149         return count;
150 }
151
152 static int get_task_root(struct task_struct *task, struct path *root)
153 {
154         int result = -ENOENT;
155
156         task_lock(task);
157         if (task->fs) {
158                 get_fs_root(task->fs, root);
159                 result = 0;
160         }
161         task_unlock(task);
162         return result;
163 }
164
165 static int proc_cwd_link(struct inode *inode, struct path *path)
166 {
167         struct task_struct *task = get_proc_task(inode);
168         int result = -ENOENT;
169
170         if (task) {
171                 task_lock(task);
172                 if (task->fs) {
173                         get_fs_pwd(task->fs, path);
174                         result = 0;
175                 }
176                 task_unlock(task);
177                 put_task_struct(task);
178         }
179         return result;
180 }
181
182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184         struct task_struct *task = get_proc_task(inode);
185         int result = -ENOENT;
186
187         if (task) {
188                 result = get_task_root(task, path);
189                 put_task_struct(task);
190         }
191         return result;
192 }
193
194 /*
195  * Return zero if current may access user memory in @task, -error if not.
196  */
197 static int check_mem_permission(struct task_struct *task)
198 {
199         /*
200          * A task can always look at itself, in case it chooses
201          * to use system calls instead of load instructions.
202          */
203         if (task == current)
204                 return 0;
205
206         /*
207          * If current is actively ptrace'ing, and would also be
208          * permitted to freshly attach with ptrace now, permit it.
209          */
210         if (task_is_stopped_or_traced(task)) {
211                 int match;
212                 rcu_read_lock();
213                 match = (tracehook_tracer_task(task) == current);
214                 rcu_read_unlock();
215                 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
216                         return 0;
217         }
218
219         /*
220          * Noone else is allowed.
221          */
222         return -EPERM;
223 }
224
225 struct mm_struct *mm_for_maps(struct task_struct *task)
226 {
227         struct mm_struct *mm;
228
229         if (mutex_lock_killable(&task->cred_guard_mutex))
230                 return NULL;
231
232         mm = get_task_mm(task);
233         if (mm && mm != current->mm &&
234                         !ptrace_may_access(task, PTRACE_MODE_READ)) {
235                 mmput(mm);
236                 mm = NULL;
237         }
238         mutex_unlock(&task->cred_guard_mutex);
239
240         return mm;
241 }
242
243 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
244 {
245         int res = 0;
246         unsigned int len;
247         struct mm_struct *mm = get_task_mm(task);
248         if (!mm)
249                 goto out;
250         if (!mm->arg_end)
251                 goto out_mm;    /* Shh! No looking before we're done */
252
253         len = mm->arg_end - mm->arg_start;
254  
255         if (len > PAGE_SIZE)
256                 len = PAGE_SIZE;
257  
258         res = access_process_vm(task, mm->arg_start, buffer, len, 0);
259
260         // If the nul at the end of args has been overwritten, then
261         // assume application is using setproctitle(3).
262         if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
263                 len = strnlen(buffer, res);
264                 if (len < res) {
265                     res = len;
266                 } else {
267                         len = mm->env_end - mm->env_start;
268                         if (len > PAGE_SIZE - res)
269                                 len = PAGE_SIZE - res;
270                         res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
271                         res = strnlen(buffer, res);
272                 }
273         }
274 out_mm:
275         mmput(mm);
276 out:
277         return res;
278 }
279
280 static int proc_pid_auxv(struct task_struct *task, char *buffer)
281 {
282         int res = 0;
283         struct mm_struct *mm = get_task_mm(task);
284         if (mm) {
285                 unsigned int nwords = 0;
286                 do {
287                         nwords += 2;
288                 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
289                 res = nwords * sizeof(mm->saved_auxv[0]);
290                 if (res > PAGE_SIZE)
291                         res = PAGE_SIZE;
292                 memcpy(buffer, mm->saved_auxv, res);
293                 mmput(mm);
294         }
295         return res;
296 }
297
298
299 #ifdef CONFIG_KALLSYMS
300 /*
301  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
302  * Returns the resolved symbol.  If that fails, simply return the address.
303  */
304 static int proc_pid_wchan(struct task_struct *task, char *buffer)
305 {
306         unsigned long wchan;
307         char symname[KSYM_NAME_LEN];
308
309         wchan = get_wchan(task);
310
311         if (lookup_symbol_name(wchan, symname) < 0)
312                 if (!ptrace_may_access(task, PTRACE_MODE_READ))
313                         return 0;
314                 else
315                         return sprintf(buffer, "%lu", wchan);
316         else
317                 return sprintf(buffer, "%s", symname);
318 }
319 #endif /* CONFIG_KALLSYMS */
320
321 #ifdef CONFIG_STACKTRACE
322
323 #define MAX_STACK_TRACE_DEPTH   64
324
325 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
326                           struct pid *pid, struct task_struct *task)
327 {
328         struct stack_trace trace;
329         unsigned long *entries;
330         int i;
331
332         entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
333         if (!entries)
334                 return -ENOMEM;
335
336         trace.nr_entries        = 0;
337         trace.max_entries       = MAX_STACK_TRACE_DEPTH;
338         trace.entries           = entries;
339         trace.skip              = 0;
340         save_stack_trace_tsk(task, &trace);
341
342         for (i = 0; i < trace.nr_entries; i++) {
343                 seq_printf(m, "[<%p>] %pS\n",
344                            (void *)entries[i], (void *)entries[i]);
345         }
346         kfree(entries);
347
348         return 0;
349 }
350 #endif
351
352 #ifdef CONFIG_SCHEDSTATS
353 /*
354  * Provides /proc/PID/schedstat
355  */
356 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
357 {
358         return sprintf(buffer, "%llu %llu %lu\n",
359                         (unsigned long long)task->se.sum_exec_runtime,
360                         (unsigned long long)task->sched_info.run_delay,
361                         task->sched_info.pcount);
362 }
363 #endif
364
365 #ifdef CONFIG_LATENCYTOP
366 static int lstats_show_proc(struct seq_file *m, void *v)
367 {
368         int i;
369         struct inode *inode = m->private;
370         struct task_struct *task = get_proc_task(inode);
371
372         if (!task)
373                 return -ESRCH;
374         seq_puts(m, "Latency Top version : v0.1\n");
375         for (i = 0; i < 32; i++) {
376                 if (task->latency_record[i].backtrace[0]) {
377                         int q;
378                         seq_printf(m, "%i %li %li ",
379                                 task->latency_record[i].count,
380                                 task->latency_record[i].time,
381                                 task->latency_record[i].max);
382                         for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
383                                 char sym[KSYM_SYMBOL_LEN];
384                                 char *c;
385                                 if (!task->latency_record[i].backtrace[q])
386                                         break;
387                                 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
388                                         break;
389                                 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
390                                 c = strchr(sym, '+');
391                                 if (c)
392                                         *c = 0;
393                                 seq_printf(m, "%s ", sym);
394                         }
395                         seq_printf(m, "\n");
396                 }
397
398         }
399         put_task_struct(task);
400         return 0;
401 }
402
403 static int lstats_open(struct inode *inode, struct file *file)
404 {
405         return single_open(file, lstats_show_proc, inode);
406 }
407
408 static ssize_t lstats_write(struct file *file, const char __user *buf,
409                             size_t count, loff_t *offs)
410 {
411         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
412
413         if (!task)
414                 return -ESRCH;
415         clear_all_latency_tracing(task);
416         put_task_struct(task);
417
418         return count;
419 }
420
421 static const struct file_operations proc_lstats_operations = {
422         .open           = lstats_open,
423         .read           = seq_read,
424         .write          = lstats_write,
425         .llseek         = seq_lseek,
426         .release        = single_release,
427 };
428
429 #endif
430
431 static int proc_oom_score(struct task_struct *task, char *buffer)
432 {
433         unsigned long points = 0;
434
435         read_lock(&tasklist_lock);
436         if (pid_alive(task))
437                 points = oom_badness(task, NULL, NULL,
438                                         totalram_pages + total_swap_pages);
439         read_unlock(&tasklist_lock);
440         return sprintf(buffer, "%lu\n", points);
441 }
442
443 struct limit_names {
444         char *name;
445         char *unit;
446 };
447
448 static const struct limit_names lnames[RLIM_NLIMITS] = {
449         [RLIMIT_CPU] = {"Max cpu time", "seconds"},
450         [RLIMIT_FSIZE] = {"Max file size", "bytes"},
451         [RLIMIT_DATA] = {"Max data size", "bytes"},
452         [RLIMIT_STACK] = {"Max stack size", "bytes"},
453         [RLIMIT_CORE] = {"Max core file size", "bytes"},
454         [RLIMIT_RSS] = {"Max resident set", "bytes"},
455         [RLIMIT_NPROC] = {"Max processes", "processes"},
456         [RLIMIT_NOFILE] = {"Max open files", "files"},
457         [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
458         [RLIMIT_AS] = {"Max address space", "bytes"},
459         [RLIMIT_LOCKS] = {"Max file locks", "locks"},
460         [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
461         [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
462         [RLIMIT_NICE] = {"Max nice priority", NULL},
463         [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
464         [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
465 };
466
467 /* Display limits for a process */
468 static int proc_pid_limits(struct task_struct *task, char *buffer)
469 {
470         unsigned int i;
471         int count = 0;
472         unsigned long flags;
473         char *bufptr = buffer;
474
475         struct rlimit rlim[RLIM_NLIMITS];
476
477         if (!lock_task_sighand(task, &flags))
478                 return 0;
479         memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480         unlock_task_sighand(task, &flags);
481
482         /*
483          * print the file header
484          */
485         count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486                         "Limit", "Soft Limit", "Hard Limit", "Units");
487
488         for (i = 0; i < RLIM_NLIMITS; i++) {
489                 if (rlim[i].rlim_cur == RLIM_INFINITY)
490                         count += sprintf(&bufptr[count], "%-25s %-20s ",
491                                          lnames[i].name, "unlimited");
492                 else
493                         count += sprintf(&bufptr[count], "%-25s %-20lu ",
494                                          lnames[i].name, rlim[i].rlim_cur);
495
496                 if (rlim[i].rlim_max == RLIM_INFINITY)
497                         count += sprintf(&bufptr[count], "%-20s ", "unlimited");
498                 else
499                         count += sprintf(&bufptr[count], "%-20lu ",
500                                          rlim[i].rlim_max);
501
502                 if (lnames[i].unit)
503                         count += sprintf(&bufptr[count], "%-10s\n",
504                                          lnames[i].unit);
505                 else
506                         count += sprintf(&bufptr[count], "\n");
507         }
508
509         return count;
510 }
511
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
514 {
515         long nr;
516         unsigned long args[6], sp, pc;
517
518         if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
519                 return sprintf(buffer, "running\n");
520
521         if (nr < 0)
522                 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
523
524         return sprintf(buffer,
525                        "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
526                        nr,
527                        args[0], args[1], args[2], args[3], args[4], args[5],
528                        sp, pc);
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
531
532 /************************************************************************/
533 /*                       Here the fs part begins                        */
534 /************************************************************************/
535
536 /* permission checks */
537 static int proc_fd_access_allowed(struct inode *inode)
538 {
539         struct task_struct *task;
540         int allowed = 0;
541         /* Allow access to a task's file descriptors if it is us or we
542          * may use ptrace attach to the process and find out that
543          * information.
