ocfs2: fix start offset to ocfs2_zero_range_for_truncate()
[pandora-kernel.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "blockcheck.h"
40 #include "dir.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "heartbeat.h"
44 #include "inode.h"
45 #include "journal.h"
46 #include "localalloc.h"
47 #include "slot_map.h"
48 #include "super.h"
49 #include "sysfile.h"
50 #include "uptodate.h"
51 #include "quota.h"
52
53 #include "buffer_head_io.h"
54 #include "ocfs2_trace.h"
55
56 DEFINE_SPINLOCK(trans_inc_lock);
57
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62                               int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67                                       int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69                                  int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71                                  int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74                                             int slot_num,
75                                             struct ocfs2_dinode *la_dinode,
76                                             struct ocfs2_dinode *tl_dinode,
77                                             struct ocfs2_quota_recovery *qrec);
78
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80 {
81         return __ocfs2_wait_on_mount(osb, 0);
82 }
83
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85 {
86         return __ocfs2_wait_on_mount(osb, 1);
87 }
88
89 /*
90  * This replay_map is to track online/offline slots, so we could recover
91  * offline slots during recovery and mount
92  */
93
94 enum ocfs2_replay_state {
95         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
96         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
97         REPLAY_DONE             /* Replay was already queued */
98 };
99
100 struct ocfs2_replay_map {
101         unsigned int rm_slots;
102         enum ocfs2_replay_state rm_state;
103         unsigned char rm_replay_slots[0];
104 };
105
106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107 {
108         if (!osb->replay_map)
109                 return;
110
111         /* If we've already queued the replay, we don't have any more to do */
112         if (osb->replay_map->rm_state == REPLAY_DONE)
113                 return;
114
115         osb->replay_map->rm_state = state;
116 }
117
118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119 {
120         struct ocfs2_replay_map *replay_map;
121         int i, node_num;
122
123         /* If replay map is already set, we don't do it again */
124         if (osb->replay_map)
125                 return 0;
126
127         replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128                              (osb->max_slots * sizeof(char)), GFP_KERNEL);
129
130         if (!replay_map) {
131                 mlog_errno(-ENOMEM);
132                 return -ENOMEM;
133         }
134
135         spin_lock(&osb->osb_lock);
136
137         replay_map->rm_slots = osb->max_slots;
138         replay_map->rm_state = REPLAY_UNNEEDED;
139
140         /* set rm_replay_slots for offline slot(s) */
141         for (i = 0; i < replay_map->rm_slots; i++) {
142                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143                         replay_map->rm_replay_slots[i] = 1;
144         }
145
146         osb->replay_map = replay_map;
147         spin_unlock(&osb->osb_lock);
148         return 0;
149 }
150
151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152 {
153         struct ocfs2_replay_map *replay_map = osb->replay_map;
154         int i;
155
156         if (!replay_map)
157                 return;
158
159         if (replay_map->rm_state != REPLAY_NEEDED)
160                 return;
161
162         for (i = 0; i < replay_map->rm_slots; i++)
163                 if (replay_map->rm_replay_slots[i])
164                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165                                                         NULL, NULL);
166         replay_map->rm_state = REPLAY_DONE;
167 }
168
169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170 {
171         struct ocfs2_replay_map *replay_map = osb->replay_map;
172
173         if (!osb->replay_map)
174                 return;
175
176         kfree(replay_map);
177         osb->replay_map = NULL;
178 }
179
180 int ocfs2_recovery_init(struct ocfs2_super *osb)
181 {
182         struct ocfs2_recovery_map *rm;
183
184         mutex_init(&osb->recovery_lock);
185         osb->disable_recovery = 0;
186         osb->recovery_thread_task = NULL;
187         init_waitqueue_head(&osb->recovery_event);
188
189         rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190                      osb->max_slots * sizeof(unsigned int),
191                      GFP_KERNEL);
192         if (!rm) {
193                 mlog_errno(-ENOMEM);
194                 return -ENOMEM;
195         }
196
197         rm->rm_entries = (unsigned int *)((char *)rm +
198                                           sizeof(struct ocfs2_recovery_map));
199         osb->recovery_map = rm;
200
201         return 0;
202 }
203
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205  * memory barriers to make sure that we'll see the null task before
206  * being woken up */
207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208 {
209         mb();
210         return osb->recovery_thread_task != NULL;
211 }
212
213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
214 {
215         struct ocfs2_recovery_map *rm;
216
217         /* disable any new recovery threads and wait for any currently
218          * running ones to exit. Do this before setting the vol_state. */
219         mutex_lock(&osb->recovery_lock);
220         osb->disable_recovery = 1;
221         mutex_unlock(&osb->recovery_lock);
222         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223
224         /* At this point, we know that no more recovery threads can be
225          * launched, so wait for any recovery completion work to
226          * complete. */
227         flush_workqueue(ocfs2_wq);
228
229         /*
230          * Now that recovery is shut down, and the osb is about to be
231          * freed,  the osb_lock is not taken here.
232          */
233         rm = osb->recovery_map;
234         /* XXX: Should we bug if there are dirty entries? */
235
236         kfree(rm);
237 }
238
239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240                                      unsigned int node_num)
241 {
242         int i;
243         struct ocfs2_recovery_map *rm = osb->recovery_map;
244
245         assert_spin_locked(&osb->osb_lock);
246
247         for (i = 0; i < rm->rm_used; i++) {
248                 if (rm->rm_entries[i] == node_num)
249                         return 1;
250         }
251
252         return 0;
253 }
254
255 /* Behaves like test-and-set.  Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257                                   unsigned int node_num)
258 {
259         struct ocfs2_recovery_map *rm = osb->recovery_map;
260
261         spin_lock(&osb->osb_lock);
262         if (__ocfs2_recovery_map_test(osb, node_num)) {
263                 spin_unlock(&osb->osb_lock);
264                 return 1;
265         }
266
267         /* XXX: Can this be exploited? Not from o2dlm... */
268         BUG_ON(rm->rm_used >= osb->max_slots);
269
270         rm->rm_entries[rm->rm_used] = node_num;
271         rm->rm_used++;
272         spin_unlock(&osb->osb_lock);
273
274         return 0;
275 }
276
277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278                                      unsigned int node_num)
279 {
280         int i;
281         struct ocfs2_recovery_map *rm = osb->recovery_map;
282
283         spin_lock(&osb->osb_lock);
284
285         for (i = 0; i < rm->rm_used; i++) {
286                 if (rm->rm_entries[i] == node_num)
287                         break;
288         }
289
290         if (i < rm->rm_used) {
291                 /* XXX: be careful with the pointer math */
292                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293                         (rm->rm_used - i - 1) * sizeof(unsigned int));
294                 rm->rm_used--;
295         }
296
297         spin_unlock(&osb->osb_lock);
298 }
299
300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
301 {
302         int status = 0;
303         unsigned int flushed;
304         struct ocfs2_journal *journal = NULL;
305
306         journal = osb->journal;
307
308         /* Flush all pending commits and checkpoint the journal. */
309         down_write(&journal->j_trans_barrier);
310
311         flushed = atomic_read(&journal->j_num_trans);
312         trace_ocfs2_commit_cache_begin(flushed);
313         if (flushed == 0) {
314                 up_write(&journal->j_trans_barrier);
315                 goto finally;
316         }
317
318         jbd2_journal_lock_updates(journal->j_journal);
319         status = jbd2_journal_flush(journal->j_journal);
320         jbd2_journal_unlock_updates(journal->j_journal);
321         if (status < 0) {
322                 up_write(&journal->j_trans_barrier);
323                 mlog_errno(status);
324                 goto finally;
325         }
326
327         ocfs2_inc_trans_id(journal);
328
329         flushed = atomic_read(&journal->j_num_trans);
330         atomic_set(&journal->j_num_trans, 0);
331         up_write(&journal->j_trans_barrier);
332
333         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
334
335         ocfs2_wake_downconvert_thread(osb);
336         wake_up(&journal->j_checkpointed);
337 finally:
338         return status;
339 }
340
341 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
342 {
343         journal_t *journal = osb->journal->j_journal;
344         handle_t *handle;
345
346         BUG_ON(!osb || !osb->journal->j_journal);
347
348         if (ocfs2_is_hard_readonly(osb))
349                 return ERR_PTR(-EROFS);
350
351         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
352         BUG_ON(max_buffs <= 0);
353
354         /* Nested transaction? Just return the handle... */
355         if (journal_current_handle())
356                 return jbd2_journal_start(journal, max_buffs);
357
358         down_read(&osb->journal->j_trans_barrier);
359
360         handle = jbd2_journal_start(journal, max_buffs);
361         if (IS_ERR(handle)) {
362                 up_read(&osb->journal->j_trans_barrier);
363
364                 mlog_errno(PTR_ERR(handle));
365
366                 if (is_journal_aborted(journal)) {
367                         ocfs2_abort(osb->sb, "Detected aborted journal");
368                         handle = ERR_PTR(-EROFS);
369                 }
370         } else {
371                 if (!ocfs2_mount_local(osb))
372                         atomic_inc(&(osb->journal->j_num_trans));
373         }
374
375         return handle;
376 }
377
378 int ocfs2_commit_trans(struct ocfs2_super *osb,
379                        handle_t *handle)
380 {
381         int ret, nested;
382         struct ocfs2_journal *journal = osb->journal;
383
384         BUG_ON(!handle);
385
386         nested = handle->h_ref > 1;
387         ret = jbd2_journal_stop(handle);
388         if (ret < 0)
389                 mlog_errno(ret);
390
391         if (!nested)
392                 up_read(&journal->j_trans_barrier);
393
394         return ret;
395 }
396
397 /*
398  * 'nblocks' is what you want to add to the current transaction.
