ocfs2: fix start offset to ocfs2_zero_range_for_truncate()
[pandora-kernel.git] / fs / ocfs2 / file.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40
41 #include <cluster/masklog.h>
42
43 #include "ocfs2.h"
44
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64
65 #include "buffer_head_io.h"
66
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69         struct ocfs2_file_private *fp;
70
71         fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72         if (!fp)
73                 return -ENOMEM;
74
75         fp->fp_file = file;
76         mutex_init(&fp->fp_mutex);
77         ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78         file->private_data = fp;
79
80         return 0;
81 }
82
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85         struct ocfs2_file_private *fp = file->private_data;
86         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87
88         if (fp) {
89                 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90                 ocfs2_lock_res_free(&fp->fp_flock);
91                 kfree(fp);
92                 file->private_data = NULL;
93         }
94 }
95
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98         int status;
99         int mode = file->f_flags;
100         struct ocfs2_inode_info *oi = OCFS2_I(inode);
101
102         trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103                               (unsigned long long)OCFS2_I(inode)->ip_blkno,
104                               file->f_path.dentry->d_name.len,
105                               file->f_path.dentry->d_name.name, mode);
106
107         if (file->f_mode & FMODE_WRITE)
108                 dquot_initialize(inode);
109
110         spin_lock(&oi->ip_lock);
111
112         /* Check that the inode hasn't been wiped from disk by another
113          * node. If it hasn't then we're safe as long as we hold the
114          * spin lock until our increment of open count. */
115         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116                 spin_unlock(&oi->ip_lock);
117
118                 status = -ENOENT;
119                 goto leave;
120         }
121
122         if (mode & O_DIRECT)
123                 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124
125         oi->ip_open_count++;
126         spin_unlock(&oi->ip_lock);
127
128         status = ocfs2_init_file_private(inode, file);
129         if (status) {
130                 /*
131                  * We want to set open count back if we're failing the
132                  * open.
133                  */
134                 spin_lock(&oi->ip_lock);
135                 oi->ip_open_count--;
136                 spin_unlock(&oi->ip_lock);
137         }
138
139 leave:
140         return status;
141 }
142
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145         struct ocfs2_inode_info *oi = OCFS2_I(inode);
146
147         spin_lock(&oi->ip_lock);
148         if (!--oi->ip_open_count)
149                 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150
151         trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152                                  oi->ip_blkno,
153                                  file->f_path.dentry->d_name.len,
154                                  file->f_path.dentry->d_name.name,
155                                  oi->ip_open_count);
156         spin_unlock(&oi->ip_lock);
157
158         ocfs2_free_file_private(inode, file);
159
160         return 0;
161 }
162
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165         return ocfs2_init_file_private(inode, file);
166 }
167
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170         ocfs2_free_file_private(inode, file);
171         return 0;
172 }
173
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175                            int datasync)
176 {
177         int err = 0;
178         journal_t *journal;
179         struct inode *inode = file->f_mapping->host;
180         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
181
182         trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
183                               OCFS2_I(inode)->ip_blkno,
184                               file->f_path.dentry->d_name.len,
185                               file->f_path.dentry->d_name.name,
186                               (unsigned long long)datasync);
187
188         err = filemap_write_and_wait_range(inode->i_mapping, start, end);
189         if (err)
190                 return err;
191
192         /*
193          * Probably don't need the i_mutex at all in here, just putting it here
194          * to be consistent with how fsync used to be called, someone more
195          * familiar with the fs could possibly remove it.
196          */
197         mutex_lock(&inode->i_mutex);
198         if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
199                 /*
200                  * We still have to flush drive's caches to get data to the
201                  * platter
202                  */
203                 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
204                         blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
205                 goto bail;
206         }
207
208         journal = osb->journal->j_journal;
209         err = jbd2_journal_force_commit(journal);
210
211 bail:
212         if (err)
213                 mlog_errno(err);
214         mutex_unlock(&inode->i_mutex);
215
216         return (err < 0) ? -EIO : 0;
217 }
218
219 int ocfs2_should_update_atime(struct inode *inode,
220                               struct vfsmount *vfsmnt)
221 {
222         struct timespec now;
223         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
224
225         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
226                 return 0;
227
228         if ((inode->i_flags & S_NOATIME) ||
229             ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
230                 return 0;
231
232         /*
233          * We can be called with no vfsmnt structure - NFSD will
234          * sometimes do this.
235          *
236          * Note that our action here is different than touch_atime() -
237          * if we can't tell whether this is a noatime mount, then we
238          * don't know whether to trust the value of s_atime_quantum.
239          */
240         if (vfsmnt == NULL)
241                 return 0;
242
243         if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
244             ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
245                 return 0;
246
247         if (vfsmnt->mnt_flags & MNT_RELATIME) {
248                 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
249                     (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
250                         return 1;
251
252                 return 0;
253         }
254
255         now = CURRENT_TIME;
256         if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
257                 return 0;
258         else
259                 return 1;
260 }
261
262 int ocfs2_update_inode_atime(struct inode *inode,
263                              struct buffer_head *bh)
264 {
265         int ret;
266         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
267         handle_t *handle;
268         struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
269
270         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
271         if (IS_ERR(handle)) {
272                 ret = PTR_ERR(handle);
273                 mlog_errno(ret);
274                 goto out;
275         }
276
277         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
278                                       OCFS2_JOURNAL_ACCESS_WRITE);
279         if (ret) {
280                 mlog_errno(ret);
281                 goto out_commit;
282         }
283
284         /*
285          * Don't use ocfs2_mark_inode_dirty() here as we don't always
286          * have i_mutex to guard against concurrent changes to other
287          * inode fields.
288          */
289         inode->i_atime = CURRENT_TIME;
290         di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
291         di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
292         ocfs2_journal_dirty(handle, bh);
293
294 out_commit:
295         ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
296 out:
297         return ret;
298 }
299
300 static int ocfs2_set_inode_size(handle_t *handle,
301                                 struct inode *inode,
302                                 struct buffer_head *fe_bh,
303                                 u64 new_i_size)
304 {
305         int status;
306
307         i_size_write(inode, new_i_size);
308         inode->i_blocks = ocfs2_inode_sector_count(inode);
309         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
310
311         status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
312         if (status < 0) {
313                 mlog_errno(status);
314                 goto bail;
315         }
316
317 bail:
318         return status;
319 }
320
321 int ocfs2_simple_size_update(struct inode *inode,
322                              struct buffer_head *di_bh,
323                              u64 new_i_size)
324 {
325         int ret;
326         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
327         handle_t *handle = NULL;
328
329         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
330         if (IS_ERR(handle)) {
331                 ret = PTR_ERR(handle);
332                 mlog_errno(ret);
333                 goto out;
334         }
335
336         ret = ocfs2_set_inode_size(handle, inode, di_bh,
337                                    new_i_size);
338         if (ret < 0)
339                 mlog_errno(ret);
340
341         ocfs2_commit_trans(osb, handle);
342 out:
343         return ret;
344 }
345
346 static int ocfs2_cow_file_pos(struct inode *inode,
347                               struct buffer_head *fe_bh,
348                               u64 offset)
349 {
350         int status;
351         u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
352         unsigned int num_clusters = 0;
353         unsigned int ext_flags = 0;
354
355         /*
356          * If the new offset is aligned to the range of the cluster, there is
357          * no space for ocfs2_zero_range_for_truncate to fill, so no need to
358          * CoW either.
359          */
360         if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
361                 return 0;
362
363         status = ocfs2_get_clusters(inode, cpos, &phys,
364                                     &num_clusters, &ext_flags);
365         if (status) {
366                 mlog_errno(status);
367                 goto out;
368         }
369
370         if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
371                 goto out;
372
373         return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1);
374
375 out:
376         return status;
377 }
378
379 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
380                                      struct inode *inode,
381                                      struct buffer_head *fe_bh,
382                                      u64 new_i_size)
383 {
384         int status;
385         handle_t *handle;
386         struct ocfs2_dinode *di;
387         u64 cluster_bytes;
388
389         /*
390          * We need to CoW the cluster contains the offset if it is reflinked
391          * since we will call ocfs2_zero_range_for_truncate later which will
392          * write "0" from offset to the end of the cluster.
393          */
394         status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
395         if (status) {
396                 mlog_errno(status);
397                 return status;
398         }
399
400         /* TODO: This needs to actually orphan the inode in this
401          * transaction. */
402
403         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
404         if (IS_ERR(handle)) {
405                 status = PTR_ERR(handle);
406                 mlog_errno(status);
407                 goto out;
408         }
409
410         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
411                                          OCFS2_JOURNAL_ACCESS_WRITE);
412         if (status < 0) {
413                 mlog_errno(status);
414                 goto out_commit;
415         }
416
417         /*
418          * Do this before setting i_size.
419          */
420         cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
421         status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
422                                                cluster_bytes);
423         if (status) {
424                 mlog_errno(status);
425                 goto out_commit;
426         }
427
428         i_size_write(inode, new_i_size);
429         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
430
431         di = (struct ocfs2_dinode *) fe_bh->b_data;
432         di->i_size = cpu_to_le64(new_i_size);
433         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
434         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
435
436         ocfs2_journal_dirty(handle, fe_bh);
437
438 out_commit:
439         ocfs2_commit_trans(osb, handle);
440 out:
441         return status;
442 }
443
444 static int ocfs2_truncate_file(struct inode *inode,
445                                struct buffer_head *di_bh,
446                                u64 new_i_size)
447 {
448         int status = 0;
449         struct ocfs2_dinode *fe = NULL;
450         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451
452         /* We trust di_bh because it comes from ocfs2_inode_lock(), which
453          * already validated it */
454         fe = (struct ocfs2_dinode *) di_bh->b_data;
455
456         trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457                                   (unsigned long long)le64_to_cpu(fe->i_size),
458                                   (unsigned long long)new_i_size);
459
460         mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461                         "Inode %llu, inode i_size = %lld != di "
462                         "i_size = %llu, i_flags = 0x%x\n",
463                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
464                         i_size_read(inode),
465                         (unsigned long long)le64_to_cpu(fe->i_size),
466                         le32_to_cpu(fe->i_flags));
467
468         if (new_i_size > le64_to_cpu(fe->i_size)) {
469                 trace_ocfs2_truncate_file_error(
470                         (unsigned long long)le64_to_cpu(fe->i_size),
471                         (unsigned long long)new_i_size);
472                 status = -EINVAL;
473                 mlog_errno(status);
474                 goto bail;
475         }
476
477         /* lets handle the simple truncate cases before doing any more
478          * cluster locking. */
479         if (new_i_size == le64_to_cpu(fe->i_size))
480                 goto bail;
481
482         down_write(&OCFS2_I(inode)->ip_alloc_sem);
483
484         ocfs2_resv_discard(&osb->osb_la_resmap,
485                            &OCFS2_I(inode)->ip_la_data_resv);
486
487         /*
488          * The inode lock forced other nodes to sync and drop their
489          * pages, which (correctly) happens even if we have a truncate
490          * without allocation change - ocfs2 cluster sizes can be much
491          * greater than page size, so we have to truncate them
492          * anyway.