544          */
545         task = get_proc_task(inode);
546         if (task) {
547                 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
548                 put_task_struct(task);
549         }
550         return allowed;
551 }
552
553 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
554 {
555         int error;
556         struct inode *inode = dentry->d_inode;
557
558         if (attr->ia_valid & ATTR_MODE)
559                 return -EPERM;
560
561         error = inode_change_ok(inode, attr);
562         if (error)
563                 return error;
564
565         if ((attr->ia_valid & ATTR_SIZE) &&
566             attr->ia_size != i_size_read(inode)) {
567                 error = vmtruncate(inode, attr->ia_size);
568                 if (error)
569                         return error;
570         }
571
572         setattr_copy(inode, attr);
573         mark_inode_dirty(inode);
574         return 0;
575 }
576
577 static const struct inode_operations proc_def_inode_operations = {
578         .setattr        = proc_setattr,
579 };
580
581 static int mounts_open_common(struct inode *inode, struct file *file,
582                               const struct seq_operations *op)
583 {
584         struct task_struct *task = get_proc_task(inode);
585         struct nsproxy *nsp;
586         struct mnt_namespace *ns = NULL;
587         struct path root;
588         struct proc_mounts *p;
589         int ret = -EINVAL;
590
591         if (task) {
592                 rcu_read_lock();
593                 nsp = task_nsproxy(task);
594                 if (nsp) {
595                         ns = nsp->mnt_ns;
596                         if (ns)
597                                 get_mnt_ns(ns);
598                 }
599                 rcu_read_unlock();
600                 if (ns && get_task_root(task, &root) == 0)
601                         ret = 0;
602                 put_task_struct(task);
603         }
604
605         if (!ns)
606                 goto err;
607         if (ret)
608                 goto err_put_ns;
609
610         ret = -ENOMEM;
611         p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
612         if (!p)
613                 goto err_put_path;
614
615         file->private_data = &p->m;
616         ret = seq_open(file, op);
617         if (ret)
618                 goto err_free;
619
620         p->m.private = p;
621         p->ns = ns;
622         p->root = root;
623         p->event = ns->event;
624
625         return 0;
626
627  err_free:
628         kfree(p);
629  err_put_path:
630         path_put(&root);
631  err_put_ns:
632         put_mnt_ns(ns);
633  err:
634         return ret;
635 }
636
637 static int mounts_release(struct inode *inode, struct file *file)
638 {
639         struct proc_mounts *p = file->private_data;
640         path_put(&p->root);
641         put_mnt_ns(p->ns);
642         return seq_release(inode, file);
643 }
644
645 static unsigned mounts_poll(struct file *file, poll_table *wait)
646 {
647         struct proc_mounts *p = file->private_data;
648         unsigned res = POLLIN | POLLRDNORM;
649
650         poll_wait(file, &p->ns->poll, wait);
651         if (mnt_had_events(p))
652                 res |= POLLERR | POLLPRI;
653
654         return res;
655 }
656
657 static int mounts_open(struct inode *inode, struct file *file)
658 {
659         return mounts_open_common(inode, file, &mounts_op);
660 }
661
662 static const struct file_operations proc_mounts_operations = {
663         .open           = mounts_open,
664         .read           = seq_read,
665         .llseek         = seq_lseek,
666         .release        = mounts_release,
667         .poll           = mounts_poll,
668 };
669
670 static int mountinfo_open(struct inode *inode, struct file *file)
671 {
672         return mounts_open_common(inode, file, &mountinfo_op);
673 }
674
675 static const struct file_operations proc_mountinfo_operations = {
676         .open           = mountinfo_open,
677         .read           = seq_read,
678         .llseek         = seq_lseek,
679         .release        = mounts_release,
680         .poll           = mounts_poll,
681 };
682
683 static int mountstats_open(struct inode *inode, struct file *file)
684 {
685         return mounts_open_common(inode, file, &mountstats_op);
686 }
687
688 static const struct file_operations proc_mountstats_operations = {
689         .open           = mountstats_open,
690         .read           = seq_read,
691         .llseek         = seq_lseek,
692         .release        = mounts_release,
693 };
694
695 #define PROC_BLOCK_SIZE (3*1024)                /* 4K page size but our output routines use some slack for overruns */
696
697 static ssize_t proc_info_read(struct file * file, char __user * buf,
698                           size_t count, loff_t *ppos)
699 {
700         struct inode * inode = file->f_path.dentry->d_inode;
701         unsigned long page;
702         ssize_t length;
703         struct task_struct *task = get_proc_task(inode);
704
705         length = -ESRCH;
706         if (!task)
707                 goto out_no_task;
708
709         if (count > PROC_BLOCK_SIZE)
710                 count = PROC_BLOCK_SIZE;
711
712         length = -ENOMEM;
713         if (!(page = __get_free_page(GFP_TEMPORARY)))
714                 goto out;
715
716         length = PROC_I(inode)->op.proc_read(task, (char*)page);
717
718         if (length >= 0)
719                 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
720         free_page(page);
721 out:
722         put_task_struct(task);
723 out_no_task:
724         return length;
725 }
726
727 static const struct file_operations proc_info_file_operations = {
728         .read           = proc_info_read,
729         .llseek         = generic_file_llseek,
730 };
731
732 static int proc_single_show(struct seq_file *m, void *v)
733 {
734         struct inode *inode = m->private;
735         struct pid_namespace *ns;
736         struct pid *pid;
737         struct task_struct *task;
738         int ret;
739
740         ns = inode->i_sb->s_fs_info;
741         pid = proc_pid(inode);
742         task = get_pid_task(pid, PIDTYPE_PID);
743         if (!task)
744                 return -ESRCH;
745
746         ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
747
748         put_task_struct(task);
749         return ret;
750 }
751
752 static int proc_single_open(struct inode *inode, struct file *filp)
753 {
754         int ret;
755         ret = single_open(filp, proc_single_show, NULL);
756         if (!ret) {
757                 struct seq_file *m = filp->private_data;
758
759                 m->private = inode;
760         }
761         return ret;
762 }
763
764 static const struct file_operations proc_single_file_operations = {
765         .open           = proc_single_open,
766         .read           = seq_read,
767         .llseek         = seq_lseek,
768         .release        = single_release,
769 };
770
771 static int mem_open(struct inode* inode, struct file* file)
772 {
773         file->private_data = (void*)((long)current->self_exec_id);
774         /* OK to pass negative loff_t, we can catch out-of-range */
775         file->f_mode |= FMODE_UNSIGNED_OFFSET;
776         return 0;
777 }
778
779 static ssize_t mem_read(struct file * file, char __user * buf,
780                         size_t count, loff_t *ppos)
781 {
782         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
783         char *page;
784         unsigned long src = *ppos;
785         int ret = -ESRCH;
786         struct mm_struct *mm;
787
788         if (!task)
789                 goto out_no_task;
790
791         if (check_mem_permission(task))
792                 goto out;
793
794         ret = -ENOMEM;
795         page = (char *)__get_free_page(GFP_TEMPORARY);
796         if (!page)
797                 goto out;
798
799         ret = 0;
800  
801         mm = get_task_mm(task);
802         if (!mm)
803                 goto out_free;
804
805         ret = -EIO;
806  
807         if (file->private_data != (void*)((long)current->self_exec_id))
808                 goto out_put;
809
810         ret = 0;
811  
812         while (count > 0) {
813                 int this_len, retval;
814
815                 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
816                 retval = access_process_vm(task, src, page, this_len, 0);
817                 if (!retval || check_mem_permission(task)) {
818                         if (!ret)
819                                 ret = -EIO;
820                         break;
821                 }
822
823                 if (copy_to_user(buf, page, retval)) {
824                         ret = -EFAULT;
825                         break;
826                 }
827  
828                 ret += retval;
829                 src += retval;
830                 buf += retval;
831                 count -= retval;
832         }
833         *ppos = src;
834
835 out_put:
836         mmput(mm);
837 out_free:
838         free_page((unsigned long) page);
839 out:
840         put_task_struct(task);
841 out_no_task:
842         return ret;
843 }
844
845 #define mem_write NULL
846
847 #ifndef mem_write
848 /* This is a security hazard */
849 static ssize_t mem_write(struct file * file, const char __user *buf,
850                          size_t count, loff_t *ppos)
851 {
852         int copied;
853         char *page;
854         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
855         unsigned long dst = *ppos;
856
857         copied = -ESRCH;
858         if (!task)
859                 goto out_no_task;
860
861         if (check_mem_permission(task))
862                 goto out;
863
864         copied = -ENOMEM;
865         page = (char *)__get_free_page(GFP_TEMPORARY);
866         if (!page)
867                 goto out;
868
869         copied = 0;
870         while (count > 0) {
871                 int this_len, retval;
872
873                 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
874                 if (copy_from_user(page, buf, this_len)) {
875                         copied = -EFAULT;
876                         break;
877                 }
878                 retval = access_process_vm(task, dst, page, this_len, 1);
879                 if (!retval) {
880                         if (!copied)
881                                 copied = -EIO;
882                         break;
883                 }
884                 copied += retval;
885                 buf += retval;
886                 dst += retval;
887                 count -= retval;                        
888         }
889         *ppos = dst;
890         free_page((unsigned long) page);
891 out:
892         put_task_struct(task);
893 out_no_task:
894         return copied;
895 }
896 #endif
897
898 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
899 {
900         switch (orig) {
901         case 0:
902                 file->f_pos = offset;
903                 break;
904         case 1:
905                 file->f_pos += offset;
906                 break;
907         default:
908                 return -EINVAL;
909         }
910         force_successful_syscall_return();
911         return file->f_pos;
912 }
913
914 static const struct file_operations proc_mem_operations = {
915         .llseek         = mem_lseek,
916         .read           = mem_read,
917         .write          = mem_write,
918         .open           = mem_open,
919 };
920
921 static ssize_t environ_read(struct file *file, char __user *buf,
922                         size_t count, loff_t *ppos)
923 {
924         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
925         char *page;
926         unsigned long src = *ppos;
927         int ret = -ESRCH;
928         struct mm_struct *mm;
929
930         if (!task)
931                 goto out_no_task;
932
933         if (!ptrace_may_access(task, PTRACE_MODE_READ))
934                 goto out;
935
936         ret = -ENOMEM;
937         page = (char *)__get_free_page(GFP_TEMPORARY);
938         if (!page)
939                 goto out;
940
941         ret = 0;
942
943         mm = get_task_mm(task);
944         if (!mm)
945                 goto out_free;
946
947         while (count > 0) {
948                 int this_len, retval, max_len;
949
950                 this_len = mm->env_end - (mm->env_start + src);
951
952                 if (this_len <= 0)
953                         break;
954
955                 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
956                 this_len = (this_len > max_len) ? max_len : this_len;
957
958                 retval = access_process_vm(task, (mm->env_start + src),
959                         page, this_len, 0);
960
961                 if (retval <= 0) {
962                         ret = retval;
963                         break;
964                 }
965
966                 if (copy_to_user(buf, page, retval)) {
967                         ret = -EFAULT;
968                         break;
969                 }
970
971                 ret += retval;
972                 src += retval;
973                 buf += retval;
974                 count -= retval;
975         }
976         *ppos = src;
977
978         mmput(mm);
979 out_free:
980         free_page((unsigned long) page);
981 out:
982         put_task_struct(task);
983 out_no_task:
984         return ret;
985 }
986
987 static const struct file_operations proc_environ_operations = {
988         .read           = environ_read,
989         .llseek         = generic_file_llseek,
990 };
991
992 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
993                                 size_t count, loff_t *ppos)
994 {
995         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
996         char buffer[PROC_NUMBUF];
997         size_t len;
998         int oom_adjust = OOM_DISABLE;
999         unsigned long flags;
1000
1001         if (!task)
1002                 return -ESRCH;
1003
1004         if (lock_task_sighand(task, &flags)) {
1005                 oom_adjust = task->signal->oom_adj;
1006                 unlock_task_sighand(task, &flags);
1007         }
1008
1009         put_task_struct(task);
1010
1011         len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1012
1013         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1014 }
1015
1016 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1017                                 size_t count, loff_t *ppos)
1018 {
1019         struct task_struct *task;
1020         char buffer[PROC_NUMBUF];
1021         long oom_adjust;
1022         unsigned long flags;
1023         int err;
1024
1025         memset(buffer, 0, sizeof(buffer));
1026         if (count > sizeof(buffer) - 1)
1027                 count = sizeof(buffer) - 1;
1028         if (copy_from_user(buffer, buf, count)) {
1029                 err = -EFAULT;
1030                 goto out;
1031         }
1032
1033         err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1034         if (err)
1035                 goto out;
1036         if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1037              oom_adjust != OOM_DISABLE) {
1038                 err = -EINVAL;
1039                 goto out;
1040         }
1041
1042         task = get_proc_task(file->f_path.dentry->d_inode);
1043         if (!task) {
1044                 err = -ESRCH;
1045                 goto out;
1046         }
1047
1048         task_lock(task);
1049         if (!task->mm) {
1050                 err = -EINVAL;
1051                 goto err_task_lock;
1052         }
1053
1054         if (!lock_task_sighand(task, &flags)) {
1055                 err = -ESRCH;
1056                 goto err_task_lock;
1057         }
1058
1059         if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1060                 err = -EACCES;
1061                 goto err_sighand;
1062         }
1063
1064         if (oom_adjust != task->signal->oom_adj) {
1065                 if (oom_adjust == OOM_DISABLE)
1066                         atomic_inc(&task->mm->oom_disable_count);
1067                 if (task->signal->oom_adj == OOM_DISABLE)
1068                         atomic_dec(&task->mm->oom_disable_count);
1069         }
1070
1071         /*
1072          * Warn that /proc/pid/oom_adj is deprecated, see
1073          * Documentation/feature-removal-schedule.txt.