399  *
400  * This might call jbd2_journal_restart() which will commit dirty buffers
401  * and then restart the transaction. Before calling
402  * ocfs2_extend_trans(), any changed blocks should have been
403  * dirtied. After calling it, all blocks which need to be changed must
404  * go through another set of journal_access/journal_dirty calls.
405  *
406  * WARNING: This will not release any semaphores or disk locks taken
407  * during the transaction, so make sure they were taken *before*
408  * start_trans or we'll have ordering deadlocks.
409  *
410  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
411  * good because transaction ids haven't yet been recorded on the
412  * cluster locks associated with this handle.
413  */
414 int ocfs2_extend_trans(handle_t *handle, int nblocks)
415 {
416         int status, old_nblocks;
417
418         BUG_ON(!handle);
419         BUG_ON(nblocks < 0);
420
421         if (!nblocks)
422                 return 0;
423
424         old_nblocks = handle->h_buffer_credits;
425
426         trace_ocfs2_extend_trans(old_nblocks, nblocks);
427
428 #ifdef CONFIG_OCFS2_DEBUG_FS
429         status = 1;
430 #else
431         status = jbd2_journal_extend(handle, nblocks);
432         if (status < 0) {
433                 mlog_errno(status);
434                 goto bail;
435         }
436 #endif
437
438         if (status > 0) {
439                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
440                 status = jbd2_journal_restart(handle,
441                                               old_nblocks + nblocks);
442                 if (status < 0) {
443                         mlog_errno(status);
444                         goto bail;
445                 }
446         }
447
448         status = 0;
449 bail:
450         return status;
451 }
452
453 struct ocfs2_triggers {
454         struct jbd2_buffer_trigger_type ot_triggers;
455         int                             ot_offset;
456 };
457
458 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
459 {
460         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
461 }
462
463 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
464                                  struct buffer_head *bh,
465                                  void *data, size_t size)
466 {
467         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
468
469         /*
470          * We aren't guaranteed to have the superblock here, so we
471          * must unconditionally compute the ecc data.
472          * __ocfs2_journal_access() will only set the triggers if
473          * metaecc is enabled.
474          */
475         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
476 }
477
478 /*
479  * Quota blocks have their own trigger because the struct ocfs2_block_check
480  * offset depends on the blocksize.
481  */
482 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
483                                  struct buffer_head *bh,
484                                  void *data, size_t size)
485 {
486         struct ocfs2_disk_dqtrailer *dqt =
487                 ocfs2_block_dqtrailer(size, data);
488
489         /*
490          * We aren't guaranteed to have the superblock here, so we
491          * must unconditionally compute the ecc data.
492          * __ocfs2_journal_access() will only set the triggers if
493          * metaecc is enabled.
494          */
495         ocfs2_block_check_compute(data, size, &dqt->dq_check);
496 }
497
498 /*
499  * Directory blocks also have their own trigger because the
500  * struct ocfs2_block_check offset depends on the blocksize.
501  */
502 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
503                                  struct buffer_head *bh,
504                                  void *data, size_t size)
505 {
506         struct ocfs2_dir_block_trailer *trailer =
507                 ocfs2_dir_trailer_from_size(size, data);
508
509         /*
510          * We aren't guaranteed to have the superblock here, so we
511          * must unconditionally compute the ecc data.
512          * __ocfs2_journal_access() will only set the triggers if
513          * metaecc is enabled.
514          */
515         ocfs2_block_check_compute(data, size, &trailer->db_check);
516 }
517
518 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
519                                 struct buffer_head *bh)
520 {
521         mlog(ML_ERROR,
522              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
523              "bh->b_blocknr = %llu\n",
524              (unsigned long)bh,
525              (unsigned long long)bh->b_blocknr);
526
527         /* We aren't guaranteed to have the superblock here - but if we
528          * don't, it'll just crash. */
529         ocfs2_error(bh->b_assoc_map->host->i_sb,
530                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
531 }
532
533 static struct ocfs2_triggers di_triggers = {
534         .ot_triggers = {
535                 .t_frozen = ocfs2_frozen_trigger,
536                 .t_abort = ocfs2_abort_trigger,
537         },
538         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
539 };
540
541 static struct ocfs2_triggers eb_triggers = {
542         .ot_triggers = {
543                 .t_frozen = ocfs2_frozen_trigger,
544                 .t_abort = ocfs2_abort_trigger,
545         },
546         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
547 };
548
549 static struct ocfs2_triggers rb_triggers = {
550         .ot_triggers = {
551                 .t_frozen = ocfs2_frozen_trigger,
552                 .t_abort = ocfs2_abort_trigger,
553         },
554         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
555 };
556
557 static struct ocfs2_triggers gd_triggers = {
558         .ot_triggers = {
559                 .t_frozen = ocfs2_frozen_trigger,
560                 .t_abort = ocfs2_abort_trigger,
561         },
562         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
563 };
564
565 static struct ocfs2_triggers db_triggers = {
566         .ot_triggers = {
567                 .t_frozen = ocfs2_db_frozen_trigger,
568                 .t_abort = ocfs2_abort_trigger,
569         },
570 };
571
572 static struct ocfs2_triggers xb_triggers = {
573         .ot_triggers = {
574                 .t_frozen = ocfs2_frozen_trigger,
575                 .t_abort = ocfs2_abort_trigger,
576         },
577         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
578 };
579
580 static struct ocfs2_triggers dq_triggers = {
581         .ot_triggers = {
582                 .t_frozen = ocfs2_dq_frozen_trigger,
583                 .t_abort = ocfs2_abort_trigger,
584         },
585 };
586
587 static struct ocfs2_triggers dr_triggers = {
588         .ot_triggers = {
589                 .t_frozen = ocfs2_frozen_trigger,
590                 .t_abort = ocfs2_abort_trigger,
591         },
592         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
593 };
594
595 static struct ocfs2_triggers dl_triggers = {
596         .ot_triggers = {
597                 .t_frozen = ocfs2_frozen_trigger,
598                 .t_abort = ocfs2_abort_trigger,
599         },
600         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
601 };
602
603 static int __ocfs2_journal_access(handle_t *handle,
604                                   struct ocfs2_caching_info *ci,
605                                   struct buffer_head *bh,
606                                   struct ocfs2_triggers *triggers,
607                                   int type)
608 {
609         int status;
610         struct ocfs2_super *osb =
611                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
612
613         BUG_ON(!ci || !ci->ci_ops);
614         BUG_ON(!handle);
615         BUG_ON(!bh);
616
617         trace_ocfs2_journal_access(
618                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
619                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
620
621         /* we can safely remove this assertion after testing. */
622         if (!buffer_uptodate(bh)) {
623                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
624                 mlog(ML_ERROR, "b_blocknr=%llu\n",
625                      (unsigned long long)bh->b_blocknr);
626                 BUG();
627         }
628
629         /* Set the current transaction information on the ci so
630          * that the locking code knows whether it can drop it's locks
631          * on this ci or not. We're protected from the commit
632          * thread updating the current transaction id until
633          * ocfs2_commit_trans() because ocfs2_start_trans() took
634          * j_trans_barrier for us. */
635         ocfs2_set_ci_lock_trans(osb->journal, ci);
636
637         ocfs2_metadata_cache_io_lock(ci);
638         switch (type) {
639         case OCFS2_JOURNAL_ACCESS_CREATE:
640         case OCFS2_JOURNAL_ACCESS_WRITE:
641                 status = jbd2_journal_get_write_access(handle, bh);
642                 break;
643
644         case OCFS2_JOURNAL_ACCESS_UNDO:
645                 status = jbd2_journal_get_undo_access(handle, bh);
646                 break;
647
648         default:
649                 status = -EINVAL;
650                 mlog(ML_ERROR, "Unknown access type!\n");
