Merge branch 'nfs-for-2.6.32'
[pandora-kernel.git] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52
53 #include "buffer_head_io.h"
54
55
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65         /*
66          * last_eb_blk is the block number of the right most leaf extent
67          * block.  Most on-disk structures containing an extent tree store
68          * this value for fast access.  The ->eo_set_last_eb_blk() and
69          * ->eo_get_last_eb_blk() operations access this value.  They are
70          *  both required.
71          */
72         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73                                    u64 blkno);
74         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75
76         /*
77          * The on-disk structure usually keeps track of how many total
78          * clusters are stored in this extent tree.  This function updates
79          * that value.  new_clusters is the delta, and must be
80          * added to the total.  Required.
81          */
82         void (*eo_update_clusters)(struct inode *inode,
83                                    struct ocfs2_extent_tree *et,
84                                    u32 new_clusters);
85
86         /*
87          * If ->eo_insert_check() exists, it is called before rec is
88          * inserted into the extent tree.  It is optional.
89          */
90         int (*eo_insert_check)(struct inode *inode,
91                                struct ocfs2_extent_tree *et,
92                                struct ocfs2_extent_rec *rec);
93         int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94
95         /*
96          * --------------------------------------------------------------
97          * The remaining are internal to ocfs2_extent_tree and don't have
98          * accessor functions
99          */
100
101         /*
102          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103          * It is required.
104          */
105         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106
107         /*
108          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109          * it exists.  If it does not, et->et_max_leaf_clusters is set
110          * to 0 (unlimited).  Optional.
111          */
112         void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113                                           struct ocfs2_extent_tree *et);
114 };
115
116
117 /*
118  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119  * in the methods.
120  */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123                                          u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125                                          struct ocfs2_extent_tree *et,
126                                          u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128                                      struct ocfs2_extent_tree *et,
129                                      struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131                                      struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
135         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
136         .eo_update_clusters     = ocfs2_dinode_update_clusters,
137         .eo_insert_check        = ocfs2_dinode_insert_check,
138         .eo_sanity_check        = ocfs2_dinode_sanity_check,
139         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
140 };
141
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143                                          u64 blkno)
144 {
145         struct ocfs2_dinode *di = et->et_object;
146
147         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148         di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153         struct ocfs2_dinode *di = et->et_object;
154
155         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156         return le64_to_cpu(di->i_last_eb_blk);
157 }
158
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160                                          struct ocfs2_extent_tree *et,
161                                          u32 clusters)
162 {
163         struct ocfs2_dinode *di = et->et_object;
164
165         le32_add_cpu(&di->i_clusters, clusters);
166         spin_lock(&OCFS2_I(inode)->ip_lock);
167         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168         spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172                                      struct ocfs2_extent_tree *et,
173                                      struct ocfs2_extent_rec *rec)
174 {
175         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176
177         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179                         (OCFS2_I(inode)->ip_clusters !=
180                          le32_to_cpu(rec->e_cpos)),
181                         "Device %s, asking for sparse allocation: inode %llu, "
182                         "cpos %u, clusters %u\n",
183                         osb->dev_str,
184                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
185                         rec->e_cpos,
186                         OCFS2_I(inode)->ip_clusters);
187
188         return 0;
189 }
190
191 static int ocfs2_dinode_sanity_check(struct inode *inode,
192                                      struct ocfs2_extent_tree *et)
193 {
194         struct ocfs2_dinode *di = et->et_object;
195
196         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
197         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
198
199         return 0;
200 }
201
202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 {
204         struct ocfs2_dinode *di = et->et_object;
205
206         et->et_root_el = &di->id2.i_list;
207 }
208
209
210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 {
212         struct ocfs2_xattr_value_buf *vb = et->et_object;
213
214         et->et_root_el = &vb->vb_xv->xr_list;
215 }
216
217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
218                                               u64 blkno)
219 {
220         struct ocfs2_xattr_value_buf *vb = et->et_object;
221
222         vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
223 }
224
225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 {
227         struct ocfs2_xattr_value_buf *vb = et->et_object;
228
229         return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
230 }
231
232 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
233                                               struct ocfs2_extent_tree *et,
234                                               u32 clusters)
235 {
236         struct ocfs2_xattr_value_buf *vb = et->et_object;
237
238         le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
239 }
240
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
242         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
243         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
244         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
245         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
246 };
247
248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 {
250         struct ocfs2_xattr_block *xb = et->et_object;
251
252         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
253 }
254
255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
256                                                     struct ocfs2_extent_tree *et)
257 {
258         et->et_max_leaf_clusters =
259                 ocfs2_clusters_for_bytes(inode->i_sb,
260                                          OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
261 }
262
263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
264                                              u64 blkno)
265 {
266         struct ocfs2_xattr_block *xb = et->et_object;
267         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268
269         xt->xt_last_eb_blk = cpu_to_le64(blkno);
270 }
271
272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 {
274         struct ocfs2_xattr_block *xb = et->et_object;
275         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276
277         return le64_to_cpu(xt->xt_last_eb_blk);
278 }
279
280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
281                                              struct ocfs2_extent_tree *et,
282                                              u32 clusters)
283 {
284         struct ocfs2_xattr_block *xb = et->et_object;
285
286         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
287 }
288
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
290         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
291         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
292         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
293         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
294         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
295 };
296
297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
298                                           u64 blkno)
299 {
300         struct ocfs2_dx_root_block *dx_root = et->et_object;
301
302         dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
303 }
304
305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
306 {
307         struct ocfs2_dx_root_block *dx_root = et->et_object;
308
309         return le64_to_cpu(dx_root->dr_last_eb_blk);
310 }
311
312 static void ocfs2_dx_root_update_clusters(struct inode *inode,
313                                           struct ocfs2_extent_tree *et,
314                                           u32 clusters)
315 {
316         struct ocfs2_dx_root_block *dx_root = et->et_object;
317
318         le32_add_cpu(&dx_root->dr_clusters, clusters);
319 }
320
321 static int ocfs2_dx_root_sanity_check(struct inode *inode,
322                                       struct ocfs2_extent_tree *et)
323 {
324         struct ocfs2_dx_root_block *dx_root = et->et_object;
325
326         BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
327
328         return 0;
329 }
330
331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
332 {
333         struct ocfs2_dx_root_block *dx_root = et->et_object;
334
335         et->et_root_el = &dx_root->dr_list;
336 }
337
338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
339         .eo_set_last_eb_blk     = ocfs2_dx_root_set_last_eb_blk,
340         .eo_get_last_eb_blk     = ocfs2_dx_root_get_last_eb_blk,
341         .eo_update_clusters     = ocfs2_dx_root_update_clusters,
342         .eo_sanity_check        = ocfs2_dx_root_sanity_check,
343         .eo_fill_root_el        = ocfs2_dx_root_fill_root_el,
344 };
345
346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
347                                      struct inode *inode,
348                                      struct buffer_head *bh,
349                                      ocfs2_journal_access_func access,
350                                      void *obj,
351                                      struct ocfs2_extent_tree_operations *ops)
352 {
353         et->et_ops = ops;
354         et->et_root_bh = bh;
355         et->et_root_journal_access = access;
356         if (!obj)
357                 obj = (void *)bh->b_data;
358         et->et_object = obj;
359
360         et->et_ops->eo_fill_root_el(et);
361         if (!et->et_ops->eo_fill_max_leaf_clusters)
362                 et->et_max_leaf_clusters = 0;
363         else
364                 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
365 }
366
367 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
368                                    struct inode *inode,
369                                    struct buffer_head *bh)
370 {
371         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
372                                  NULL, &ocfs2_dinode_et_ops);
373 }
374
375 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
376                                        struct inode *inode,
377                                        struct buffer_head *bh)
378 {
379         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
380                                  NULL, &ocfs2_xattr_tree_et_ops);
381 }
382
383 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
384                                         struct inode *inode,
385                                         struct ocfs2_xattr_value_buf *vb)
386 {
387         __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
388                                  &ocfs2_xattr_value_et_ops);
389 }
390
391 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
392                                     struct inode *inode,
393                                     struct buffer_head *bh)
394 {
395         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
396                                  NULL, &ocfs2_dx_root_et_ops);
397 }
398
399 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
400                                             u64 new_last_eb_blk)
401 {
402         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
403 }
404
405 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407         return et->et_ops->eo_get_last_eb_blk(et);
408 }
409
410 static inline void ocfs2_et_update_clusters(struct inode *inode,
411                                             struct ocfs2_extent_tree *et,
412                                             u32 clusters)
413 {
414         et->et_ops->eo_update_clusters(inode, et, clusters);
415 }
416
417 static inline int ocfs2_et_root_journal_access(handle_t *handle,
418                                                struct inode *inode,
419                                                struct ocfs2_extent_tree *et,
420                                                int type)
421 {
422         return et->et_root_journal_access(handle, inode, et->et_root_bh,
423                                           type);
424 }
425
426 static inline int ocfs2_et_insert_check(struct inode *inode,
427                                         struct ocfs2_extent_tree *et,
428                                         struct ocfs2_extent_rec *rec)
429 {
430         int ret = 0;
431
432         if (et->et_ops->eo_insert_check)
433                 ret = et->et_ops->eo_insert_check(inode, et, rec);
434         return ret;
435 }
436
437 static inline int ocfs2_et_sanity_check(struct inode *inode,
438                                         struct ocfs2_extent_tree *et)
439 {
440         int ret = 0;
441
442         if (et->et_ops->eo_sanity_check)
443                 ret = et->et_ops->eo_sanity_check(inode, et);
444         return ret;
445 }
446
447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
449                                          struct ocfs2_extent_block *eb);
450
451 /*
452  * Structures which describe a path through a btree, and functions to
453  * manipulate them.
454  *
455  * The idea here is to be as generic as possible with the tree
456  * manipulation code.
457  */
458 struct ocfs2_path_item {
459         struct buffer_head              *bh;
460         struct ocfs2_extent_list        *el;
461 };
462
463 #define OCFS2_MAX_PATH_DEPTH    5
464
465 struct ocfs2_path {
466         int                             p_tree_depth;
467         ocfs2_journal_access_func       p_root_access;
468         struct ocfs2_path_item          p_node[OCFS2_MAX_PATH_DEPTH];
469 };
470
471 #define path_root_bh(_path) ((_path)->p_node[0].bh)
472 #define path_root_el(_path) ((_path)->p_node[0].el)
473 #define path_root_access(_path)((_path)->p_root_access)
474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
476 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
477
478 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
479                            u32 cpos);
480 static void ocfs2_adjust_rightmost_records(struct inode *inode,
481                                            handle_t *handle,
482                                            struct ocfs2_path *path,
483                                            struct ocfs2_extent_rec *insert_rec);
484 /*
485  * Reset the actual path elements so that we can re-use the structure
486  * to build another path. Generally, this involves freeing the buffer
487  * heads.
488  */
489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
490 {
491         int i, start = 0, depth = 0;
492         struct ocfs2_path_item *node;
493
494         if (keep_root)
495                 start = 1;
496
497         for(i = start; i < path_num_items(path); i++) {
498                 node = &path->p_node[i];
499
500                 brelse(node->bh);
501                 node->bh = NULL;
502                 node->el = NULL;
503         }
504
505         /*
506          * Tree depth may change during truncate, or insert. If we're
507          * keeping the root extent list, then make sure that our path
508          * structure reflects the proper depth.
509          */
510         if (keep_root)
511                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
512         else
513                 path_root_access(path) = NULL;
514
515         path->p_tree_depth = depth;
516 }
517
518 static void ocfs2_free_path(struct ocfs2_path *path)
519 {
520         if (path) {
521                 ocfs2_reinit_path(path, 0);
522                 kfree(path);
523         }
524 }
525
526 /*
527  * All the elements of src into dest. After this call, src could be freed
528  * without affecting dest.
529  *
530  * Both paths should have the same root. Any non-root elements of dest
531  * will be freed.
532  */
533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
534 {
535         int i;
536
537         BUG_ON(path_root_bh(dest) != path_root_bh(src));
538         BUG_ON(path_root_el(dest) != path_root_el(src));
539         BUG_ON(path_root_access(dest) != path_root_access(src));
540
541         ocfs2_reinit_path(dest, 1);
542
543         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
544                 dest->p_node[i].bh = src->p_node[i].bh;
545                 dest->p_node[i].el = src->p_node[i].el;
546
547                 if (dest->p_node[i].bh)
548                         get_bh(dest->p_node[i].bh);
549         }
550 }
551
552 /*
553  * Make the *dest path the same as src and re-initialize src path to
554  * have a root only.
555  */
556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
557 {
558         int i;
559
560         BUG_ON(path_root_bh(dest) != path_root_bh(src));
561         BUG_ON(path_root_access(dest) != path_root_access(src));
562
563         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
564                 brelse(dest->p_node[i].bh);
565
566                 dest->p_node[i].bh = src->p_node[i].bh;
567                 dest->p_node[i].el = src->p_node[i].el;
568
569                 src->p_node[i].bh = NULL;
570                 src->p_node[i].el = NULL;
571         }
572 }
573
574 /*
575  * Insert an extent block at given index.
576  *
577  * This will not take an additional reference on eb_bh.
578  */
579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
580                                         struct buffer_head *eb_bh)
581 {
582         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
583
584         /*
585          * Right now, no root bh is an extent block, so this helps
586          * catch code errors with dinode trees. The assertion can be
587          * safely removed if we ever need to insert extent block
588          * structures at the root.
589          */
590         BUG_ON(index == 0);
591
592         path->p_node[index].bh = eb_bh;
593         path->p_node[index].el = &eb->h_list;
594 }
595
596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
597                                          struct ocfs2_extent_list *root_el,
598                                          ocfs2_journal_access_func access)
599 {
600         struct ocfs2_path *path;
601
602         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
603
604         path = kzalloc(sizeof(*path), GFP_NOFS);
605         if (path) {
606                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
607                 get_bh(root_bh);
608                 path_root_bh(path) = root_bh;
609                 path_root_el(path) = root_el;
610                 path_root_access(path) = access;
611         }
612
613         return path;
614 }
615
616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
617 {
618         return ocfs2_new_path(path_root_bh(path), path_root_el(path),
619                               path_root_access(path));
620 }
621
622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
623 {
624         return ocfs2_new_path(et->et_root_bh, et->et_root_el,
625                               et->et_root_journal_access);
626 }
627
628 /*
629  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
630  * otherwise it's the root_access function.
631  *
632  * I don't like the way this function's name looks next to
633  * ocfs2_journal_access_path(), but I don't have a better one.
634  */
635 static int ocfs2_path_bh_journal_access(handle_t *handle,
636                                         struct inode *inode,
637                                         struct ocfs2_path *path,
638                                         int idx)
639 {
640         ocfs2_journal_access_func access = path_root_access(path);
641
642         if (!access)
643                 access = ocfs2_journal_access;
644
645         if (idx)
646                 access = ocfs2_journal_access_eb;
647
648         return access(handle, inode, path->p_node[idx].bh,
649                       OCFS2_JOURNAL_ACCESS_WRITE);
650 }
651
652 /*
653  * Convenience function to journal all components in a path.
654  */
655 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
656                                      struct ocfs2_path *path)
657 {
658         int i, ret = 0;
659
660         if (!path)
661                 goto out;
662
663         for(i = 0; i < path_num_items(path); i++) {
664                 ret = ocfs2_path_bh_journal_access(handle, inode, path, i);
665                 if (ret < 0) {
666                         mlog_errno(ret);
667                         goto out;
668                 }
669         }
670
671 out:
672         return ret;
673 }
674
675 /*
676  * Return the index of the extent record which contains cluster #v_cluster.
677  * -1 is returned if it was not found.
678  *
679  * Should work fine on interior and exterior nodes.
680  */
681 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
682 {
683         int ret = -1;
684         int i;
685         struct ocfs2_extent_rec *rec;
686         u32 rec_end, rec_start, clusters;
687
688         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
689                 rec = &el->l_recs[i];
690
691                 rec_start = le32_to_cpu(rec->e_cpos);
692                 clusters = ocfs2_rec_clusters(el, rec);
693
694                 rec_end = rec_start + clusters;
695
696                 if (v_cluster >= rec_start && v_cluster < rec_end) {
697                         ret = i;
698                         break;
699                 }
700         }
701
702         return ret;
703 }
704
705 enum ocfs2_contig_type {
706         CONTIG_NONE = 0,
707         CONTIG_LEFT,
708         CONTIG_RIGHT,
709         CONTIG_LEFTRIGHT,
710 };
711
712
713 /*
714  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
715  * ocfs2_extent_contig only work properly against leaf nodes!