493          */
494         unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
495         truncate_inode_pages(inode->i_mapping, new_i_size);
496
497         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
498                 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499                                                i_size_read(inode), 1);
500                 if (status)
501                         mlog_errno(status);
502
503                 goto bail_unlock_sem;
504         }
505
506         /* alright, we're going to need to do a full blown alloc size
507          * change. Orphan the inode so that recovery can complete the
508          * truncate if necessary. This does the task of marking
509          * i_size. */
510         status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
511         if (status < 0) {
512                 mlog_errno(status);
513                 goto bail_unlock_sem;
514         }
515
516         status = ocfs2_commit_truncate(osb, inode, di_bh);
517         if (status < 0) {
518                 mlog_errno(status);
519                 goto bail_unlock_sem;
520         }
521
522         /* TODO: orphan dir cleanup here. */
523 bail_unlock_sem:
524         up_write(&OCFS2_I(inode)->ip_alloc_sem);
525
526 bail:
527         if (!status && OCFS2_I(inode)->ip_clusters == 0)
528                 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
529
530         return status;
531 }
532
533 /*
534  * extend file allocation only here.
535  * we'll update all the disk stuff, and oip->alloc_size
536  *
537  * expect stuff to be locked, a transaction started and enough data /
538  * metadata reservations in the contexts.
539  *
540  * Will return -EAGAIN, and a reason if a restart is needed.
541  * If passed in, *reason will always be set, even in error.
542  */
543 int ocfs2_add_inode_data(struct ocfs2_super *osb,
544                          struct inode *inode,
545                          u32 *logical_offset,
546                          u32 clusters_to_add,
547                          int mark_unwritten,
548                          struct buffer_head *fe_bh,
549                          handle_t *handle,
550                          struct ocfs2_alloc_context *data_ac,
551                          struct ocfs2_alloc_context *meta_ac,
552                          enum ocfs2_alloc_restarted *reason_ret)
553 {
554         int ret;
555         struct ocfs2_extent_tree et;
556
557         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
558         ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
559                                           clusters_to_add, mark_unwritten,
560                                           data_ac, meta_ac, reason_ret);
561
562         return ret;
563 }
564
565 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
566                                      u32 clusters_to_add, int mark_unwritten)
567 {
568         int status = 0;
569         int restart_func = 0;
570         int credits;
571         u32 prev_clusters;
572         struct buffer_head *bh = NULL;
573         struct ocfs2_dinode *fe = NULL;
574         handle_t *handle = NULL;
575         struct ocfs2_alloc_context *data_ac = NULL;
576         struct ocfs2_alloc_context *meta_ac = NULL;
577         enum ocfs2_alloc_restarted why;
578         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
579         struct ocfs2_extent_tree et;
580         int did_quota = 0;
581
582         /*
583          * This function only exists for file systems which don't
584          * support holes.
585          */
586         BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
587
588         status = ocfs2_read_inode_block(inode, &bh);
589         if (status < 0) {
590                 mlog_errno(status);
591                 goto leave;
592         }
593         fe = (struct ocfs2_dinode *) bh->b_data;
594
595 restart_all:
596         BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
597
598         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
599         status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
600                                        &data_ac, &meta_ac);
601         if (status) {
602                 mlog_errno(status);
603                 goto leave;
604         }
605
606         credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list,
607                                             clusters_to_add);
608         handle = ocfs2_start_trans(osb, credits);
609         if (IS_ERR(handle)) {
610                 status = PTR_ERR(handle);
611                 handle = NULL;
612                 mlog_errno(status);
613                 goto leave;
614         }
615
616 restarted_transaction:
617         trace_ocfs2_extend_allocation(
618                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
619                 (unsigned long long)i_size_read(inode),
620                 le32_to_cpu(fe->i_clusters), clusters_to_add,
621                 why, restart_func);
622
623         status = dquot_alloc_space_nodirty(inode,
624                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
625         if (status)
626                 goto leave;
627         did_quota = 1;
628
629         /* reserve a write to the file entry early on - that we if we
630          * run out of credits in the allocation path, we can still
631          * update i_size. */
632         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
633                                          OCFS2_JOURNAL_ACCESS_WRITE);
634         if (status < 0) {
635                 mlog_errno(status);
636                 goto leave;
637         }
638
639         prev_clusters = OCFS2_I(inode)->ip_clusters;
640
641         status = ocfs2_add_inode_data(osb,
642                                       inode,
643                                       &logical_start,
644                                       clusters_to_add,
645                                       mark_unwritten,
646                                       bh,
647                                       handle,
648                                       data_ac,
649                                       meta_ac,
650                                       &why);
651         if ((status < 0) && (status != -EAGAIN)) {
652                 if (status != -ENOSPC)
653                         mlog_errno(status);
654                 goto leave;
655         }
656
657         ocfs2_journal_dirty(handle, bh);
658
659         spin_lock(&OCFS2_I(inode)->ip_lock);
660         clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
661         spin_unlock(&OCFS2_I(inode)->ip_lock);
662         /* Release unused quota reservation */
663         dquot_free_space(inode,
664                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
665         did_quota = 0;
666
667         if (why != RESTART_NONE && clusters_to_add) {
668                 if (why == RESTART_META) {
669                         restart_func = 1;
670                         status = 0;
671                 } else {
672                         BUG_ON(why != RESTART_TRANS);
673
674                         /* TODO: This can be more intelligent. */
675                         credits = ocfs2_calc_extend_credits(osb->sb,
676                                                             &fe->id2.i_list,
677                                                             clusters_to_add);
678                         status = ocfs2_extend_trans(handle, credits);
679                         if (status < 0) {
680                                 /* handle still has to be committed at
681                                  * this point. */
682                                 status = -ENOMEM;
683                                 mlog_errno(status);
684                                 goto leave;
685                         }
686                         goto restarted_transaction;
687                 }
688         }
689
690         trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
691              le32_to_cpu(fe->i_clusters),
692              (unsigned long long)le64_to_cpu(fe->i_size),
693              OCFS2_I(inode)->ip_clusters,
694              (unsigned long long)i_size_read(inode));
695
696 leave:
697         if (status < 0 && did_quota)
698                 dquot_free_space(inode,
699                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
700         if (handle) {
701                 ocfs2_commit_trans(osb, handle);
702                 handle = NULL;
703         }
704         if (data_ac) {
705                 ocfs2_free_alloc_context(data_ac);
706                 data_ac = NULL;
707         }
708         if (meta_ac) {
709                 ocfs2_free_alloc_context(meta_ac);
710                 meta_ac = NULL;
711         }
712         if ((!status) && restart_func) {
713                 restart_func = 0;
714                 goto restart_all;
715         }
716         brelse(bh);
717         bh = NULL;
718
719         return status;
720 }
721
722 /*
723  * While a write will already be ordering the data, a truncate will not.
724  * Thus, we need to explicitly order the zeroed pages.
725  */
726 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
727 {
728         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
729         handle_t *handle = NULL;
730         int ret = 0;
731
732         if (!ocfs2_should_order_data(inode))
733                 goto out;
734
735         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
736         if (IS_ERR(handle)) {
737                 ret = -ENOMEM;
738                 mlog_errno(ret);
739                 goto out;
740         }
741
742         ret = ocfs2_jbd2_file_inode(handle, inode);
743         if (ret < 0)
744                 mlog_errno(ret);
745
746 out:
747         if (ret) {
748                 if (!IS_ERR(handle))
749                         ocfs2_commit_trans(osb, handle);
750                 handle = ERR_PTR(ret);
751         }
752         return handle;
753 }
754
755 /* Some parts of this taken from generic_cont_expand, which turned out
756  * to be too fragile to do exactly what we need without us having to
757  * worry about recursive locking in ->write_begin() and ->write_end(). */
758 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
759                                  u64 abs_to)
760 {
761         struct address_space *mapping = inode->i_mapping;
762         struct page *page;
763         unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
764         handle_t *handle = NULL;
765         int ret = 0;
766         unsigned zero_from, zero_to, block_start, block_end;
767
768         BUG_ON(abs_from >= abs_to);
769         BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
770         BUG_ON(abs_from & (inode->i_blkbits - 1));
771
772         page = find_or_create_page(mapping, index, GFP_NOFS);
773         if (!page) {
774                 ret = -ENOMEM;
775                 mlog_errno(ret);
776                 goto out;
777         }
778
779         /* Get the offsets within the page that we want to zero */
780         zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
781         zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
782         if (!zero_to)
783                 zero_to = PAGE_CACHE_SIZE;
784
785         trace_ocfs2_write_zero_page(
786                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
787                         (unsigned long long)abs_from,
788                         (unsigned long long)abs_to,
789                         index, zero_from, zero_to);
790
791         /* We know that zero_from is block aligned */
792         for (block_start = zero_from; block_start < zero_to;
793              block_start = block_end) {
794                 block_end = block_start + (1 << inode->i_blkbits);
795
796                 /*
797                  * block_start is block-aligned.  Bump it by one to force
798                  * __block_write_begin and block_commit_write to zero the
799                  * whole block.