1074          */
1075         printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1076                         "please use /proc/%d/oom_score_adj instead.\n",
1077                         current->comm, task_pid_nr(current),
1078                         task_pid_nr(task), task_pid_nr(task));
1079         task->signal->oom_adj = oom_adjust;
1080         /*
1081          * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1082          * value is always attainable.
1083          */
1084         if (task->signal->oom_adj == OOM_ADJUST_MAX)
1085                 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1086         else
1087                 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1088                                                                 -OOM_DISABLE;
1089 err_sighand:
1090         unlock_task_sighand(task, &flags);
1091 err_task_lock:
1092         task_unlock(task);
1093         put_task_struct(task);
1094 out:
1095         return err < 0 ? err : count;
1096 }
1097
1098 static const struct file_operations proc_oom_adjust_operations = {
1099         .read           = oom_adjust_read,
1100         .write          = oom_adjust_write,
1101         .llseek         = generic_file_llseek,
1102 };
1103
1104 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1105                                         size_t count, loff_t *ppos)
1106 {
1107         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1108         char buffer[PROC_NUMBUF];
1109         int oom_score_adj = OOM_SCORE_ADJ_MIN;
1110         unsigned long flags;
1111         size_t len;
1112
1113         if (!task)
1114                 return -ESRCH;
1115         if (lock_task_sighand(task, &flags)) {
1116                 oom_score_adj = task->signal->oom_score_adj;
1117                 unlock_task_sighand(task, &flags);
1118         }
1119         put_task_struct(task);
1120         len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1121         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1122 }
1123
1124 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1125                                         size_t count, loff_t *ppos)
1126 {
1127         struct task_struct *task;
1128         char buffer[PROC_NUMBUF];
1129         unsigned long flags;
1130         long oom_score_adj;
1131         int err;
1132
1133         memset(buffer, 0, sizeof(buffer));
1134         if (count > sizeof(buffer) - 1)
1135                 count = sizeof(buffer) - 1;
1136         if (copy_from_user(buffer, buf, count)) {
1137                 err = -EFAULT;
1138                 goto out;
1139         }
1140
1141         err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
1142         if (err)
1143                 goto out;
1144         if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1145                         oom_score_adj > OOM_SCORE_ADJ_MAX) {
1146                 err = -EINVAL;
1147                 goto out;
1148         }
1149
1150         task = get_proc_task(file->f_path.dentry->d_inode);
1151         if (!task) {
1152                 err = -ESRCH;
1153                 goto out;
1154         }
1155
1156         task_lock(task);
1157         if (!task->mm) {
1158                 err = -EINVAL;
1159                 goto err_task_lock;
1160         }
1161
1162         if (!lock_task_sighand(task, &flags)) {
1163                 err = -ESRCH;
1164                 goto err_task_lock;
1165         }
1166
1167         if (oom_score_adj < task->signal->oom_score_adj &&
1168                         !capable(CAP_SYS_RESOURCE)) {
1169                 err = -EACCES;
1170                 goto err_sighand;
1171         }
1172
1173         if (oom_score_adj != task->signal->oom_score_adj) {
1174                 if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1175                         atomic_inc(&task->mm->oom_disable_count);
1176                 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1177                         atomic_dec(&task->mm->oom_disable_count);
1178         }
1179         task->signal->oom_score_adj = oom_score_adj;
1180         /*
1181          * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1182          * always attainable.
1183          */
1184         if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1185                 task->signal->oom_adj = OOM_DISABLE;
1186         else
1187                 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1188                                                         OOM_SCORE_ADJ_MAX;
1189 err_sighand:
1190         unlock_task_sighand(task, &flags);
1191 err_task_lock:
1192         task_unlock(task);
1193         put_task_struct(task);
1194 out:
1195         return err < 0 ? err : count;
1196 }
1197
1198 static const struct file_operations proc_oom_score_adj_operations = {
1199         .read           = oom_score_adj_read,
1200         .write          = oom_score_adj_write,
1201         .llseek         = default_llseek,
1202 };
1203
1204 #ifdef CONFIG_AUDITSYSCALL
1205 #define TMPBUFLEN 21
1206 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1207                                   size_t count, loff_t *ppos)
1208 {
1209         struct inode * inode = file->f_path.dentry->d_inode;
1210         struct task_struct *task = get_proc_task(inode);
1211         ssize_t length;
1212         char tmpbuf[TMPBUFLEN];
1213
1214         if (!task)
1215                 return -ESRCH;
1216         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1217                                 audit_get_loginuid(task));
1218         put_task_struct(task);
1219         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1220 }
1221
1222 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1223                                    size_t count, loff_t *ppos)
1224 {
1225         struct inode * inode = file->f_path.dentry->d_inode;
1226         char *page, *tmp;
1227         ssize_t length;
1228         uid_t loginuid;
1229
1230         if (!capable(CAP_AUDIT_CONTROL))
1231                 return -EPERM;
1232
1233         rcu_read_lock();
1234         if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1235                 rcu_read_unlock();
1236                 return -EPERM;
1237         }
1238         rcu_read_unlock();
1239
1240         if (count >= PAGE_SIZE)
1241                 count = PAGE_SIZE - 1;
1242
1243         if (*ppos != 0) {
1244                 /* No partial writes. */
1245                 return -EINVAL;
1246         }
1247         page = (char*)__get_free_page(GFP_TEMPORARY);
1248         if (!page)
1249                 return -ENOMEM;
1250         length = -EFAULT;
1251         if (copy_from_user(page, buf, count))
1252                 goto out_free_page;
1253
1254         page[count] = '\0';
1255         loginuid = simple_strtoul(page, &tmp, 10);
1256         if (tmp == page) {
1257                 length = -EINVAL;
1258                 goto out_free_page;
1259
1260         }
1261         length = audit_set_loginuid(current, loginuid);
1262         if (likely(length == 0))
1263                 length = count;
1264
1265 out_free_page:
1266         free_page((unsigned long) page);
1267         return length;
1268 }
1269
1270 static const struct file_operations proc_loginuid_operations = {
1271         .read           = proc_loginuid_read,
1272         .write          = proc_loginuid_write,
1273         .llseek         = generic_file_llseek,
1274 };
1275
1276 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1277                                   size_t count, loff_t *ppos)
1278 {
1279         struct inode * inode = file->f_path.dentry->d_inode;
1280         struct task_struct *task = get_proc_task(inode);
1281         ssize_t length;
1282         char tmpbuf[TMPBUFLEN];
1283
1284         if (!task)
1285                 return -ESRCH;
1286         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1287                                 audit_get_sessionid(task));
1288         put_task_struct(task);
1289         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1290 }
1291
1292 static const struct file_operations proc_sessionid_operations = {
1293         .read           = proc_sessionid_read,
1294         .llseek         = generic_file_llseek,
1295 };
1296 #endif
1297
1298 #ifdef CONFIG_FAULT_INJECTION
1299 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1300                                       size_t count, loff_t *ppos)
1301 {
1302         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1303         char buffer[PROC_NUMBUF];
1304         size_t len;
1305         int make_it_fail;
1306
1307         if (!task)
1308                 return -ESRCH;
1309         make_it_fail = task->make_it_fail;
1310         put_task_struct(task);
1311
1312         len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1313
1314         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1315 }
1316
1317 static ssize_t proc_fault_inject_write(struct file * file,
1318                         const char __user * buf, size_t count, loff_t *ppos)
1319 {
1320         struct task_struct *task;
1321         char buffer[PROC_NUMBUF], *end;
1322         int make_it_fail;
1323
1324         if (!capable(CAP_SYS_RESOURCE))
1325                 return -EPERM;
1326         memset(buffer, 0, sizeof(buffer));
1327         if (count > sizeof(buffer) - 1)
1328                 count = sizeof(buffer) - 1;
1329         if (copy_from_user(buffer, buf, count))
1330                 return -EFAULT;
1331         make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1332         if (*end)
1333                 return -EINVAL;
1334         task = get_proc_task(file->f_dentry->d_inode);
1335         if (!task)
1336                 return -ESRCH;
1337         task->make_it_fail = make_it_fail;
1338         put_task_struct(task);
1339
1340         return count;
1341 }
1342
1343 static const struct file_operations proc_fault_inject_operations = {
1344         .read           = proc_fault_inject_read,
1345         .write          = proc_fault_inject_write,
1346         .llseek         = generic_file_llseek,
1347 };
1348 #endif
1349
1350
1351 #ifdef CONFIG_SCHED_DEBUG
1352 /*
1353  * Print out various scheduling related per-task fields:
1354  */
1355 static int sched_show(struct seq_file *m, void *v)
1356 {
1357         struct inode *inode = m->private;
1358         struct task_struct *p;
1359
1360         p = get_proc_task(inode);
1361         if (!p)
1362                 return -ESRCH;
1363         proc_sched_show_task(p, m);
1364
1365         put_task_struct(p);
1366
1367         return 0;
1368 }
1369
1370 static ssize_t
1371 sched_write(struct file *file, const char __user *buf,
1372             size_t count, loff_t *offset)
1373 {
1374         struct inode *inode = file->f_path.dentry->d_inode;
1375         struct task_struct *p;
1376
1377         p = get_proc_task(inode);
1378         if (!p)
1379                 return -ESRCH;
1380         proc_sched_set_task(p);
1381
1382         put_task_struct(p);
1383
1384         return count;
1385 }
1386
1387 static int sched_open(struct inode *inode, struct file *filp)
1388 {
1389         int ret;
1390
1391         ret = single_open(filp, sched_show, NULL);
1392         if (!ret) {
1393                 struct seq_file *m = filp->private_data;
1394
1395                 m->private = inode;
1396         }
1397         return ret;
1398 }
1399
1400 static const struct file_operations proc_pid_sched_operations = {
1401         .open           = sched_open,
1402         .read           = seq_read,
1403         .write          = sched_write,
1404         .llseek         = seq_lseek,
1405         .release        = single_release,
1406 };
1407
1408 #endif
1409
1410 static ssize_t comm_write(struct file *file, const char __user *buf,
1411                                 size_t count, loff_t *offset)
1412 {
1413         struct inode *inode = file->f_path.dentry->d_inode;
1414         struct task_struct *p;
1415         char buffer[TASK_COMM_LEN];
1416
1417         memset(buffer, 0, sizeof(buffer));
1418         if (count > sizeof(buffer) - 1)
1419                 count = sizeof(buffer) - 1;
1420         if (copy_from_user(buffer, buf, count))
1421                 return -EFAULT;
1422
1423         p = get_proc_task(inode);
1424         if (!p)
1425                 return -ESRCH;
1426
1427         if (same_thread_group(current, p))
1428                 set_task_comm(p, buffer);
1429         else
1430                 count = -EINVAL;
1431
1432         put_task_struct(p);
1433
1434         return count;
1435 }
1436
1437 static int comm_show(struct seq_file *m, void *v)
1438 {
1439         struct inode *inode = m->private;
1440         struct task_struct *p;
1441
1442         p = get_proc_task(inode);
1443         if (!p)
1444                 return -ESRCH;
1445
1446         task_lock(p);
1447         seq_printf(m, "%s\n", p->comm);
1448         task_unlock(p);
1449
1450         put_task_struct(p);
1451
1452         return 0;
1453 }
1454
1455 static int comm_open(struct inode *inode, struct file *filp)
1456 {
1457         int ret;
1458
1459         ret = single_open(filp, comm_show, NULL);
1460         if (!ret) {
1461                 struct seq_file *m = filp->private_data;
1462
1463                 m->private = inode;
1464         }
1465         return ret;
1466 }
1467
1468 static const struct file_operations proc_pid_set_comm_operations = {
1469         .open           = comm_open,
1470         .read           = seq_read,
1471         .write          = comm_write,
1472         .llseek         = seq_lseek,
1473         .release        = single_release,
1474 };
1475
1476 /*
1477  * We added or removed a vma mapping the executable. The vmas are only mapped
1478  * during exec and are not mapped with the mmap system call.