716  */
717 static int ocfs2_block_extent_contig(struct super_block *sb,
718                                      struct ocfs2_extent_rec *ext,
719                                      u64 blkno)
720 {
721         u64 blk_end = le64_to_cpu(ext->e_blkno);
722
723         blk_end += ocfs2_clusters_to_blocks(sb,
724                                     le16_to_cpu(ext->e_leaf_clusters));
725
726         return blkno == blk_end;
727 }
728
729 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
730                                   struct ocfs2_extent_rec *right)
731 {
732         u32 left_range;
733
734         left_range = le32_to_cpu(left->e_cpos) +
735                 le16_to_cpu(left->e_leaf_clusters);
736
737         return (left_range == le32_to_cpu(right->e_cpos));
738 }
739
740 static enum ocfs2_contig_type
741         ocfs2_extent_contig(struct inode *inode,
742                             struct ocfs2_extent_rec *ext,
743                             struct ocfs2_extent_rec *insert_rec)
744 {
745         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
746
747         /*
748          * Refuse to coalesce extent records with different flag
749          * fields - we don't want to mix unwritten extents with user
750          * data.
751          */
752         if (ext->e_flags != insert_rec->e_flags)
753                 return CONTIG_NONE;
754
755         if (ocfs2_extents_adjacent(ext, insert_rec) &&
756             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
757                         return CONTIG_RIGHT;
758
759         blkno = le64_to_cpu(ext->e_blkno);
760         if (ocfs2_extents_adjacent(insert_rec, ext) &&
761             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
762                 return CONTIG_LEFT;
763
764         return CONTIG_NONE;
765 }
766
767 /*
768  * NOTE: We can have pretty much any combination of contiguousness and
769  * appending.
770  *
771  * The usefulness of APPEND_TAIL is more in that it lets us know that
772  * we'll have to update the path to that leaf.
773  */
774 enum ocfs2_append_type {
775         APPEND_NONE = 0,
776         APPEND_TAIL,
777 };
778
779 enum ocfs2_split_type {
780         SPLIT_NONE = 0,
781         SPLIT_LEFT,
782         SPLIT_RIGHT,
783 };
784
785 struct ocfs2_insert_type {
786         enum ocfs2_split_type   ins_split;
787         enum ocfs2_append_type  ins_appending;
788         enum ocfs2_contig_type  ins_contig;
789         int                     ins_contig_index;
790         int                     ins_tree_depth;
791 };
792
793 struct ocfs2_merge_ctxt {
794         enum ocfs2_contig_type  c_contig_type;
795         int                     c_has_empty_extent;
796         int                     c_split_covers_rec;
797 };
798
799 static int ocfs2_validate_extent_block(struct super_block *sb,
800                                        struct buffer_head *bh)
801 {
802         int rc;
803         struct ocfs2_extent_block *eb =
804                 (struct ocfs2_extent_block *)bh->b_data;
805
806         mlog(0, "Validating extent block %llu\n",
807              (unsigned long long)bh->b_blocknr);
808
809         BUG_ON(!buffer_uptodate(bh));
810
811         /*
812          * If the ecc fails, we return the error but otherwise
813          * leave the filesystem running.  We know any error is
814          * local to this block.
815          */
816         rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
817         if (rc) {
818                 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
819                      (unsigned long long)bh->b_blocknr);
820                 return rc;
821         }
822
823         /*
824          * Errors after here are fatal.
825          */
826
827         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
828                 ocfs2_error(sb,
829                             "Extent block #%llu has bad signature %.*s",
830                             (unsigned long long)bh->b_blocknr, 7,
831                             eb->h_signature);
832                 return -EINVAL;
833         }
834
835         if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
836                 ocfs2_error(sb,
837                             "Extent block #%llu has an invalid h_blkno "
838                             "of %llu",
839                             (unsigned long long)bh->b_blocknr,
840                             (unsigned long long)le64_to_cpu(eb->h_blkno));
841                 return -EINVAL;
842         }
843
844         if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
845                 ocfs2_error(sb,
846                             "Extent block #%llu has an invalid "
847                             "h_fs_generation of #%u",
848                             (unsigned long long)bh->b_blocknr,
849                             le32_to_cpu(eb->h_fs_generation));
850                 return -EINVAL;
851         }
852
853         return 0;
854 }
855
856 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
857                             struct buffer_head **bh)
858 {
859         int rc;
860         struct buffer_head *tmp = *bh;
861
862         rc = ocfs2_read_block(inode, eb_blkno, &tmp,
863                               ocfs2_validate_extent_block);
864
865         /* If ocfs2_read_block() got us a new bh, pass it up. */
866         if (!rc && !*bh)
867                 *bh = tmp;
868
869         return rc;
870 }
871
872
873 /*
874  * How many free extents have we got before we need more meta data?
875  */
876 int ocfs2_num_free_extents(struct ocfs2_super *osb,
877                            struct inode *inode,
878                            struct ocfs2_extent_tree *et)
879 {
880         int retval;
881         struct ocfs2_extent_list *el = NULL;
882         struct ocfs2_extent_block *eb;
883         struct buffer_head *eb_bh = NULL;
884         u64 last_eb_blk = 0;
885
886         mlog_entry_void();
887
888         el = et->et_root_el;
889         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
890
891         if (last_eb_blk) {
892                 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
893                 if (retval < 0) {
894                         mlog_errno(retval);
895                         goto bail;
896                 }
897                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
898                 el = &eb->h_list;
899         }
900
901         BUG_ON(el->l_tree_depth != 0);
902
903         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
904 bail:
905         brelse(eb_bh);
906
907         mlog_exit(retval);
908         return retval;
909 }
910
911 /* expects array to already be allocated
912  *
913  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
914  * l_count for you
915  */
916 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
917                                      handle_t *handle,
918                                      struct inode *inode,
919                                      int wanted,
920                                      struct ocfs2_alloc_context *meta_ac,
921                                      struct buffer_head *bhs[])
922 {
923         int count, status, i;
924         u16 suballoc_bit_start;
925         u32 num_got;
926         u64 first_blkno;
927         struct ocfs2_extent_block *eb;
928
929         mlog_entry_void();
930
931         count = 0;
932         while (count < wanted) {
933                 status = ocfs2_claim_metadata(osb,
934                                               handle,
935                                               meta_ac,
936                                               wanted - count,
937                                               &suballoc_bit_start,
938                                               &num_got,
939                                               &first_blkno);
940                 if (status < 0) {
941                         mlog_errno(status);
942                         goto bail;
943                 }
944
945                 for(i = count;  i < (num_got + count); i++) {
946                         bhs[i] = sb_getblk(osb->sb, first_blkno);
947                         if (bhs[i] == NULL) {
948                                 status = -EIO;
949                                 mlog_errno(status);
950                                 goto bail;
951                         }
952                         ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
953
954                         status = ocfs2_journal_access_eb(handle, inode, bhs[i],
955                                                          OCFS2_JOURNAL_ACCESS_CREATE);
956                         if (status < 0) {
957                                 mlog_errno(status);
958                                 goto bail;
959                         }
960
961                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
962                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
963                         /* Ok, setup the minimal stuff here. */
964                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
965                         eb->h_blkno = cpu_to_le64(first_blkno);
966                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
967                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
968                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
969                         eb->h_list.l_count =
970                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
971
972                         suballoc_bit_start++;
973                         first_blkno++;
974
975                         /* We'll also be dirtied by the caller, so
976                          * this isn't absolutely necessary. */
977                         status = ocfs2_journal_dirty(handle, bhs[i]);
978                         if (status < 0) {
979                                 mlog_errno(status);
980                                 goto bail;
981                         }
982                 }
983
984                 count += num_got;
985         }
986
987         status = 0;
988 bail:
989         if (status < 0) {
990                 for(i = 0; i < wanted; i++) {
991                         brelse(bhs[i]);
992                         bhs[i] = NULL;
993                 }
994         }
995         mlog_exit(status);
996         return status;
997 }
998
999 /*
1000  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1001  *
1002  * Returns the sum of the rightmost extent rec logical offset and
1003  * cluster count.
1004  *
1005  * ocfs2_add_branch() uses this to determine what logical cluster
1006  * value should be populated into the leftmost new branch records.
1007  *
1008  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1009  * value for the new topmost tree record.
1010  */
1011 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1012 {
1013         int i;
1014
1015         i = le16_to_cpu(el->l_next_free_rec) - 1;
1016
1017         return le32_to_cpu(el->l_recs[i].e_cpos) +
1018                 ocfs2_rec_clusters(el, &el->l_recs[i]);
1019 }
1020
1021 /*
1022  * Change range of the branches in the right most path according to the leaf
1023  * extent block's rightmost record.
1024  */
1025 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1026                                          struct inode *inode,
1027                                          struct ocfs2_extent_tree *et)
1028 {
1029         int status;
1030         struct ocfs2_path *path = NULL;
1031         struct ocfs2_extent_list *el;
1032         struct ocfs2_extent_rec *rec;
1033
1034         path = ocfs2_new_path_from_et(et);
1035         if (!path) {
1036                 status = -ENOMEM;
1037                 return status;
1038         }
1039
1040         status = ocfs2_find_path(inode, path, UINT_MAX);
1041         if (status < 0) {
1042                 mlog_errno(status);
1043                 goto out;
1044         }
1045
1046         status = ocfs2_extend_trans(handle, path_num_items(path) +
1047                                     handle->h_buffer_credits);
1048         if (status < 0) {
1049                 mlog_errno(status);
1050                 goto out;
1051         }
1052
1053         status = ocfs2_journal_access_path(inode, handle, path);
1054         if (status < 0) {
1055                 mlog_errno(status);
1056                 goto out;
1057         }
1058
1059         el = path_leaf_el(path);
1060         rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1061
1062         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1063
1064 out:
1065         ocfs2_free_path(path);
1066         return status;
1067 }
1068
1069 /*
1070  * Add an entire tree branch to our inode. eb_bh is the extent block
1071  * to start at, if we don't want to start the branch at the dinode
1072  * structure.
1073  *
1074  * last_eb_bh is required as we have to update it's next_leaf pointer
1075  * for the new last extent block.
1076  *
1077  * the new branch will be 'empty' in the sense that every block will
1078  * contain a single record with cluster count == 0.
1079  */
1080 static int ocfs2_add_branch(struct ocfs2_super *osb,
1081                             handle_t *handle,
1082                             struct inode *inode,
1083                             struct ocfs2_extent_tree *et,
1084                             struct buffer_head *eb_bh,
1085                             struct buffer_head **last_eb_bh,
1086                             struct ocfs2_alloc_context *meta_ac)
1087 {
1088         int status, new_blocks, i;
1089         u64 next_blkno, new_last_eb_blk;
1090         struct buffer_head *bh;
1091         struct buffer_head **new_eb_bhs = NULL;
1092         struct ocfs2_extent_block *eb;
1093         struct ocfs2_extent_list  *eb_el;
1094         struct ocfs2_extent_list  *el;
1095         u32 new_cpos, root_end;
1096
1097         mlog_entry_void();
1098
1099         BUG_ON(!last_eb_bh || !*last_eb_bh);
1100
1101         if (eb_bh) {
1102                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1103                 el = &eb->h_list;
1104         } else
1105                 el = et->et_root_el;
1106
1107         /* we never add a branch to a leaf. */
1108         BUG_ON(!el->l_tree_depth);
1109
1110         new_blocks = le16_to_cpu(el->l_tree_depth);
1111
1112         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1113         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1114         root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1115
1116         /*
1117          * If there is a gap before the root end and the real end
1118          * of the righmost leaf block, we need to remove the gap
1119          * between new_cpos and root_end first so that the tree
1120          * is consistent after we add a new branch(it will start
1121          * from new_cpos).
1122          */
1123         if (root_end > new_cpos) {
1124                 mlog(0, "adjust the cluster end from %u to %u\n",
1125                      root_end, new_cpos);
1126                 status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1127                 if (status) {
1128                         mlog_errno(status);
1129                         goto bail;
1130                 }
1131         }
1132
1133         /* allocate the number of new eb blocks we need */
1134         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1135                              GFP_KERNEL);
1136         if (!new_eb_bhs) {
1137                 status = -ENOMEM;
1138                 mlog_errno(status);
1139                 goto bail;
1140         }
1141
1142         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1143                                            meta_ac, new_eb_bhs);
1144         if (status < 0) {
1145                 mlog_errno(status);
1146                 goto bail;
1147         }
1148
1149         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1150          * linked with the rest of the tree.
1151          * conversly, new_eb_bhs[0] is the new bottommost leaf.
1152          *
1153          * when we leave the loop, new_last_eb_blk will point to the
1154          * newest leaf, and next_blkno will point to the topmost extent
1155          * block. */
1156         next_blkno = new_last_eb_blk = 0;
1157         for(i = 0; i < new_blocks; i++) {
1158                 bh = new_eb_bhs[i];
1159                 eb = (struct ocfs2_extent_block *) bh->b_data;
1160                 /* ocfs2_create_new_meta_bhs() should create it right! */
1161                 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1162                 eb_el = &eb->h_list;
1163
1164                 status = ocfs2_journal_access_eb(handle, inode, bh,
1165                                                  OCFS2_JOURNAL_ACCESS_CREATE);
1166                 if (status < 0) {
1167                         mlog_errno(status);
1168                         goto bail;
1169                 }
1170
1171                 eb->h_next_leaf_blk = 0;
1172                 eb_el->l_tree_depth = cpu_to_le16(i);
1173                 eb_el->l_next_free_rec = cpu_to_le16(1);
1174                 /*
1175                  * This actually counts as an empty extent as
1176                  * c_clusters == 0
1177                  */
1178                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1179                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1180                 /*
1181                  * eb_el isn't always an interior node, but even leaf
1182                  * nodes want a zero'd flags and reserved field so
1183                  * this gets the whole 32 bits regardless of use.
1184                  */
1185                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1186                 if (!eb_el->l_tree_depth)
1187                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1188
1189                 status = ocfs2_journal_dirty(handle, bh);
1190                 if (status < 0) {
1191                         mlog_errno(status);
1192                         goto bail;
1193                 }
1194
1195                 next_blkno = le64_to_cpu(eb->h_blkno);
1196         }
1197
1198         /* This is a bit hairy. We want to update up to three blocks
1199          * here without leaving any of them in an inconsistent state
1200          * in case of error. We don't have to worry about
1201          * journal_dirty erroring as it won't unless we've aborted the
1202          * handle (in which case we would never be here) so reserving
1203          * the write with journal_access is all we need to do. */
1204         status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh,
1205                                          OCFS2_JOURNAL_ACCESS_WRITE);
1206         if (status < 0) {
1207                 mlog_errno(status);
1208                 goto bail;
1209         }
1210         status = ocfs2_et_root_journal_access(handle, inode, et,
1211                                               OCFS2_JOURNAL_ACCESS_WRITE);
1212         if (status < 0) {
1213                 mlog_errno(status);
1214                 goto bail;
1215         }
1216         if (eb_bh) {
1217                 status = ocfs2_journal_access_eb(handle, inode, eb_bh,
1218                                                  OCFS2_JOURNAL_ACCESS_WRITE);
1219                 if (status < 0) {
1220                         mlog_errno(status);
1221                         goto bail;
1222                 }
1223         }
1224
1225         /* Link the new branch into the rest of the tree (el will
1226          * either be on the root_bh, or the extent block passed in. */
1227         i = le16_to_cpu(el->l_next_free_rec);
1228         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1229         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1230         el->l_recs[i].e_int_clusters = 0;
1231         le16_add_cpu(&el->l_next_free_rec, 1);
1232
1233         /* fe needs a new last extent block pointer, as does the
1234          * next_leaf on the previously last-extent-block. */
1235         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1236
1237         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1238         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1239
1240         status = ocfs2_journal_dirty(handle, *last_eb_bh);
1241         if (status < 0)
1242                 mlog_errno(status);
1243         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1244         if (status < 0)
1245                 mlog_errno(status);
1246         if (eb_bh) {
1247                 status = ocfs2_journal_dirty(handle, eb_bh);
1248                 if (status < 0)
1249                         mlog_errno(status);
1250         }
1251
1252         /*
1253          * Some callers want to track the rightmost leaf so pass it
1254          * back here.