800                  */
801                 ret = __block_write_begin(page, block_start + 1, 0,
802                                           ocfs2_get_block);
803                 if (ret < 0) {
804                         mlog_errno(ret);
805                         goto out_unlock;
806                 }
807
808                 if (!handle) {
809                         handle = ocfs2_zero_start_ordered_transaction(inode);
810                         if (IS_ERR(handle)) {
811                                 ret = PTR_ERR(handle);
812                                 handle = NULL;
813                                 break;
814                         }
815                 }
816
817                 /* must not update i_size! */
818                 ret = block_commit_write(page, block_start + 1,
819                                          block_start + 1);
820                 if (ret < 0)
821                         mlog_errno(ret);
822                 else
823                         ret = 0;
824         }
825
826         if (handle)
827                 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
828
829 out_unlock:
830         unlock_page(page);
831         page_cache_release(page);
832 out:
833         return ret;
834 }
835
836 /*
837  * Find the next range to zero.  We do this in terms of bytes because
838  * that's what ocfs2_zero_extend() wants, and it is dealing with the
839  * pagecache.  We may return multiple extents.
840  *
841  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
842  * needs to be zeroed.  range_start and range_end return the next zeroing
843  * range.  A subsequent call should pass the previous range_end as its
844  * zero_start.  If range_end is 0, there's nothing to do.
845  *
846  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
847  */
848 static int ocfs2_zero_extend_get_range(struct inode *inode,
849                                        struct buffer_head *di_bh,
850                                        u64 zero_start, u64 zero_end,
851                                        u64 *range_start, u64 *range_end)
852 {
853         int rc = 0, needs_cow = 0;
854         u32 p_cpos, zero_clusters = 0;
855         u32 zero_cpos =
856                 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
857         u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
858         unsigned int num_clusters = 0;
859         unsigned int ext_flags = 0;
860
861         while (zero_cpos < last_cpos) {
862                 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
863                                         &num_clusters, &ext_flags);
864                 if (rc) {
865                         mlog_errno(rc);
866                         goto out;
867                 }
868
869                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
870                         zero_clusters = num_clusters;
871                         if (ext_flags & OCFS2_EXT_REFCOUNTED)
872                                 needs_cow = 1;
873                         break;
874                 }
875
876                 zero_cpos += num_clusters;
877         }
878         if (!zero_clusters) {
879                 *range_end = 0;
880                 goto out;
881         }
882
883         while ((zero_cpos + zero_clusters) < last_cpos) {
884                 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
885                                         &p_cpos, &num_clusters,
886                                         &ext_flags);
887                 if (rc) {
888                         mlog_errno(rc);
889                         goto out;
890                 }
891
892                 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
893                         break;
894                 if (ext_flags & OCFS2_EXT_REFCOUNTED)
895                         needs_cow = 1;
896                 zero_clusters += num_clusters;
897         }
898         if ((zero_cpos + zero_clusters) > last_cpos)
899                 zero_clusters = last_cpos - zero_cpos;
900
901         if (needs_cow) {
902                 rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos,
903                                         zero_clusters, UINT_MAX);
904                 if (rc) {
905                         mlog_errno(rc);
906                         goto out;
907                 }
908         }
909
910         *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
911         *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
912                                              zero_cpos + zero_clusters);
913
914 out:
915         return rc;
916 }
917
918 /*
919  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
920  * has made sure that the entire range needs zeroing.
921  */
922 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
923                                    u64 range_end)
924 {
925         int rc = 0;
926         u64 next_pos;
927         u64 zero_pos = range_start;
928
929         trace_ocfs2_zero_extend_range(
930                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
931                         (unsigned long long)range_start,
932                         (unsigned long long)range_end);
933         BUG_ON(range_start >= range_end);
934
935         while (zero_pos < range_end) {
936                 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
937                 if (next_pos > range_end)
938                         next_pos = range_end;
939                 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
940                 if (rc < 0) {
941                         mlog_errno(rc);
942                         break;
943                 }
944                 zero_pos = next_pos;
945
946                 /*
947                  * Very large extends have the potential to lock up
948                  * the cpu for extended periods of time.
949                  */
950                 cond_resched();
951         }
952
953         return rc;
954 }
955
956 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
957                       loff_t zero_to_size)
958 {
959         int ret = 0;
960         u64 zero_start, range_start = 0, range_end = 0;
961         struct super_block *sb = inode->i_sb;
962
963         zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
964         trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
965                                 (unsigned long long)zero_start,
966                                 (unsigned long long)i_size_read(inode));
967         while (zero_start < zero_to_size) {
968                 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
969                                                   zero_to_size,
970                                                   &range_start,
971                                                   &range_end);
972                 if (ret) {
973                         mlog_errno(ret);
974                         break;
975                 }
976                 if (!range_end)
977                         break;
978                 /* Trim the ends */
979                 if (range_start < zero_start)
980                         range_start = zero_start;
981                 if (range_end > zero_to_size)
982                         range_end = zero_to_size;
983
984                 ret = ocfs2_zero_extend_range(inode, range_start,
985                                               range_end);
986                 if (ret) {
987                         mlog_errno(ret);
988                         break;
989                 }
990                 zero_start = range_end;
991         }
992
993         return ret;
994 }
995
996 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
997                           u64 new_i_size, u64 zero_to)
998 {
999         int ret;
1000         u32 clusters_to_add;
1001         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1002
1003         /*
1004          * Only quota files call this without a bh, and they can't be
1005          * refcounted.
1006          */
1007         BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1008         BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1009
1010         clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1011         if (clusters_to_add < oi->ip_clusters)
1012                 clusters_to_add = 0;
1013         else
1014                 clusters_to_add -= oi->ip_clusters;
1015
1016         if (clusters_to_add) {
1017                 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1018                                                 clusters_to_add, 0);
1019                 if (ret) {
1020                         mlog_errno(ret);
1021                         goto out;
1022                 }
1023         }
1024
1025         /*
1026          * Call this even if we don't add any clusters to the tree. We
1027          * still need to zero the area between the old i_size and the
1028          * new i_size.
1029          */
1030         ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1031         if (ret < 0)
1032                 mlog_errno(ret);
1033
1034 out:
1035         return ret;
1036 }
1037
1038 static int ocfs2_extend_file(struct inode *inode,
1039                              struct buffer_head *di_bh,
1040                              u64 new_i_size)
1041 {
1042         int ret = 0;
1043         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1044
1045         BUG_ON(!di_bh);
1046
1047         /* setattr sometimes calls us like this. */
1048         if (new_i_size == 0)
1049                 goto out;
1050
1051         if (i_size_read(inode) == new_i_size)
1052                 goto out;
1053         BUG_ON(new_i_size < i_size_read(inode));
1054
1055         /*
1056          * The alloc sem blocks people in read/write from reading our
1057          * allocation until we're done changing it. We depend on
1058          * i_mutex to block other extend/truncate calls while we're
1059          * here.  We even have to hold it for sparse files because there
1060          * might be some tail zeroing.
1061          */
1062         down_write(&oi->ip_alloc_sem);
1063
1064         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1065                 /*
1066                  * We can optimize small extends by keeping the inodes
1067                  * inline data.
1068                  */
1069                 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1070                         up_write(&oi->ip_alloc_sem);
1071                         goto out_update_size;
1072                 }
1073
1074                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1075                 if (ret) {
1076                         up_write(&oi->ip_alloc_sem);
1077                         mlog_errno(ret);
1078                         goto out;
1079                 }
1080         }
1081
1082         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1083                 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1084         else
1085                 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1086                                             new_i_size);
1087
1088         up_write(&oi->ip_alloc_sem);
1089
1090         if (ret < 0) {
1091                 mlog_errno(ret);
1092                 goto out;
1093         }
1094
1095 out_update_size:
1096         ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1097         if (ret < 0)
1098                 mlog_errno(ret);
1099
1100 out:
1101         return ret;
1102 }
1103
1104 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1105 {
1106         int status = 0, size_change;
1107         struct inode *inode = dentry->d_inode;
1108         struct super_block *sb = inode->i_sb;
1109         struct ocfs2_super *osb = OCFS2_SB(sb);
1110         struct buffer_head *bh = NULL;
1111         handle_t *handle = NULL;
1112         struct dquot *transfer_to[MAXQUOTAS] = { };
1113         int qtype;
1114
1115         trace_ocfs2_setattr(inode, dentry,
1116                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1117                             dentry->d_name.len, dentry->d_name.name,
1118                             attr->ia_valid, attr->ia_mode,
1119                             attr->ia_uid, attr->ia_gid);
1120
1121         /* ensuring we don't even attempt to truncate a symlink */
1122         if (S_ISLNK(inode->i_mode))
1123                 attr->ia_valid &= ~ATTR_SIZE;
1124
1125 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1126                            | ATTR_GID | ATTR_UID | ATTR_MODE)
1127         if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1128                 return 0;
1129
1130         status = inode_change_ok(inode, attr);
1131         if (status)
1132                 return status;
1133
1134         if (is_quota_modification(inode, attr))
1135                 dquot_initialize(inode);
1136         size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1137         if (size_change) {
1138                 status = ocfs2_rw_lock(inode, 1);
1139                 if (status < 0) {
1140                         mlog_errno(status);
1141                         goto bail;
1142                 }
1143         }
1144
1145         status = ocfs2_inode_lock(inode, &bh, 1);
1146         if (status < 0) {
1147                 if (status != -ENOENT)
1148                         mlog_errno(status);
1149                 goto bail_unlock_rw;
1150         }
1151
1152         if (size_change && attr->ia_size != i_size_read(inode)) {
1153                 status = inode_newsize_ok(inode, attr->ia_size);
1154                 if (status)
1155                         goto bail_unlock;
1156
1157                 inode_dio_wait(inode);
1158
1159                 if (i_size_read(inode) > attr->ia_size) {
1160                         if (ocfs2_should_order_data(inode)) {
1161                                 status = ocfs2_begin_ordered_truncate(inode,
1162                                                                       attr->ia_size);
1163                                 if (status)
1164                                         goto bail_unlock;
1165                         }
1166                         status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1167                 } else
1168                         status = ocfs2_extend_file(inode, bh, attr->ia_size);
1169                 if (status < 0) {
1170                         if (status != -ENOSPC)
1171                                 mlog_errno(status);
1172                         status = -ENOSPC;
1173                         goto bail_unlock;
1174                 }
1175         }
1176
1177         if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
1178             (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
1179                 /*
1180                  * Gather pointers to quota structures so that allocation /
1181                  * freeing of quota structures happens here and not inside
1182                  * dquot_transfer() where we have problems with lock ordering
1183                  */
1184                 if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid
1185                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1186                     OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1187                         transfer_to[USRQUOTA] = dqget(sb, attr->ia_uid,
1188                                                       USRQUOTA);
1189                         if (!transfer_to[USRQUOTA]) {
1190                                 status = -ESRCH;
1191                                 goto bail_unlock;
1192                         }
1193                 }
1194                 if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid
1195                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1196                     OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1197                         transfer_to[GRPQUOTA] = dqget(sb, attr->ia_gid,
1198                                                       GRPQUOTA);
1199                         if (!transfer_to[GRPQUOTA]) {
1200                                 status = -ESRCH;
1201                                 goto bail_unlock;
1202                         }
1203                 }
1204                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1205                                            2 * ocfs2_quota_trans_credits(sb));
1206                 if (IS_ERR(handle)) {
1207                         status = PTR_ERR(handle);
1208                         mlog_errno(status);
1209                         goto bail_unlock;
1210                 }
1211                 status = __dquot_transfer(inode, transfer_to);
1212                 if (status < 0)
1213                         goto bail_commit;
1214         } else {
1215                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1216                 if (IS_ERR(handle)) {
1217                         status = PTR_ERR(handle);
1218                         mlog_errno(status);
1219                         goto bail_unlock;
1220                 }
1221         }
1222
1223         /*
1224          * This will intentionally not wind up calling truncate_setsize(),
1225          * since all the work for a size change has been done above.