1479  * Callers must hold down_write() on the mm's mmap_sem for these
1480  */
1481 void added_exe_file_vma(struct mm_struct *mm)
1482 {
1483         mm->num_exe_file_vmas++;
1484 }
1485
1486 void removed_exe_file_vma(struct mm_struct *mm)
1487 {
1488         mm->num_exe_file_vmas--;
1489         if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1490                 fput(mm->exe_file);
1491                 mm->exe_file = NULL;
1492         }
1493
1494 }
1495
1496 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1497 {
1498         if (new_exe_file)
1499                 get_file(new_exe_file);
1500         if (mm->exe_file)
1501                 fput(mm->exe_file);
1502         mm->exe_file = new_exe_file;
1503         mm->num_exe_file_vmas = 0;
1504 }
1505
1506 struct file *get_mm_exe_file(struct mm_struct *mm)
1507 {
1508         struct file *exe_file;
1509
1510         /* We need mmap_sem to protect against races with removal of
1511          * VM_EXECUTABLE vmas */
1512         down_read(&mm->mmap_sem);
1513         exe_file = mm->exe_file;
1514         if (exe_file)
1515                 get_file(exe_file);
1516         up_read(&mm->mmap_sem);
1517         return exe_file;
1518 }
1519
1520 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1521 {
1522         /* It's safe to write the exe_file pointer without exe_file_lock because
1523          * this is called during fork when the task is not yet in /proc */
1524         newmm->exe_file = get_mm_exe_file(oldmm);
1525 }
1526
1527 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1528 {
1529         struct task_struct *task;
1530         struct mm_struct *mm;
1531         struct file *exe_file;
1532
1533         task = get_proc_task(inode);
1534         if (!task)
1535                 return -ENOENT;
1536         mm = get_task_mm(task);
1537         put_task_struct(task);
1538         if (!mm)
1539                 return -ENOENT;
1540         exe_file = get_mm_exe_file(mm);
1541         mmput(mm);
1542         if (exe_file) {
1543                 *exe_path = exe_file->f_path;
1544                 path_get(&exe_file->f_path);
1545                 fput(exe_file);
1546                 return 0;
1547         } else
1548                 return -ENOENT;
1549 }
1550
1551 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1552 {
1553         struct inode *inode = dentry->d_inode;
1554         int error = -EACCES;
1555
1556         /* We don't need a base pointer in the /proc filesystem */
1557         path_put(&nd->path);
1558
1559         /* Are we allowed to snoop on the tasks file descriptors? */
1560         if (!proc_fd_access_allowed(inode))
1561                 goto out;
1562
1563         error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1564 out:
1565         return ERR_PTR(error);
1566 }
1567
1568 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1569 {
1570         char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1571         char *pathname;
1572         int len;
1573
1574         if (!tmp)
1575                 return -ENOMEM;
1576
1577         pathname = d_path_with_unreachable(path, tmp, PAGE_SIZE);
1578         len = PTR_ERR(pathname);
1579         if (IS_ERR(pathname))
1580                 goto out;
1581         len = tmp + PAGE_SIZE - 1 - pathname;
1582
1583         if (len > buflen)
1584                 len = buflen;
1585         if (copy_to_user(buffer, pathname, len))
1586                 len = -EFAULT;
1587  out:
1588         free_page((unsigned long)tmp);
1589         return len;
1590 }
1591
1592 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1593 {
1594         int error = -EACCES;
1595         struct inode *inode = dentry->d_inode;
1596         struct path path;
1597
1598         /* Are we allowed to snoop on the tasks file descriptors? */
1599         if (!proc_fd_access_allowed(inode))
1600                 goto out;
1601
1602         error = PROC_I(inode)->op.proc_get_link(inode, &path);
1603         if (error)
1604                 goto out;
1605
1606         error = do_proc_readlink(&path, buffer, buflen);
1607         path_put(&path);
1608 out:
1609         return error;
1610 }
1611
1612 static const struct inode_operations proc_pid_link_inode_operations = {
1613         .readlink       = proc_pid_readlink,
1614         .follow_link    = proc_pid_follow_link,
1615         .setattr        = proc_setattr,
1616 };
1617
1618
1619 /* building an inode */
1620
1621 static int task_dumpable(struct task_struct *task)
1622 {
1623         int dumpable = 0;
1624         struct mm_struct *mm;
1625
1626         task_lock(task);
1627         mm = task->mm;
1628         if (mm)
1629                 dumpable = get_dumpable(mm);
1630         task_unlock(task);
1631         if(dumpable == 1)
1632                 return 1;
1633         return 0;
1634 }
1635
1636
1637 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1638 {
1639         struct inode * inode;
1640         struct proc_inode *ei;
1641         const struct cred *cred;
1642
1643         /* We need a new inode */
1644
1645         inode = new_inode(sb);
1646         if (!inode)
1647                 goto out;
1648
1649         /* Common stuff */
1650         ei = PROC_I(inode);
1651         inode->i_ino = get_next_ino();
1652         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1653         inode->i_op = &proc_def_inode_operations;
1654
1655         /*
1656          * grab the reference to task.
1657          */
1658         ei->pid = get_task_pid(task, PIDTYPE_PID);
1659         if (!ei->pid)
1660                 goto out_unlock;
1661
1662         if (task_dumpable(task)) {
1663                 rcu_read_lock();
1664                 cred = __task_cred(task);
1665                 inode->i_uid = cred->euid;
1666                 inode->i_gid = cred->egid;
1667                 rcu_read_unlock();
1668         }
1669         security_task_to_inode(task, inode);
1670
1671 out:
1672         return inode;
1673
1674 out_unlock:
1675         iput(inode);
1676         return NULL;
1677 }
1678
1679 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1680 {
1681         struct inode *inode = dentry->d_inode;
1682         struct task_struct *task;
1683         const struct cred *cred;
1684
1685         generic_fillattr(inode, stat);
1686
1687         rcu_read_lock();
1688         stat->uid = 0;
1689         stat->gid = 0;
1690         task = pid_task(proc_pid(inode), PIDTYPE_PID);
1691         if (task) {
1692                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1693                     task_dumpable(task)) {
1694                         cred = __task_cred(task);
1695                         stat->uid = cred->euid;
1696                         stat->gid = cred->egid;
1697                 }
1698         }
1699         rcu_read_unlock();
1700         return 0;
1701 }
1702
1703 /* dentry stuff */
1704
1705 /*
1706  *      Exceptional case: normally we are not allowed to unhash a busy
1707  * directory. In this case, however, we can do it - no aliasing problems
1708  * due to the way we treat inodes.
1709  *
1710  * Rewrite the inode's ownerships here because the owning task may have
1711  * performed a setuid(), etc.
1712  *
1713  * Before the /proc/pid/status file was created the only way to read
1714  * the effective uid of a /process was to stat /proc/pid.  Reading
1715  * /proc/pid/status is slow enough that procps and other packages
1716  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1717  * made this apply to all per process world readable and executable
1718  * directories.
1719  */
1720 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1721 {
1722         struct inode *inode = dentry->d_inode;
1723         struct task_struct *task = get_proc_task(inode);
1724         const struct cred *cred;
1725
1726         if (task) {
1727                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1728                     task_dumpable(task)) {
1729                         rcu_read_lock();
1730                         cred = __task_cred(task);
1731                         inode->i_uid = cred->euid;
1732                         inode->i_gid = cred->egid;
1733                         rcu_read_unlock();
1734                 } else {
1735                         inode->i_uid = 0;
1736                         inode->i_gid = 0;
1737                 }
1738                 inode->i_mode &= ~(S_ISUID | S_ISGID);
1739                 security_task_to_inode(task, inode);
1740                 put_task_struct(task);
1741                 return 1;
1742         }
1743         d_drop(dentry);
1744         return 0;
1745 }
1746
1747 static int pid_delete_dentry(struct dentry * dentry)
1748 {
1749         /* Is the task we represent dead?
1750          * If so, then don't put the dentry on the lru list,
1751          * kill it immediately.
1752          */
1753         return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1754 }
1755
1756 static const struct dentry_operations pid_dentry_operations =
1757 {
1758         .d_revalidate   = pid_revalidate,
1759         .d_delete       = pid_delete_dentry,
1760 };
1761
1762 /* Lookups */
1763
1764 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1765                                 struct task_struct *, const void *);
1766
1767 /*
1768  * Fill a directory entry.
1769  *
1770  * If possible create the dcache entry and derive our inode number and
1771  * file type from dcache entry.
1772  *
1773  * Since all of the proc inode numbers are dynamically generated, the inode
1774  * numbers do not exist until the inode is cache.  This means creating the
1775  * the dcache entry in readdir is necessary to keep the inode numbers
1776  * reported by readdir in sync with the inode numbers reported
1777  * by stat.
1778  */
1779 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1780         char *name, int len,
1781         instantiate_t instantiate, struct task_struct *task, const void *ptr)
1782 {
1783         struct dentry *child, *dir = filp->f_path.dentry;
1784         struct inode *inode;
1785         struct qstr qname;
1786         ino_t ino = 0;
1787         unsigned type = DT_UNKNOWN;
1788
1789         qname.name = name;
1790         qname.len  = len;
1791         qname.hash = full_name_hash(name, len);
1792
1793         child = d_lookup(dir, &qname);
1794         if (!child) {
1795                 struct dentry *new;
1796                 new = d_alloc(dir, &qname);
1797                 if (new) {
1798                         child = instantiate(dir->d_inode, new, task, ptr);
1799                         if (child)
1800                                 dput(new);
1801                         else
1802                                 child = new;
1803                 }
1804         }
1805         if (!child || IS_ERR(child) || !child->d_inode)
1806                 goto end_instantiate;
1807         inode = child->d_inode;
1808         if (inode) {
1809                 ino = inode->i_ino;
1810                 type = inode->i_mode >> 12;
1811         }
1812         dput(child);
1813 end_instantiate:
1814         if (!ino)
1815                 ino = find_inode_number(dir, &qname);
1816         if (!ino)
1817                 ino = 1;
1818         return filldir(dirent, name, len, filp->f_pos, ino, type);
1819 }
1820
1821 static unsigned name_to_int(struct dentry *dentry)
1822 {
1823         const char *name = dentry->d_name.name;
1824         int len = dentry->d_name.len;
1825         unsigned n = 0;
1826
1827         if (len > 1 && *name == '0')
1828                 goto out;
1829         while (len-- > 0) {
1830                 unsigned c = *name++ - '0';
1831                 if (c > 9)
1832                         goto out;
1833                 if (n >= (~0U-9)/10)
1834                         goto out;
1835                 n *= 10;
1836                 n += c;
1837         }
1838         return n;
1839 out:
1840         return ~0U;
1841 }
1842
1843 #define PROC_FDINFO_MAX 64
1844
1845 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1846 {
1847         struct task_struct *task = get_proc_task(inode);
1848         struct files_struct *files = NULL;
1849         struct file *file;
1850         int fd = proc_fd(inode);
1851
1852         if (task) {
1853                 files = get_files_struct(task);
1854                 put_task_struct(task);
1855         }
1856         if (files) {
1857                 /*
1858                  * We are not taking a ref to the file structure, so we must
1859                  * hold ->file_lock.