651         }
652         if (!status && ocfs2_meta_ecc(osb) && triggers)
653                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
654         ocfs2_metadata_cache_io_unlock(ci);
655
656         if (status < 0)
657                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
658                      status, type);
659
660         return status;
661 }
662
663 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
664                             struct buffer_head *bh, int type)
665 {
666         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
667 }
668
669 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
670                             struct buffer_head *bh, int type)
671 {
672         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
673 }
674
675 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
676                             struct buffer_head *bh, int type)
677 {
678         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
679                                       type);
680 }
681
682 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
683                             struct buffer_head *bh, int type)
684 {
685         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
686 }
687
688 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
689                             struct buffer_head *bh, int type)
690 {
691         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
692 }
693
694 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
695                             struct buffer_head *bh, int type)
696 {
697         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
698 }
699
700 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
701                             struct buffer_head *bh, int type)
702 {
703         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
704 }
705
706 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
707                             struct buffer_head *bh, int type)
708 {
709         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
710 }
711
712 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
713                             struct buffer_head *bh, int type)
714 {
715         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
716 }
717
718 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
719                          struct buffer_head *bh, int type)
720 {
721         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
722 }
723
724 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
725 {
726         int status;
727
728         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
729
730         status = jbd2_journal_dirty_metadata(handle, bh);
731         BUG_ON(status);
732 }
733
734 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
735
736 void ocfs2_set_journal_params(struct ocfs2_super *osb)
737 {
738         journal_t *journal = osb->journal->j_journal;
739         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
740
741         if (osb->osb_commit_interval)
742                 commit_interval = osb->osb_commit_interval;
743
744         write_lock(&journal->j_state_lock);
745         journal->j_commit_interval = commit_interval;
746         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
747                 journal->j_flags |= JBD2_BARRIER;
748         else
749                 journal->j_flags &= ~JBD2_BARRIER;
750         write_unlock(&journal->j_state_lock);
751 }
752
753 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
754 {
755         int status = -1;
756         struct inode *inode = NULL; /* the journal inode */
757         journal_t *j_journal = NULL;
758         struct ocfs2_dinode *di = NULL;
759         struct buffer_head *bh = NULL;
760         struct ocfs2_super *osb;
761         int inode_lock = 0;
762
763         BUG_ON(!journal);
764
765         osb = journal->j_osb;
766
767         /* already have the inode for our journal */
768         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
769                                             osb->slot_num);
770         if (inode == NULL) {
771                 status = -EACCES;
772                 mlog_errno(status);
773                 goto done;
774         }
775         if (is_bad_inode(inode)) {
776                 mlog(ML_ERROR, "access error (bad inode)\n");
777                 iput(inode);
778                 inode = NULL;
779                 status = -EACCES;
780                 goto done;
781         }
782
783         SET_INODE_JOURNAL(inode);
784         OCFS2_I(inode)->ip_open_count++;
785
786         /* Skip recovery waits here - journal inode metadata never
787          * changes in a live cluster so it can be considered an
788          * exception to the rule. */
789         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
790         if (status < 0) {
791                 if (status != -ERESTARTSYS)
792                         mlog(ML_ERROR, "Could not get lock on journal!\n");
793                 goto done;
794         }
795
796         inode_lock = 1;
797         di = (struct ocfs2_dinode *)bh->b_data;
798
799         if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
800                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
801                      inode->i_size);
802                 status = -EINVAL;
803                 goto done;
804         }
805
806         trace_ocfs2_journal_init(inode->i_size,
807                                  (unsigned long long)inode->i_blocks,
808                                  OCFS2_I(inode)->ip_clusters);
809
810         /* call the kernels journal init function now */
811         j_journal = jbd2_journal_init_inode(inode);
812         if (j_journal == NULL) {
813                 mlog(ML_ERROR, "Linux journal layer error\n");
814                 status = -EINVAL;
815                 goto done;
816         }
817
818         trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
819
820         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
821                   OCFS2_JOURNAL_DIRTY_FL);
822
823         journal->j_journal = j_journal;
824         journal->j_inode = inode;
825         journal->j_bh = bh;
826
827         ocfs2_set_journal_params(osb);
828
829         journal->j_state = OCFS2_JOURNAL_LOADED;
830
831         status = 0;
832 done:
833         if (status < 0) {
834                 if (inode_lock)
835                         ocfs2_inode_unlock(inode, 1);
836                 brelse(bh);
837                 if (inode) {
838                         OCFS2_I(inode)->ip_open_count--;
839                         iput(inode);
840                 }
841         }
842
843         return status;
844 }
845
846 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
847 {
848         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
849 }
850
851 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
852 {
853         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
854 }
855
856 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
857                                       int dirty, int replayed)
858 {
859         int status;
860         unsigned int flags;
861         struct ocfs2_journal *journal = osb->journal;
862         struct buffer_head *bh = journal->j_bh;
863         struct ocfs2_dinode *fe;
864
865         fe = (struct ocfs2_dinode *)bh->b_data;
866
867         /* The journal bh on the osb always comes from ocfs2_journal_init()
868          * and was validated there inside ocfs2_inode_lock_full().  It's a
869          * code bug if we mess it up. */
870         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
871
872         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
873         if (dirty)
874                 flags |= OCFS2_JOURNAL_DIRTY_FL;
875         else
876                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
877         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
878
879         if (replayed)
880                 ocfs2_bump_recovery_generation(fe);
881
882         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
883         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
884         if (status < 0)
885                 mlog_errno(status);
886
887         return status;
888 }
889
890 /*
891  * If the journal has been kmalloc'd it needs to be freed after this
892  * call.
893  */
894 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
895 {
896         struct ocfs2_journal *journal = NULL;
897         int status = 0;
898         struct inode *inode = NULL;
899         int num_running_trans = 0;
900
901         BUG_ON(!osb);
902
903         journal = osb->journal;
904         if (!journal)
905                 goto done;
906
907         inode = journal->j_inode;
908
909         if (journal->j_state != OCFS2_JOURNAL_LOADED)
910                 goto done;
911
912         /* need to inc inode use count - jbd2_journal_destroy will iput. */
913         if (!igrab(inode))
914                 BUG();
915
916         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
917         trace_ocfs2_journal_shutdown(num_running_trans);
918
919         /* Do a commit_cache here. It will flush our journal, *and*
920          * release any locks that are still held.