1255          */
1256         brelse(*last_eb_bh);
1257         get_bh(new_eb_bhs[0]);
1258         *last_eb_bh = new_eb_bhs[0];
1259
1260         status = 0;
1261 bail:
1262         if (new_eb_bhs) {
1263                 for (i = 0; i < new_blocks; i++)
1264                         brelse(new_eb_bhs[i]);
1265                 kfree(new_eb_bhs);
1266         }
1267
1268         mlog_exit(status);
1269         return status;
1270 }
1271
1272 /*
1273  * adds another level to the allocation tree.
1274  * returns back the new extent block so you can add a branch to it
1275  * after this call.
1276  */
1277 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1278                                   handle_t *handle,
1279                                   struct inode *inode,
1280                                   struct ocfs2_extent_tree *et,
1281                                   struct ocfs2_alloc_context *meta_ac,
1282                                   struct buffer_head **ret_new_eb_bh)
1283 {
1284         int status, i;
1285         u32 new_clusters;
1286         struct buffer_head *new_eb_bh = NULL;
1287         struct ocfs2_extent_block *eb;
1288         struct ocfs2_extent_list  *root_el;
1289         struct ocfs2_extent_list  *eb_el;
1290
1291         mlog_entry_void();
1292
1293         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1294                                            &new_eb_bh);
1295         if (status < 0) {
1296                 mlog_errno(status);
1297                 goto bail;
1298         }
1299
1300         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1301         /* ocfs2_create_new_meta_bhs() should create it right! */
1302         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1303
1304         eb_el = &eb->h_list;
1305         root_el = et->et_root_el;
1306
1307         status = ocfs2_journal_access_eb(handle, inode, new_eb_bh,
1308                                          OCFS2_JOURNAL_ACCESS_CREATE);
1309         if (status < 0) {
1310                 mlog_errno(status);
1311                 goto bail;
1312         }
1313
1314         /* copy the root extent list data into the new extent block */
1315         eb_el->l_tree_depth = root_el->l_tree_depth;
1316         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1317         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1318                 eb_el->l_recs[i] = root_el->l_recs[i];
1319
1320         status = ocfs2_journal_dirty(handle, new_eb_bh);
1321         if (status < 0) {
1322                 mlog_errno(status);
1323                 goto bail;
1324         }
1325
1326         status = ocfs2_et_root_journal_access(handle, inode, et,
1327                                               OCFS2_JOURNAL_ACCESS_WRITE);
1328         if (status < 0) {
1329                 mlog_errno(status);
1330                 goto bail;
1331         }
1332
1333         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1334
1335         /* update root_bh now */
1336         le16_add_cpu(&root_el->l_tree_depth, 1);
1337         root_el->l_recs[0].e_cpos = 0;
1338         root_el->l_recs[0].e_blkno = eb->h_blkno;
1339         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1340         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1341                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1342         root_el->l_next_free_rec = cpu_to_le16(1);
1343
1344         /* If this is our 1st tree depth shift, then last_eb_blk
1345          * becomes the allocated extent block */
1346         if (root_el->l_tree_depth == cpu_to_le16(1))
1347                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1348
1349         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1350         if (status < 0) {
1351                 mlog_errno(status);
1352                 goto bail;
1353         }
1354
1355         *ret_new_eb_bh = new_eb_bh;
1356         new_eb_bh = NULL;
1357         status = 0;
1358 bail:
1359         brelse(new_eb_bh);
1360
1361         mlog_exit(status);
1362         return status;
1363 }
1364
1365 /*
1366  * Should only be called when there is no space left in any of the
1367  * leaf nodes. What we want to do is find the lowest tree depth
1368  * non-leaf extent block with room for new records. There are three
1369  * valid results of this search:
1370  *
1371  * 1) a lowest extent block is found, then we pass it back in
1372  *    *lowest_eb_bh and return '0'
1373  *
1374  * 2) the search fails to find anything, but the root_el has room. We
1375  *    pass NULL back in *lowest_eb_bh, but still return '0'
1376  *
1377  * 3) the search fails to find anything AND the root_el is full, in
1378  *    which case we return > 0
1379  *
1380  * return status < 0 indicates an error.
1381  */
1382 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1383                                     struct inode *inode,
1384                                     struct ocfs2_extent_tree *et,
1385                                     struct buffer_head **target_bh)
1386 {
1387         int status = 0, i;
1388         u64 blkno;
1389         struct ocfs2_extent_block *eb;
1390         struct ocfs2_extent_list  *el;
1391         struct buffer_head *bh = NULL;
1392         struct buffer_head *lowest_bh = NULL;
1393
1394         mlog_entry_void();
1395
1396         *target_bh = NULL;
1397
1398         el = et->et_root_el;
1399
1400         while(le16_to_cpu(el->l_tree_depth) > 1) {
1401                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1402                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1403                                     "extent list (next_free_rec == 0)",
1404                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
1405                         status = -EIO;
1406                         goto bail;
1407                 }
1408                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1409                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1410                 if (!blkno) {
1411                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1412                                     "list where extent # %d has no physical "
1413                                     "block start",
1414                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1415                         status = -EIO;
1416                         goto bail;
1417                 }
1418
1419                 brelse(bh);
1420                 bh = NULL;
1421
1422                 status = ocfs2_read_extent_block(inode, blkno, &bh);
1423                 if (status < 0) {
1424                         mlog_errno(status);
1425                         goto bail;
1426                 }
1427
1428                 eb = (struct ocfs2_extent_block *) bh->b_data;
1429                 el = &eb->h_list;
1430
1431                 if (le16_to_cpu(el->l_next_free_rec) <
1432                     le16_to_cpu(el->l_count)) {
1433                         brelse(lowest_bh);
1434                         lowest_bh = bh;
1435                         get_bh(lowest_bh);
1436                 }
1437         }
1438
1439         /* If we didn't find one and the fe doesn't have any room,
1440          * then return '1' */
1441         el = et->et_root_el;
1442         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1443                 status = 1;
1444
1445         *target_bh = lowest_bh;
1446 bail:
1447         brelse(bh);
1448
1449         mlog_exit(status);
1450         return status;
1451 }
1452
1453 /*
1454  * Grow a b-tree so that it has more records.
1455  *
1456  * We might shift the tree depth in which case existing paths should
1457  * be considered invalid.
1458  *
1459  * Tree depth after the grow is returned via *final_depth.
1460  *
1461  * *last_eb_bh will be updated by ocfs2_add_branch().
1462  */
1463 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1464                            struct ocfs2_extent_tree *et, int *final_depth,
1465                            struct buffer_head **last_eb_bh,
1466                            struct ocfs2_alloc_context *meta_ac)
1467 {
1468         int ret, shift;
1469         struct ocfs2_extent_list *el = et->et_root_el;
1470         int depth = le16_to_cpu(el->l_tree_depth);
1471         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1472         struct buffer_head *bh = NULL;
1473
1474         BUG_ON(meta_ac == NULL);
1475
1476         shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1477         if (shift < 0) {
1478                 ret = shift;
1479                 mlog_errno(ret);
1480                 goto out;
1481         }
1482
1483         /* We traveled all the way to the bottom of the allocation tree
1484          * and didn't find room for any more extents - we need to add
1485          * another tree level */
1486         if (shift) {
1487                 BUG_ON(bh);
1488                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1489
1490                 /* ocfs2_shift_tree_depth will return us a buffer with
1491                  * the new extent block (so we can pass that to
1492                  * ocfs2_add_branch). */
1493                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1494                                              meta_ac, &bh);
1495                 if (ret < 0) {
1496                         mlog_errno(ret);
1497                         goto out;
1498                 }
1499                 depth++;
1500                 if (depth == 1) {
1501                         /*
1502                          * Special case: we have room now if we shifted from
1503                          * tree_depth 0, so no more work needs to be done.
1504                          *
1505                          * We won't be calling add_branch, so pass
1506                          * back *last_eb_bh as the new leaf. At depth
1507                          * zero, it should always be null so there's
1508                          * no reason to brelse.
1509                          */
1510                         BUG_ON(*last_eb_bh);
1511                         get_bh(bh);
1512                         *last_eb_bh = bh;
1513                         goto out;
1514                 }
1515         }
1516
1517         /* call ocfs2_add_branch to add the final part of the tree with
1518          * the new data. */
1519         mlog(0, "add branch. bh = %p\n", bh);
1520         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1521                                meta_ac);
1522         if (ret < 0) {
1523                 mlog_errno(ret);
1524                 goto out;
1525         }
1526
1527 out:
1528         if (final_depth)
1529                 *final_depth = depth;
1530         brelse(bh);
1531         return ret;
1532 }
1533
1534 /*
1535  * This function will discard the rightmost extent record.
1536  */
1537 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1538 {
1539         int next_free = le16_to_cpu(el->l_next_free_rec);
1540         int count = le16_to_cpu(el->l_count);
1541         unsigned int num_bytes;
1542
1543         BUG_ON(!next_free);
1544         /* This will cause us to go off the end of our extent list. */
1545         BUG_ON(next_free >= count);
1546
1547         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1548
1549         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1550 }
1551
1552 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1553                               struct ocfs2_extent_rec *insert_rec)
1554 {
1555         int i, insert_index, next_free, has_empty, num_bytes;
1556         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1557         struct ocfs2_extent_rec *rec;
1558
1559         next_free = le16_to_cpu(el->l_next_free_rec);
1560         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1561
1562         BUG_ON(!next_free);
1563
1564         /* The tree code before us didn't allow enough room in the leaf. */
1565         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1566
1567         /*
1568          * The easiest way to approach this is to just remove the
1569          * empty extent and temporarily decrement next_free.
1570          */
1571         if (has_empty) {
1572                 /*
1573                  * If next_free was 1 (only an empty extent), this
1574                  * loop won't execute, which is fine. We still want
1575                  * the decrement above to happen.
1576                  */
1577                 for(i = 0; i < (next_free - 1); i++)
1578                         el->l_recs[i] = el->l_recs[i+1];
1579
1580                 next_free--;
1581         }
1582
1583         /*
1584          * Figure out what the new record index should be.
1585          */
1586         for(i = 0; i < next_free; i++) {
1587                 rec = &el->l_recs[i];
1588
1589                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1590                         break;
1591         }
1592         insert_index = i;
1593
1594         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1595              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1596
1597         BUG_ON(insert_index < 0);
1598         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1599         BUG_ON(insert_index > next_free);
1600
1601         /*
1602          * No need to memmove if we're just adding to the tail.
1603          */
1604         if (insert_index != next_free) {
1605                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1606
1607                 num_bytes = next_free - insert_index;
1608                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1609                 memmove(&el->l_recs[insert_index + 1],
1610                         &el->l_recs[insert_index],
1611                         num_bytes);
1612         }
1613
1614         /*
1615          * Either we had an empty extent, and need to re-increment or
1616          * there was no empty extent on a non full rightmost leaf node,
1617          * in which case we still need to increment.
1618          */
1619         next_free++;
1620         el->l_next_free_rec = cpu_to_le16(next_free);
1621         /*
1622          * Make sure none of the math above just messed up our tree.
1623          */
1624         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1625
1626         el->l_recs[insert_index] = *insert_rec;
1627
1628 }
1629
1630 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1631 {
1632         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1633
1634         BUG_ON(num_recs == 0);
1635
1636         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1637                 num_recs--;
1638                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1639                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1640                 memset(&el->l_recs[num_recs], 0,
1641                        sizeof(struct ocfs2_extent_rec));
1642                 el->l_next_free_rec = cpu_to_le16(num_recs);
1643         }
1644 }
1645
1646 /*
1647  * Create an empty extent record .
1648  *
1649  * l_next_free_rec may be updated.
1650  *
1651  * If an empty extent already exists do nothing.
1652  */
1653 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1654 {
1655         int next_free = le16_to_cpu(el->l_next_free_rec);
1656
1657         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1658
1659         if (next_free == 0)
1660                 goto set_and_inc;
1661
1662         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1663                 return;
1664
1665         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1666                         "Asked to create an empty extent in a full list:\n"
1667                         "count = %u, tree depth = %u",
1668                         le16_to_cpu(el->l_count),
1669                         le16_to_cpu(el->l_tree_depth));
1670
1671         ocfs2_shift_records_right(el);
1672
1673 set_and_inc:
1674         le16_add_cpu(&el->l_next_free_rec, 1);
1675         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1676 }
1677
1678 /*
1679  * For a rotation which involves two leaf nodes, the "root node" is
1680  * the lowest level tree node which contains a path to both leafs. This
1681  * resulting set of information can be used to form a complete "subtree"
1682  *
1683  * This function is passed two full paths from the dinode down to a
1684  * pair of adjacent leaves. It's task is to figure out which path
1685  * index contains the subtree root - this can be the root index itself
1686  * in a worst-case rotation.
1687  *
1688  * The array index of the subtree root is passed back.
1689  */
1690 static int ocfs2_find_subtree_root(struct inode *inode,
1691                                    struct ocfs2_path *left,
1692                                    struct ocfs2_path *right)
1693 {
1694         int i = 0;
1695
1696         /*
1697          * Check that the caller passed in two paths from the same tree.
1698          */
1699         BUG_ON(path_root_bh(left) != path_root_bh(right));
1700
1701         do {
1702                 i++;
1703
1704                 /*
1705                  * The caller didn't pass two adjacent paths.
1706                  */
1707                 mlog_bug_on_msg(i > left->p_tree_depth,
1708                                 "Inode %lu, left depth %u, right depth %u\n"
1709                                 "left leaf blk %llu, right leaf blk %llu\n",
1710                                 inode->i_ino, left->p_tree_depth,
1711                                 right->p_tree_depth,
1712                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1713                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1714         } while (left->p_node[i].bh->b_blocknr ==
1715                  right->p_node[i].bh->b_blocknr);
1716
1717         return i - 1;
1718 }
1719
1720 typedef void (path_insert_t)(void *, struct buffer_head *);
1721
1722 /*
1723  * Traverse a btree path in search of cpos, starting at root_el.
1724  *
1725  * This code can be called with a cpos larger than the tree, in which
1726  * case it will return the rightmost path.
1727  */
1728 static int __ocfs2_find_path(struct inode *inode,
1729                              struct ocfs2_extent_list *root_el, u32 cpos,
1730                              path_insert_t *func, void *data)
1731 {
1732         int i, ret = 0;
1733         u32 range;
1734         u64 blkno;
1735         struct buffer_head *bh = NULL;
1736         struct ocfs2_extent_block *eb;
1737         struct ocfs2_extent_list *el;
1738         struct ocfs2_extent_rec *rec;
1739         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1740
1741         el = root_el;
1742         while (el->l_tree_depth) {
1743                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1744                         ocfs2_error(inode->i_sb,
1745                                     "Inode %llu has empty extent list at "
1746                                     "depth %u\n",
1747                                     (unsigned long long)oi->ip_blkno,
1748                                     le16_to_cpu(el->l_tree_depth));
1749                         ret = -EROFS;
1750                         goto out;
1751
1752                 }
1753
1754                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1755                         rec = &el->l_recs[i];
1756
1757                         /*
1758                          * In the case that cpos is off the allocation
1759                          * tree, this should just wind up returning the
1760                          * rightmost record.