1860                  */
1861                 spin_lock(&files->file_lock);
1862                 file = fcheck_files(files, fd);
1863                 if (file) {
1864                         if (path) {
1865                                 *path = file->f_path;
1866                                 path_get(&file->f_path);
1867                         }
1868                         if (info)
1869                                 snprintf(info, PROC_FDINFO_MAX,
1870                                          "pos:\t%lli\n"
1871                                          "flags:\t0%o\n",
1872                                          (long long) file->f_pos,
1873                                          file->f_flags);
1874                         spin_unlock(&files->file_lock);
1875                         put_files_struct(files);
1876                         return 0;
1877                 }
1878                 spin_unlock(&files->file_lock);
1879                 put_files_struct(files);
1880         }
1881         return -ENOENT;
1882 }
1883
1884 static int proc_fd_link(struct inode *inode, struct path *path)
1885 {
1886         return proc_fd_info(inode, path, NULL);
1887 }
1888
1889 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1890 {
1891         struct inode *inode = dentry->d_inode;
1892         struct task_struct *task = get_proc_task(inode);
1893         int fd = proc_fd(inode);
1894         struct files_struct *files;
1895         const struct cred *cred;
1896
1897         if (task) {
1898                 files = get_files_struct(task);
1899                 if (files) {
1900                         rcu_read_lock();
1901                         if (fcheck_files(files, fd)) {
1902                                 rcu_read_unlock();
1903                                 put_files_struct(files);
1904                                 if (task_dumpable(task)) {
1905                                         rcu_read_lock();
1906                                         cred = __task_cred(task);
1907                                         inode->i_uid = cred->euid;
1908                                         inode->i_gid = cred->egid;
1909                                         rcu_read_unlock();
1910                                 } else {
1911                                         inode->i_uid = 0;
1912                                         inode->i_gid = 0;
1913                                 }
1914                                 inode->i_mode &= ~(S_ISUID | S_ISGID);
1915                                 security_task_to_inode(task, inode);
1916                                 put_task_struct(task);
1917                                 return 1;
1918                         }
1919                         rcu_read_unlock();
1920                         put_files_struct(files);
1921                 }
1922                 put_task_struct(task);
1923         }
1924         d_drop(dentry);
1925         return 0;
1926 }
1927
1928 static const struct dentry_operations tid_fd_dentry_operations =
1929 {
1930         .d_revalidate   = tid_fd_revalidate,
1931         .d_delete       = pid_delete_dentry,
1932 };
1933
1934 static struct dentry *proc_fd_instantiate(struct inode *dir,
1935         struct dentry *dentry, struct task_struct *task, const void *ptr)
1936 {
1937         unsigned fd = *(const unsigned *)ptr;
1938         struct file *file;
1939         struct files_struct *files;
1940         struct inode *inode;
1941         struct proc_inode *ei;
1942         struct dentry *error = ERR_PTR(-ENOENT);
1943
1944         inode = proc_pid_make_inode(dir->i_sb, task);
1945         if (!inode)
1946                 goto out;
1947         ei = PROC_I(inode);
1948         ei->fd = fd;
1949         files = get_files_struct(task);
1950         if (!files)
1951                 goto out_iput;
1952         inode->i_mode = S_IFLNK;
1953
1954         /*
1955          * We are not taking a ref to the file structure, so we must
1956          * hold ->file_lock.
1957          */
1958         spin_lock(&files->file_lock);
1959         file = fcheck_files(files, fd);
1960         if (!file)
1961                 goto out_unlock;
1962         if (file->f_mode & FMODE_READ)
1963                 inode->i_mode |= S_IRUSR | S_IXUSR;
1964         if (file->f_mode & FMODE_WRITE)
1965                 inode->i_mode |= S_IWUSR | S_IXUSR;
1966         spin_unlock(&files->file_lock);
1967         put_files_struct(files);
1968
1969         inode->i_op = &proc_pid_link_inode_operations;
1970         inode->i_size = 64;
1971         ei->op.proc_get_link = proc_fd_link;
1972         dentry->d_op = &tid_fd_dentry_operations;
1973         d_add(dentry, inode);
1974         /* Close the race of the process dying before we return the dentry */
1975         if (tid_fd_revalidate(dentry, NULL))
1976                 error = NULL;
1977
1978  out:
1979         return error;
1980 out_unlock:
1981         spin_unlock(&files->file_lock);
1982         put_files_struct(files);
1983 out_iput:
1984         iput(inode);
1985         goto out;
1986 }
1987
1988 static struct dentry *proc_lookupfd_common(struct inode *dir,
1989                                            struct dentry *dentry,
1990                                            instantiate_t instantiate)
1991 {
1992         struct task_struct *task = get_proc_task(dir);
1993         unsigned fd = name_to_int(dentry);
1994         struct dentry *result = ERR_PTR(-ENOENT);
1995
1996         if (!task)
1997                 goto out_no_task;
1998         if (fd == ~0U)
1999                 goto out;
2000
2001         result = instantiate(dir, dentry, task, &fd);
2002 out:
2003         put_task_struct(task);
2004 out_no_task:
2005         return result;
2006 }
2007
2008 static int proc_readfd_common(struct file * filp, void * dirent,
2009                               filldir_t filldir, instantiate_t instantiate)
2010 {
2011         struct dentry *dentry = filp->f_path.dentry;
2012         struct inode *inode = dentry->d_inode;
2013         struct task_struct *p = get_proc_task(inode);
2014         unsigned int fd, ino;
2015         int retval;
2016         struct files_struct * files;
2017
2018         retval = -ENOENT;
2019         if (!p)
2020                 goto out_no_task;
2021         retval = 0;
2022
2023         fd = filp->f_pos;
2024         switch (fd) {
2025                 case 0:
2026                         if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2027                                 goto out;
2028                         filp->f_pos++;
2029                 case 1:
2030                         ino = parent_ino(dentry);
2031                         if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2032                                 goto out;
2033                         filp->f_pos++;
2034                 default:
2035                         files = get_files_struct(p);
2036                         if (!files)
2037                                 goto out;
2038                         rcu_read_lock();
2039                         for (fd = filp->f_pos-2;
2040                              fd < files_fdtable(files)->max_fds;
2041                              fd++, filp->f_pos++) {
2042                                 char name[PROC_NUMBUF];
2043                                 int len;
2044
2045                                 if (!fcheck_files(files, fd))
2046                                         continue;
2047                                 rcu_read_unlock();
2048
2049                                 len = snprintf(name, sizeof(name), "%d", fd);
2050                                 if (proc_fill_cache(filp, dirent, filldir,
2051                                                     name, len, instantiate,
2052                                                     p, &fd) < 0) {
2053                                         rcu_read_lock();
2054                                         break;
2055                                 }
2056                                 rcu_read_lock();
2057                         }
2058                         rcu_read_unlock();
2059                         put_files_struct(files);
2060         }
2061 out:
2062         put_task_struct(p);
2063 out_no_task:
2064         return retval;
2065 }
2066
2067 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2068                                     struct nameidata *nd)
2069 {
2070         return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2071 }
2072
2073 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2074 {
2075         return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2076 }
2077
2078 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2079                                       size_t len, loff_t *ppos)
2080 {
2081         char tmp[PROC_FDINFO_MAX];
2082         int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2083         if (!err)
2084                 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2085         return err;
2086 }
2087
2088 static const struct file_operations proc_fdinfo_file_operations = {
2089         .open           = nonseekable_open,
2090         .read           = proc_fdinfo_read,
2091         .llseek         = no_llseek,
2092 };
2093
2094 static const struct file_operations proc_fd_operations = {
2095         .read           = generic_read_dir,
2096         .readdir        = proc_readfd,
2097         .llseek         = default_llseek,
2098 };
2099
2100 /*
2101  * /proc/pid/fd needs a special permission handler so that a process can still
2102  * access /proc/self/fd after it has executed a setuid().
2103  */
2104 static int proc_fd_permission(struct inode *inode, int mask)
2105 {
2106         int rv;
2107
2108         rv = generic_permission(inode, mask, NULL);
2109         if (rv == 0)
2110                 return 0;
2111         if (task_pid(current) == proc_pid(inode))
2112                 rv = 0;
2113         return rv;
2114 }
2115
2116 /*
2117  * proc directories can do almost nothing..
2118  */
2119 static const struct inode_operations proc_fd_inode_operations = {
2120         .lookup         = proc_lookupfd,
2121         .permission     = proc_fd_permission,
2122         .setattr        = proc_setattr,
2123 };
2124
2125 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2126         struct dentry *dentry, struct task_struct *task, const void *ptr)
2127 {
2128         unsigned fd = *(unsigned *)ptr;
2129         struct inode *inode;
2130         struct proc_inode *ei;
2131         struct dentry *error = ERR_PTR(-ENOENT);
2132
2133         inode = proc_pid_make_inode(dir->i_sb, task);
2134         if (!inode)
2135                 goto out;
2136         ei = PROC_I(inode);
2137         ei->fd = fd;
2138         inode->i_mode = S_IFREG | S_IRUSR;
2139         inode->i_fop = &proc_fdinfo_file_operations;
2140         dentry->d_op = &tid_fd_dentry_operations;
2141         d_add(dentry, inode);
2142         /* Close the race of the process dying before we return the dentry */
2143         if (tid_fd_revalidate(dentry, NULL))
2144                 error = NULL;
2145
2146  out:
2147         return error;
2148 }
2149
2150 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2151                                         struct dentry *dentry,
2152                                         struct nameidata *nd)
2153 {
2154         return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2155 }
2156
2157 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2158 {
2159         return proc_readfd_common(filp, dirent, filldir,
2160                                   proc_fdinfo_instantiate);
2161 }
2162
2163 static const struct file_operations proc_fdinfo_operations = {
2164         .read           = generic_read_dir,
2165         .readdir        = proc_readfdinfo,
2166         .llseek         = default_llseek,
2167 };
2168
2169 /*
2170  * proc directories can do almost nothing..
2171  */
2172 static const struct inode_operations proc_fdinfo_inode_operations = {
2173         .lookup         = proc_lookupfdinfo,
2174         .setattr        = proc_setattr,
2175 };
2176
2177
2178 static struct dentry *proc_pident_instantiate(struct inode *dir,
2179         struct dentry *dentry, struct task_struct *task, const void *ptr)
2180 {
2181         const struct pid_entry *p = ptr;
2182         struct inode *inode;
2183         struct proc_inode *ei;
2184         struct dentry *error = ERR_PTR(-ENOENT);
2185
2186         inode = proc_pid_make_inode(dir->i_sb, task);
2187         if (!inode)
2188                 goto out;
2189
2190         ei = PROC_I(inode);
2191         inode->i_mode = p->mode;
2192         if (S_ISDIR(inode->i_mode))
2193                 inode->i_nlink = 2;     /* Use getattr to fix if necessary */
2194         if (p->iop)
2195                 inode->i_op = p->iop;
2196         if (p->fop)
2197                 inode->i_fop = p->fop;
2198         ei->op = p->op;
2199         dentry->d_op = &pid_dentry_operations;
2200         d_add(dentry, inode);
2201         /* Close the race of the process dying before we return the dentry */
2202         if (pid_revalidate(dentry, NULL))
2203                 error = NULL;
2204 out:
2205         return error;
2206 }
2207
2208 static struct dentry *proc_pident_lookup(struct inode *dir, 
2209                                          struct dentry *dentry,
2210                                          const struct pid_entry *ents,
2211                                          unsigned int nents)
2212 {
2213         struct dentry *error;
2214         struct task_struct *task = get_proc_task(dir);
2215         const struct pid_entry *p, *last;
2216
2217         error = ERR_PTR(-ENOENT);
2218
2219         if (!task)
2220                 goto out_no_task;
2221
2222         /*
2223          * Yes, it does not scale. And it should not. Don't add
2224          * new entries into /proc/<tgid>/ without very good reasons.