921          * set the SHUTDOWN flag and release the trans lock.
922          * the commit thread will take the trans lock for us below. */
923         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
924
925         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
926          * drop the trans_lock (which we want to hold until we
927          * completely destroy the journal. */
928         if (osb->commit_task) {
929                 /* Wait for the commit thread */
930                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
931                 kthread_stop(osb->commit_task);
932                 osb->commit_task = NULL;
933         }
934
935         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
936
937         if (ocfs2_mount_local(osb)) {
938                 jbd2_journal_lock_updates(journal->j_journal);
939                 status = jbd2_journal_flush(journal->j_journal);
940                 jbd2_journal_unlock_updates(journal->j_journal);
941                 if (status < 0)
942                         mlog_errno(status);
943         }
944
945         if (status == 0) {
946                 /*
947                  * Do not toggle if flush was unsuccessful otherwise
948                  * will leave dirty metadata in a "clean" journal
949                  */
950                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
951                 if (status < 0)
952                         mlog_errno(status);
953         }
954
955         /* Shutdown the kernel journal system */
956         jbd2_journal_destroy(journal->j_journal);
957         journal->j_journal = NULL;
958
959         OCFS2_I(inode)->ip_open_count--;
960
961         /* unlock our journal */
962         ocfs2_inode_unlock(inode, 1);
963
964         brelse(journal->j_bh);
965         journal->j_bh = NULL;
966
967         journal->j_state = OCFS2_JOURNAL_FREE;
968
969 //      up_write(&journal->j_trans_barrier);
970 done:
971         if (inode)
972                 iput(inode);
973 }
974
975 static void ocfs2_clear_journal_error(struct super_block *sb,
976                                       journal_t *journal,
977                                       int slot)
978 {
979         int olderr;
980
981         olderr = jbd2_journal_errno(journal);
982         if (olderr) {
983                 mlog(ML_ERROR, "File system error %d recorded in "
984                      "journal %u.\n", olderr, slot);
985                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
986                      sb->s_id);
987
988                 jbd2_journal_ack_err(journal);
989                 jbd2_journal_clear_err(journal);
990         }
991 }
992
993 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
994 {
995         int status = 0;
996         struct ocfs2_super *osb;
997
998         BUG_ON(!journal);
999
1000         osb = journal->j_osb;
1001
1002         status = jbd2_journal_load(journal->j_journal);
1003         if (status < 0) {
1004                 mlog(ML_ERROR, "Failed to load journal!\n");
1005                 goto done;
1006         }
1007
1008         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1009
1010         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1011         if (status < 0) {
1012                 mlog_errno(status);
1013                 goto done;
1014         }
1015
1016         /* Launch the commit thread */
1017         if (!local) {
1018                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1019                                                "ocfs2cmt");
1020                 if (IS_ERR(osb->commit_task)) {
1021                         status = PTR_ERR(osb->commit_task);
1022                         osb->commit_task = NULL;
1023                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1024                              "error=%d", status);
1025                         goto done;
1026                 }
1027         } else
1028                 osb->commit_task = NULL;
1029
1030 done:
1031         return status;
1032 }
1033
1034
1035 /* 'full' flag tells us whether we clear out all blocks or if we just
1036  * mark the journal clean */
1037 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1038 {
1039         int status;
1040
1041         BUG_ON(!journal);
1042
1043         status = jbd2_journal_wipe(journal->j_journal, full);
1044         if (status < 0) {
1045                 mlog_errno(status);
1046                 goto bail;
1047         }
1048
1049         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1050         if (status < 0)
1051                 mlog_errno(status);
1052
1053 bail:
1054         return status;
1055 }
1056
1057 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1058 {
1059         int empty;
1060         struct ocfs2_recovery_map *rm = osb->recovery_map;
1061
1062         spin_lock(&osb->osb_lock);
1063         empty = (rm->rm_used == 0);
1064         spin_unlock(&osb->osb_lock);
1065
1066         return empty;
1067 }
1068
1069 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1070 {
1071         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1072 }
1073
1074 /*
1075  * JBD Might read a cached version of another nodes journal file. We
1076  * don't want this as this file changes often and we get no
1077  * notification on those changes. The only way to be sure that we've
1078  * got the most up to date version of those blocks then is to force
1079  * read them off disk. Just searching through the buffer cache won't
1080  * work as there may be pages backing this file which are still marked
1081  * up to date. We know things can't change on this file underneath us
1082  * as we have the lock by now :)
1083  */
1084 static int ocfs2_force_read_journal(struct inode *inode)
1085 {
1086         int status = 0;
1087         int i;
1088         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1089 #define CONCURRENT_JOURNAL_FILL 32ULL
1090         struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1091
1092         memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1093
1094         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1095         v_blkno = 0;
1096         while (v_blkno < num_blocks) {
1097                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1098                                                      &p_blkno, &p_blocks, NULL);
1099                 if (status < 0) {
1100                         mlog_errno(status);
1101                         goto bail;
1102                 }
1103
1104                 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1105                         p_blocks = CONCURRENT_JOURNAL_FILL;
1106
1107                 /* We are reading journal data which should not
1108                  * be put in the uptodate cache */
1109                 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1110                                                 p_blkno, p_blocks, bhs);
1111                 if (status < 0) {
1112                         mlog_errno(status);
1113                         goto bail;
1114                 }
1115
1116                 for(i = 0; i < p_blocks; i++) {
1117                         brelse(bhs[i]);
1118                         bhs[i] = NULL;
1119                 }
1120
1121                 v_blkno += p_blocks;
1122         }
1123
1124 bail:
1125         for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1126                 brelse(bhs[i]);
1127         return status;
1128 }
1129
1130 struct ocfs2_la_recovery_item {
1131         struct list_head        lri_list;
1132         int                     lri_slot;
1133         struct ocfs2_dinode     *lri_la_dinode;
1134         struct ocfs2_dinode     *lri_tl_dinode;
1135         struct ocfs2_quota_recovery *lri_qrec;
1136 };
1137
1138 /* Does the second half of the recovery process. By this point, the
1139  * node is marked clean and can actually be considered recovered,
1140  * hence it's no longer in the recovery map, but there's still some
1141  * cleanup we can do which shouldn't happen within the recovery thread
1142  * as locking in that context becomes very difficult if we are to take
1143  * recovering nodes into account.
1144  *
1145  * NOTE: This function can and will sleep on recovery of other nodes
1146  * during cluster locking, just like any other ocfs2 process.