1226          * Otherwise, we could get into problems with truncate as
1227          * ip_alloc_sem is used there to protect against i_size
1228          * changes.
1229          *
1230          * XXX: this means the conditional below can probably be removed.
1231          */
1232         if ((attr->ia_valid & ATTR_SIZE) &&
1233             attr->ia_size != i_size_read(inode)) {
1234                 status = vmtruncate(inode, attr->ia_size);
1235                 if (status) {
1236                         mlog_errno(status);
1237                         goto bail_commit;
1238                 }
1239         }
1240
1241         setattr_copy(inode, attr);
1242         mark_inode_dirty(inode);
1243
1244         status = ocfs2_mark_inode_dirty(handle, inode, bh);
1245         if (status < 0)
1246                 mlog_errno(status);
1247
1248 bail_commit:
1249         ocfs2_commit_trans(osb, handle);
1250 bail_unlock:
1251         ocfs2_inode_unlock(inode, 1);
1252 bail_unlock_rw:
1253         if (size_change)
1254                 ocfs2_rw_unlock(inode, 1);
1255 bail:
1256         brelse(bh);
1257
1258         /* Release quota pointers in case we acquired them */
1259         for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1260                 dqput(transfer_to[qtype]);
1261
1262         if (!status && attr->ia_valid & ATTR_MODE) {
1263                 status = ocfs2_acl_chmod(inode);
1264                 if (status < 0)
1265                         mlog_errno(status);
1266         }
1267
1268         return status;
1269 }
1270
1271 int ocfs2_getattr(struct vfsmount *mnt,
1272                   struct dentry *dentry,
1273                   struct kstat *stat)
1274 {
1275         struct inode *inode = dentry->d_inode;
1276         struct super_block *sb = dentry->d_inode->i_sb;
1277         struct ocfs2_super *osb = sb->s_fs_info;
1278         int err;
1279
1280         err = ocfs2_inode_revalidate(dentry);
1281         if (err) {
1282                 if (err != -ENOENT)
1283                         mlog_errno(err);
1284                 goto bail;
1285         }
1286
1287         generic_fillattr(inode, stat);
1288
1289         /* We set the blksize from the cluster size for performance */
1290         stat->blksize = osb->s_clustersize;
1291
1292 bail:
1293         return err;
1294 }
1295
1296 int ocfs2_permission(struct inode *inode, int mask)
1297 {
1298         int ret;
1299
1300         if (mask & MAY_NOT_BLOCK)
1301                 return -ECHILD;
1302
1303         ret = ocfs2_inode_lock(inode, NULL, 0);
1304         if (ret) {
1305                 if (ret != -ENOENT)
1306                         mlog_errno(ret);
1307                 goto out;
1308         }
1309
1310         ret = generic_permission(inode, mask);
1311
1312         ocfs2_inode_unlock(inode, 0);
1313 out:
1314         return ret;
1315 }
1316
1317 static int __ocfs2_write_remove_suid(struct inode *inode,
1318                                      struct buffer_head *bh)
1319 {
1320         int ret;
1321         handle_t *handle;
1322         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1323         struct ocfs2_dinode *di;
1324
1325         trace_ocfs2_write_remove_suid(
1326                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1327                         inode->i_mode);
1328
1329         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1330         if (IS_ERR(handle)) {
1331                 ret = PTR_ERR(handle);
1332                 mlog_errno(ret);
1333                 goto out;
1334         }
1335
1336         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1337                                       OCFS2_JOURNAL_ACCESS_WRITE);
1338         if (ret < 0) {
1339                 mlog_errno(ret);
1340                 goto out_trans;
1341         }
1342
1343         inode->i_mode &= ~S_ISUID;
1344         if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1345                 inode->i_mode &= ~S_ISGID;
1346
1347         di = (struct ocfs2_dinode *) bh->b_data;
1348         di->i_mode = cpu_to_le16(inode->i_mode);
1349
1350         ocfs2_journal_dirty(handle, bh);
1351
1352 out_trans:
1353         ocfs2_commit_trans(osb, handle);
1354 out:
1355         return ret;
1356 }
1357
1358 /*
1359  * Will look for holes and unwritten extents in the range starting at
1360  * pos for count bytes (inclusive).
1361  */
1362 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1363                                        size_t count)
1364 {
1365         int ret = 0;
1366         unsigned int extent_flags;
1367         u32 cpos, clusters, extent_len, phys_cpos;
1368         struct super_block *sb = inode->i_sb;
1369
1370         cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1371         clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1372
1373         while (clusters) {
1374                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1375                                          &extent_flags);
1376                 if (ret < 0) {
1377                         mlog_errno(ret);
1378                         goto out;
1379                 }
1380
1381                 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1382                         ret = 1;
1383                         break;
1384                 }
1385
1386                 if (extent_len > clusters)
1387                         extent_len = clusters;
1388
1389                 clusters -= extent_len;
1390                 cpos += extent_len;
1391         }
1392 out:
1393         return ret;
1394 }
1395
1396 static int ocfs2_write_remove_suid(struct inode *inode)
1397 {
1398         int ret;
1399         struct buffer_head *bh = NULL;
1400
1401         ret = ocfs2_read_inode_block(inode, &bh);
1402         if (ret < 0) {
1403                 mlog_errno(ret);
1404                 goto out;
1405         }
1406
1407         ret =  __ocfs2_write_remove_suid(inode, bh);
1408 out:
1409         brelse(bh);
1410         return ret;
1411 }
1412
1413 /*
1414  * Allocate enough extents to cover the region starting at byte offset
1415  * start for len bytes. Existing extents are skipped, any extents
1416  * added are marked as "unwritten".
1417  */
1418 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1419                                             u64 start, u64 len)
1420 {
1421         int ret;
1422         u32 cpos, phys_cpos, clusters, alloc_size;
1423         u64 end = start + len;
1424         struct buffer_head *di_bh = NULL;
1425
1426         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1427                 ret = ocfs2_read_inode_block(inode, &di_bh);
1428                 if (ret) {
1429                         mlog_errno(ret);
1430                         goto out;
1431                 }
1432
1433                 /*
1434                  * Nothing to do if the requested reservation range
1435                  * fits within the inode.
1436                  */
1437                 if (ocfs2_size_fits_inline_data(di_bh, end))
1438                         goto out;
1439
1440                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1441                 if (ret) {
1442                         mlog_errno(ret);
1443                         goto out;
1444                 }
1445         }
1446
1447         /*
1448          * We consider both start and len to be inclusive.
1449          */
1450         cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1451         clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1452         clusters -= cpos;
1453
1454         while (clusters) {
1455                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1456                                          &alloc_size, NULL);
1457                 if (ret) {
1458                         mlog_errno(ret);
1459                         goto out;
1460                 }
1461
1462                 /*
1463                  * Hole or existing extent len can be arbitrary, so
1464                  * cap it to our own allocation request.
1465                  */
1466                 if (alloc_size > clusters)
1467                         alloc_size = clusters;
1468
1469                 if (phys_cpos) {
1470                         /*
1471                          * We already have an allocation at this
1472                          * region so we can safely skip it.
1473                          */
1474                         goto next;
1475                 }
1476
1477                 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1478                 if (ret) {
1479                         if (ret != -ENOSPC)
1480                                 mlog_errno(ret);
1481                         goto out;
1482                 }
1483
1484 next:
1485                 cpos += alloc_size;
1486                 clusters -= alloc_size;
1487         }
1488
1489         ret = 0;
1490 out:
1491
1492         brelse(di_bh);
1493         return ret;
1494 }
1495
1496 /*
1497  * Truncate a byte range, avoiding pages within partial clusters. This
1498  * preserves those pages for the zeroing code to write to.