2225          */
2226         last = &ents[nents - 1];
2227         for (p = ents; p <= last; p++) {
2228                 if (p->len != dentry->d_name.len)
2229                         continue;
2230                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2231                         break;
2232         }
2233         if (p > last)
2234                 goto out;
2235
2236         error = proc_pident_instantiate(dir, dentry, task, p);
2237 out:
2238         put_task_struct(task);
2239 out_no_task:
2240         return error;
2241 }
2242
2243 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2244         filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2245 {
2246         return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2247                                 proc_pident_instantiate, task, p);
2248 }
2249
2250 static int proc_pident_readdir(struct file *filp,
2251                 void *dirent, filldir_t filldir,
2252                 const struct pid_entry *ents, unsigned int nents)
2253 {
2254         int i;
2255         struct dentry *dentry = filp->f_path.dentry;
2256         struct inode *inode = dentry->d_inode;
2257         struct task_struct *task = get_proc_task(inode);
2258         const struct pid_entry *p, *last;
2259         ino_t ino;
2260         int ret;
2261
2262         ret = -ENOENT;
2263         if (!task)
2264                 goto out_no_task;
2265
2266         ret = 0;
2267         i = filp->f_pos;
2268         switch (i) {
2269         case 0:
2270                 ino = inode->i_ino;
2271                 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2272                         goto out;
2273                 i++;
2274                 filp->f_pos++;
2275                 /* fall through */
2276         case 1:
2277                 ino = parent_ino(dentry);
2278                 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2279                         goto out;
2280                 i++;
2281                 filp->f_pos++;
2282                 /* fall through */
2283         default:
2284                 i -= 2;
2285                 if (i >= nents) {
2286                         ret = 1;
2287                         goto out;
2288                 }
2289                 p = ents + i;
2290                 last = &ents[nents - 1];
2291                 while (p <= last) {
2292                         if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2293                                 goto out;
2294                         filp->f_pos++;
2295                         p++;
2296                 }
2297         }
2298
2299         ret = 1;
2300 out:
2301         put_task_struct(task);
2302 out_no_task:
2303         return ret;
2304 }
2305
2306 #ifdef CONFIG_SECURITY
2307 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2308                                   size_t count, loff_t *ppos)
2309 {
2310         struct inode * inode = file->f_path.dentry->d_inode;
2311         char *p = NULL;
2312         ssize_t length;
2313         struct task_struct *task = get_proc_task(inode);
2314
2315         if (!task)
2316                 return -ESRCH;
2317
2318         length = security_getprocattr(task,
2319                                       (char*)file->f_path.dentry->d_name.name,
2320                                       &p);
2321         put_task_struct(task);
2322         if (length > 0)
2323                 length = simple_read_from_buffer(buf, count, ppos, p, length);
2324         kfree(p);
2325         return length;
2326 }
2327
2328 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2329                                    size_t count, loff_t *ppos)
2330 {
2331         struct inode * inode = file->f_path.dentry->d_inode;
2332         char *page;
2333         ssize_t length;
2334         struct task_struct *task = get_proc_task(inode);
2335
2336         length = -ESRCH;
2337         if (!task)
2338                 goto out_no_task;
2339         if (count > PAGE_SIZE)
2340                 count = PAGE_SIZE;
2341
2342         /* No partial writes. */
2343         length = -EINVAL;
2344         if (*ppos != 0)
2345                 goto out;
2346
2347         length = -ENOMEM;
2348         page = (char*)__get_free_page(GFP_TEMPORARY);
2349         if (!page)
2350                 goto out;
2351
2352         length = -EFAULT;
2353         if (copy_from_user(page, buf, count))
2354                 goto out_free;
2355
2356         /* Guard against adverse ptrace interaction */
2357         length = mutex_lock_interruptible(&task->cred_guard_mutex);
2358         if (length < 0)
2359                 goto out_free;
2360
2361         length = security_setprocattr(task,
2362                                       (char*)file->f_path.dentry->d_name.name,
2363                                       (void*)page, count);
2364         mutex_unlock(&task->cred_guard_mutex);
2365 out_free:
2366         free_page((unsigned long) page);
2367 out:
2368         put_task_struct(task);
2369 out_no_task:
2370         return length;
2371 }
2372
2373 static const struct file_operations proc_pid_attr_operations = {
2374         .read           = proc_pid_attr_read,
2375         .write          = proc_pid_attr_write,
2376         .llseek         = generic_file_llseek,
2377 };
2378
2379 static const struct pid_entry attr_dir_stuff[] = {
2380         REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2381         REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2382         REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2383         REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2384         REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2385         REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2386 };
2387
2388 static int proc_attr_dir_readdir(struct file * filp,
2389                              void * dirent, filldir_t filldir)
2390 {
2391         return proc_pident_readdir(filp,dirent,filldir,
2392                                    attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2393 }
2394
2395 static const struct file_operations proc_attr_dir_operations = {
2396         .read           = generic_read_dir,
2397         .readdir        = proc_attr_dir_readdir,
2398         .llseek         = default_llseek,
2399 };
2400
2401 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2402                                 struct dentry *dentry, struct nameidata *nd)
2403 {
2404         return proc_pident_lookup(dir, dentry,
2405                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2406 }
2407
2408 static const struct inode_operations proc_attr_dir_inode_operations = {
2409         .lookup         = proc_attr_dir_lookup,
2410         .getattr        = pid_getattr,
2411         .setattr        = proc_setattr,
2412 };
2413
2414 #endif
2415
2416 #ifdef CONFIG_ELF_CORE
2417 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2418                                          size_t count, loff_t *ppos)
2419 {
2420         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2421         struct mm_struct *mm;
2422         char buffer[PROC_NUMBUF];
2423         size_t len;
2424         int ret;
2425
2426         if (!task)
2427                 return -ESRCH;
2428
2429         ret = 0;
2430         mm = get_task_mm(task);
2431         if (mm) {
2432                 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2433                                ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2434                                 MMF_DUMP_FILTER_SHIFT));
2435                 mmput(mm);
2436                 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2437         }
2438
2439         put_task_struct(task);
2440
2441         return ret;
2442 }
2443
2444 static ssize_t proc_coredump_filter_write(struct file *file,
2445                                           const char __user *buf,
2446                                           size_t count,
2447                                           loff_t *ppos)
2448 {
2449         struct task_struct *task;
2450         struct mm_struct *mm;
2451         char buffer[PROC_NUMBUF], *end;
2452         unsigned int val;
2453         int ret;
2454         int i;
2455         unsigned long mask;
2456
2457         ret = -EFAULT;
2458         memset(buffer, 0, sizeof(buffer));
2459         if (count > sizeof(buffer) - 1)
2460                 count = sizeof(buffer) - 1;
2461         if (copy_from_user(buffer, buf, count))
2462                 goto out_no_task;
2463
2464         ret = -EINVAL;
2465         val = (unsigned int)simple_strtoul(buffer, &end, 0);
2466         if (*end == '\n')
2467                 end++;
2468         if (end - buffer == 0)
2469                 goto out_no_task;
2470
2471         ret = -ESRCH;
2472         task = get_proc_task(file->f_dentry->d_inode);
2473         if (!task)
2474                 goto out_no_task;
2475
2476         ret = end - buffer;
2477         mm = get_task_mm(task);
2478         if (!mm)
2479                 goto out_no_mm;
2480
2481         for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2482                 if (val & mask)
2483                         set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2484                 else
2485                         clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2486         }
2487
2488         mmput(mm);
2489  out_no_mm:
2490         put_task_struct(task);
2491  out_no_task:
2492         return ret;
2493 }
2494
2495 static const struct file_operations proc_coredump_filter_operations = {
2496         .read           = proc_coredump_filter_read,
2497         .write          = proc_coredump_filter_write,
2498         .llseek         = generic_file_llseek,
2499 };
2500 #endif
2501
2502 /*
2503  * /proc/self:
2504  */
2505 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2506                               int buflen)
2507 {
2508         struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2509         pid_t tgid = task_tgid_nr_ns(current, ns);
2510         char tmp[PROC_NUMBUF];
2511         if (!tgid)
2512                 return -ENOENT;
2513         sprintf(tmp, "%d", tgid);
2514         return vfs_readlink(dentry,buffer,buflen,tmp);
2515 }
2516
2517 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2518 {
2519         struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2520         pid_t tgid = task_tgid_nr_ns(current, ns);
2521         char *name = ERR_PTR(-ENOENT);
2522         if (tgid) {
2523                 name = __getname();
2524                 if (!name)
2525                         name = ERR_PTR(-ENOMEM);
2526                 else
2527                         sprintf(name, "%d", tgid);
2528         }
2529         nd_set_link(nd, name);
2530         return NULL;
2531 }
2532
2533 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2534                                 void *cookie)
2535 {
2536         char *s = nd_get_link(nd);
2537         if (!IS_ERR(s))
2538                 __putname(s);
2539 }
2540
2541 static const struct inode_operations proc_self_inode_operations = {
2542         .readlink       = proc_self_readlink,
2543         .follow_link    = proc_self_follow_link,
2544         .put_link       = proc_self_put_link,
2545 };
2546
2547 /*
2548  * proc base
2549  *
2550  * These are the directory entries in the root directory of /proc
2551  * that properly belong to the /proc filesystem, as they describe
2552  * describe something that is process related.
2553  */
2554 static const struct pid_entry proc_base_stuff[] = {
2555         NOD("self", S_IFLNK|S_IRWXUGO,
2556                 &proc_self_inode_operations, NULL, {}),
2557 };
2558
2559 /*
2560  *      Exceptional case: normally we are not allowed to unhash a busy
2561  * directory. In this case, however, we can do it - no aliasing problems
2562  * due to the way we treat inodes.
2563  */
2564 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2565 {
2566         struct inode *inode = dentry->d_inode;
2567         struct task_struct *task = get_proc_task(inode);
2568         if (task) {
2569                 put_task_struct(task);
2570                 return 1;
2571         }
2572         d_drop(dentry);
2573         return 0;
2574 }
2575
2576 static const struct dentry_operations proc_base_dentry_operations =
2577 {
2578         .d_revalidate   = proc_base_revalidate,
2579         .d_delete       = pid_delete_dentry,
2580 };
2581
2582 static struct dentry *proc_base_instantiate(struct inode *dir,
2583         struct dentry *dentry, struct task_struct *task, const void *ptr)
2584 {
2585         const struct pid_entry *p = ptr;
2586         struct inode *inode;
2587         struct proc_inode *ei;
2588         struct dentry *error;
2589
2590         /* Allocate the inode */
2591         error = ERR_PTR(-ENOMEM);
2592         inode = new_inode(dir->i_sb);
2593         if (!inode)
2594                 goto out;
2595
2596         /* Initialize the inode */
2597         ei = PROC_I(inode);
2598         inode->i_ino = get_next_ino();
2599         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2600
2601         /*
2602          * grab the reference to the task.