1761                          */
1762                         range = le32_to_cpu(rec->e_cpos) +
1763                                 ocfs2_rec_clusters(el, rec);
1764                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1765                             break;
1766                 }
1767
1768                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1769                 if (blkno == 0) {
1770                         ocfs2_error(inode->i_sb,
1771                                     "Inode %llu has bad blkno in extent list "
1772                                     "at depth %u (index %d)\n",
1773                                     (unsigned long long)oi->ip_blkno,
1774                                     le16_to_cpu(el->l_tree_depth), i);
1775                         ret = -EROFS;
1776                         goto out;
1777                 }
1778
1779                 brelse(bh);
1780                 bh = NULL;
1781                 ret = ocfs2_read_extent_block(inode, blkno, &bh);
1782                 if (ret) {
1783                         mlog_errno(ret);
1784                         goto out;
1785                 }
1786
1787                 eb = (struct ocfs2_extent_block *) bh->b_data;
1788                 el = &eb->h_list;
1789
1790                 if (le16_to_cpu(el->l_next_free_rec) >
1791                     le16_to_cpu(el->l_count)) {
1792                         ocfs2_error(inode->i_sb,
1793                                     "Inode %llu has bad count in extent list "
1794                                     "at block %llu (next free=%u, count=%u)\n",
1795                                     (unsigned long long)oi->ip_blkno,
1796                                     (unsigned long long)bh->b_blocknr,
1797                                     le16_to_cpu(el->l_next_free_rec),
1798                                     le16_to_cpu(el->l_count));
1799                         ret = -EROFS;
1800                         goto out;
1801                 }
1802
1803                 if (func)
1804                         func(data, bh);
1805         }
1806
1807 out:
1808         /*
1809          * Catch any trailing bh that the loop didn't handle.
1810          */
1811         brelse(bh);
1812
1813         return ret;
1814 }
1815
1816 /*
1817  * Given an initialized path (that is, it has a valid root extent
1818  * list), this function will traverse the btree in search of the path
1819  * which would contain cpos.
1820  *
1821  * The path traveled is recorded in the path structure.
1822  *
1823  * Note that this will not do any comparisons on leaf node extent
1824  * records, so it will work fine in the case that we just added a tree
1825  * branch.
1826  */
1827 struct find_path_data {
1828         int index;
1829         struct ocfs2_path *path;
1830 };
1831 static void find_path_ins(void *data, struct buffer_head *bh)
1832 {
1833         struct find_path_data *fp = data;
1834
1835         get_bh(bh);
1836         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1837         fp->index++;
1838 }
1839 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1840                            u32 cpos)
1841 {
1842         struct find_path_data data;
1843
1844         data.index = 1;
1845         data.path = path;
1846         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1847                                  find_path_ins, &data);
1848 }
1849
1850 static void find_leaf_ins(void *data, struct buffer_head *bh)
1851 {
1852         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1853         struct ocfs2_extent_list *el = &eb->h_list;
1854         struct buffer_head **ret = data;
1855
1856         /* We want to retain only the leaf block. */
1857         if (le16_to_cpu(el->l_tree_depth) == 0) {
1858                 get_bh(bh);
1859                 *ret = bh;
1860         }
1861 }
1862 /*
1863  * Find the leaf block in the tree which would contain cpos. No
1864  * checking of the actual leaf is done.
1865  *
1866  * Some paths want to call this instead of allocating a path structure
1867  * and calling ocfs2_find_path().
1868  *
1869  * This function doesn't handle non btree extent lists.
1870  */
1871 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1872                     u32 cpos, struct buffer_head **leaf_bh)
1873 {
1874         int ret;
1875         struct buffer_head *bh = NULL;
1876
1877         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1878         if (ret) {
1879                 mlog_errno(ret);
1880                 goto out;
1881         }
1882
1883         *leaf_bh = bh;
1884 out:
1885         return ret;
1886 }
1887
1888 /*
1889  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1890  *
1891  * Basically, we've moved stuff around at the bottom of the tree and
1892  * we need to fix up the extent records above the changes to reflect
1893  * the new changes.
1894  *
1895  * left_rec: the record on the left.
1896  * left_child_el: is the child list pointed to by left_rec
1897  * right_rec: the record to the right of left_rec
1898  * right_child_el: is the child list pointed to by right_rec
1899  *
1900  * By definition, this only works on interior nodes.
1901  */
1902 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1903                                   struct ocfs2_extent_list *left_child_el,
1904                                   struct ocfs2_extent_rec *right_rec,
1905                                   struct ocfs2_extent_list *right_child_el)
1906 {
1907         u32 left_clusters, right_end;
1908
1909         /*
1910          * Interior nodes never have holes. Their cpos is the cpos of
1911          * the leftmost record in their child list. Their cluster
1912          * count covers the full theoretical range of their child list
1913          * - the range between their cpos and the cpos of the record
1914          * immediately to their right.
1915          */
1916         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1917         if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1918                 BUG_ON(right_child_el->l_tree_depth);
1919                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1920                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1921         }
1922         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1923         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1924
1925         /*
1926          * Calculate the rightmost cluster count boundary before
1927          * moving cpos - we will need to adjust clusters after
1928          * updating e_cpos to keep the same highest cluster count.
1929          */
1930         right_end = le32_to_cpu(right_rec->e_cpos);
1931         right_end += le32_to_cpu(right_rec->e_int_clusters);
1932
1933         right_rec->e_cpos = left_rec->e_cpos;
1934         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1935
1936         right_end -= le32_to_cpu(right_rec->e_cpos);
1937         right_rec->e_int_clusters = cpu_to_le32(right_end);
1938 }
1939
1940 /*
1941  * Adjust the adjacent root node records involved in a
1942  * rotation. left_el_blkno is passed in as a key so that we can easily
1943  * find it's index in the root list.
1944  */
1945 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1946                                       struct ocfs2_extent_list *left_el,
1947                                       struct ocfs2_extent_list *right_el,
1948                                       u64 left_el_blkno)
1949 {
1950         int i;
1951
1952         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1953                le16_to_cpu(left_el->l_tree_depth));
1954
1955         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1956                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1957                         break;
1958         }
1959
1960         /*
1961          * The path walking code should have never returned a root and
1962          * two paths which are not adjacent.
1963          */
1964         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1965
1966         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1967                                       &root_el->l_recs[i + 1], right_el);
1968 }
1969
1970 /*
1971  * We've changed a leaf block (in right_path) and need to reflect that
1972  * change back up the subtree.
1973  *
1974  * This happens in multiple places:
1975  *   - When we've moved an extent record from the left path leaf to the right
1976  *     path leaf to make room for an empty extent in the left path leaf.
1977  *   - When our insert into the right path leaf is at the leftmost edge
1978  *     and requires an update of the path immediately to it's left. This
1979  *     can occur at the end of some types of rotation and appending inserts.
1980  *   - When we've adjusted the last extent record in the left path leaf and the
1981  *     1st extent record in the right path leaf during cross extent block merge.
1982  */
1983 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1984                                        struct ocfs2_path *left_path,
1985                                        struct ocfs2_path *right_path,
1986                                        int subtree_index)
1987 {
1988         int ret, i, idx;
1989         struct ocfs2_extent_list *el, *left_el, *right_el;
1990         struct ocfs2_extent_rec *left_rec, *right_rec;
1991         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1992
1993         /*
1994          * Update the counts and position values within all the
1995          * interior nodes to reflect the leaf rotation we just did.
1996          *
1997          * The root node is handled below the loop.
1998          *
1999          * We begin the loop with right_el and left_el pointing to the
2000          * leaf lists and work our way up.
2001          *
2002          * NOTE: within this loop, left_el and right_el always refer
2003          * to the *child* lists.
2004          */
2005         left_el = path_leaf_el(left_path);
2006         right_el = path_leaf_el(right_path);
2007         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2008                 mlog(0, "Adjust records at index %u\n", i);
2009
2010                 /*
2011                  * One nice property of knowing that all of these
2012                  * nodes are below the root is that we only deal with
2013                  * the leftmost right node record and the rightmost
2014                  * left node record.
2015                  */
2016                 el = left_path->p_node[i].el;
2017                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2018                 left_rec = &el->l_recs[idx];
2019
2020                 el = right_path->p_node[i].el;
2021                 right_rec = &el->l_recs[0];
2022
2023                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2024                                               right_el);
2025
2026                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2027                 if (ret)
2028                         mlog_errno(ret);
2029
2030                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2031                 if (ret)
2032                         mlog_errno(ret);
2033
2034                 /*
2035                  * Setup our list pointers now so that the current
2036                  * parents become children in the next iteration.
2037                  */
2038                 left_el = left_path->p_node[i].el;
2039                 right_el = right_path->p_node[i].el;
2040         }
2041
2042         /*
2043          * At the root node, adjust the two adjacent records which
2044          * begin our path to the leaves.
2045          */
2046
2047         el = left_path->p_node[subtree_index].el;
2048         left_el = left_path->p_node[subtree_index + 1].el;
2049         right_el = right_path->p_node[subtree_index + 1].el;
2050
2051         ocfs2_adjust_root_records(el, left_el, right_el,
2052                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
2053
2054         root_bh = left_path->p_node[subtree_index].bh;
2055
2056         ret = ocfs2_journal_dirty(handle, root_bh);
2057         if (ret)
2058                 mlog_errno(ret);
2059 }
2060
2061 static int ocfs2_rotate_subtree_right(struct inode *inode,
2062                                       handle_t *handle,
2063                                       struct ocfs2_path *left_path,
2064                                       struct ocfs2_path *right_path,
2065                                       int subtree_index)
2066 {
2067         int ret, i;
2068         struct buffer_head *right_leaf_bh;
2069         struct buffer_head *left_leaf_bh = NULL;
2070         struct buffer_head *root_bh;
2071         struct ocfs2_extent_list *right_el, *left_el;
2072         struct ocfs2_extent_rec move_rec;
2073
2074         left_leaf_bh = path_leaf_bh(left_path);
2075         left_el = path_leaf_el(left_path);
2076
2077         if (left_el->l_next_free_rec != left_el->l_count) {
2078                 ocfs2_error(inode->i_sb,
2079                             "Inode %llu has non-full interior leaf node %llu"
2080                             "(next free = %u)",
2081                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
2082                             (unsigned long long)left_leaf_bh->b_blocknr,
2083                             le16_to_cpu(left_el->l_next_free_rec));
2084                 return -EROFS;
2085         }
2086
2087         /*
2088          * This extent block may already have an empty record, so we
2089          * return early if so.
2090          */
2091         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2092                 return 0;
2093
2094         root_bh = left_path->p_node[subtree_index].bh;
2095         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2096
2097         ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2098                                            subtree_index);
2099         if (ret) {
2100                 mlog_errno(ret);
2101                 goto out;
2102         }
2103
2104         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2105                 ret = ocfs2_path_bh_journal_access(handle, inode,
2106                                                    right_path, i);
2107                 if (ret) {
2108                         mlog_errno(ret);
2109                         goto out;
2110                 }
2111
2112                 ret = ocfs2_path_bh_journal_access(handle, inode,
2113                                                    left_path, i);
2114                 if (ret) {
2115                         mlog_errno(ret);
2116                         goto out;
2117                 }
2118         }
2119
2120         right_leaf_bh = path_leaf_bh(right_path);
2121         right_el = path_leaf_el(right_path);
2122
2123         /* This is a code error, not a disk corruption. */
2124         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2125                         "because rightmost leaf block %llu is empty\n",
2126                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2127                         (unsigned long long)right_leaf_bh->b_blocknr);
2128
2129         ocfs2_create_empty_extent(right_el);
2130
2131         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2132         if (ret) {
2133                 mlog_errno(ret);
2134                 goto out;
2135         }
2136
2137         /* Do the copy now. */
2138         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2139         move_rec = left_el->l_recs[i];
2140         right_el->l_recs[0] = move_rec;
2141
2142         /*
2143          * Clear out the record we just copied and shift everything
2144          * over, leaving an empty extent in the left leaf.
2145          *
2146          * We temporarily subtract from next_free_rec so that the
2147          * shift will lose the tail record (which is now defunct).
2148          */
2149         le16_add_cpu(&left_el->l_next_free_rec, -1);
2150         ocfs2_shift_records_right(left_el);
2151         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2152         le16_add_cpu(&left_el->l_next_free_rec, 1);
2153
2154         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2155         if (ret) {
2156                 mlog_errno(ret);
2157                 goto out;
2158         }
2159
2160         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2161                                 subtree_index);
2162
2163 out:
2164         return ret;
2165 }
2166
2167 /*
2168  * Given a full path, determine what cpos value would return us a path
2169  * containing the leaf immediately to the left of the current one.
2170  *
2171  * Will return zero if the path passed in is already the leftmost path.
2172  */
2173 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2174                                          struct ocfs2_path *path, u32 *cpos)
2175 {
2176         int i, j, ret = 0;
2177         u64 blkno;
2178         struct ocfs2_extent_list *el;
2179
2180         BUG_ON(path->p_tree_depth == 0);
2181
2182         *cpos = 0;
2183
2184         blkno = path_leaf_bh(path)->b_blocknr;
2185
2186         /* Start at the tree node just above the leaf and work our way up. */
2187         i = path->p_tree_depth - 1;
2188         while (i >= 0) {
2189                 el = path->p_node[i].el;
2190
2191                 /*
2192                  * Find the extent record just before the one in our
2193                  * path.
2194                  */
2195                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2196                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2197                                 if (j == 0) {
2198                                         if (i == 0) {
2199                                                 /*
2200                                                  * We've determined that the
2201                                                  * path specified is already
2202                                                  * the leftmost one - return a
2203                                                  * cpos of zero.
2204                                                  */
2205                                                 goto out;
2206                                         }
2207                                         /*
2208                                          * The leftmost record points to our
2209                                          * leaf - we need to travel up the
2210                                          * tree one level.
2211                                          */
2212                                         goto next_node;
2213                                 }
2214
2215                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2216                                 *cpos = *cpos + ocfs2_rec_clusters(el,
2217                                                            &el->l_recs[j - 1]);
2218                                 *cpos = *cpos - 1;
2219                                 goto out;
2220                         }
2221                 }
2222
2223                 /*
2224                  * If we got here, we never found a valid node where
2225                  * the tree indicated one should be.
2226                  */
2227                 ocfs2_error(sb,
2228                             "Invalid extent tree at extent block %llu\n",
2229                             (unsigned long long)blkno);
2230                 ret = -EROFS;
2231                 goto out;
2232
2233 next_node:
2234                 blkno = path->p_node[i].bh->b_blocknr;
2235                 i--;
2236         }
2237
2238 out:
2239         return ret;
2240 }
2241
2242 /*
2243  * Extend the transaction by enough credits to complete the rotation,
2244  * and still leave at least the original number of credits allocated
2245  * to this transaction.
2246  */
2247 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2248                                            int op_credits,
2249                                            struct ocfs2_path *path)
2250 {
2251         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2252
2253         if (handle->h_buffer_credits < credits)
2254                 return ocfs2_extend_trans(handle, credits);
2255
2256         return 0;
2257 }
2258
2259 /*
2260  * Trap the case where we're inserting into the theoretical range past
2261  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2262  * whose cpos is less than ours into the right leaf.
2263  *
2264  * It's only necessary to look at the rightmost record of the left
2265  * leaf because the logic that calls us should ensure that the
2266  * theoretical ranges in the path components above the leaves are
2267  * correct.
2268  */
2269 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2270                                                  u32 insert_cpos)
2271 {
2272         struct ocfs2_extent_list *left_el;
2273         struct ocfs2_extent_rec *rec;
2274         int next_free;
2275
2276         left_el = path_leaf_el(left_path);
2277         next_free = le16_to_cpu(left_el->l_next_free_rec);
2278         rec = &left_el->l_recs[next_free - 1];
2279
2280         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2281                 return 1;
2282         return 0;
2283 }
2284
2285 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2286 {
2287         int next_free = le16_to_cpu(el->l_next_free_rec);
2288         unsigned int range;
2289         struct ocfs2_extent_rec *rec;
2290
2291         if (next_free == 0)
2292                 return 0;
2293
2294         rec = &el->l_recs[0];
2295         if (ocfs2_is_empty_extent(rec)) {
2296                 /* Empty list. */
2297                 if (next_free == 1)
2298                         return 0;
2299                 rec = &el->l_recs[1];
2300         }
2301
2302         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2303         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2304                 return 1;
2305         return 0;
2306 }
2307
2308 /*
2309  * Rotate all the records in a btree right one record, starting at insert_cpos.
2310  *
2311  * The path to the rightmost leaf should be passed in.
2312  *
2313  * The array is assumed to be large enough to hold an entire path (tree depth).
2314  *
2315  * Upon succesful return from this function:
2316  *
2317  * - The 'right_path' array will contain a path to the leaf block
2318  *   whose range contains e_cpos.
2319  * - That leaf block will have a single empty extent in list index 0.