1499  */
1500 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1501                                          u64 byte_len)
1502 {
1503         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504         loff_t start, end;
1505         struct address_space *mapping = inode->i_mapping;
1506
1507         start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1508         end = byte_start + byte_len;
1509         end = end & ~(osb->s_clustersize - 1);
1510
1511         if (start < end) {
1512                 unmap_mapping_range(mapping, start, end - start, 0);
1513                 truncate_inode_pages_range(mapping, start, end - 1);
1514         }
1515 }
1516
1517 static int ocfs2_zero_partial_clusters(struct inode *inode,
1518                                        u64 start, u64 len)
1519 {
1520         int ret = 0;
1521         u64 tmpend = 0;
1522         u64 end = start + len;
1523         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1524         unsigned int csize = osb->s_clustersize;
1525         handle_t *handle;
1526
1527         /*
1528          * The "start" and "end" values are NOT necessarily part of
1529          * the range whose allocation is being deleted. Rather, this
1530          * is what the user passed in with the request. We must zero
1531          * partial clusters here. There's no need to worry about
1532          * physical allocation - the zeroing code knows to skip holes.
1533          */
1534         trace_ocfs2_zero_partial_clusters(
1535                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1536                 (unsigned long long)start, (unsigned long long)end);
1537
1538         /*
1539          * If both edges are on a cluster boundary then there's no
1540          * zeroing required as the region is part of the allocation to
1541          * be truncated.
1542          */
1543         if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1544                 goto out;
1545
1546         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1547         if (IS_ERR(handle)) {
1548                 ret = PTR_ERR(handle);
1549                 mlog_errno(ret);
1550                 goto out;
1551         }
1552
1553         /*
1554          * If start is on a cluster boundary and end is somewhere in another
1555          * cluster, we have not COWed the cluster starting at start, unless
1556          * end is also within the same cluster. So, in this case, we skip this
1557          * first call to ocfs2_zero_range_for_truncate() truncate and move on
1558          * to the next one.
1559          */
1560         if ((start & (csize - 1)) != 0) {
1561                 /*
1562                  * We want to get the byte offset of the end of the 1st
1563                  * cluster.
1564                  */
1565                 tmpend = (u64)osb->s_clustersize +
1566                         (start & ~(osb->s_clustersize - 1));
1567                 if (tmpend > end)
1568                         tmpend = end;
1569
1570                 trace_ocfs2_zero_partial_clusters_range1(
1571                         (unsigned long long)start,
1572                         (unsigned long long)tmpend);
1573
1574                 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1575                                                     tmpend);
1576                 if (ret)
1577                         mlog_errno(ret);
1578         }
1579
1580         if (tmpend < end) {
1581                 /*
1582                  * This may make start and end equal, but the zeroing
1583                  * code will skip any work in that case so there's no
1584                  * need to catch it up here.
1585                  */
1586                 start = end & ~(osb->s_clustersize - 1);
1587
1588                 trace_ocfs2_zero_partial_clusters_range2(
1589                         (unsigned long long)start, (unsigned long long)end);
1590
1591                 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1592                 if (ret)
1593                         mlog_errno(ret);
1594         }
1595
1596         ocfs2_commit_trans(osb, handle);
1597 out:
1598         return ret;
1599 }
1600
1601 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1602 {
1603         int i;
1604         struct ocfs2_extent_rec *rec = NULL;
1605
1606         for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1607
1608                 rec = &el->l_recs[i];
1609
1610                 if (le32_to_cpu(rec->e_cpos) < pos)
1611                         break;
1612         }
1613
1614         return i;
1615 }
1616
1617 /*
1618  * Helper to calculate the punching pos and length in one run, we handle the
1619  * following three cases in order:
1620  *
1621  * - remove the entire record
1622  * - remove a partial record
1623  * - no record needs to be removed (hole-punching completed)
1624 */
1625 static void ocfs2_calc_trunc_pos(struct inode *inode,
1626                                  struct ocfs2_extent_list *el,
1627                                  struct ocfs2_extent_rec *rec,
1628                                  u32 trunc_start, u32 *trunc_cpos,
1629                                  u32 *trunc_len, u32 *trunc_end,
1630                                  u64 *blkno, int *done)
1631 {
1632         int ret = 0;
1633         u32 coff, range;
1634
1635         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1636
1637         if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1638                 /*
1639                  * remove an entire extent record.
1640                  */
1641                 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1642                 /*
1643                  * Skip holes if any.
1644                  */
1645                 if (range < *trunc_end)
1646                         *trunc_end = range;
1647                 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1648                 *blkno = le64_to_cpu(rec->e_blkno);
1649                 *trunc_end = le32_to_cpu(rec->e_cpos);
1650         } else if (range > trunc_start) {
1651                 /*
1652                  * remove a partial extent record, which means we're
1653                  * removing the last extent record.
1654                  */
1655                 *trunc_cpos = trunc_start;
1656                 /*
1657                  * skip hole if any.
1658                  */
1659                 if (range < *trunc_end)
1660                         *trunc_end = range;
1661                 *trunc_len = *trunc_end - trunc_start;
1662                 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1663                 *blkno = le64_to_cpu(rec->e_blkno) +
1664                                 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1665                 *trunc_end = trunc_start;
1666         } else {
1667                 /*
1668                  * It may have two following possibilities:
1669                  *
1670                  * - last record has been removed
1671                  * - trunc_start was within a hole
1672                  *
1673                  * both two cases mean the completion of hole punching.
1674                  */
1675                 ret = 1;
1676         }
1677
1678         *done = ret;
1679 }
1680
1681 static int ocfs2_remove_inode_range(struct inode *inode,
1682                                     struct buffer_head *di_bh, u64 byte_start,
1683                                     u64 byte_len)
1684 {
1685         int ret = 0, flags = 0, done = 0, i;
1686         u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1687         u32 cluster_in_el;
1688         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1689         struct ocfs2_cached_dealloc_ctxt dealloc;
1690         struct address_space *mapping = inode->i_mapping;
1691         struct ocfs2_extent_tree et;
1692         struct ocfs2_path *path = NULL;
1693         struct ocfs2_extent_list *el = NULL;
1694         struct ocfs2_extent_rec *rec = NULL;
1695         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1696         u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1697
1698         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1699         ocfs2_init_dealloc_ctxt(&dealloc);
1700
1701         trace_ocfs2_remove_inode_range(
1702                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1703                         (unsigned long long)byte_start,
1704                         (unsigned long long)byte_len);
1705
1706         if (byte_len == 0)
1707                 return 0;
1708
1709         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1710                 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1711                                             byte_start + byte_len, 0);
1712                 if (ret) {
1713                         mlog_errno(ret);
1714                         goto out;
1715                 }
1716                 /*
1717                  * There's no need to get fancy with the page cache
1718                  * truncate of an inline-data inode. We're talking
1719                  * about less than a page here, which will be cached
1720                  * in the dinode buffer anyway.
1721                  */
1722                 unmap_mapping_range(mapping, 0, 0, 0);
1723                 truncate_inode_pages(mapping, 0);
1724                 goto out;
1725         }
1726
1727         /*
1728          * For reflinks, we may need to CoW 2 clusters which might be
1729          * partially zero'd later, if hole's start and end offset were
1730          * within one cluster(means is not exactly aligned to clustersize).
1731          */
1732
1733         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1734
1735                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1736                 if (ret) {
1737                         mlog_errno(ret);
1738                         goto out;
1739                 }
1740
1741                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1742                 if (ret) {
1743                         mlog_errno(ret);
1744                         goto out;
1745                 }
1746         }
1747
1748         trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1749         trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1750         cluster_in_el = trunc_end;
1751
1752         ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1753         if (ret) {
1754                 mlog_errno(ret);
1755                 goto out;
1756         }
1757
1758         path = ocfs2_new_path_from_et(&et);
1759         if (!path) {
1760                 ret = -ENOMEM;
1761                 mlog_errno(ret);
1762                 goto out;
1763         }
1764
1765         while (trunc_end > trunc_start) {
1766
1767                 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1768                                       cluster_in_el);
1769                 if (ret) {
1770                         mlog_errno(ret);
1771                         goto out;
1772                 }
1773
1774                 el = path_leaf_el(path);
1775
1776                 i = ocfs2_find_rec(el, trunc_end);
1777                 /*
1778                  * Need to go to previous extent block.
1779                  */
1780                 if (i < 0) {
1781                         if (path->p_tree_depth == 0)
1782                                 break;
1783
1784                         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1785                                                             path,
1786                                                             &cluster_in_el);
1787                         if (ret) {
1788                                 mlog_errno(ret);
1789                                 goto out;
1790                         }
1791
1792                         /*
1793                          * We've reached the leftmost extent block,
1794                          * it's safe to leave.
1795                          */
1796                         if (cluster_in_el == 0)
1797                                 break;
1798
1799                         /*
1800                          * The 'pos' searched for previous extent block is
1801                          * always one cluster less than actual trunc_end.