1147  */
1148 void ocfs2_complete_recovery(struct work_struct *work)
1149 {
1150         int ret = 0;
1151         struct ocfs2_journal *journal =
1152                 container_of(work, struct ocfs2_journal, j_recovery_work);
1153         struct ocfs2_super *osb = journal->j_osb;
1154         struct ocfs2_dinode *la_dinode, *tl_dinode;
1155         struct ocfs2_la_recovery_item *item, *n;
1156         struct ocfs2_quota_recovery *qrec;
1157         LIST_HEAD(tmp_la_list);
1158
1159         trace_ocfs2_complete_recovery(
1160                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1161
1162         spin_lock(&journal->j_lock);
1163         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1164         spin_unlock(&journal->j_lock);
1165
1166         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1167                 list_del_init(&item->lri_list);
1168
1169                 ocfs2_wait_on_quotas(osb);
1170
1171                 la_dinode = item->lri_la_dinode;
1172                 tl_dinode = item->lri_tl_dinode;
1173                 qrec = item->lri_qrec;
1174
1175                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1176                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1177                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1178                         qrec);
1179
1180                 if (la_dinode) {
1181                         ret = ocfs2_complete_local_alloc_recovery(osb,
1182                                                                   la_dinode);
1183                         if (ret < 0)
1184                                 mlog_errno(ret);
1185
1186                         kfree(la_dinode);
1187                 }
1188
1189                 if (tl_dinode) {
1190                         ret = ocfs2_complete_truncate_log_recovery(osb,
1191                                                                    tl_dinode);
1192                         if (ret < 0)
1193                                 mlog_errno(ret);
1194
1195                         kfree(tl_dinode);
1196                 }
1197
1198                 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1199                 if (ret < 0)
1200                         mlog_errno(ret);
1201
1202                 if (qrec) {
1203                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1204                                                           item->lri_slot);
1205                         if (ret < 0)
1206                                 mlog_errno(ret);
1207                         /* Recovery info is already freed now */
1208                 }
1209
1210                 kfree(item);
1211         }
1212
1213         trace_ocfs2_complete_recovery_end(ret);
1214 }
1215
1216 /* NOTE: This function always eats your references to la_dinode and
1217  * tl_dinode, either manually on error, or by passing them to
1218  * ocfs2_complete_recovery */
1219 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1220                                             int slot_num,
1221                                             struct ocfs2_dinode *la_dinode,
1222                                             struct ocfs2_dinode *tl_dinode,
1223                                             struct ocfs2_quota_recovery *qrec)
1224 {
1225         struct ocfs2_la_recovery_item *item;
1226
1227         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1228         if (!item) {
1229                 /* Though we wish to avoid it, we are in fact safe in
1230                  * skipping local alloc cleanup as fsck.ocfs2 is more
1231                  * than capable of reclaiming unused space. */
1232                 if (la_dinode)
1233                         kfree(la_dinode);
1234
1235                 if (tl_dinode)
1236                         kfree(tl_dinode);
1237
1238                 if (qrec)
1239                         ocfs2_free_quota_recovery(qrec);
1240
1241                 mlog_errno(-ENOMEM);
1242                 return;
1243         }
1244
1245         INIT_LIST_HEAD(&item->lri_list);
1246         item->lri_la_dinode = la_dinode;
1247         item->lri_slot = slot_num;
1248         item->lri_tl_dinode = tl_dinode;
1249         item->lri_qrec = qrec;
1250
1251         spin_lock(&journal->j_lock);
1252         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1253         queue_work(ocfs2_wq, &journal->j_recovery_work);
1254         spin_unlock(&journal->j_lock);
1255 }
1256
1257 /* Called by the mount code to queue recovery the last part of
1258  * recovery for it's own and offline slot(s). */
1259 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1260 {
1261         struct ocfs2_journal *journal = osb->journal;
1262
1263         if (ocfs2_is_hard_readonly(osb))
1264                 return;
1265
1266         /* No need to queue up our truncate_log as regular cleanup will catch
1267          * that */
1268         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1269                                         osb->local_alloc_copy, NULL, NULL);
1270         ocfs2_schedule_truncate_log_flush(osb, 0);
1271
1272         osb->local_alloc_copy = NULL;
1273         osb->dirty = 0;
1274
1275         /* queue to recover orphan slots for all offline slots */
1276         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1277         ocfs2_queue_replay_slots(osb);
1278         ocfs2_free_replay_slots(osb);
1279 }
1280
1281 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1282 {
1283         if (osb->quota_rec) {
1284                 ocfs2_queue_recovery_completion(osb->journal,
1285                                                 osb->slot_num,
1286                                                 NULL,
1287                                                 NULL,
1288                                                 osb->quota_rec);
1289                 osb->quota_rec = NULL;
1290         }
1291 }
1292
1293 static int __ocfs2_recovery_thread(void *arg)
1294 {
1295         int status, node_num, slot_num;
1296         struct ocfs2_super *osb = arg;
1297         struct ocfs2_recovery_map *rm = osb->recovery_map;
1298         int *rm_quota = NULL;
1299         int rm_quota_used = 0, i;
1300         struct ocfs2_quota_recovery *qrec;
1301
1302         status = ocfs2_wait_on_mount(osb);
1303         if (status < 0) {
1304                 goto bail;
1305         }
1306
1307         rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1308         if (!rm_quota) {
1309                 status = -ENOMEM;
1310                 goto bail;
1311         }
1312 restart:
1313         status = ocfs2_super_lock(osb, 1);
1314         if (status < 0) {
1315                 mlog_errno(status);
1316                 goto bail;
1317         }
1318
1319         status = ocfs2_compute_replay_slots(osb);
1320         if (status < 0)
1321                 mlog_errno(status);
1322
1323         /* queue recovery for our own slot */
1324         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1325                                         NULL, NULL);
1326
1327         spin_lock(&osb->osb_lock);
1328         while (rm->rm_used) {
1329                 /* It's always safe to remove entry zero, as we won't
1330                  * clear it until ocfs2_recover_node() has succeeded. */
1331                 node_num = rm->rm_entries[0];
1332                 spin_unlock(&osb->osb_lock);
1333                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1334                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1335                 if (slot_num == -ENOENT) {
1336                         status = 0;
1337                         goto skip_recovery;
1338                 }
1339
1340                 /* It is a bit subtle with quota recovery. We cannot do it
1341                  * immediately because we have to obtain cluster locks from
1342                  * quota files and we also don't want to just skip it because
1343                  * then quota usage would be out of sync until some node takes
1344                  * the slot. So we remember which nodes need quota recovery
1345                  * and when everything else is done, we recover quotas. */
1346                 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1347                 if (i == rm_quota_used)
1348                         rm_quota[rm_quota_used++] = slot_num;
1349
1350                 status = ocfs2_recover_node(osb, node_num, slot_num);
1351 skip_recovery:
1352                 if (!status) {
1353                         ocfs2_recovery_map_clear(osb, node_num);
1354                 } else {
1355                         mlog(ML_ERROR,
1356                              "Error %d recovering node %d on device (%u,%u)!\n",
1357                              status, node_num,
1358                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1359                         mlog(ML_ERROR, "Volume requires unmount.\n");
1360                 }
1361
1362                 spin_lock(&osb->osb_lock);
1363         }
1364         spin_unlock(&osb->osb_lock);
1365         trace_ocfs2_recovery_thread_end(status);
1366
1367         /* Refresh all journal recovery generations from disk */
1368         status = ocfs2_check_journals_nolocks(osb);
1369         status = (status == -EROFS) ? 0 : status;
1370         if (status < 0)
1371                 mlog_errno(status);
1372
1373         /* Now it is right time to recover quotas... We have to do this under
1374          * superblock lock so that no one can start using the slot (and crash)
1375          * before we recover it */
1376         for (i = 0; i < rm_quota_used; i++) {
1377                 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1378                 if (IS_ERR(qrec)) {
1379                         status = PTR_ERR(qrec);
1380                         mlog_errno(status);
1381                         continue;
1382                 }
1383                 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1384                                                 NULL, NULL, qrec);
1385         }
1386
1387         ocfs2_super_unlock(osb, 1);
1388
1389         /* queue recovery for offline slots */
1390         ocfs2_queue_replay_slots(osb);
1391
1392 bail:
1393         mutex_lock(&osb->recovery_lock);
1394         if (!status && !ocfs2_recovery_completed(osb)) {
1395                 mutex_unlock(&osb->recovery_lock);
1396                 goto restart;
1397         }
1398
1399         ocfs2_free_replay_slots(osb);
1400         osb->recovery_thread_task = NULL;
1401         mb(); /* sync with ocfs2_recovery_thread_running */
1402         wake_up(&osb->recovery_event);
1403
1404         mutex_unlock(&osb->recovery_lock);
1405
1406         if (rm_quota)
1407                 kfree(rm_quota);
1408
1409         /* no one is callint kthread_stop() for us so the kthread() api
1410          * requires that we call do_exit().  And it isn't exported, but
1411          * complete_and_exit() seems to be a minimal wrapper around it. */
1412         complete_and_exit(NULL, status);
1413         return status;
1414 }
1415
1416 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1417 {
1418         mutex_lock(&osb->recovery_lock);
1419
1420         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1421                 osb->disable_recovery, osb->recovery_thread_task,
1422                 osb->disable_recovery ?