2603          */
2604         ei->pid = get_task_pid(task, PIDTYPE_PID);
2605         if (!ei->pid)
2606                 goto out_iput;
2607
2608         inode->i_mode = p->mode;
2609         if (S_ISDIR(inode->i_mode))
2610                 inode->i_nlink = 2;
2611         if (S_ISLNK(inode->i_mode))
2612                 inode->i_size = 64;
2613         if (p->iop)
2614                 inode->i_op = p->iop;
2615         if (p->fop)
2616                 inode->i_fop = p->fop;
2617         ei->op = p->op;
2618         dentry->d_op = &proc_base_dentry_operations;
2619         d_add(dentry, inode);
2620         error = NULL;
2621 out:
2622         return error;
2623 out_iput:
2624         iput(inode);
2625         goto out;
2626 }
2627
2628 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2629 {
2630         struct dentry *error;
2631         struct task_struct *task = get_proc_task(dir);
2632         const struct pid_entry *p, *last;
2633
2634         error = ERR_PTR(-ENOENT);
2635
2636         if (!task)
2637                 goto out_no_task;
2638
2639         /* Lookup the directory entry */
2640         last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2641         for (p = proc_base_stuff; p <= last; p++) {
2642                 if (p->len != dentry->d_name.len)
2643                         continue;
2644                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2645                         break;
2646         }
2647         if (p > last)
2648                 goto out;
2649
2650         error = proc_base_instantiate(dir, dentry, task, p);
2651
2652 out:
2653         put_task_struct(task);
2654 out_no_task:
2655         return error;
2656 }
2657
2658 static int proc_base_fill_cache(struct file *filp, void *dirent,
2659         filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2660 {
2661         return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2662                                 proc_base_instantiate, task, p);
2663 }
2664
2665 #ifdef CONFIG_TASK_IO_ACCOUNTING
2666 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2667 {
2668         struct task_io_accounting acct = task->ioac;
2669         unsigned long flags;
2670
2671         if (whole && lock_task_sighand(task, &flags)) {
2672                 struct task_struct *t = task;
2673
2674                 task_io_accounting_add(&acct, &task->signal->ioac);
2675                 while_each_thread(task, t)
2676                         task_io_accounting_add(&acct, &t->ioac);
2677
2678                 unlock_task_sighand(task, &flags);
2679         }
2680         return sprintf(buffer,
2681                         "rchar: %llu\n"
2682                         "wchar: %llu\n"
2683                         "syscr: %llu\n"
2684                         "syscw: %llu\n"
2685                         "read_bytes: %llu\n"
2686                         "write_bytes: %llu\n"
2687                         "cancelled_write_bytes: %llu\n",
2688                         (unsigned long long)acct.rchar,
2689                         (unsigned long long)acct.wchar,
2690                         (unsigned long long)acct.syscr,
2691                         (unsigned long long)acct.syscw,
2692                         (unsigned long long)acct.read_bytes,
2693                         (unsigned long long)acct.write_bytes,
2694                         (unsigned long long)acct.cancelled_write_bytes);
2695 }
2696
2697 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2698 {
2699         return do_io_accounting(task, buffer, 0);
2700 }
2701
2702 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2703 {
2704         return do_io_accounting(task, buffer, 1);
2705 }
2706 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2707
2708 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2709                                 struct pid *pid, struct task_struct *task)
2710 {
2711         seq_printf(m, "%08x\n", task->personality);
2712         return 0;
2713 }
2714
2715 /*
2716  * Thread groups
2717  */
2718 static const struct file_operations proc_task_operations;
2719 static const struct inode_operations proc_task_inode_operations;
2720
2721 static const struct pid_entry tgid_base_stuff[] = {
2722         DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2723         DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2724         DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2725 #ifdef CONFIG_NET
2726         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2727 #endif
2728         REG("environ",    S_IRUSR, proc_environ_operations),
2729         INF("auxv",       S_IRUSR, proc_pid_auxv),
2730         ONE("status",     S_IRUGO, proc_pid_status),
2731         ONE("personality", S_IRUSR, proc_pid_personality),
2732         INF("limits",     S_IRUGO, proc_pid_limits),
2733 #ifdef CONFIG_SCHED_DEBUG
2734         REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2735 #endif
2736         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2737 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2738         INF("syscall",    S_IRUSR, proc_pid_syscall),
2739 #endif
2740         INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2741         ONE("stat",       S_IRUGO, proc_tgid_stat),
2742         ONE("statm",      S_IRUGO, proc_pid_statm),
2743         REG("maps",       S_IRUGO, proc_maps_operations),
2744 #ifdef CONFIG_NUMA
2745         REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2746 #endif
2747         REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2748         LNK("cwd",        proc_cwd_link),
2749         LNK("root",       proc_root_link),
2750         LNK("exe",        proc_exe_link),
2751         REG("mounts",     S_IRUGO, proc_mounts_operations),
2752         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2753         REG("mountstats", S_IRUSR, proc_mountstats_operations),
2754 #ifdef CONFIG_PROC_PAGE_MONITOR
2755         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2756         REG("smaps",      S_IRUGO, proc_smaps_operations),
2757         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2758 #endif
2759 #ifdef CONFIG_SECURITY
2760         DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2761 #endif
2762 #ifdef CONFIG_KALLSYMS
2763         INF("wchan",      S_IRUGO, proc_pid_wchan),
2764 #endif
2765 #ifdef CONFIG_STACKTRACE
2766         ONE("stack",      S_IRUSR, proc_pid_stack),
2767 #endif
2768 #ifdef CONFIG_SCHEDSTATS
2769         INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2770 #endif
2771 #ifdef CONFIG_LATENCYTOP
2772         REG("latency",  S_IRUGO, proc_lstats_operations),
2773 #endif
2774 #ifdef CONFIG_PROC_PID_CPUSET
2775         REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2776 #endif
2777 #ifdef CONFIG_CGROUPS
2778         REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2779 #endif
2780         INF("oom_score",  S_IRUGO, proc_oom_score),
2781         REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2782         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2783 #ifdef CONFIG_AUDITSYSCALL
2784         REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2785         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2786 #endif
2787 #ifdef CONFIG_FAULT_INJECTION
2788         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2789 #endif
2790 #ifdef CONFIG_ELF_CORE
2791         REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2792 #endif
2793 #ifdef CONFIG_TASK_IO_ACCOUNTING
2794         INF("io",       S_IRUGO, proc_tgid_io_accounting),
2795 #endif
2796 };
2797
2798 static int proc_tgid_base_readdir(struct file * filp,
2799                              void * dirent, filldir_t filldir)
2800 {
2801         return proc_pident_readdir(filp,dirent,filldir,
2802                                    tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2803 }
2804
2805 static const struct file_operations proc_tgid_base_operations = {
2806         .read           = generic_read_dir,
2807         .readdir        = proc_tgid_base_readdir,
2808         .llseek         = default_llseek,
2809 };
2810
2811 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2812         return proc_pident_lookup(dir, dentry,
2813                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2814 }
2815
2816 static const struct inode_operations proc_tgid_base_inode_operations = {
2817         .lookup         = proc_tgid_base_lookup,
2818         .getattr        = pid_getattr,
2819         .setattr        = proc_setattr,
2820 };
2821
2822 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2823 {
2824         struct dentry *dentry, *leader, *dir;
2825         char buf[PROC_NUMBUF];
2826         struct qstr name;
2827
2828         name.name = buf;
2829         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2830         dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2831         if (dentry) {
2832                 shrink_dcache_parent(dentry);
2833                 d_drop(dentry);
2834                 dput(dentry);
2835         }
2836
2837         name.name = buf;
2838         name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2839         leader = d_hash_and_lookup(mnt->mnt_root, &name);
2840         if (!leader)
2841                 goto out;
2842
2843         name.name = "task";
2844         name.len = strlen(name.name);
2845         dir = d_hash_and_lookup(leader, &name);
2846         if (!dir)
2847                 goto out_put_leader;
2848
2849         name.name = buf;
2850         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2851         dentry = d_hash_and_lookup(dir, &name);
2852         if (dentry) {
2853                 shrink_dcache_parent(dentry);
2854                 d_drop(dentry);
2855                 dput(dentry);
2856         }
2857
2858         dput(dir);
2859 out_put_leader:
2860         dput(leader);
2861 out:
2862         return;
2863 }
2864
2865 /**
2866  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2867  * @task: task that should be flushed.
2868  *
2869  * When flushing dentries from proc, one needs to flush them from global
2870  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2871  * in. This call is supposed to do all of this job.
2872  *
2873  * Looks in the dcache for
2874  * /proc/@pid
2875  * /proc/@tgid/task/@pid
2876  * if either directory is present flushes it and all of it'ts children
2877  * from the dcache.
2878  *
2879  * It is safe and reasonable to cache /proc entries for a task until
2880  * that task exits.  After that they just clog up the dcache with
2881  * useless entries, possibly causing useful dcache entries to be
2882  * flushed instead.  This routine is proved to flush those useless
2883  * dcache entries at process exit time.
2884  *
2885  * NOTE: This routine is just an optimization so it does not guarantee
2886  *       that no dcache entries will exist at process exit time it
2887  *       just makes it very unlikely that any will persist.
2888  */
2889
2890 void proc_flush_task(struct task_struct *task)
2891 {
2892         int i;
2893         struct pid *pid, *tgid;
2894         struct upid *upid;
2895
2896         pid = task_pid(task);
2897         tgid = task_tgid(task);
2898
2899         for (i = 0; i <= pid->level; i++) {
2900                 upid = &pid->numbers[i];
2901                 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2902                                         tgid->numbers[i].nr);
2903         }
2904
2905         upid = &pid->numbers[pid->level];
2906         if (upid->nr == 1)
2907                 pid_ns_release_proc(upid->ns);
2908 }
2909
2910 static struct dentry *proc_pid_instantiate(struct inode *dir,
2911                                            struct dentry * dentry,
2912                                            struct task_struct *task, const void *ptr)
2913 {
2914         struct dentry *error = ERR_PTR(-ENOENT);
2915         struct inode *inode;
2916
2917         inode = proc_pid_make_inode(dir->i_sb, task);
2918         if (!inode)
2919                 goto out;
2920
2921         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2922         inode->i_op = &proc_tgid_base_inode_operations;
2923         inode->i_fop = &proc_tgid_base_operations;
2924         inode->i_flags|=S_IMMUTABLE;
2925
2926         inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2927                 ARRAY_SIZE(tgid_base_stuff));
2928
2929         dentry->d_op = &pid_dentry_operations;
2930
2931         d_add(dentry, inode);
2932         /* Close the race of the process dying before we return the dentry */
2933         if (pid_revalidate(dentry, NULL))
2934                 error = NULL;
2935 out:
2936         return error;
2937 }
2938
2939 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2940 {
2941         struct dentry *result;
2942         struct task_struct *task;
2943         unsigned tgid;
2944         struct pid_namespace *ns;
2945
2946         result = proc_base_lookup(dir, dentry);
2947         if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2948                 goto out;
2949
2950         tgid = name_to_int(dentry);
2951         if (tgid == ~0U)
2952                 goto out;
2953
2954         ns = dentry->d_sb->s_fs_info;
2955         rcu_read_lock();
2956         task = find_task_by_pid_ns(tgid, ns);
2957         if (task)
2958                 get_task_struct(task);
2959         rcu_read_unlock();
2960         if (!task)
2961                 goto out;
2962
2963         result = proc_pid_instantiate(dir, dentry, task, NULL);
2964         put_task_struct(task);
2965 out:
2966         return result;
2967 }
2968
2969 /*
2970  * Find the first task with tgid >= tgid
2971  *
2972  */
2973 struct tgid_iter {
2974         unsigned int tgid;
2975         struct task_struct *task;
2976 };
2977 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2978 {
2979         struct pid *pid;
2980
2981         if (iter.task)
2982                 put_task_struct(iter.task);
2983         rcu_read_lock();
2984 retry:
2985         iter.task = NULL;
2986         pid = find_ge_pid(iter.tgid, ns);
2987         if (pid) {
2988                 iter.tgid = pid_nr_ns(pid, ns);
2989                 iter.task = pid_task(pid, PIDTYPE_PID);
2990                 /* What we to know is if the pid we have find is the
2991                  * pid of a thread_group_leader.  Testing for task
2992                  * being a thread_group_leader is the obvious thing
2993                  * todo but there is a window when it fails, due to
2994                  * the pid transfer logic in de_thread.
2995                  *
2996                  * So we perform the straight forward test of seeing
2997                  * if the pid we have found is the pid of a thread
2998                  * group leader, and don't worry if the task we have
2999                  * found doesn't happen to be a thread group leader.
3000                  * As we don't care in the case of readdir.