1802                          */
1803                         trunc_end = cluster_in_el + 1;
1804
1805                         ocfs2_reinit_path(path, 1);
1806
1807                         continue;
1808
1809                 } else
1810                         rec = &el->l_recs[i];
1811
1812                 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1813                                      &trunc_len, &trunc_end, &blkno, &done);
1814                 if (done)
1815                         break;
1816
1817                 flags = rec->e_flags;
1818                 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1819
1820                 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1821                                                phys_cpos, trunc_len, flags,
1822                                                &dealloc, refcount_loc);
1823                 if (ret < 0) {
1824                         mlog_errno(ret);
1825                         goto out;
1826                 }
1827
1828                 cluster_in_el = trunc_end;
1829
1830                 ocfs2_reinit_path(path, 1);
1831         }
1832
1833         ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1834
1835 out:
1836         ocfs2_schedule_truncate_log_flush(osb, 1);
1837         ocfs2_run_deallocs(osb, &dealloc);
1838
1839         return ret;
1840 }
1841
1842 /*
1843  * Parts of this function taken from xfs_change_file_space()
1844  */
1845 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1846                                      loff_t f_pos, unsigned int cmd,
1847                                      struct ocfs2_space_resv *sr,
1848                                      int change_size)
1849 {
1850         int ret;
1851         s64 llen;
1852         loff_t size;
1853         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1854         struct buffer_head *di_bh = NULL;
1855         handle_t *handle;
1856         unsigned long long max_off = inode->i_sb->s_maxbytes;
1857
1858         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1859                 return -EROFS;
1860
1861         mutex_lock(&inode->i_mutex);
1862
1863         /*
1864          * This prevents concurrent writes on other nodes
1865          */
1866         ret = ocfs2_rw_lock(inode, 1);
1867         if (ret) {
1868                 mlog_errno(ret);
1869                 goto out;
1870         }
1871
1872         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1873         if (ret) {
1874                 mlog_errno(ret);
1875                 goto out_rw_unlock;
1876         }
1877
1878         if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1879                 ret = -EPERM;
1880                 goto out_inode_unlock;
1881         }
1882
1883         switch (sr->l_whence) {
1884         case 0: /*SEEK_SET*/
1885                 break;
1886         case 1: /*SEEK_CUR*/
1887                 sr->l_start += f_pos;
1888                 break;
1889         case 2: /*SEEK_END*/
1890                 sr->l_start += i_size_read(inode);
1891                 break;
1892         default:
1893                 ret = -EINVAL;
1894                 goto out_inode_unlock;
1895         }
1896         sr->l_whence = 0;
1897
1898         llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1899
1900         if (sr->l_start < 0
1901             || sr->l_start > max_off
1902             || (sr->l_start + llen) < 0
1903             || (sr->l_start + llen) > max_off) {
1904                 ret = -EINVAL;
1905                 goto out_inode_unlock;
1906         }
1907         size = sr->l_start + sr->l_len;
1908
1909         if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1910                 if (sr->l_len <= 0) {
1911                         ret = -EINVAL;
1912                         goto out_inode_unlock;
1913                 }
1914         }
1915
1916         if (file && should_remove_suid(file->f_path.dentry)) {
1917                 ret = __ocfs2_write_remove_suid(inode, di_bh);
1918                 if (ret) {
1919                         mlog_errno(ret);
1920                         goto out_inode_unlock;
1921                 }
1922         }
1923
1924         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1925         switch (cmd) {
1926         case OCFS2_IOC_RESVSP:
1927         case OCFS2_IOC_RESVSP64:
1928                 /*
1929                  * This takes unsigned offsets, but the signed ones we
1930                  * pass have been checked against overflow above.
1931                  */
1932                 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1933                                                        sr->l_len);
1934                 break;
1935         case OCFS2_IOC_UNRESVSP:
1936         case OCFS2_IOC_UNRESVSP64:
1937                 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1938                                                sr->l_len);
1939                 break;
1940         default:
1941                 ret = -EINVAL;
1942         }
1943         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1944         if (ret) {
1945                 mlog_errno(ret);
1946                 goto out_inode_unlock;
1947         }
1948
1949         /*
1950          * We update c/mtime for these changes
1951          */
1952         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1953         if (IS_ERR(handle)) {
1954                 ret = PTR_ERR(handle);
1955                 mlog_errno(ret);
1956                 goto out_inode_unlock;
1957         }
1958
1959         if (change_size && i_size_read(inode) < size)
1960                 i_size_write(inode, size);
1961
1962         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1963         ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1964         if (ret < 0)
1965                 mlog_errno(ret);
1966
1967         if (file && (file->f_flags & O_SYNC))
1968                 handle->h_sync = 1;
1969
1970         ocfs2_commit_trans(osb, handle);
1971
1972 out_inode_unlock:
1973         brelse(di_bh);
1974         ocfs2_inode_unlock(inode, 1);
1975 out_rw_unlock:
1976         ocfs2_rw_unlock(inode, 1);
1977
1978 out:
1979         mutex_unlock(&inode->i_mutex);
1980         return ret;
1981 }
1982
1983 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1984                             struct ocfs2_space_resv *sr)
1985 {
1986         struct inode *inode = file->f_path.dentry->d_inode;
1987         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1988
1989         if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1990             !ocfs2_writes_unwritten_extents(osb))
1991                 return -ENOTTY;
1992         else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1993                  !ocfs2_sparse_alloc(osb))
1994                 return -ENOTTY;
1995
1996         if (!S_ISREG(inode->i_mode))
1997                 return -EINVAL;
1998
1999         if (!(file->f_mode & FMODE_WRITE))
2000                 return -EBADF;
2001
2002         return __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2003 }
2004
2005 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2006                             loff_t len)
2007 {
2008         struct inode *inode = file->f_path.dentry->d_inode;
2009         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2010         struct ocfs2_space_resv sr;
2011         int change_size = 1;
2012         int cmd = OCFS2_IOC_RESVSP64;
2013
2014         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2015                 return -EOPNOTSUPP;
2016         if (!ocfs2_writes_unwritten_extents(osb))
2017                 return -EOPNOTSUPP;
2018
2019         if (mode & FALLOC_FL_KEEP_SIZE)
2020                 change_size = 0;
2021
2022         if (mode & FALLOC_FL_PUNCH_HOLE)
2023                 cmd = OCFS2_IOC_UNRESVSP64;
2024
2025         sr.l_whence = 0;
2026         sr.l_start = (s64)offset;
2027         sr.l_len = (s64)len;
2028
2029         return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2030                                          change_size);
2031 }
2032
2033 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2034                                    size_t count)
2035 {
2036         int ret = 0;
2037         unsigned int extent_flags;
2038         u32 cpos, clusters, extent_len, phys_cpos;
2039         struct super_block *sb = inode->i_sb;
2040
2041         if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2042             !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2043             OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2044                 return 0;
2045
2046         cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2047         clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2048
2049         while (clusters) {
2050                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2051                                          &extent_flags);
2052                 if (ret < 0) {
2053                         mlog_errno(ret);
2054                         goto out;
2055                 }
2056
2057                 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2058                         ret = 1;
2059                         break;
2060                 }
2061
2062                 if (extent_len > clusters)
2063                         extent_len = clusters;
2064
2065                 clusters -= extent_len;
2066                 cpos += extent_len;
2067         }
2068 out:
2069         return ret;
2070 }
2071
2072 static void ocfs2_aiodio_wait(struct inode *inode)
2073 {
2074         wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
2075
2076         wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0));
2077 }
2078
2079 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2080 {
2081         int blockmask = inode->i_sb->s_blocksize - 1;
2082         loff_t final_size = pos + count;
2083
2084         if ((pos & blockmask) || (final_size & blockmask))
2085                 return 1;
2086         return 0;
2087 }
2088
2089 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2090                                             struct file *file,
2091                                             loff_t pos, size_t count,
2092                                             int *meta_level)
2093 {
2094         int ret;
2095         struct buffer_head *di_bh = NULL;
2096         u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2097         u32 clusters =
2098                 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2099
2100         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2101         if (ret) {
2102                 mlog_errno(ret);
2103                 goto out;
2104         }
2105
2106         *meta_level = 1;
2107
2108         ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX);
2109         if (ret)
2110                 mlog_errno(ret);
2111 out:
2112         brelse(di_bh);
2113         return ret;
2114 }
2115
2116 static int ocfs2_prepare_inode_for_write(struct file *file,
2117                                          loff_t *ppos,
2118                                          size_t count,
2119                                          int appending,
2120                                          int *direct_io,
2121                                          int *has_refcount)
2122 {
2123         int ret = 0, meta_level = 0;
2124         struct dentry *dentry = file->f_path.dentry;
2125         struct inode *inode = dentry->d_inode;
2126         loff_t saved_pos = 0, end;
2127
2128         /*
2129          * We start with a read level meta lock and only jump to an ex
2130          * if we need to make modifications here.
2131          */
2132         for(;;) {
2133                 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2134                 if (ret < 0) {
2135                         meta_level = -1;
2136                         mlog_errno(ret);
2137                         goto out;
2138                 }
2139
2140                 /* Clear suid / sgid if necessary. We do this here
2141                  * instead of later in the write path because
2142                  * remove_suid() calls ->setattr without any hint that
2143                  * we may have already done our cluster locking. Since
2144                  * ocfs2_setattr() *must* take cluster locks to
2145                  * proceeed, this will lead us to recursively lock the
2146                  * inode. There's also the dinode i_size state which
2147                  * can be lost via setattr during extending writes (we
2148                  * set inode->i_size at the end of a write. */
2149                 if (should_remove_suid(dentry)) {
2150                         if (meta_level == 0) {
2151                                 ocfs2_inode_unlock(inode, meta_level);
2152                                 meta_level = 1;
2153                                 continue;
2154                         }
2155
2156                         ret = ocfs2_write_remove_suid(inode);
2157                         if (ret < 0) {
2158                                 mlog_errno(ret);
2159                                 goto out_unlock;
2160                         }
2161                 }
2162
2163                 /* work on a copy of ppos until we're sure that we won't have
2164                  * to recalculate it due to relocking. */
2165                 if (appending)
2166                         saved_pos = i_size_read(inode);
2167                 else
2168                         saved_pos = *ppos;
2169
2170                 end = saved_pos + count;
2171
2172                 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2173                 if (ret == 1) {
2174                         ocfs2_inode_unlock(inode, meta_level);
2175                         meta_level = -1;
2176
2177                         ret = ocfs2_prepare_inode_for_refcount(inode,
2178                                                                file,
2179                                                                saved_pos,
2180                                                                count,
2181                                                                &meta_level);
2182                         if (has_refcount)
2183                                 *has_refcount = 1;
2184                         if (direct_io)
2185                                 *direct_io = 0;
2186                 }
2187
2188                 if (ret < 0) {
2189                         mlog_errno(ret);
2190                         goto out_unlock;
2191                 }
2192
2193                 /*
2194                  * Skip the O_DIRECT checks if we don't need
2195                  * them.