1423                 -1 : ocfs2_recovery_map_set(osb, node_num));
1424
1425         if (osb->disable_recovery)
1426                 goto out;
1427
1428         if (osb->recovery_thread_task)
1429                 goto out;
1430
1431         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1432                                                  "ocfs2rec");
1433         if (IS_ERR(osb->recovery_thread_task)) {
1434                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1435                 osb->recovery_thread_task = NULL;
1436         }
1437
1438 out:
1439         mutex_unlock(&osb->recovery_lock);
1440         wake_up(&osb->recovery_event);
1441 }
1442
1443 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1444                                     int slot_num,
1445                                     struct buffer_head **bh,
1446                                     struct inode **ret_inode)
1447 {
1448         int status = -EACCES;
1449         struct inode *inode = NULL;
1450
1451         BUG_ON(slot_num >= osb->max_slots);
1452
1453         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1454                                             slot_num);
1455         if (!inode || is_bad_inode(inode)) {
1456                 mlog_errno(status);
1457                 goto bail;
1458         }
1459         SET_INODE_JOURNAL(inode);
1460
1461         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1462         if (status < 0) {
1463                 mlog_errno(status);
1464                 goto bail;
1465         }
1466
1467         status = 0;
1468
1469 bail:
1470         if (inode) {
1471                 if (status || !ret_inode)
1472                         iput(inode);
1473                 else
1474                         *ret_inode = inode;
1475         }
1476         return status;
1477 }
1478
1479 /* Does the actual journal replay and marks the journal inode as
1480  * clean. Will only replay if the journal inode is marked dirty. */
1481 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1482                                 int node_num,
1483                                 int slot_num)
1484 {
1485         int status;
1486         int got_lock = 0;
1487         unsigned int flags;
1488         struct inode *inode = NULL;
1489         struct ocfs2_dinode *fe;
1490         journal_t *journal = NULL;
1491         struct buffer_head *bh = NULL;
1492         u32 slot_reco_gen;
1493
1494         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1495         if (status) {
1496                 mlog_errno(status);
1497                 goto done;
1498         }
1499
1500         fe = (struct ocfs2_dinode *)bh->b_data;
1501         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1502         brelse(bh);
1503         bh = NULL;
1504
1505         /*
1506          * As the fs recovery is asynchronous, there is a small chance that
1507          * another node mounted (and recovered) the slot before the recovery
1508          * thread could get the lock. To handle that, we dirty read the journal
1509          * inode for that slot to get the recovery generation. If it is
1510          * different than what we expected, the slot has been recovered.
1511          * If not, it needs recovery.
1512          */
1513         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1514                 trace_ocfs2_replay_journal_recovered(slot_num,
1515                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1516                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1517                 status = -EBUSY;
1518                 goto done;
1519         }
1520
1521         /* Continue with recovery as the journal has not yet been recovered */
1522
1523         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1524         if (status < 0) {
1525                 trace_ocfs2_replay_journal_lock_err(status);
1526                 if (status != -ERESTARTSYS)
1527                         mlog(ML_ERROR, "Could not lock journal!\n");
1528                 goto done;
1529         }
1530         got_lock = 1;
1531
1532         fe = (struct ocfs2_dinode *) bh->b_data;
1533
1534         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1535         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1536
1537         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1538                 trace_ocfs2_replay_journal_skip(node_num);
1539                 /* Refresh recovery generation for the slot */
1540                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1541                 goto done;
1542         }
1543
1544         /* we need to run complete recovery for offline orphan slots */
1545         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1546
1547         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1548                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1549                MINOR(osb->sb->s_dev));
1550
1551         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1552
1553         status = ocfs2_force_read_journal(inode);
1554         if (status < 0) {
1555                 mlog_errno(status);
1556                 goto done;
1557         }
1558
1559         journal = jbd2_journal_init_inode(inode);
1560         if (journal == NULL) {
1561                 mlog(ML_ERROR, "Linux journal layer error\n");
1562                 status = -EIO;
1563                 goto done;
1564         }
1565
1566         status = jbd2_journal_load(journal);
1567         if (status < 0) {
1568                 mlog_errno(status);
1569                 if (!igrab(inode))
1570                         BUG();
1571                 jbd2_journal_destroy(journal);
1572                 goto done;
1573         }
1574
1575         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1576
1577         /* wipe the journal */
1578         jbd2_journal_lock_updates(journal);
1579         status = jbd2_journal_flush(journal);
1580         jbd2_journal_unlock_updates(journal);
1581         if (status < 0)
1582                 mlog_errno(status);
1583
1584         /* This will mark the node clean */
1585         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1586         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1587         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1588
1589         /* Increment recovery generation to indicate successful recovery */
1590         ocfs2_bump_recovery_generation(fe);
1591         osb->slot_recovery_generations[slot_num] =
1592                                         ocfs2_get_recovery_generation(fe);
1593
1594         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1595         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1596         if (status < 0)
1597                 mlog_errno(status);
1598
1599         if (!igrab(inode))
1600                 BUG();
1601
1602         jbd2_journal_destroy(journal);
1603
1604         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1605                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1606                MINOR(osb->sb->s_dev));
1607 done:
1608         /* drop the lock on this nodes journal */
1609         if (got_lock)
1610                 ocfs2_inode_unlock(inode, 1);
1611
1612         if (inode)
1613                 iput(inode);
1614
1615         brelse(bh);
1616
1617         return status;
1618 }
1619
1620 /*
1621  * Do the most important parts of node recovery:
1622  *  - Replay it's journal
1623  *  - Stamp a clean local allocator file
1624  *  - Stamp a clean truncate log
1625  *  - Mark the node clean
1626  *
1627  * If this function completes without error, a node in OCFS2 can be
1628  * said to have been safely recovered. As a result, failure during the
1629  * second part of a nodes recovery process (local alloc recovery) is
1630  * far less concerning.