3001                  */
3002                 if (!iter.task || !has_group_leader_pid(iter.task)) {
3003                         iter.tgid += 1;
3004                         goto retry;
3005                 }
3006                 get_task_struct(iter.task);
3007         }
3008         rcu_read_unlock();
3009         return iter;
3010 }
3011
3012 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3013
3014 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3015         struct tgid_iter iter)
3016 {
3017         char name[PROC_NUMBUF];
3018         int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3019         return proc_fill_cache(filp, dirent, filldir, name, len,
3020                                 proc_pid_instantiate, iter.task, NULL);
3021 }
3022
3023 /* for the /proc/ directory itself, after non-process stuff has been done */
3024 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3025 {
3026         unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3027         struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
3028         struct tgid_iter iter;
3029         struct pid_namespace *ns;
3030
3031         if (!reaper)
3032                 goto out_no_task;
3033
3034         for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3035                 const struct pid_entry *p = &proc_base_stuff[nr];
3036                 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3037                         goto out;
3038         }
3039
3040         ns = filp->f_dentry->d_sb->s_fs_info;
3041         iter.task = NULL;
3042         iter.tgid = filp->f_pos - TGID_OFFSET;
3043         for (iter = next_tgid(ns, iter);
3044              iter.task;
3045              iter.tgid += 1, iter = next_tgid(ns, iter)) {
3046                 filp->f_pos = iter.tgid + TGID_OFFSET;
3047                 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3048                         put_task_struct(iter.task);
3049                         goto out;
3050                 }
3051         }
3052         filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3053 out:
3054         put_task_struct(reaper);
3055 out_no_task:
3056         return 0;
3057 }
3058
3059 /*
3060  * Tasks
3061  */
3062 static const struct pid_entry tid_base_stuff[] = {
3063         DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3064         DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3065         REG("environ",   S_IRUSR, proc_environ_operations),
3066         INF("auxv",      S_IRUSR, proc_pid_auxv),
3067         ONE("status",    S_IRUGO, proc_pid_status),
3068         ONE("personality", S_IRUSR, proc_pid_personality),
3069         INF("limits",    S_IRUGO, proc_pid_limits),
3070 #ifdef CONFIG_SCHED_DEBUG
3071         REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3072 #endif
3073         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3074 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3075         INF("syscall",   S_IRUSR, proc_pid_syscall),
3076 #endif
3077         INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3078         ONE("stat",      S_IRUGO, proc_tid_stat),
3079         ONE("statm",     S_IRUGO, proc_pid_statm),
3080         REG("maps",      S_IRUGO, proc_maps_operations),
3081 #ifdef CONFIG_NUMA
3082         REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3083 #endif
3084         REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3085         LNK("cwd",       proc_cwd_link),
3086         LNK("root",      proc_root_link),
3087         LNK("exe",       proc_exe_link),
3088         REG("mounts",    S_IRUGO, proc_mounts_operations),
3089         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3090 #ifdef CONFIG_PROC_PAGE_MONITOR
3091         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3092         REG("smaps",     S_IRUGO, proc_smaps_operations),
3093         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3094 #endif
3095 #ifdef CONFIG_SECURITY
3096         DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3097 #endif
3098 #ifdef CONFIG_KALLSYMS
3099         INF("wchan",     S_IRUGO, proc_pid_wchan),
3100 #endif
3101 #ifdef CONFIG_STACKTRACE
3102         ONE("stack",      S_IRUSR, proc_pid_stack),
3103 #endif
3104 #ifdef CONFIG_SCHEDSTATS
3105         INF("schedstat", S_IRUGO, proc_pid_schedstat),
3106 #endif
3107 #ifdef CONFIG_LATENCYTOP
3108         REG("latency",  S_IRUGO, proc_lstats_operations),
3109 #endif
3110 #ifdef CONFIG_PROC_PID_CPUSET
3111         REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3112 #endif
3113 #ifdef CONFIG_CGROUPS
3114         REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3115 #endif
3116         INF("oom_score", S_IRUGO, proc_oom_score),
3117         REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3118         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3119 #ifdef CONFIG_AUDITSYSCALL
3120         REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3121         REG("sessionid",  S_IRUSR, proc_sessionid_operations),
3122 #endif
3123 #ifdef CONFIG_FAULT_INJECTION
3124         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3125 #endif
3126 #ifdef CONFIG_TASK_IO_ACCOUNTING
3127         INF("io",       S_IRUGO, proc_tid_io_accounting),
3128 #endif
3129 };
3130
3131 static int proc_tid_base_readdir(struct file * filp,
3132                              void * dirent, filldir_t filldir)
3133 {
3134         return proc_pident_readdir(filp,dirent,filldir,
3135                                    tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3136 }
3137
3138 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3139         return proc_pident_lookup(dir, dentry,
3140                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3141 }
3142
3143 static const struct file_operations proc_tid_base_operations = {
3144         .read           = generic_read_dir,
3145         .readdir        = proc_tid_base_readdir,
3146         .llseek         = default_llseek,
3147 };
3148
3149 static const struct inode_operations proc_tid_base_inode_operations = {
3150         .lookup         = proc_tid_base_lookup,
3151         .getattr        = pid_getattr,
3152         .setattr        = proc_setattr,
3153 };
3154
3155 static struct dentry *proc_task_instantiate(struct inode *dir,
3156         struct dentry *dentry, struct task_struct *task, const void *ptr)
3157 {
3158         struct dentry *error = ERR_PTR(-ENOENT);
3159         struct inode *inode;
3160         inode = proc_pid_make_inode(dir->i_sb, task);
3161
3162         if (!inode)
3163                 goto out;
3164         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3165         inode->i_op = &proc_tid_base_inode_operations;
3166         inode->i_fop = &proc_tid_base_operations;
3167         inode->i_flags|=S_IMMUTABLE;
3168
3169         inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3170                 ARRAY_SIZE(tid_base_stuff));
3171
3172         dentry->d_op = &pid_dentry_operations;
3173
3174         d_add(dentry, inode);
3175         /* Close the race of the process dying before we return the dentry */
3176         if (pid_revalidate(dentry, NULL))
3177                 error = NULL;
3178 out:
3179         return error;
3180 }
3181
3182 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3183 {
3184         struct dentry *result = ERR_PTR(-ENOENT);
3185         struct task_struct *task;
3186         struct task_struct *leader = get_proc_task(dir);
3187         unsigned tid;
3188         struct pid_namespace *ns;
3189
3190         if (!leader)
3191                 goto out_no_task;
3192
3193         tid = name_to_int(dentry);
3194         if (tid == ~0U)
3195                 goto out;
3196
3197         ns = dentry->d_sb->s_fs_info;
3198         rcu_read_lock();
3199         task = find_task_by_pid_ns(tid, ns);
3200         if (task)
3201                 get_task_struct(task);
3202         rcu_read_unlock();
3203         if (!task)
3204                 goto out;
3205         if (!same_thread_group(leader, task))
3206                 goto out_drop_task;
3207
3208         result = proc_task_instantiate(dir, dentry, task, NULL);
3209 out_drop_task:
3210         put_task_struct(task);
3211 out:
3212         put_task_struct(leader);
3213 out_no_task:
3214         return result;
3215 }
3216
3217 /*
3218  * Find the first tid of a thread group to return to user space.
3219  *
3220  * Usually this is just the thread group leader, but if the users
3221  * buffer was too small or there was a seek into the middle of the
3222  * directory we have more work todo.
3223  *
3224  * In the case of a short read we start with find_task_by_pid.
3225  *
3226  * In the case of a seek we start with the leader and walk nr
3227  * threads past it.
3228  */
3229 static struct task_struct *first_tid(struct task_struct *leader,
3230                 int tid, int nr, struct pid_namespace *ns)
3231 {
3232         struct task_struct *pos;
3233
3234         rcu_read_lock();
3235         /* Attempt to start with the pid of a thread */
3236         if (tid && (nr > 0)) {
3237                 pos = find_task_by_pid_ns(tid, ns);
3238                 if (pos && (pos->group_leader == leader))
3239                         goto found;
3240         }
3241
3242         /* If nr exceeds the number of threads there is nothing todo */
3243         pos = NULL;
3244         if (nr && nr >= get_nr_threads(leader))
3245                 goto out;
3246
3247         /* If we haven't found our starting place yet start
3248          * with the leader and walk nr threads forward.
3249          */
3250         for (pos = leader; nr > 0; --nr) {
3251                 pos = next_thread(pos);
3252                 if (pos == leader) {
3253                         pos = NULL;
3254                         goto out;
3255                 }
3256         }
3257 found:
3258         get_task_struct(pos);
3259 out:
3260         rcu_read_unlock();
3261         return pos;
3262 }
3263
3264 /*
3265  * Find the next thread in the thread list.
3266  * Return NULL if there is an error or no next thread.
3267  *
3268  * The reference to the input task_struct is released.
3269  */
3270 static struct task_struct *next_tid(struct task_struct *start)
3271 {
3272         struct task_struct *pos = NULL;
3273         rcu_read_lock();
3274         if (pid_alive(start)) {
3275                 pos = next_thread(start);
3276                 if (thread_group_leader(pos))
3277                         pos = NULL;
3278                 else
3279                         get_task_struct(pos);
3280         }
3281         rcu_read_unlock();
3282         put_task_struct(start);
3283         return pos;
3284 }
3285
3286 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3287         struct task_struct *task, int tid)
3288 {
3289         char name[PROC_NUMBUF];
3290         int len = snprintf(name, sizeof(name), "%d", tid);
3291         return proc_fill_cache(filp, dirent, filldir, name, len,
3292                                 proc_task_instantiate, task, NULL);
3293 }
3294
3295 /* for the /proc/TGID/task/ directories */
3296 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3297 {
3298         struct dentry *dentry = filp->f_path.dentry;
3299         struct inode *inode = dentry->d_inode;
3300         struct task_struct *leader = NULL;
3301         struct task_struct *task;
3302         int retval = -ENOENT;
3303         ino_t ino;
3304         int tid;
3305         struct pid_namespace *ns;
3306
3307         task = get_proc_task(inode);
3308         if (!task)
3309                 goto out_no_task;
3310         rcu_read_lock();
3311         if (pid_alive(task)) {
3312                 leader = task->group_leader;
3313                 get_task_struct(leader);
3314         }
3315         rcu_read_unlock();
3316         put_task_struct(task);
3317         if (!leader)
3318                 goto out_no_task;
3319         retval = 0;
3320
3321         switch ((unsigned long)filp->f_pos) {
3322         case 0:
3323                 ino = inode->i_ino;
3324                 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3325                         goto out;
3326                 filp->f_pos++;
3327                 /* fall through */
3328         case 1:
3329                 ino = parent_ino(dentry);
3330                 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3331                         goto out;
3332                 filp->f_pos++;
3333                 /* fall through */
3334         }
3335
3336         /* f_version caches the tgid value that the last readdir call couldn't
3337          * return. lseek aka telldir automagically resets f_version to 0.
3338          */
3339         ns = filp->f_dentry->d_sb->s_fs_info;
3340         tid = (int)filp->f_version;
3341         filp->f_version = 0;
3342         for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3343              task;
3344              task = next_tid(task), filp->f_pos++) {
3345                 tid = task_pid_nr_ns(task, ns);
3346                 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3347                         /* returning this tgid failed, save it as the first
3348                          * pid for the next readir call */
3349                         filp->f_version = (u64)tid;
3350                         put_task_struct(task);
3351                         break;
3352                 }
3353         }
3354 out:
3355         put_task_struct(leader);
3356 out_no_task:
3357         return retval;
3358 }
3359
3360 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3361 {
3362         struct inode *inode = dentry->d_inode;
3363         struct task_struct *p = get_proc_task(inode);
3364         generic_fillattr(inode, stat);
3365
3366         if (p) {
3367                 stat->nlink += get_nr_threads(p);
3368                 put_task_struct(p);
3369         }
3370
3371         return 0;
3372 }
3373
3374 static const struct inode_operations proc_task_inode_operations = {
3375         .lookup         = proc_task_lookup,
3376         .getattr        = proc_task_getattr,
3377         .setattr        = proc_setattr,
3378 };
3379
3380 static const struct file_operations proc_task_operations = {
3381         .read           = generic_read_dir,
3382         .readdir        = proc_task_readdir,
3383         .llseek         = default_llseek,
3384 };