2196                  */
2197                 if (!direct_io || !(*direct_io))
2198                         break;
2199
2200                 /*
2201                  * There's no sane way to do direct writes to an inode
2202                  * with inline data.
2203                  */
2204                 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2205                         *direct_io = 0;
2206                         break;
2207                 }
2208
2209                 /*
2210                  * Allowing concurrent direct writes means
2211                  * i_size changes wouldn't be synchronized, so
2212                  * one node could wind up truncating another
2213                  * nodes writes.
2214                  */
2215                 if (end > i_size_read(inode)) {
2216                         *direct_io = 0;
2217                         break;
2218                 }
2219
2220                 /*
2221                  * We don't fill holes during direct io, so
2222                  * check for them here. If any are found, the
2223                  * caller will have to retake some cluster
2224                  * locks and initiate the io as buffered.
2225                  */
2226                 ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2227                 if (ret == 1) {
2228                         *direct_io = 0;
2229                         ret = 0;
2230                 } else if (ret < 0)
2231                         mlog_errno(ret);
2232                 break;
2233         }
2234
2235         if (appending)
2236                 *ppos = saved_pos;
2237
2238 out_unlock:
2239         trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2240                                             saved_pos, appending, count,
2241                                             direct_io, has_refcount);
2242
2243         if (meta_level >= 0)
2244                 ocfs2_inode_unlock(inode, meta_level);
2245
2246 out:
2247         return ret;
2248 }
2249
2250 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2251                                     const struct iovec *iov,
2252                                     unsigned long nr_segs,
2253                                     loff_t pos)
2254 {
2255         int ret, direct_io, appending, rw_level, have_alloc_sem  = 0;
2256         int can_do_direct, has_refcount = 0;
2257         ssize_t written = 0;
2258         size_t ocount;          /* original count */
2259         size_t count;           /* after file limit checks */
2260         loff_t old_size, *ppos = &iocb->ki_pos;
2261         u32 old_clusters;
2262         struct file *file = iocb->ki_filp;
2263         struct inode *inode = file->f_path.dentry->d_inode;
2264         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2265         int full_coherency = !(osb->s_mount_opt &
2266                                OCFS2_MOUNT_COHERENCY_BUFFERED);
2267         int unaligned_dio = 0;
2268
2269         trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2270                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2271                 file->f_path.dentry->d_name.len,
2272                 file->f_path.dentry->d_name.name,
2273                 (unsigned int)nr_segs);
2274
2275         if (iocb->ki_left == 0)
2276                 return 0;
2277
2278         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2279
2280         appending = file->f_flags & O_APPEND ? 1 : 0;
2281         direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2282
2283         mutex_lock(&inode->i_mutex);
2284
2285         ocfs2_iocb_clear_sem_locked(iocb);
2286
2287 relock:
2288         /* to match setattr's i_mutex -> rw_lock ordering */
2289         if (direct_io) {
2290                 have_alloc_sem = 1;
2291                 /* communicate with ocfs2_dio_end_io */
2292                 ocfs2_iocb_set_sem_locked(iocb);
2293         }
2294
2295         /*
2296          * Concurrent O_DIRECT writes are allowed with
2297          * mount_option "coherency=buffered".
2298          */
2299         rw_level = (!direct_io || full_coherency);
2300
2301         ret = ocfs2_rw_lock(inode, rw_level);
2302         if (ret < 0) {
2303                 mlog_errno(ret);
2304                 goto out_sems;
2305         }
2306
2307         /*
2308          * O_DIRECT writes with "coherency=full" need to take EX cluster
2309          * inode_lock to guarantee coherency.
2310          */
2311         if (direct_io && full_coherency) {
2312                 /*
2313                  * We need to take and drop the inode lock to force
2314                  * other nodes to drop their caches.  Buffered I/O
2315                  * already does this in write_begin().
2316                  */
2317                 ret = ocfs2_inode_lock(inode, NULL, 1);
2318                 if (ret < 0) {
2319                         mlog_errno(ret);
2320                         goto out_sems;
2321                 }
2322
2323                 ocfs2_inode_unlock(inode, 1);
2324         }
2325
2326         can_do_direct = direct_io;
2327         ret = ocfs2_prepare_inode_for_write(file, ppos,
2328                                             iocb->ki_left, appending,
2329                                             &can_do_direct, &has_refcount);
2330         if (ret < 0) {
2331                 mlog_errno(ret);
2332                 goto out;
2333         }
2334
2335         if (direct_io && !is_sync_kiocb(iocb))
2336                 unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_left,
2337                                                       *ppos);
2338
2339         /*
2340          * We can't complete the direct I/O as requested, fall back to
2341          * buffered I/O.
2342          */
2343         if (direct_io && !can_do_direct) {
2344                 ocfs2_rw_unlock(inode, rw_level);
2345
2346                 have_alloc_sem = 0;
2347                 rw_level = -1;
2348
2349                 direct_io = 0;
2350                 goto relock;
2351         }
2352
2353         if (unaligned_dio) {
2354                 /*
2355                  * Wait on previous unaligned aio to complete before
2356                  * proceeding.
2357                  */
2358                 ocfs2_aiodio_wait(inode);
2359
2360                 /* Mark the iocb as needing a decrement in ocfs2_dio_end_io */
2361                 atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio);
2362                 ocfs2_iocb_set_unaligned_aio(iocb);
2363         }
2364
2365         /*
2366          * To later detect whether a journal commit for sync writes is
2367          * necessary, we sample i_size, and cluster count here.
2368          */
2369         old_size = i_size_read(inode);
2370         old_clusters = OCFS2_I(inode)->ip_clusters;
2371
2372         /* communicate with ocfs2_dio_end_io */
2373         ocfs2_iocb_set_rw_locked(iocb, rw_level);
2374
2375         ret = generic_segment_checks(iov, &nr_segs, &ocount,
2376                                      VERIFY_READ);
2377         if (ret)
2378                 goto out_dio;
2379
2380         count = ocount;
2381         ret = generic_write_checks(file, ppos, &count,
2382                                    S_ISBLK(inode->i_mode));
2383         if (ret)
2384                 goto out_dio;
2385
2386         if (direct_io) {
2387                 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2388                                                     ppos, count, ocount);
2389                 if (written < 0) {
2390                         ret = written;
2391                         goto out_dio;
2392                 }
2393         } else {
2394                 current->backing_dev_info = file->f_mapping->backing_dev_info;
2395                 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2396                                                       ppos, count, 0);
2397                 current->backing_dev_info = NULL;
2398         }
2399
2400 out_dio:
2401         /* buffered aio wouldn't have proper lock coverage today */
2402         BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2403
2404         if (unlikely(written <= 0))
2405                 goto no_sync;
2406
2407         if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2408             ((file->f_flags & O_DIRECT) && !direct_io)) {
2409                 ret = filemap_fdatawrite_range(file->f_mapping,
2410                                                iocb->ki_pos - written,
2411                                                iocb->ki_pos - 1);
2412                 if (ret < 0)
2413                         written = ret;
2414
2415                 if (!ret && ((old_size != i_size_read(inode)) ||
2416                              (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2417                              has_refcount)) {
2418                         ret = jbd2_journal_force_commit(osb->journal->j_journal);
2419                         if (ret < 0)
2420                                 written = ret;
2421                 }
2422
2423                 if (!ret)
2424                         ret = filemap_fdatawait_range(file->f_mapping,
2425                                                       iocb->ki_pos - written,
2426                                                       iocb->ki_pos - 1);
2427         }
2428
2429 no_sync:
2430         /*
2431          * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2432          * function pointer which is called when o_direct io completes so that
2433          * it can unlock our rw lock.
2434          * Unfortunately there are error cases which call end_io and others
2435          * that don't.  so we don't have to unlock the rw_lock if either an
2436          * async dio is going to do it in the future or an end_io after an
2437          * error has already done it.