2320  * - In the case that the rotation requires a post-insert update,
2321  *   *ret_left_path will contain a valid path which can be passed to
2322  *   ocfs2_insert_path().
2323  */
2324 static int ocfs2_rotate_tree_right(struct inode *inode,
2325                                    handle_t *handle,
2326                                    enum ocfs2_split_type split,
2327                                    u32 insert_cpos,
2328                                    struct ocfs2_path *right_path,
2329                                    struct ocfs2_path **ret_left_path)
2330 {
2331         int ret, start, orig_credits = handle->h_buffer_credits;
2332         u32 cpos;
2333         struct ocfs2_path *left_path = NULL;
2334
2335         *ret_left_path = NULL;
2336
2337         left_path = ocfs2_new_path_from_path(right_path);
2338         if (!left_path) {
2339                 ret = -ENOMEM;
2340                 mlog_errno(ret);
2341                 goto out;
2342         }
2343
2344         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2345         if (ret) {
2346                 mlog_errno(ret);
2347                 goto out;
2348         }
2349
2350         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2351
2352         /*
2353          * What we want to do here is:
2354          *
2355          * 1) Start with the rightmost path.
2356          *
2357          * 2) Determine a path to the leaf block directly to the left
2358          *    of that leaf.
2359          *
2360          * 3) Determine the 'subtree root' - the lowest level tree node
2361          *    which contains a path to both leaves.
2362          *
2363          * 4) Rotate the subtree.
2364          *
2365          * 5) Find the next subtree by considering the left path to be
2366          *    the new right path.
2367          *
2368          * The check at the top of this while loop also accepts
2369          * insert_cpos == cpos because cpos is only a _theoretical_
2370          * value to get us the left path - insert_cpos might very well
2371          * be filling that hole.
2372          *
2373          * Stop at a cpos of '0' because we either started at the
2374          * leftmost branch (i.e., a tree with one branch and a
2375          * rotation inside of it), or we've gone as far as we can in
2376          * rotating subtrees.
2377          */
2378         while (cpos && insert_cpos <= cpos) {
2379                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2380                      insert_cpos, cpos);
2381
2382                 ret = ocfs2_find_path(inode, left_path, cpos);
2383                 if (ret) {
2384                         mlog_errno(ret);
2385                         goto out;
2386                 }
2387
2388                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2389                                 path_leaf_bh(right_path),
2390                                 "Inode %lu: error during insert of %u "
2391                                 "(left path cpos %u) results in two identical "
2392                                 "paths ending at %llu\n",
2393                                 inode->i_ino, insert_cpos, cpos,
2394                                 (unsigned long long)
2395                                 path_leaf_bh(left_path)->b_blocknr);
2396
2397                 if (split == SPLIT_NONE &&
2398                     ocfs2_rotate_requires_path_adjustment(left_path,
2399                                                           insert_cpos)) {
2400
2401                         /*
2402                          * We've rotated the tree as much as we
2403                          * should. The rest is up to
2404                          * ocfs2_insert_path() to complete, after the
2405                          * record insertion. We indicate this
2406                          * situation by returning the left path.
2407                          *
2408                          * The reason we don't adjust the records here
2409                          * before the record insert is that an error
2410                          * later might break the rule where a parent
2411                          * record e_cpos will reflect the actual
2412                          * e_cpos of the 1st nonempty record of the
2413                          * child list.
2414                          */
2415                         *ret_left_path = left_path;
2416                         goto out_ret_path;
2417                 }
2418
2419                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2420
2421                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2422                      start,
2423                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2424                      right_path->p_tree_depth);
2425
2426                 ret = ocfs2_extend_rotate_transaction(handle, start,
2427                                                       orig_credits, right_path);
2428                 if (ret) {
2429                         mlog_errno(ret);
2430                         goto out;
2431                 }
2432
2433                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2434                                                  right_path, start);
2435                 if (ret) {
2436                         mlog_errno(ret);
2437                         goto out;
2438                 }
2439
2440                 if (split != SPLIT_NONE &&
2441                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2442                                                 insert_cpos)) {
2443                         /*
2444                          * A rotate moves the rightmost left leaf
2445                          * record over to the leftmost right leaf
2446                          * slot. If we're doing an extent split
2447                          * instead of a real insert, then we have to
2448                          * check that the extent to be split wasn't
2449                          * just moved over. If it was, then we can
2450                          * exit here, passing left_path back -
2451                          * ocfs2_split_extent() is smart enough to
2452                          * search both leaves.
2453                          */
2454                         *ret_left_path = left_path;
2455                         goto out_ret_path;
2456                 }
2457
2458                 /*
2459                  * There is no need to re-read the next right path
2460                  * as we know that it'll be our current left
2461                  * path. Optimize by copying values instead.
2462                  */
2463                 ocfs2_mv_path(right_path, left_path);
2464
2465                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2466                                                     &cpos);
2467                 if (ret) {
2468                         mlog_errno(ret);
2469                         goto out;
2470                 }
2471         }
2472
2473 out:
2474         ocfs2_free_path(left_path);
2475
2476 out_ret_path:
2477         return ret;
2478 }
2479
2480 static int ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2481                                      int subtree_index, struct ocfs2_path *path)
2482 {
2483         int i, idx, ret;
2484         struct ocfs2_extent_rec *rec;
2485         struct ocfs2_extent_list *el;
2486         struct ocfs2_extent_block *eb;
2487         u32 range;
2488
2489         /*
2490          * In normal tree rotation process, we will never touch the
2491          * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2492          * doesn't reserve the credits for them either.
2493          *
2494          * But we do have a special case here which will update the rightmost
2495          * records for all the bh in the path.
2496          * So we have to allocate extra credits and access them.
2497          */
2498         ret = ocfs2_extend_trans(handle,
2499                                  handle->h_buffer_credits + subtree_index);
2500         if (ret) {
2501                 mlog_errno(ret);
2502                 goto out;
2503         }
2504
2505         ret = ocfs2_journal_access_path(inode, handle, path);
2506         if (ret) {
2507                 mlog_errno(ret);
2508                 goto out;
2509         }
2510
2511         /* Path should always be rightmost. */
2512         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2513         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2514
2515         el = &eb->h_list;
2516         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2517         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2518         rec = &el->l_recs[idx];
2519         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2520
2521         for (i = 0; i < path->p_tree_depth; i++) {
2522                 el = path->p_node[i].el;
2523                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2524                 rec = &el->l_recs[idx];
2525
2526                 rec->e_int_clusters = cpu_to_le32(range);
2527                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2528
2529                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2530         }
2531 out:
2532         return ret;
2533 }
2534
2535 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2536                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2537                               struct ocfs2_path *path, int unlink_start)
2538 {
2539         int ret, i;
2540         struct ocfs2_extent_block *eb;
2541         struct ocfs2_extent_list *el;
2542         struct buffer_head *bh;
2543
2544         for(i = unlink_start; i < path_num_items(path); i++) {
2545                 bh = path->p_node[i].bh;
2546
2547                 eb = (struct ocfs2_extent_block *)bh->b_data;
2548                 /*
2549                  * Not all nodes might have had their final count
2550                  * decremented by the caller - handle this here.
2551                  */
2552                 el = &eb->h_list;
2553                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2554                         mlog(ML_ERROR,
2555                              "Inode %llu, attempted to remove extent block "
2556                              "%llu with %u records\n",
2557                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2558                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2559                              le16_to_cpu(el->l_next_free_rec));
2560
2561                         ocfs2_journal_dirty(handle, bh);
2562                         ocfs2_remove_from_cache(inode, bh);
2563                         continue;
2564                 }
2565
2566                 el->l_next_free_rec = 0;
2567                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2568
2569                 ocfs2_journal_dirty(handle, bh);
2570
2571                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2572                 if (ret)
2573                         mlog_errno(ret);
2574
2575                 ocfs2_remove_from_cache(inode, bh);
2576         }
2577 }
2578
2579 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2580                                  struct ocfs2_path *left_path,
2581                                  struct ocfs2_path *right_path,
2582                                  int subtree_index,
2583                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2584 {
2585         int i;
2586         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2587         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2588         struct ocfs2_extent_list *el;
2589         struct ocfs2_extent_block *eb;
2590
2591         el = path_leaf_el(left_path);
2592
2593         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2594
2595         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2596                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2597                         break;
2598
2599         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2600
2601         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2602         le16_add_cpu(&root_el->l_next_free_rec, -1);
2603
2604         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2605         eb->h_next_leaf_blk = 0;
2606
2607         ocfs2_journal_dirty(handle, root_bh);
2608         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2609
2610         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2611                           subtree_index + 1);
2612 }
2613
2614 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2615                                      struct ocfs2_path *left_path,
2616                                      struct ocfs2_path *right_path,
2617                                      int subtree_index,
2618                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2619                                      int *deleted,
2620                                      struct ocfs2_extent_tree *et)
2621 {
2622         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2623         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2624         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2625         struct ocfs2_extent_block *eb;
2626
2627         *deleted = 0;
2628
2629         right_leaf_el = path_leaf_el(right_path);
2630         left_leaf_el = path_leaf_el(left_path);
2631         root_bh = left_path->p_node[subtree_index].bh;
2632         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2633
2634         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2635                 return 0;
2636
2637         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2638         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2639                 /*
2640                  * It's legal for us to proceed if the right leaf is
2641                  * the rightmost one and it has an empty extent. There
2642                  * are two cases to handle - whether the leaf will be
2643                  * empty after removal or not. If the leaf isn't empty
2644                  * then just remove the empty extent up front. The
2645                  * next block will handle empty leaves by flagging
2646                  * them for unlink.
2647                  *
2648                  * Non rightmost leaves will throw -EAGAIN and the
2649                  * caller can manually move the subtree and retry.
2650                  */
2651
2652                 if (eb->h_next_leaf_blk != 0ULL)
2653                         return -EAGAIN;
2654
2655                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2656                         ret = ocfs2_journal_access_eb(handle, inode,
2657                                                       path_leaf_bh(right_path),
2658                                                       OCFS2_JOURNAL_ACCESS_WRITE);
2659                         if (ret) {
2660                                 mlog_errno(ret);
2661                                 goto out;
2662                         }
2663
2664                         ocfs2_remove_empty_extent(right_leaf_el);
2665                 } else
2666                         right_has_empty = 1;
2667         }
2668
2669         if (eb->h_next_leaf_blk == 0ULL &&
2670             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2671                 /*
2672                  * We have to update i_last_eb_blk during the meta
2673                  * data delete.
2674                  */
2675                 ret = ocfs2_et_root_journal_access(handle, inode, et,
2676                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2677                 if (ret) {
2678                         mlog_errno(ret);
2679                         goto out;
2680                 }
2681
2682                 del_right_subtree = 1;
2683         }
2684
2685         /*
2686          * Getting here with an empty extent in the right path implies
2687          * that it's the rightmost path and will be deleted.
2688          */
2689         BUG_ON(right_has_empty && !del_right_subtree);
2690
2691         ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2692                                            subtree_index);
2693         if (ret) {
2694                 mlog_errno(ret);
2695                 goto out;
2696         }
2697
2698         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2699                 ret = ocfs2_path_bh_journal_access(handle, inode,
2700                                                    right_path, i);
2701                 if (ret) {
2702                         mlog_errno(ret);
2703                         goto out;
2704                 }
2705
2706                 ret = ocfs2_path_bh_journal_access(handle, inode,
2707                                                    left_path, i);
2708                 if (ret) {
2709                         mlog_errno(ret);
2710                         goto out;
2711                 }
2712         }
2713
2714         if (!right_has_empty) {
2715                 /*
2716                  * Only do this if we're moving a real
2717                  * record. Otherwise, the action is delayed until
2718                  * after removal of the right path in which case we
2719                  * can do a simple shift to remove the empty extent.
2720                  */
2721                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2722                 memset(&right_leaf_el->l_recs[0], 0,
2723                        sizeof(struct ocfs2_extent_rec));
2724         }
2725         if (eb->h_next_leaf_blk == 0ULL) {
2726                 /*
2727                  * Move recs over to get rid of empty extent, decrease
2728                  * next_free. This is allowed to remove the last
2729                  * extent in our leaf (setting l_next_free_rec to
2730                  * zero) - the delete code below won't care.
2731                  */
2732                 ocfs2_remove_empty_extent(right_leaf_el);
2733         }
2734
2735         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2736         if (ret)
2737                 mlog_errno(ret);
2738         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2739         if (ret)
2740                 mlog_errno(ret);
2741
2742         if (del_right_subtree) {
2743                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2744                                      subtree_index, dealloc);
2745                 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
2746                                                 left_path);
2747                 if (ret) {
2748                         mlog_errno(ret);
2749                         goto out;
2750                 }
2751
2752                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2753                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2754
2755                 /*
2756                  * Removal of the extent in the left leaf was skipped
2757                  * above so we could delete the right path
2758                  * 1st.
2759                  */
2760                 if (right_has_empty)
2761                         ocfs2_remove_empty_extent(left_leaf_el);
2762
2763                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2764                 if (ret)
2765                         mlog_errno(ret);
2766
2767                 *deleted = 1;
2768         } else
2769                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2770                                            subtree_index);
2771
2772 out:
2773         return ret;
2774 }
2775
2776 /*
2777  * Given a full path, determine what cpos value would return us a path
2778  * containing the leaf immediately to the right of the current one.
2779  *
2780  * Will return zero if the path passed in is already the rightmost path.
2781  *
2782  * This looks similar, but is subtly different to
2783  * ocfs2_find_cpos_for_left_leaf().
2784  */
2785 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2786                                           struct ocfs2_path *path, u32 *cpos)
2787 {
2788         int i, j, ret = 0;
2789         u64 blkno;
2790         struct ocfs2_extent_list *el;
2791
2792         *cpos = 0;
2793
2794         if (path->p_tree_depth == 0)
2795                 return 0;
2796
2797         blkno = path_leaf_bh(path)->b_blocknr;
2798
2799         /* Start at the tree node just above the leaf and work our way up. */
2800         i = path->p_tree_depth - 1;
2801         while (i >= 0) {
2802                 int next_free;
2803
2804                 el = path->p_node[i].el;
2805
2806                 /*
2807                  * Find the extent record just after the one in our
2808                  * path.
2809                  */
2810                 next_free = le16_to_cpu(el->l_next_free_rec);
2811                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2812                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2813                                 if (j == (next_free - 1)) {
2814                                         if (i == 0) {
2815                                                 /*
2816                                                  * We've determined that the
2817                                                  * path specified is already
2818                                                  * the rightmost one - return a
2819                                                  * cpos of zero.
2820                                                  */
2821                                                 goto out;
2822                                         }
2823                                         /*
2824                                          * The rightmost record points to our
2825                                          * leaf - we need to travel up the
2826                                          * tree one level.
2827                                          */
2828                                         goto next_node;
2829                                 }
2830
2831                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2832                                 goto out;
2833                         }
2834                 }
2835
2836                 /*
2837                  * If we got here, we never found a valid node where
2838                  * the tree indicated one should be.