1631  */
1632 static int ocfs2_recover_node(struct ocfs2_super *osb,
1633                               int node_num, int slot_num)
1634 {
1635         int status = 0;
1636         struct ocfs2_dinode *la_copy = NULL;
1637         struct ocfs2_dinode *tl_copy = NULL;
1638
1639         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1640
1641         /* Should not ever be called to recover ourselves -- in that
1642          * case we should've called ocfs2_journal_load instead. */
1643         BUG_ON(osb->node_num == node_num);
1644
1645         status = ocfs2_replay_journal(osb, node_num, slot_num);
1646         if (status < 0) {
1647                 if (status == -EBUSY) {
1648                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1649                         status = 0;
1650                         goto done;
1651                 }
1652                 mlog_errno(status);
1653                 goto done;
1654         }
1655
1656         /* Stamp a clean local alloc file AFTER recovering the journal... */
1657         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1658         if (status < 0) {
1659                 mlog_errno(status);
1660                 goto done;
1661         }
1662
1663         /* An error from begin_truncate_log_recovery is not
1664          * serious enough to warrant halting the rest of
1665          * recovery. */
1666         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1667         if (status < 0)
1668                 mlog_errno(status);
1669
1670         /* Likewise, this would be a strange but ultimately not so
1671          * harmful place to get an error... */
1672         status = ocfs2_clear_slot(osb, slot_num);
1673         if (status < 0)
1674                 mlog_errno(status);
1675
1676         /* This will kfree the memory pointed to by la_copy and tl_copy */
1677         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1678                                         tl_copy, NULL);
1679
1680         status = 0;
1681 done:
1682
1683         return status;
1684 }
1685
1686 /* Test node liveness by trylocking his journal. If we get the lock,
1687  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1688  * still alive (we couldn't get the lock) and < 0 on error. */
1689 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1690                                  int slot_num)
1691 {
1692         int status, flags;
1693         struct inode *inode = NULL;
1694
1695         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1696                                             slot_num);
1697         if (inode == NULL) {
1698                 mlog(ML_ERROR, "access error\n");
1699                 status = -EACCES;
1700                 goto bail;
1701         }
1702         if (is_bad_inode(inode)) {
1703                 mlog(ML_ERROR, "access error (bad inode)\n");
1704                 iput(inode);
1705                 inode = NULL;
1706                 status = -EACCES;
1707                 goto bail;
1708         }
1709         SET_INODE_JOURNAL(inode);
1710
1711         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1712         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1713         if (status < 0) {
1714                 if (status != -EAGAIN)
1715                         mlog_errno(status);
1716                 goto bail;
1717         }
1718
1719         ocfs2_inode_unlock(inode, 1);
1720 bail:
1721         if (inode)
1722                 iput(inode);
1723
1724         return status;
1725 }
1726
1727 /* Call this underneath ocfs2_super_lock. It also assumes that the
1728  * slot info struct has been updated from disk. */
1729 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1730 {
1731         unsigned int node_num;
1732         int status, i;
1733         u32 gen;
1734         struct buffer_head *bh = NULL;
1735         struct ocfs2_dinode *di;
1736
1737         /* This is called with the super block cluster lock, so we
1738          * know that the slot map can't change underneath us. */
1739
1740         for (i = 0; i < osb->max_slots; i++) {
1741                 /* Read journal inode to get the recovery generation */
1742                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1743                 if (status) {
1744                         mlog_errno(status);
1745                         goto bail;
1746                 }
1747                 di = (struct ocfs2_dinode *)bh->b_data;
1748                 gen = ocfs2_get_recovery_generation(di);
1749                 brelse(bh);
1750                 bh = NULL;
1751
1752                 spin_lock(&osb->osb_lock);
1753                 osb->slot_recovery_generations[i] = gen;
1754
1755                 trace_ocfs2_mark_dead_nodes(i,
1756                                             osb->slot_recovery_generations[i]);
1757
1758                 if (i == osb->slot_num) {
1759                         spin_unlock(&osb->osb_lock);
1760                         continue;
1761                 }
1762
1763                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1764                 if (status == -ENOENT) {
1765                         spin_unlock(&osb->osb_lock);
1766                         continue;
1767                 }
1768
1769                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1770                         spin_unlock(&osb->osb_lock);
1771                         continue;
1772                 }
1773                 spin_unlock(&osb->osb_lock);
1774
1775                 /* Ok, we have a slot occupied by another node which
1776                  * is not in the recovery map. We trylock his journal
1777                  * file here to test if he's alive. */
1778                 status = ocfs2_trylock_journal(osb, i);
1779                 if (!status) {
1780                         /* Since we're called from mount, we know that
1781                          * the recovery thread can't race us on
1782                          * setting / checking the recovery bits. */
1783                         ocfs2_recovery_thread(osb, node_num);
1784                 } else if ((status < 0) && (status != -EAGAIN)) {
1785                         mlog_errno(status);
1786                         goto bail;
1787                 }
1788         }
1789
1790         status = 0;
1791 bail:
1792         return status;
1793 }
1794
1795 /*
1796  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1797  * randomness to the timeout to minimize multple nodes firing the timer at the
1798  * same time.
1799  */
1800 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1801 {
1802         unsigned long time;
1803
1804         get_random_bytes(&time, sizeof(time));
1805         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1806         return msecs_to_jiffies(time);
1807 }
1808
1809 /*
1810  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1811  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1812  * is done to catch any orphans that are left over in orphan directories.
1813  *
1814  * It scans all slots, even ones that are in use. It does so to handle the
1815  * case described below:
1816  *
1817  *   Node 1 has an inode it was using. The dentry went away due to memory
1818  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1819  *   has the open lock.
1820  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1821  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1822  *   open lock, sees that another node has a PR, and does nothing.
1823  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1824  *   open lock, sees the PR still, and does nothing.
1825  *   Basically, we have to trigger an orphan iput on node 1. The only way
1826  *   for this to happen is if node 1 runs node 2's orphan dir.
1827  *
1828  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1829  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1830  * stored in LVB. If the sequence number has changed, it means some other
1831  * node has done the scan.  This node skips the scan and tracks the
1832  * sequence number.  If the sequence number didn't change, it means a scan
1833  * hasn't happened.  The node queues a scan and increments the
1834  * sequence number in the LVB.
1835  */
1836 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1837 {
1838         struct ocfs2_orphan_scan *os;
1839         int status, i;
1840         u32 seqno = 0;
1841
1842         os = &osb->osb_orphan_scan;
1843
1844         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1845                 goto out;
1846
1847         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1848                                             atomic_read(&os->os_state));
1849
1850         status = ocfs2_orphan_scan_lock(osb, &seqno);
1851         if (status < 0) {
1852                 if (status != -EAGAIN)
1853                         mlog_errno(status);
1854                 goto out;
1855         }
1856
1857         /* Do no queue the tasks if the volume is being umounted */
1858         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1859                 goto unlock;
1860
1861         if (os->os_seqno != seqno) {
1862                 os->os_seqno = seqno;
1863                 goto unlock;
1864         }
1865
1866         for (i = 0; i < osb->max_slots; i++)
1867                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1868                                                 NULL);
1869         /*
1870          * We queued a recovery on orphan slots, increment the sequence
1871          * number and update LVB so other node will skip the scan for a while
1872          */
1873         seqno++;
1874         os->os_count++;
1875         os->os_scantime = CURRENT_TIME;
1876 unlock:
1877         ocfs2_orphan_scan_unlock(osb, seqno);
1878 out:
1879         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1880                                           atomic_read(&os->os_state));
1881         return;
1882 }
1883
1884 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1885 void ocfs2_orphan_scan_work(struct work_struct *work)
1886 {
1887         struct ocfs2_orphan_scan *os;
1888         struct ocfs2_super *osb;
1889
1890         os = container_of(work, struct ocfs2_orphan_scan,
1891                           os_orphan_scan_work.work);
1892         osb = os->os_osb;
1893
1894         mutex_lock(&os->os_lock);
1895         ocfs2_queue_orphan_scan(osb);
1896         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1897                 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1898                                       ocfs2_orphan_scan_timeout());
1899         mutex_unlock(&os->os_lock);
1900 }
1901
1902 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1903 {
1904         struct ocfs2_orphan_scan *os;
1905
1906         os = &osb->osb_orphan_scan;
1907         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1908                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1909                 mutex_lock(&os->os_lock);
1910                 cancel_delayed_work(&os->os_orphan_scan_work);
1911                 mutex_unlock(&os->os_lock);
1912         }
1913 }
1914
1915 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1916 {
1917         struct ocfs2_orphan_scan *os;
1918
1919         os = &osb->osb_orphan_scan;