2438          */
2439         if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2440                 rw_level = -1;
2441                 have_alloc_sem = 0;
2442                 unaligned_dio = 0;
2443         }
2444
2445         if (unaligned_dio) {
2446                 ocfs2_iocb_clear_unaligned_aio(iocb);
2447                 atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio);
2448         }
2449
2450 out:
2451         if (rw_level != -1)
2452                 ocfs2_rw_unlock(inode, rw_level);
2453
2454 out_sems:
2455         if (have_alloc_sem)
2456                 ocfs2_iocb_clear_sem_locked(iocb);
2457
2458         mutex_unlock(&inode->i_mutex);
2459
2460         if (written)
2461                 ret = written;
2462         return ret;
2463 }
2464
2465 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2466                                 struct file *out,
2467                                 struct splice_desc *sd)
2468 {
2469         int ret;
2470
2471         ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2472                                             sd->total_len, 0, NULL, NULL);
2473         if (ret < 0) {
2474                 mlog_errno(ret);
2475                 return ret;
2476         }
2477
2478         return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2479 }
2480
2481 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2482                                        struct file *out,
2483                                        loff_t *ppos,
2484                                        size_t len,
2485                                        unsigned int flags)
2486 {
2487         int ret;
2488         struct address_space *mapping = out->f_mapping;
2489         struct inode *inode = mapping->host;
2490         struct splice_desc sd = {
2491                 .flags = flags,
2492                 .u.file = out,
2493         };
2494
2495
2496         trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2497                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2498                         out->f_path.dentry->d_name.len,
2499                         out->f_path.dentry->d_name.name, len);
2500
2501         ret = generic_write_checks(out, ppos, &len, 0);
2502         if (ret)
2503                 return ret;
2504         sd.total_len = len;
2505         sd.pos = *ppos;
2506
2507         if (pipe->inode)
2508                 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
2509
2510         splice_from_pipe_begin(&sd);
2511         do {
2512                 ret = splice_from_pipe_next(pipe, &sd);
2513                 if (ret <= 0)
2514                         break;
2515
2516                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2517                 ret = ocfs2_rw_lock(inode, 1);
2518                 if (ret < 0)
2519                         mlog_errno(ret);
2520                 else {
2521                         ret = ocfs2_splice_to_file(pipe, out, &sd);
2522                         ocfs2_rw_unlock(inode, 1);
2523                 }
2524                 mutex_unlock(&inode->i_mutex);
2525         } while (ret > 0);
2526         splice_from_pipe_end(pipe, &sd);
2527
2528         if (pipe->inode)
2529                 mutex_unlock(&pipe->inode->i_mutex);
2530
2531         if (sd.num_spliced)
2532                 ret = sd.num_spliced;
2533
2534         if (ret > 0) {
2535                 unsigned long nr_pages;
2536                 int err;
2537
2538                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2539
2540                 err = generic_write_sync(out, *ppos, ret);
2541                 if (err)
2542                         ret = err;
2543                 else
2544                         *ppos += ret;
2545
2546                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
2547         }
2548
2549         return ret;
2550 }
2551
2552 static ssize_t ocfs2_file_splice_read(struct file *in,
2553                                       loff_t *ppos,
2554                                       struct pipe_inode_info *pipe,
2555                                       size_t len,
2556                                       unsigned int flags)
2557 {
2558         int ret = 0, lock_level = 0;
2559         struct inode *inode = in->f_path.dentry->d_inode;
2560
2561         trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2562                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2563                         in->f_path.dentry->d_name.len,
2564                         in->f_path.dentry->d_name.name, len);
2565
2566         /*
2567          * See the comment in ocfs2_file_aio_read()
2568          */
2569         ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level);
2570         if (ret < 0) {
2571                 mlog_errno(ret);
2572                 goto bail;
2573         }
2574         ocfs2_inode_unlock(inode, lock_level);
2575
2576         ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2577
2578 bail:
2579         return ret;
2580 }
2581
2582 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2583                                    const struct iovec *iov,
2584                                    unsigned long nr_segs,
2585                                    loff_t pos)
2586 {
2587         int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2588         struct file *filp = iocb->ki_filp;
2589         struct inode *inode = filp->f_path.dentry->d_inode;
2590
2591         trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2592                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2593                         filp->f_path.dentry->d_name.len,
2594                         filp->f_path.dentry->d_name.name, nr_segs);
2595
2596
2597         if (!inode) {
2598                 ret = -EINVAL;
2599                 mlog_errno(ret);
2600                 goto bail;
2601         }
2602
2603         ocfs2_iocb_clear_sem_locked(iocb);
2604
2605         /*
2606          * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2607          * need locks to protect pending reads from racing with truncate.
2608          */
2609         if (filp->f_flags & O_DIRECT) {
2610                 have_alloc_sem = 1;
2611                 ocfs2_iocb_set_sem_locked(iocb);
2612
2613                 ret = ocfs2_rw_lock(inode, 0);
2614                 if (ret < 0) {
2615                         mlog_errno(ret);
2616                         goto bail;
2617                 }
2618                 rw_level = 0;
2619                 /* communicate with ocfs2_dio_end_io */
2620                 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2621         }
2622
2623         /*
2624          * We're fine letting folks race truncates and extending
2625          * writes with read across the cluster, just like they can
2626          * locally. Hence no rw_lock during read.
2627          *
2628          * Take and drop the meta data lock to update inode fields
2629          * like i_size. This allows the checks down below
2630          * generic_file_aio_read() a chance of actually working.
2631          */
2632         ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2633         if (ret < 0) {
2634                 mlog_errno(ret);
2635                 goto bail;
2636         }
2637         ocfs2_inode_unlock(inode, lock_level);
2638
2639         ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2640         trace_generic_file_aio_read_ret(ret);
2641
2642         /* buffered aio wouldn't have proper lock coverage today */
2643         BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2644
2645         /* see ocfs2_file_aio_write */
2646         if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2647                 rw_level = -1;
2648                 have_alloc_sem = 0;
2649         }
2650
2651 bail:
2652         if (have_alloc_sem)
2653                 ocfs2_iocb_clear_sem_locked(iocb);
2654
2655         if (rw_level != -1)
2656                 ocfs2_rw_unlock(inode, rw_level);
2657
2658         return ret;
2659 }
2660
2661 /* Refer generic_file_llseek_unlocked() */
2662 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int origin)
2663 {
2664         struct inode *inode = file->f_mapping->host;
2665         int ret = 0;
2666
2667         mutex_lock(&inode->i_mutex);
2668
2669         switch (origin) {
2670         case SEEK_SET:
2671                 break;
2672         case SEEK_END:
2673                 offset += inode->i_size;
2674                 break;
2675         case SEEK_CUR:
2676                 if (offset == 0) {
2677                         offset = file->f_pos;
2678                         goto out;
2679                 }
2680                 offset += file->f_pos;
2681                 break;
2682         case SEEK_DATA:
2683         case SEEK_HOLE:
2684                 ret = ocfs2_seek_data_hole_offset(file, &offset, origin);
2685                 if (ret)
2686                         goto out;
2687                 break;
2688         default:
2689                 ret = -EINVAL;
2690                 goto out;
2691         }
2692
2693         if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET))
2694                 ret = -EINVAL;
2695         if (!ret && offset > inode->i_sb->s_maxbytes)
2696                 ret = -EINVAL;
2697         if (ret)
2698                 goto out;
2699
2700         if (offset != file->f_pos) {
2701                 file->f_pos = offset;
2702                 file->f_version = 0;
2703         }
2704
2705 out:
2706         mutex_unlock(&inode->i_mutex);
2707         if (ret)
2708                 return ret;
2709         return offset;
2710 }
2711
2712 const struct inode_operations ocfs2_file_iops = {
2713         .setattr        = ocfs2_setattr,
2714         .getattr        = ocfs2_getattr,
2715         .permission     = ocfs2_permission,
2716         .setxattr       = generic_setxattr,
2717         .getxattr       = generic_getxattr,
2718         .listxattr      = ocfs2_listxattr,
2719         .removexattr    = generic_removexattr,
2720         .fiemap         = ocfs2_fiemap,
2721         .get_acl        = ocfs2_iop_get_acl,
2722 };
2723
2724 const struct inode_operations ocfs2_special_file_iops = {
2725         .setattr        = ocfs2_setattr,
2726         .getattr        = ocfs2_getattr,
2727         .permission     = ocfs2_permission,
2728         .get_acl        = ocfs2_iop_get_acl,
2729 };
2730
2731 /*
2732  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2733  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2734  */
2735 const struct file_operations ocfs2_fops = {
2736         .llseek         = ocfs2_file_llseek,
2737         .read           = do_sync_read,
2738         .write          = do_sync_write,
2739         .mmap           = ocfs2_mmap,
2740         .fsync          = ocfs2_sync_file,
2741         .release        = ocfs2_file_release,
2742         .open           = ocfs2_file_open,
2743         .aio_read       = ocfs2_file_aio_read,
2744         .aio_write      = ocfs2_file_aio_write,
2745         .unlocked_ioctl = ocfs2_ioctl,
2746 #ifdef CONFIG_COMPAT
2747         .compat_ioctl   = ocfs2_compat_ioctl,
2748 #endif
2749         .lock           = ocfs2_lock,
2750         .flock          = ocfs2_flock,
2751         .splice_read    = ocfs2_file_splice_read,
2752         .splice_write   = ocfs2_file_splice_write,
2753         .fallocate      = ocfs2_fallocate,
2754 };
2755
2756 const struct file_operations ocfs2_dops = {
2757         .llseek         = generic_file_llseek,
2758         .read           = generic_read_dir,
2759         .readdir        = ocfs2_readdir,
2760         .fsync          = ocfs2_sync_file,
2761         .release        = ocfs2_dir_release,
2762         .open           = ocfs2_dir_open,
2763         .unlocked_ioctl = ocfs2_ioctl,
2764 #ifdef CONFIG_COMPAT
2765         .compat_ioctl   = ocfs2_compat_ioctl,
2766 #endif
2767         .lock           = ocfs2_lock,
2768         .flock          = ocfs2_flock,
2769 };
2770
2771 /*
2772  * POSIX-lockless variants of our file_operations.
2773  *
2774  * These will be used if the underlying cluster stack does not support
2775  * posix file locking, if the user passes the "localflocks" mount
2776  * option, or if we have a local-only fs.
2777  *
2778  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2779  * so we still want it in the case of no stack support for
2780  * plocks. Internally, it will do the right thing when asked to ignore
2781  * the cluster.
2782  */
2783 const struct file_operations ocfs2_fops_no_plocks = {
2784         .llseek         = ocfs2_file_llseek,
2785         .read           = do_sync_read,
2786         .write          = do_sync_write,
2787         .mmap           = ocfs2_mmap,
2788         .fsync          = ocfs2_sync_file,
2789         .release        = ocfs2_file_release,
2790         .open           = ocfs2_file_open,
2791         .aio_read       = ocfs2_file_aio_read,
2792         .aio_write      = ocfs2_file_aio_write,
2793         .unlocked_ioctl = ocfs2_ioctl,
2794 #ifdef CONFIG_COMPAT
2795         .compat_ioctl   = ocfs2_compat_ioctl,
2796 #endif
2797         .flock          = ocfs2_flock,
2798         .splice_read    = ocfs2_file_splice_read,
2799         .splice_write   = ocfs2_file_splice_write,
2800         .fallocate      = ocfs2_fallocate,
2801 };
2802
2803 const struct file_operations ocfs2_dops_no_plocks = {
2804         .llseek         = generic_file_llseek,
2805         .read           = generic_read_dir,
2806         .readdir        = ocfs2_readdir,
2807         .fsync          = ocfs2_sync_file,
2808         .release        = ocfs2_dir_release,
2809         .open           = ocfs2_dir_open,
2810         .unlocked_ioctl = ocfs2_ioctl,
2811 #ifdef CONFIG_COMPAT
2812         .compat_ioctl   = ocfs2_compat_ioctl,
2813 #endif
2814         .flock          = ocfs2_flock,
2815 };