2839                  */
2840                 ocfs2_error(sb,
2841                             "Invalid extent tree at extent block %llu\n",
2842                             (unsigned long long)blkno);
2843                 ret = -EROFS;
2844                 goto out;
2845
2846 next_node:
2847                 blkno = path->p_node[i].bh->b_blocknr;
2848                 i--;
2849         }
2850
2851 out:
2852         return ret;
2853 }
2854
2855 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2856                                             handle_t *handle,
2857                                             struct ocfs2_path *path)
2858 {
2859         int ret;
2860         struct buffer_head *bh = path_leaf_bh(path);
2861         struct ocfs2_extent_list *el = path_leaf_el(path);
2862
2863         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2864                 return 0;
2865
2866         ret = ocfs2_path_bh_journal_access(handle, inode, path,
2867                                            path_num_items(path) - 1);
2868         if (ret) {
2869                 mlog_errno(ret);
2870                 goto out;
2871         }
2872
2873         ocfs2_remove_empty_extent(el);
2874
2875         ret = ocfs2_journal_dirty(handle, bh);
2876         if (ret)
2877                 mlog_errno(ret);
2878
2879 out:
2880         return ret;
2881 }
2882
2883 static int __ocfs2_rotate_tree_left(struct inode *inode,
2884                                     handle_t *handle, int orig_credits,
2885                                     struct ocfs2_path *path,
2886                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2887                                     struct ocfs2_path **empty_extent_path,
2888                                     struct ocfs2_extent_tree *et)
2889 {
2890         int ret, subtree_root, deleted;
2891         u32 right_cpos;
2892         struct ocfs2_path *left_path = NULL;
2893         struct ocfs2_path *right_path = NULL;
2894
2895         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2896
2897         *empty_extent_path = NULL;
2898
2899         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2900                                              &right_cpos);
2901         if (ret) {
2902                 mlog_errno(ret);
2903                 goto out;
2904         }
2905
2906         left_path = ocfs2_new_path_from_path(path);
2907         if (!left_path) {
2908                 ret = -ENOMEM;
2909                 mlog_errno(ret);
2910                 goto out;
2911         }
2912
2913         ocfs2_cp_path(left_path, path);
2914
2915         right_path = ocfs2_new_path_from_path(path);
2916         if (!right_path) {
2917                 ret = -ENOMEM;
2918                 mlog_errno(ret);
2919                 goto out;
2920         }
2921
2922         while (right_cpos) {
2923                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2924                 if (ret) {
2925                         mlog_errno(ret);
2926                         goto out;
2927                 }
2928
2929                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2930                                                        right_path);
2931
2932                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2933                      subtree_root,
2934                      (unsigned long long)
2935                      right_path->p_node[subtree_root].bh->b_blocknr,
2936                      right_path->p_tree_depth);
2937
2938                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2939                                                       orig_credits, left_path);
2940                 if (ret) {
2941                         mlog_errno(ret);
2942                         goto out;
2943                 }
2944
2945                 /*
2946                  * Caller might still want to make changes to the
2947                  * tree root, so re-add it to the journal here.
2948                  */
2949                 ret = ocfs2_path_bh_journal_access(handle, inode,
2950                                                    left_path, 0);
2951                 if (ret) {
2952                         mlog_errno(ret);
2953                         goto out;
2954                 }
2955
2956                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2957                                                 right_path, subtree_root,
2958                                                 dealloc, &deleted, et);
2959                 if (ret == -EAGAIN) {
2960                         /*
2961                          * The rotation has to temporarily stop due to
2962                          * the right subtree having an empty
2963                          * extent. Pass it back to the caller for a
2964                          * fixup.
2965                          */
2966                         *empty_extent_path = right_path;
2967                         right_path = NULL;
2968                         goto out;
2969                 }
2970                 if (ret) {
2971                         mlog_errno(ret);
2972                         goto out;
2973                 }
2974
2975                 /*
2976                  * The subtree rotate might have removed records on
2977                  * the rightmost edge. If so, then rotation is
2978                  * complete.
2979                  */
2980                 if (deleted)
2981                         break;
2982
2983                 ocfs2_mv_path(left_path, right_path);
2984
2985                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2986                                                      &right_cpos);
2987                 if (ret) {
2988                         mlog_errno(ret);
2989                         goto out;
2990                 }
2991         }
2992
2993 out:
2994         ocfs2_free_path(right_path);
2995         ocfs2_free_path(left_path);
2996
2997         return ret;
2998 }
2999
3000 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
3001                                 struct ocfs2_path *path,
3002                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3003                                 struct ocfs2_extent_tree *et)
3004 {
3005         int ret, subtree_index;
3006         u32 cpos;
3007         struct ocfs2_path *left_path = NULL;
3008         struct ocfs2_extent_block *eb;
3009         struct ocfs2_extent_list *el;
3010
3011
3012         ret = ocfs2_et_sanity_check(inode, et);
3013         if (ret)
3014                 goto out;
3015         /*
3016          * There's two ways we handle this depending on
3017          * whether path is the only existing one.
3018          */
3019         ret = ocfs2_extend_rotate_transaction(handle, 0,
3020                                               handle->h_buffer_credits,
3021                                               path);
3022         if (ret) {
3023                 mlog_errno(ret);
3024                 goto out;
3025         }
3026
3027         ret = ocfs2_journal_access_path(inode, handle, path);
3028         if (ret) {
3029                 mlog_errno(ret);
3030                 goto out;
3031         }
3032
3033         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
3034         if (ret) {
3035                 mlog_errno(ret);
3036                 goto out;
3037         }
3038
3039         if (cpos) {
3040                 /*
3041                  * We have a path to the left of this one - it needs
3042                  * an update too.
3043                  */
3044                 left_path = ocfs2_new_path_from_path(path);
3045                 if (!left_path) {
3046                         ret = -ENOMEM;
3047                         mlog_errno(ret);
3048                         goto out;
3049                 }
3050
3051                 ret = ocfs2_find_path(inode, left_path, cpos);
3052                 if (ret) {
3053                         mlog_errno(ret);
3054                         goto out;
3055                 }
3056
3057                 ret = ocfs2_journal_access_path(inode, handle, left_path);
3058                 if (ret) {
3059                         mlog_errno(ret);
3060                         goto out;
3061                 }
3062
3063                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
3064
3065                 ocfs2_unlink_subtree(inode, handle, left_path, path,
3066                                      subtree_index, dealloc);
3067                 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
3068                                                 left_path);
3069                 if (ret) {
3070                         mlog_errno(ret);
3071                         goto out;
3072                 }
3073
3074                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3075                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3076         } else {
3077                 /*
3078                  * 'path' is also the leftmost path which
3079                  * means it must be the only one. This gets
3080                  * handled differently because we want to
3081                  * revert the inode back to having extents
3082                  * in-line.
3083                  */
3084                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
3085
3086                 el = et->et_root_el;
3087                 el->l_tree_depth = 0;
3088                 el->l_next_free_rec = 0;
3089                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3090
3091                 ocfs2_et_set_last_eb_blk(et, 0);
3092         }
3093
3094         ocfs2_journal_dirty(handle, path_root_bh(path));
3095
3096 out:
3097         ocfs2_free_path(left_path);
3098         return ret;
3099 }
3100
3101 /*
3102  * Left rotation of btree records.
3103  *
3104  * In many ways, this is (unsurprisingly) the opposite of right
3105  * rotation. We start at some non-rightmost path containing an empty
3106  * extent in the leaf block. The code works its way to the rightmost
3107  * path by rotating records to the left in every subtree.
3108  *
3109  * This is used by any code which reduces the number of extent records
3110  * in a leaf. After removal, an empty record should be placed in the
3111  * leftmost list position.
3112  *
3113  * This won't handle a length update of the rightmost path records if
3114  * the rightmost tree leaf record is removed so the caller is
3115  * responsible for detecting and correcting that.
3116  */
3117 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3118                                   struct ocfs2_path *path,
3119                                   struct ocfs2_cached_dealloc_ctxt *dealloc,
3120                                   struct ocfs2_extent_tree *et)
3121 {
3122         int ret, orig_credits = handle->h_buffer_credits;
3123         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3124         struct ocfs2_extent_block *eb;
3125         struct ocfs2_extent_list *el;
3126
3127         el = path_leaf_el(path);
3128         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3129                 return 0;
3130
3131         if (path->p_tree_depth == 0) {
3132 rightmost_no_delete:
3133                 /*
3134                  * Inline extents. This is trivially handled, so do
3135                  * it up front.
3136                  */
3137                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3138                                                        path);
3139                 if (ret)
3140                         mlog_errno(ret);
3141                 goto out;
3142         }
3143
3144         /*
3145          * Handle rightmost branch now. There's several cases:
3146          *  1) simple rotation leaving records in there. That's trivial.
3147          *  2) rotation requiring a branch delete - there's no more
3148          *     records left. Two cases of this:
3149          *     a) There are branches to the left.
3150          *     b) This is also the leftmost (the only) branch.
3151          *
3152          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3153          *  2a) we need the left branch so that we can update it with the unlink
3154          *  2b) we need to bring the inode back to inline extents.
3155          */
3156
3157         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3158         el = &eb->h_list;
3159         if (eb->h_next_leaf_blk == 0) {
3160                 /*
3161                  * This gets a bit tricky if we're going to delete the
3162                  * rightmost path. Get the other cases out of the way
3163                  * 1st.
3164                  */
3165                 if (le16_to_cpu(el->l_next_free_rec) > 1)
3166                         goto rightmost_no_delete;
3167
3168                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3169                         ret = -EIO;
3170                         ocfs2_error(inode->i_sb,
3171                                     "Inode %llu has empty extent block at %llu",
3172                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
3173                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
3174                         goto out;
3175                 }
3176
3177                 /*
3178                  * XXX: The caller can not trust "path" any more after
3179                  * this as it will have been deleted. What do we do?
3180                  *
3181                  * In theory the rotate-for-merge code will never get
3182                  * here because it'll always ask for a rotate in a
3183                  * nonempty list.
3184                  */
3185
3186                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
3187                                                   dealloc, et);
3188                 if (ret)
3189                         mlog_errno(ret);
3190                 goto out;
3191         }
3192
3193         /*
3194          * Now we can loop, remembering the path we get from -EAGAIN
3195          * and restarting from there.
3196          */
3197 try_rotate:
3198         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3199                                        dealloc, &restart_path, et);
3200         if (ret && ret != -EAGAIN) {
3201                 mlog_errno(ret);
3202                 goto out;
3203         }
3204
3205         while (ret == -EAGAIN) {
3206                 tmp_path = restart_path;
3207                 restart_path = NULL;
3208
3209                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3210                                                tmp_path, dealloc,
3211                                                &restart_path, et);
3212                 if (ret && ret != -EAGAIN) {
3213                         mlog_errno(ret);
3214                         goto out;
3215                 }
3216
3217                 ocfs2_free_path(tmp_path);
3218                 tmp_path = NULL;
3219
3220                 if (ret == 0)
3221                         goto try_rotate;
3222         }
3223
3224 out:
3225         ocfs2_free_path(tmp_path);
3226         ocfs2_free_path(restart_path);
3227         return ret;
3228 }
3229
3230 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3231                                 int index)
3232 {
3233         struct ocfs2_extent_rec *rec = &el->l_recs[index];
3234         unsigned int size;
3235
3236         if (rec->e_leaf_clusters == 0) {
3237                 /*
3238                  * We consumed all of the merged-from record. An empty
3239                  * extent cannot exist anywhere but the 1st array
3240                  * position, so move things over if the merged-from
3241                  * record doesn't occupy that position.
3242                  *
3243                  * This creates a new empty extent so the caller
3244                  * should be smart enough to have removed any existing
3245                  * ones.
3246                  */
3247                 if (index > 0) {
3248                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3249                         size = index * sizeof(struct ocfs2_extent_rec);
3250                         memmove(&el->l_recs[1], &el->l_recs[0], size);
3251                 }
3252
3253                 /*
3254                  * Always memset - the caller doesn't check whether it
3255                  * created an empty extent, so there could be junk in
3256                  * the other fields.
3257                  */
3258                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3259         }
3260 }
3261
3262 static int ocfs2_get_right_path(struct inode *inode,
3263                                 struct ocfs2_path *left_path,
3264                                 struct ocfs2_path **ret_right_path)
3265 {
3266         int ret;
3267         u32 right_cpos;
3268         struct ocfs2_path *right_path = NULL;
3269         struct ocfs2_extent_list *left_el;
3270
3271         *ret_right_path = NULL;
3272
3273         /* This function shouldn't be called for non-trees. */
3274         BUG_ON(left_path->p_tree_depth == 0);
3275
3276         left_el = path_leaf_el(left_path);
3277         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3278
3279         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3280                                              &right_cpos);
3281         if (ret) {
3282                 mlog_errno(ret);
3283                 goto out;
3284         }
3285
3286         /* This function shouldn't be called for the rightmost leaf. */
3287         BUG_ON(right_cpos == 0);
3288
3289         right_path = ocfs2_new_path_from_path(left_path);
3290         if (!right_path) {
3291                 ret = -ENOMEM;
3292                 mlog_errno(ret);
3293                 goto out;
3294         }
3295
3296         ret = ocfs2_find_path(inode, right_path, right_cpos);
3297         if (ret) {
3298                 mlog_errno(ret);
3299                 goto out;
3300         }
3301
3302         *ret_right_path = right_path;
3303 out:
3304         if (ret)
3305                 ocfs2_free_path(right_path);
3306         return ret;
3307 }
3308
3309 /*
3310  * Remove split_rec clusters from the record at index and merge them
3311  * onto the beginning of the record "next" to it.
3312  * For index < l_count - 1, the next means the extent rec at index + 1.
3313  * For index == l_count - 1, the "next" means the 1st extent rec of the
3314  * next extent block.
3315  */
3316 static int ocfs2_merge_rec_right(struct inode *inode,
3317                                  struct ocfs2_path *left_path,
3318                                  handle_t *handle,
3319                                  struct ocfs2_extent_rec *split_rec,
3320                                  int index)
3321 {
3322         int ret, next_free, i;
3323         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3324         struct ocfs2_extent_rec *left_rec;
3325         struct ocfs2_extent_rec *right_rec;
3326         struct ocfs2_extent_list *right_el;
3327         struct ocfs2_path *right_path = NULL;
3328         int subtree_index = 0;
3329         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3330         struct buffer_head *bh = path_leaf_bh(left_path);
3331         struct buffer_head *root_bh = NULL;
3332
3333         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3334         left_rec = &el->l_recs[index];
3335
3336         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3337             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3338                 /* we meet with a cross extent block merge. */
3339                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3340                 if (ret) {
3341                         mlog_errno(ret);
3342                         goto out;
3343                 }
3344
3345                 right_el = path_leaf_el(right_path);
3346                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3347                 BUG_ON(next_free <= 0);
3348                 right_rec = &right_el->l_recs[0];
3349                 if (ocfs2_is_empty_extent(right_rec)) {
3350                         BUG_ON(next_free <= 1);
3351                         right_rec = &right_el->l_recs[1];
3352                 }
3353
3354                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3355                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3356                        le32_to_cpu(right_rec->e_cpos));
3357
3358                 subtree_index = ocfs2_find_subtree_root(inode,
3359                                                         left_path, right_path);
3360
3361                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3362                                                       handle->h_buffer_credits,
3363                                                       right_path);
3364                 if (ret) {
3365                         mlog_errno(ret);
3366                         goto out;
3367                 }
3368
3369                 root_bh = left_path->p_node[subtree_index].bh;
3370                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3371
3372                 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3373                                                    subtree_index);
3374                 if (ret) {
3375                         mlog_errno(ret);
3376                         goto out;
3377                 }
3378
3379                 for (i = subtree_index + 1;
3380                      i < path_num_items(right_path); i++) {
3381                         ret = ocfs2_path_bh_journal_access(handle, inode,
3382                                                            right_path, i);
3383                         if (ret) {
3384                                 mlog_errno(ret);
3385                                 goto out;
3386                         }
3387
3388                         ret = ocfs2_path_bh_journal_access(handle, inode,
3389                                                            left_path, i);
3390                         if (ret) {
3391                                 mlog_errno(ret);
3392                                 goto out;
3393                         }
3394                 }
3395
3396         } else {
3397                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3398                 right_rec = &el->l_recs[index + 1];
3399         }
3400
3401         ret = ocfs2_path_bh_journal_access(handle, inode, left_path,
3402                                            path_num_items(left_path) - 1);
3403         if (ret) {
3404                 mlog_errno(ret);
3405                 goto out;
3406         }
3407
3408         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3409
3410         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3411         le64_add_cpu(&right_rec->e_blkno,
3412                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3413         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3414
3415         ocfs2_cleanup_merge(el, index);
3416
3417         ret = ocfs2_journal_dirty(handle, bh);
3418         if (ret)
3419                 mlog_errno(ret);
3420
3421         if (right_path) {
3422                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3423                 if (ret)
3424                         mlog_errno(ret);
3425
3426                 ocfs2_complete_edge_insert(inode, handle, left_path,
3427                                            right_path, subtree_index);
3428         }
3429 out:
3430         if (right_path)
3431                 ocfs2_free_path(right_path);
3432         return ret;
3433 }
3434
3435 static int ocfs2_get_left_path(struct inode *inode,
3436                                struct ocfs2_path *right_path,
3437                                struct ocfs2_path **ret_left_path)
3438 {
3439         int ret;
3440         u32 left_cpos;
3441         struct ocfs2_path *left_path = NULL;
3442
3443         *ret_left_path = NULL;
3444
3445         /* This function shouldn't be called for non-trees. */
3446         BUG_ON(right_path->p_tree_depth == 0);
3447
3448         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3449                                             right_path, &left_cpos);
3450         if (ret) {
3451                 mlog_errno(ret);
3452                 goto out;
3453         }
3454
3455         /* This function shouldn't be called for the leftmost leaf. */
3456         BUG_ON(left_cpos == 0);
3457
3458         left_path = ocfs2_new_path_from_path(right_path);
3459         if (!left_path) {
3460                 ret = -ENOMEM;
3461                 mlog_errno(ret);
3462                 goto out;
3463         }
3464
3465         ret = ocfs2_find_path(inode, left_path, left_cpos);
3466         if (ret) {
3467                 mlog_errno(ret);
3468                 goto out;
3469         }
3470
3471         *ret_left_path = left_path;
3472 out:
3473         if (ret)
3474                 ocfs2_free_path(left_path);
3475         return ret;
3476 }
3477
3478 /*
3479  * Remove split_rec clusters from the record at index and merge them
3480  * onto the tail of the record "before" it.