1920         os->os_osb = osb;
1921         os->os_count = 0;
1922         os->os_seqno = 0;
1923         mutex_init(&os->os_lock);
1924         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1925 }
1926
1927 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1928 {
1929         struct ocfs2_orphan_scan *os;
1930
1931         os = &osb->osb_orphan_scan;
1932         os->os_scantime = CURRENT_TIME;
1933         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1934                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1935         else {
1936                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1937                 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1938                                    ocfs2_orphan_scan_timeout());
1939         }
1940 }
1941
1942 struct ocfs2_orphan_filldir_priv {
1943         struct inode            *head;
1944         struct ocfs2_super      *osb;
1945 };
1946
1947 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1948                                 loff_t pos, u64 ino, unsigned type)
1949 {
1950         struct ocfs2_orphan_filldir_priv *p = priv;
1951         struct inode *iter;
1952
1953         if (name_len == 1 && !strncmp(".", name, 1))
1954                 return 0;
1955         if (name_len == 2 && !strncmp("..", name, 2))
1956                 return 0;
1957
1958         /* Skip bad inodes so that recovery can continue */
1959         iter = ocfs2_iget(p->osb, ino,
1960                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1961         if (IS_ERR(iter))
1962                 return 0;
1963
1964         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
1965         /* No locking is required for the next_orphan queue as there
1966          * is only ever a single process doing orphan recovery. */
1967         OCFS2_I(iter)->ip_next_orphan = p->head;
1968         p->head = iter;
1969
1970         return 0;
1971 }
1972
1973 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1974                                int slot,
1975                                struct inode **head)
1976 {
1977         int status;
1978         struct inode *orphan_dir_inode = NULL;
1979         struct ocfs2_orphan_filldir_priv priv;
1980         loff_t pos = 0;
1981
1982         priv.osb = osb;
1983         priv.head = *head;
1984
1985         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1986                                                        ORPHAN_DIR_SYSTEM_INODE,
1987                                                        slot);
1988         if  (!orphan_dir_inode) {
1989                 status = -ENOENT;
1990                 mlog_errno(status);
1991                 return status;
1992         }
1993
1994         mutex_lock(&orphan_dir_inode->i_mutex);
1995         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1996         if (status < 0) {
1997                 mlog_errno(status);
1998                 goto out;
1999         }
2000
2001         status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2002                                    ocfs2_orphan_filldir);
2003         if (status) {
2004                 mlog_errno(status);
2005                 goto out_cluster;
2006         }
2007
2008         *head = priv.head;
2009
2010 out_cluster:
2011         ocfs2_inode_unlock(orphan_dir_inode, 0);
2012 out:
2013         mutex_unlock(&orphan_dir_inode->i_mutex);
2014         iput(orphan_dir_inode);
2015         return status;
2016 }
2017
2018 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2019                                               int slot)
2020 {
2021         int ret;
2022
2023         spin_lock(&osb->osb_lock);
2024         ret = !osb->osb_orphan_wipes[slot];
2025         spin_unlock(&osb->osb_lock);
2026         return ret;
2027 }
2028
2029 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2030                                              int slot)
2031 {
2032         spin_lock(&osb->osb_lock);
2033         /* Mark ourselves such that new processes in delete_inode()
2034          * know to quit early. */
2035         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2036         while (osb->osb_orphan_wipes[slot]) {
2037                 /* If any processes are already in the middle of an
2038                  * orphan wipe on this dir, then we need to wait for
2039                  * them. */
2040                 spin_unlock(&osb->osb_lock);
2041                 wait_event_interruptible(osb->osb_wipe_event,
2042                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2043                 spin_lock(&osb->osb_lock);
2044         }
2045         spin_unlock(&osb->osb_lock);
2046 }
2047
2048 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2049                                               int slot)
2050 {
2051         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2052 }
2053
2054 /*
2055  * Orphan recovery. Each mounted node has it's own orphan dir which we
2056  * must run during recovery. Our strategy here is to build a list of
2057  * the inodes in the orphan dir and iget/iput them. The VFS does
2058  * (most) of the rest of the work.
2059  *
2060  * Orphan recovery can happen at any time, not just mount so we have a
2061  * couple of extra considerations.
2062  *
2063  * - We grab as many inodes as we can under the orphan dir lock -
2064  *   doing iget() outside the orphan dir risks getting a reference on
2065  *   an invalid inode.
2066  * - We must be sure not to deadlock with other processes on the
2067  *   system wanting to run delete_inode(). This can happen when they go
2068  *   to lock the orphan dir and the orphan recovery process attempts to
2069  *   iget() inside the orphan dir lock. This can be avoided by
2070  *   advertising our state to ocfs2_delete_inode().
2071  */
2072 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2073                                  int slot)
2074 {
2075         int ret = 0;
2076         struct inode *inode = NULL;
2077         struct inode *iter;
2078         struct ocfs2_inode_info *oi;
2079
2080         trace_ocfs2_recover_orphans(slot);
2081
2082         ocfs2_mark_recovering_orphan_dir(osb, slot);
2083         ret = ocfs2_queue_orphans(osb, slot, &inode);
2084         ocfs2_clear_recovering_orphan_dir(osb, slot);
2085
2086         /* Error here should be noted, but we want to continue with as
2087          * many queued inodes as we've got. */
2088         if (ret)
2089                 mlog_errno(ret);
2090
2091         while (inode) {
2092                 oi = OCFS2_I(inode);
2093                 trace_ocfs2_recover_orphans_iput(
2094                                         (unsigned long long)oi->ip_blkno);
2095
2096                 iter = oi->ip_next_orphan;
2097
2098                 spin_lock(&oi->ip_lock);
2099                 /* The remote delete code may have set these on the
2100                  * assumption that the other node would wipe them
2101                  * successfully.  If they are still in the node's
2102                  * orphan dir, we need to reset that state. */
2103                 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2104
2105                 /* Set the proper information to get us going into
2106                  * ocfs2_delete_inode. */
2107                 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2108                 spin_unlock(&oi->ip_lock);
2109
2110                 iput(inode);
2111
2112                 inode = iter;
2113         }
2114
2115         return ret;
2116 }
2117
2118 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2119 {
2120         /* This check is good because ocfs2 will wait on our recovery
2121          * thread before changing it to something other than MOUNTED
2122          * or DISABLED. */
2123         wait_event(osb->osb_mount_event,
2124                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2125                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2126                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2127
2128         /* If there's an error on mount, then we may never get to the
2129          * MOUNTED flag, but this is set right before
2130          * dismount_volume() so we can trust it. */
2131         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2132                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2133                 mlog(0, "mount error, exiting!\n");
2134                 return -EBUSY;
2135         }
2136
2137         return 0;
2138 }
2139
2140 static int ocfs2_commit_thread(void *arg)
2141 {
2142         int status;
2143         struct ocfs2_super *osb = arg;
2144         struct ocfs2_journal *journal = osb->journal;
2145
2146         /* we can trust j_num_trans here because _should_stop() is only set in
2147          * shutdown and nobody other than ourselves should be able to start
2148          * transactions.  committing on shutdown might take a few iterations
2149          * as final transactions put deleted inodes on the list */
2150         while (!(kthread_should_stop() &&
2151                  atomic_read(&journal->j_num_trans) == 0)) {
2152
2153                 wait_event_interruptible(osb->checkpoint_event,
2154                                          atomic_read(&journal->j_num_trans)
2155                                          || kthread_should_stop());
2156
2157                 status = ocfs2_commit_cache(osb);
2158                 if (status < 0)
2159                         mlog_errno(status);
2160
2161                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2162                         mlog(ML_KTHREAD,
2163                              "commit_thread: %u transactions pending on "
2164                              "shutdown\n",
2165                              atomic_read(&journal->j_num_trans));
2166                 }
2167         }
2168
2169         return 0;
2170 }
2171
2172 /* Reads all the journal inodes without taking any cluster locks. Used
2173  * for hard readonly access to determine whether any journal requires
2174  * recovery. Also used to refresh the recovery generation numbers after
2175  * a journal has been recovered by another node.
2176  */
2177 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2178 {
2179         int ret = 0;
2180         unsigned int slot;
2181         struct buffer_head *di_bh = NULL;
2182         struct ocfs2_dinode *di;
2183         int journal_dirty = 0;
2184
2185         for(slot = 0; slot < osb->max_slots; slot++) {
2186                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2187                 if (ret) {
2188                         mlog_errno(ret);
2189                         goto out;
2190                 }
2191
2192                 di = (struct ocfs2_dinode *) di_bh->b_data;
2193
2194                 osb->slot_recovery_generations[slot] =
2195                                         ocfs2_get_recovery_generation(di);
2196
2197                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2198                     OCFS2_JOURNAL_DIRTY_FL)
2199                         journal_dirty = 1;
2200
2201                 brelse(di_bh);
2202                 di_bh = NULL;
2203         }
2204
2205 out:
2206         if (journal_dirty)
2207                 ret = -EROFS;
2208         return ret;
2209 }