3481  * For index > 0, the "before" means the extent rec at index - 1.
3482  *
3483  * For index == 0, the "before" means the last record of the previous
3484  * extent block. And there is also a situation that we may need to
3485  * remove the rightmost leaf extent block in the right_path and change
3486  * the right path to indicate the new rightmost path.
3487  */
3488 static int ocfs2_merge_rec_left(struct inode *inode,
3489                                 struct ocfs2_path *right_path,
3490                                 handle_t *handle,
3491                                 struct ocfs2_extent_rec *split_rec,
3492                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3493                                 struct ocfs2_extent_tree *et,
3494                                 int index)
3495 {
3496         int ret, i, subtree_index = 0, has_empty_extent = 0;
3497         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3498         struct ocfs2_extent_rec *left_rec;
3499         struct ocfs2_extent_rec *right_rec;
3500         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3501         struct buffer_head *bh = path_leaf_bh(right_path);
3502         struct buffer_head *root_bh = NULL;
3503         struct ocfs2_path *left_path = NULL;
3504         struct ocfs2_extent_list *left_el;
3505
3506         BUG_ON(index < 0);
3507
3508         right_rec = &el->l_recs[index];
3509         if (index == 0) {
3510                 /* we meet with a cross extent block merge. */
3511                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3512                 if (ret) {
3513                         mlog_errno(ret);
3514                         goto out;
3515                 }
3516
3517                 left_el = path_leaf_el(left_path);
3518                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3519                        le16_to_cpu(left_el->l_count));
3520
3521                 left_rec = &left_el->l_recs[
3522                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3523                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3524                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3525                        le32_to_cpu(split_rec->e_cpos));
3526
3527                 subtree_index = ocfs2_find_subtree_root(inode,
3528                                                         left_path, right_path);
3529
3530                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3531                                                       handle->h_buffer_credits,
3532                                                       left_path);
3533                 if (ret) {
3534                         mlog_errno(ret);
3535                         goto out;
3536                 }
3537
3538                 root_bh = left_path->p_node[subtree_index].bh;
3539                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3540
3541                 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3542                                                    subtree_index);
3543                 if (ret) {
3544                         mlog_errno(ret);
3545                         goto out;
3546                 }
3547
3548                 for (i = subtree_index + 1;
3549                      i < path_num_items(right_path); i++) {
3550                         ret = ocfs2_path_bh_journal_access(handle, inode,
3551                                                            right_path, i);
3552                         if (ret) {
3553                                 mlog_errno(ret);
3554                                 goto out;
3555                         }
3556
3557                         ret = ocfs2_path_bh_journal_access(handle, inode,
3558                                                            left_path, i);
3559                         if (ret) {
3560                                 mlog_errno(ret);
3561                                 goto out;
3562                         }
3563                 }
3564         } else {
3565                 left_rec = &el->l_recs[index - 1];
3566                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3567                         has_empty_extent = 1;
3568         }
3569
3570         ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3571                                            path_num_items(right_path) - 1);
3572         if (ret) {
3573                 mlog_errno(ret);
3574                 goto out;
3575         }
3576
3577         if (has_empty_extent && index == 1) {
3578                 /*
3579                  * The easy case - we can just plop the record right in.
3580                  */
3581                 *left_rec = *split_rec;
3582
3583                 has_empty_extent = 0;
3584         } else
3585                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3586
3587         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3588         le64_add_cpu(&right_rec->e_blkno,
3589                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3590         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3591
3592         ocfs2_cleanup_merge(el, index);
3593
3594         ret = ocfs2_journal_dirty(handle, bh);
3595         if (ret)
3596                 mlog_errno(ret);
3597
3598         if (left_path) {
3599                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3600                 if (ret)
3601                         mlog_errno(ret);
3602
3603                 /*
3604                  * In the situation that the right_rec is empty and the extent
3605                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3606                  * it and we need to delete the right extent block.
3607                  */
3608                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3609                     le16_to_cpu(el->l_next_free_rec) == 1) {
3610
3611                         ret = ocfs2_remove_rightmost_path(inode, handle,
3612                                                           right_path,
3613                                                           dealloc, et);
3614                         if (ret) {
3615                                 mlog_errno(ret);
3616                                 goto out;
3617                         }
3618
3619                         /* Now the rightmost extent block has been deleted.
3620                          * So we use the new rightmost path.
3621                          */
3622                         ocfs2_mv_path(right_path, left_path);
3623                         left_path = NULL;
3624                 } else
3625                         ocfs2_complete_edge_insert(inode, handle, left_path,
3626                                                    right_path, subtree_index);
3627         }
3628 out:
3629         if (left_path)
3630                 ocfs2_free_path(left_path);
3631         return ret;
3632 }
3633
3634 static int ocfs2_try_to_merge_extent(struct inode *inode,
3635                                      handle_t *handle,
3636                                      struct ocfs2_path *path,
3637                                      int split_index,
3638                                      struct ocfs2_extent_rec *split_rec,
3639                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3640                                      struct ocfs2_merge_ctxt *ctxt,
3641                                      struct ocfs2_extent_tree *et)
3642
3643 {
3644         int ret = 0;
3645         struct ocfs2_extent_list *el = path_leaf_el(path);
3646         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3647
3648         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3649
3650         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3651                 /*
3652                  * The merge code will need to create an empty
3653                  * extent to take the place of the newly
3654                  * emptied slot. Remove any pre-existing empty
3655                  * extents - having more than one in a leaf is
3656                  * illegal.
3657                  */
3658                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3659                                              dealloc, et);
3660                 if (ret) {
3661                         mlog_errno(ret);
3662                         goto out;
3663                 }
3664                 split_index--;
3665                 rec = &el->l_recs[split_index];
3666         }
3667
3668         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3669                 /*
3670                  * Left-right contig implies this.
3671                  */
3672                 BUG_ON(!ctxt->c_split_covers_rec);
3673
3674                 /*
3675                  * Since the leftright insert always covers the entire
3676                  * extent, this call will delete the insert record
3677                  * entirely, resulting in an empty extent record added to
3678                  * the extent block.
3679                  *
3680                  * Since the adding of an empty extent shifts
3681                  * everything back to the right, there's no need to
3682                  * update split_index here.
3683                  *
3684                  * When the split_index is zero, we need to merge it to the
3685                  * prevoius extent block. It is more efficient and easier
3686                  * if we do merge_right first and merge_left later.
3687                  */
3688                 ret = ocfs2_merge_rec_right(inode, path,
3689                                             handle, split_rec,
3690                                             split_index);
3691                 if (ret) {
3692                         mlog_errno(ret);
3693                         goto out;
3694                 }
3695
3696                 /*
3697                  * We can only get this from logic error above.
3698                  */
3699                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3700
3701                 /* The merge left us with an empty extent, remove it. */
3702                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3703                                              dealloc, et);
3704                 if (ret) {
3705                         mlog_errno(ret);
3706                         goto out;
3707                 }
3708
3709                 rec = &el->l_recs[split_index];
3710
3711                 /*
3712                  * Note that we don't pass split_rec here on purpose -
3713                  * we've merged it into the rec already.
3714                  */
3715                 ret = ocfs2_merge_rec_left(inode, path,
3716                                            handle, rec,
3717                                            dealloc, et,
3718                                            split_index);
3719
3720                 if (ret) {
3721                         mlog_errno(ret);
3722                         goto out;
3723                 }
3724
3725                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3726                                              dealloc, et);
3727                 /*
3728                  * Error from this last rotate is not critical, so
3729                  * print but don't bubble it up.
3730                  */
3731                 if (ret)
3732                         mlog_errno(ret);
3733                 ret = 0;
3734         } else {
3735                 /*
3736                  * Merge a record to the left or right.
3737                  *
3738                  * 'contig_type' is relative to the existing record,
3739                  * so for example, if we're "right contig", it's to
3740                  * the record on the left (hence the left merge).
3741                  */
3742                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3743                         ret = ocfs2_merge_rec_left(inode,
3744                                                    path,
3745                                                    handle, split_rec,
3746                                                    dealloc, et,
3747                                                    split_index);
3748                         if (ret) {
3749                                 mlog_errno(ret);
3750                                 goto out;
3751                         }
3752                 } else {
3753                         ret = ocfs2_merge_rec_right(inode,
3754                                                     path,
3755                                                     handle, split_rec,
3756                                                     split_index);
3757                         if (ret) {
3758                                 mlog_errno(ret);
3759                                 goto out;
3760                         }
3761                 }
3762
3763                 if (ctxt->c_split_covers_rec) {
3764                         /*
3765                          * The merge may have left an empty extent in
3766                          * our leaf. Try to rotate it away.
3767                          */
3768                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3769                                                      dealloc, et);
3770                         if (ret)
3771                                 mlog_errno(ret);
3772                         ret = 0;
3773                 }
3774         }
3775
3776 out:
3777         return ret;
3778 }
3779
3780 static void ocfs2_subtract_from_rec(struct super_block *sb,
3781                                     enum ocfs2_split_type split,
3782                                     struct ocfs2_extent_rec *rec,
3783                                     struct ocfs2_extent_rec *split_rec)
3784 {
3785         u64 len_blocks;
3786
3787         len_blocks = ocfs2_clusters_to_blocks(sb,
3788                                 le16_to_cpu(split_rec->e_leaf_clusters));
3789
3790         if (split == SPLIT_LEFT) {
3791                 /*
3792                  * Region is on the left edge of the existing
3793                  * record.
3794                  */
3795                 le32_add_cpu(&rec->e_cpos,
3796                              le16_to_cpu(split_rec->e_leaf_clusters));
3797                 le64_add_cpu(&rec->e_blkno, len_blocks);
3798                 le16_add_cpu(&rec->e_leaf_clusters,
3799                              -le16_to_cpu(split_rec->e_leaf_clusters));
3800         } else {
3801                 /*
3802                  * Region is on the right edge of the existing
3803                  * record.
3804                  */
3805                 le16_add_cpu(&rec->e_leaf_clusters,
3806                              -le16_to_cpu(split_rec->e_leaf_clusters));
3807         }
3808 }
3809
3810 /*
3811  * Do the final bits of extent record insertion at the target leaf
3812  * list. If this leaf is part of an allocation tree, it is assumed
3813  * that the tree above has been prepared.
3814  */
3815 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3816                                  struct ocfs2_extent_list *el,
3817                                  struct ocfs2_insert_type *insert,
3818                                  struct inode *inode)
3819 {
3820         int i = insert->ins_contig_index;
3821         unsigned int range;
3822         struct ocfs2_extent_rec *rec;
3823
3824         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3825
3826         if (insert->ins_split != SPLIT_NONE) {
3827                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3828                 BUG_ON(i == -1);
3829                 rec = &el->l_recs[i];
3830                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3831                                         insert_rec);
3832                 goto rotate;
3833         }
3834
3835         /*
3836          * Contiguous insert - either left or right.
3837          */
3838         if (insert->ins_contig != CONTIG_NONE) {
3839                 rec = &el->l_recs[i];
3840                 if (insert->ins_contig == CONTIG_LEFT) {
3841                         rec->e_blkno = insert_rec->e_blkno;
3842                         rec->e_cpos = insert_rec->e_cpos;
3843                 }
3844                 le16_add_cpu(&rec->e_leaf_clusters,
3845                              le16_to_cpu(insert_rec->e_leaf_clusters));
3846                 return;
3847         }
3848
3849         /*
3850          * Handle insert into an empty leaf.
3851          */
3852         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3853             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3854              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3855                 el->l_recs[0] = *insert_rec;
3856                 el->l_next_free_rec = cpu_to_le16(1);
3857                 return;
3858         }
3859
3860         /*
3861          * Appending insert.
3862          */
3863         if (insert->ins_appending == APPEND_TAIL) {
3864                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3865                 rec = &el->l_recs[i];
3866                 range = le32_to_cpu(rec->e_cpos)
3867                         + le16_to_cpu(rec->e_leaf_clusters);
3868                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3869
3870                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3871                                 le16_to_cpu(el->l_count),
3872                                 "inode %lu, depth %u, count %u, next free %u, "
3873                                 "rec.cpos %u, rec.clusters %u, "
3874                                 "insert.cpos %u, insert.clusters %u\n",
3875                                 inode->i_ino,
3876                                 le16_to_cpu(el->l_tree_depth),
3877                                 le16_to_cpu(el->l_count),
3878                                 le16_to_cpu(el->l_next_free_rec),
3879                                 le32_to_cpu(el->l_recs[i].e_cpos),
3880                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3881                                 le32_to_cpu(insert_rec->e_cpos),
3882                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3883                 i++;
3884                 el->l_recs[i] = *insert_rec;
3885                 le16_add_cpu(&el->l_next_free_rec, 1);
3886                 return;
3887         }
3888
3889 rotate:
3890         /*
3891          * Ok, we have to rotate.
3892          *
3893          * At this point, it is safe to assume that inserting into an
3894          * empty leaf and appending to a leaf have both been handled
3895          * above.
3896          *
3897          * This leaf needs to have space, either by the empty 1st
3898          * extent record, or by virtue of an l_next_rec < l_count.
3899          */
3900         ocfs2_rotate_leaf(el, insert_rec);
3901 }
3902
3903 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3904                                            handle_t *handle,
3905                                            struct ocfs2_path *path,
3906                                            struct ocfs2_extent_rec *insert_rec)
3907 {
3908         int ret, i, next_free;
3909         struct buffer_head *bh;
3910         struct ocfs2_extent_list *el;
3911         struct ocfs2_extent_rec *rec;
3912
3913         /*
3914          * Update everything except the leaf block.
3915          */
3916         for (i = 0; i < path->p_tree_depth; i++) {
3917                 bh = path->p_node[i].bh;
3918                 el = path->p_node[i].el;
3919
3920                 next_free = le16_to_cpu(el->l_next_free_rec);
3921                 if (next_free == 0) {
3922                         ocfs2_error(inode->i_sb,
3923                                     "Dinode %llu has a bad extent list",
3924                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3925                         ret = -EIO;
3926                         return;
3927                 }
3928
3929                 rec = &el->l_recs[next_free - 1];
3930
3931                 rec->e_int_clusters = insert_rec->e_cpos;
3932                 le32_add_cpu(&rec->e_int_clusters,
3933                              le16_to_cpu(insert_rec->e_leaf_clusters));
3934                 le32_add_cpu(&rec->e_int_clusters,
3935                              -le32_to_cpu(rec->e_cpos));
3936
3937                 ret = ocfs2_journal_dirty(handle, bh);
3938                 if (ret)
3939                         mlog_errno(ret);
3940
3941         }
3942 }
3943
3944 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3945                                     struct ocfs2_extent_rec *insert_rec,
3946                                     struct ocfs2_path *right_path,
3947                                     struct ocfs2_path **ret_left_path)
3948 {
3949         int ret, next_free;
3950         struct ocfs2_extent_list *el;
3951         struct ocfs2_path *left_path = NULL;
3952
3953         *ret_left_path = NULL;
3954
3955         /*
3956          * This shouldn't happen for non-trees. The extent rec cluster
3957          * count manipulation below only works for interior nodes.
3958          */
3959         BUG_ON(right_path->p_tree_depth == 0);
3960
3961         /*
3962          * If our appending insert is at the leftmost edge of a leaf,
3963          * then we might need to update the rightmost records of the
3964          * neighboring path.
3965          */
3966         el = path_leaf_el(right_path);
3967         next_free = le16_to_cpu(el->l_next_free_rec);
3968         if (next_free == 0 ||
3969             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3970                 u32 left_cpos;
3971
3972                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3973                                                     &left_cpos);
3974                 if (ret) {
3975                         mlog_errno(ret);
3976                         goto out;
3977                 }
3978
3979                 mlog(0, "Append may need a left path update. cpos: %u, "
3980                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3981                      left_cpos);
3982
3983                 /*
3984                  * No need to worry if the append is already in the
3985                  * leftmost leaf.
3986                  */
3987                 if (left_cpos) {
3988                         left_path = ocfs2_new_path_from_path(right_path);
3989                         if (!left_path) {
3990                                 ret = -ENOMEM;
3991                                 mlog_errno(ret);
3992                                 goto out;
3993                         }
3994
3995                         ret = ocfs2_find_path(inode, left_path, left_cpos);
3996                         if (ret) {
3997                                 mlog_errno(ret);
3998                                 goto out;
3999                         }
4000
4001                         /*
4002                          * ocfs2_insert_path() will pass the left_path to the
4003                          * journal for us.
4004                          */
4005                 }
4006         }
4007
4008         ret = ocfs2_journal_access_path(inode, handle, right_path);
4009         if (ret) {
4010                 mlog_errno(ret);
4011                 goto out;
4012         }
4013
4014         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
4015
4016         *ret_left_path = left_path;
4017         ret = 0;
4018 out:
4019         if (ret != 0)
4020                 ocfs2_free_path(left_path);
4021
4022         return ret;
4023 }
4024
4025 static void ocfs2_split_record(struct inode *inode,
4026                                struct ocfs2_path *left_path,
4027                                struct ocfs2_path *right_path,
4028                                struct ocfs2_extent_rec *split_rec,
4029                                enum ocfs2_split_type split)
4030 {
4031         int index;
4032         u32 cpos = le32_to_cpu(split_rec->e_cpos);
4033         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4034         struct ocfs2_extent_rec *rec, *tmprec;
4035
4036         right_el = path_leaf_el(right_path);
4037         if (left_path)
4038                 left_el = path_leaf_el(left_path);
4039
4040         el = right_el;
4041         insert_el = right_el;
4042         index = ocfs2_search_extent_list(el, cpos);
4043         if (index != -1) {
4044                 if (index == 0 && left_path) {
4045                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4046
4047                         /*
4048                          * This typically means that the record
4049                          * started in the left path but moved to the
4050                          * right as a result of rotation. We either
4051                          * move the existing record to the left, or we
4052                          * do the later insert there.
4053                          *
4054                          * In this case, the left path should always
4055                          * exist as the rotate code will have passed
4056                          * it back for a post-insert update.
4057                          */
4058
4059                         if (split == SPLIT_LEFT) {
4060                                 /*
4061                                  * It's a left split. Since we know
4062                                  * that the rotate code gave us an
4063                                  * empty extent in the left path, we
4064                                  * can just do the insert there.
4065                                  */
4066                                 insert_el = left_el;
4067                         } else {
4068                                 /*
4069                                  * Right split - we have to move the
4070                                  * existing record over to the left
4071                                  * leaf. The insert will be into the
4072                                  * newly created empty extent in the
4073                                  * right leaf.
4074                                  */
4075                                 tmprec = &right_el->l_recs[index];
4076                                 ocfs2_rotate_leaf(left_el, tmprec);
4077                                 el = left_el;
4078
4079                                 memset(tmprec, 0, sizeof(*tmprec));
4080                                 index = ocfs2_search_extent_list(left_el, cpos);
4081                                 BUG_ON(index == -1);
4082                         }
4083                 }
4084         } else {
4085                 BUG_ON(!left_path);
4086                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4087                 /*
4088                  * Left path is easy - we can just allow the insert to
4089                  * happen.
4090                  */
4091                 el = left_el;
4092                 insert_el = left_el;
4093                 index = ocfs2_search_extent_list(el, cpos);
4094                 BUG_ON(index == -1);
4095         }
4096
4097         rec = &el->l_recs[index];
4098         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4099         ocfs2_rotate_leaf(insert_el, split_rec);
4100 }
4101
4102 /*
4103  * This function only does inserts on an allocation b-tree. For tree
4104  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4105  *
4106  * right_path is the path we want to do the actual insert
4107  * in. left_path should only be passed in if we need to update that
4108  * portion of the tree after an edge insert.
4109  */
4110 static int ocfs2_insert_path(struct inode *inode,
4111                              handle_t *handle,
4112                              struct ocfs2_path *left_path,
4113                              struct ocfs2_path *right_path,
4114                              struct ocfs2_extent_rec *insert_rec,
4115                              struct ocfs2_insert_type *insert)
4116 {
4117         int ret, subtree_index;
4118         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4119
4120         if (left_path) {
4121                 int credits = handle->h_buffer_credits;
4122
4123                 /*
4124                  * There's a chance that left_path got passed back to
4125                  * us without being accounted for in the
4126                  * journal. Extend our transaction here to be sure we
4127                  * can change those blocks.
4128                  */
4129                 credits += left_path->p_tree_depth;
4130
4131                 ret = ocfs2_extend_trans(handle, credits);
4132                 if (ret < 0) {
4133                         mlog_errno(ret);
4134                         goto out;
4135                 }
4136
4137                 ret = ocfs2_journal_access_path(inode, handle, left_path);
4138                 if (ret < 0) {
4139                         mlog_errno(ret);
4140                         goto out;
4141                 }
4142         }
4143
4144         /*
4145          * Pass both paths to the journal. The majority of inserts
4146          * will be touching all components anyway.
4147          */
4148         ret = ocfs2_journal_access_path(inode, handle, right_path);
4149         if (ret < 0) {
4150                 mlog_errno(ret);
4151                 goto out;
4152         }
4153
4154         if (insert->ins_split != SPLIT_NONE) {
4155                 /*
4156                  * We could call ocfs2_insert_at_leaf() for some types
4157                  * of splits, but it's easier to just let one separate
4158                  * function sort it all out.
4159                  */
4160                 ocfs2_split_record(inode, left_path, right_path,
4161                                    insert_rec, insert->ins_split);
4162
4163                 /*
4164                  * Split might have modified either leaf and we don't
4165                  * have a guarantee that the later edge insert will
4166                  * dirty this for us.
4167                  */
4168                 if (left_path)
4169                         ret = ocfs2_journal_dirty(handle,
4170                                                   path_leaf_bh(left_path));
4171                         if (ret)
4172                                 mlog_errno(ret);
4173         } else
4174                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4175                                      insert, inode);
4176
4177         ret = ocfs2_journal_dirty(handle, leaf_bh);
4178         if (ret)
4179                 mlog_errno(ret);
4180
4181         if (left_path) {
4182                 /*
4183                  * The rotate code has indicated that we need to fix
4184                  * up portions of the tree after the insert.
4185                  *
4186                  * XXX: Should we extend the transaction here?
4187                  */
4188                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
4189                                                         right_path);
4190                 ocfs2_complete_edge_insert(inode, handle, left_path,
4191                                            right_path, subtree_index);
4192         }
4193
4194         ret = 0;
4195 out:
4196         return ret;
4197 }
4198
4199 static int ocfs2_do_insert_extent(struct inode *inode,
4200                                   handle_t *handle,
4201                                   struct ocfs2_extent_tree *et,
4202                                   struct ocfs2_extent_rec *insert_rec,
4203                                   struct ocfs2_insert_type *type)
4204 {
4205         int ret, rotate = 0;
4206         u32 cpos;
4207         struct ocfs2_path *right_path = NULL;
4208         struct ocfs2_path *left_path = NULL;
4209         struct ocfs2_extent_list *el;
4210
4211         el = et->et_root_el;
4212
4213         ret = ocfs2_et_root_journal_access(handle, inode, et,
4214                                            OCFS2_JOURNAL_ACCESS_WRITE);
4215         if (ret) {
4216                 mlog_errno(ret);
4217                 goto out;
4218         }
4219
4220         if (le16_to_cpu(el->l_tree_depth) == 0) {
4221                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4222                 goto out_update_clusters;
4223         }
4224
4225         right_path = ocfs2_new_path_from_et(et);
4226         if (!right_path) {
4227                 ret = -ENOMEM;
4228                 mlog_errno(ret);
4229                 goto out;
4230         }
4231
4232         /*
4233          * Determine the path to start with. Rotations need the
4234          * rightmost path, everything else can go directly to the
4235          * target leaf.
4236          */
4237         cpos = le32_to_cpu(insert_rec->e_cpos);
4238         if (type->ins_appending == APPEND_NONE &&
4239             type->ins_contig == CONTIG_NONE) {
4240                 rotate = 1;
4241                 cpos = UINT_MAX;
4242         }
4243
4244         ret = ocfs2_find_path(inode, right_path, cpos);
4245         if (ret) {
4246                 mlog_errno(ret);
4247                 goto out;
4248         }
4249
4250         /*
4251          * Rotations and appends need special treatment - they modify
4252          * parts of the tree's above them.
4253          *
4254          * Both might pass back a path immediate to the left of the
4255          * one being inserted to. This will be cause
4256          * ocfs2_insert_path() to modify the rightmost records of
4257          * left_path to account for an edge insert.
4258          *
4259          * XXX: When modifying this code, keep in mind that an insert
4260          * can wind up skipping both of these two special cases...
4261          */
4262         if (rotate) {
4263                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4264                                               le32_to_cpu(insert_rec->e_cpos),
4265                                               right_path, &left_path);
4266                 if (ret) {
4267                         mlog_errno(ret);
4268                         goto out;
4269                 }
4270
4271                 /*
4272                  * ocfs2_rotate_tree_right() might have extended the
4273                  * transaction without re-journaling our tree root.
4274                  */
4275                 ret = ocfs2_et_root_journal_access(handle, inode, et,
4276                                                    OCFS2_JOURNAL_ACCESS_WRITE);
4277                 if (ret) {
4278                         mlog_errno(ret);
4279                         goto out;
4280                 }
4281         } else if (type->ins_appending == APPEND_TAIL
4282                    && type->ins_contig != CONTIG_LEFT) {
4283                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4284                                                right_path, &left_path);
4285                 if (ret) {
4286                         mlog_errno(ret);
4287                         goto out;
4288                 }
4289         }
4290
4291         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4292                                 insert_rec, type);
4293         if (ret) {
4294                 mlog_errno(ret);
4295                 goto out;
4296         }
4297
4298 out_update_clusters:
4299         if (type->ins_split == SPLIT_NONE)
4300                 ocfs2_et_update_clusters(inode, et,
4301                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4302
4303         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4304         if (ret)
4305                 mlog_errno(ret);
4306
4307 out:
4308         ocfs2_free_path(left_path);
4309         ocfs2_free_path(right_path);
4310
4311         return ret;
4312 }
4313
4314 static enum ocfs2_contig_type
4315 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4316                                struct ocfs2_extent_list *el, int index,
4317                                struct ocfs2_extent_rec *split_rec)
4318 {
4319         int status;
4320         enum ocfs2_contig_type ret = CONTIG_NONE;
4321         u32 left_cpos, right_cpos;
4322         struct ocfs2_extent_rec *rec = NULL;
4323         struct ocfs2_extent_list *new_el;
4324         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4325         struct buffer_head *bh;
4326         struct ocfs2_extent_block *eb;
4327
4328         if (index > 0) {
4329                 rec = &el->l_recs[index - 1];
4330         } else if (path->p_tree_depth > 0) {
4331                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4332                                                        path, &left_cpos);
4333                 if (status)
4334                         goto out;
4335
4336                 if (left_cpos != 0) {
4337                         left_path = ocfs2_new_path_from_path(path);
4338                         if (!left_path)
4339                                 goto out;
4340
4341                         status = ocfs2_find_path(inode, left_path, left_cpos);
4342                         if (status)
4343                                 goto out;
4344
4345                         new_el = path_leaf_el(left_path);
4346
4347                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4348                             le16_to_cpu(new_el->l_count)) {
4349                                 bh = path_leaf_bh(left_path);
4350                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4351                                 ocfs2_error(inode->i_sb,
4352                                             "Extent block #%llu has an "
4353                                             "invalid l_next_free_rec of "
4354                                             "%d.  It should have "
4355                                             "matched the l_count of %d",
4356                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4357                                             le16_to_cpu(new_el->l_next_free_rec),
4358                                             le16_to_cpu(new_el->l_count));
4359                                 status = -EINVAL;
4360                                 goto out;
4361                         }
4362                         rec = &new_el->l_recs[
4363                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4364                 }
4365         }
4366
4367         /*
4368          * We're careful to check for an empty extent record here -
4369          * the merge code will know what to do if it sees one.
4370          */
4371         if (rec) {
4372                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4373                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4374                                 ret = CONTIG_RIGHT;
4375                 } else {
4376                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4377                 }
4378         }
4379
4380         rec = NULL;
4381         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4382                 rec = &el->l_recs[index + 1];
4383         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4384                  path->p_tree_depth > 0) {
4385                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4386                                                         path, &right_cpos);
4387                 if (status)
4388                         goto out;
4389
4390                 if (right_cpos == 0)
4391                         goto out;
4392
4393                 right_path = ocfs2_new_path_from_path(path);
4394                 if (!right_path)
4395                         goto out;
4396
4397                 status = ocfs2_find_path(inode, right_path, right_cpos);
4398                 if (status)
4399                         goto out;
4400
4401                 new_el = path_leaf_el(right_path);
4402                 rec = &new_el->l_recs[0];
4403                 if (ocfs2_is_empty_extent(rec)) {
4404                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4405                                 bh = path_leaf_bh(right_path);
4406                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4407                                 ocfs2_error(inode->i_sb,
4408                                             "Extent block #%llu has an "
4409                                             "invalid l_next_free_rec of %d",
4410                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4411                                             le16_to_cpu(new_el->l_next_free_rec));
4412                                 status = -EINVAL;
4413                                 goto out;
4414                         }
4415                         rec = &new_el->l_recs[1];
4416                 }
4417         }
4418
4419         if (rec) {
4420                 enum ocfs2_contig_type contig_type;
4421
4422                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4423
4424                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4425                         ret = CONTIG_LEFTRIGHT;
4426                 else if (ret == CONTIG_NONE)
4427                         ret = contig_type;
4428         }
4429
4430 out:
4431         if (left_path)
4432                 ocfs2_free_path(left_path);
4433         if (right_path)
4434                 ocfs2_free_path(right_path);
4435
4436         return ret;
4437 }
4438
4439 static void ocfs2_figure_contig_type(struct inode *inode,
4440                                      struct ocfs2_insert_type *insert,
4441                                      struct ocfs2_extent_list *el,
4442                                      struct ocfs2_extent_rec *insert_rec,
4443                                      struct ocfs2_extent_tree *et)
4444 {
4445         int i;
4446         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4447
4448         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4449
4450         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4451                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4452                                                   insert_rec);
4453                 if (contig_type != CONTIG_NONE) {
4454                         insert->ins_contig_index = i;
4455                         break;
4456                 }
4457         }
4458         insert->ins_contig = contig_type;
4459
4460         if (insert->ins_contig != CONTIG_NONE) {
4461                 struct ocfs2_extent_rec *rec =
4462                                 &el->l_recs[insert->ins_contig_index];
4463                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4464                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4465
4466                 /*
4467                  * Caller might want us to limit the size of extents, don't
4468                  * calculate contiguousness if we might exceed that limit.
4469                  */
4470                 if (et->et_max_leaf_clusters &&
4471                     (len > et->et_max_leaf_clusters))
4472                         insert->ins_contig = CONTIG_NONE;
4473         }
4474 }
4475
4476 /*
4477  * This should only be called against the righmost leaf extent list.
4478  *
4479  * ocfs2_figure_appending_type() will figure out whether we'll have to
4480  * insert at the tail of the rightmost leaf.
4481  *
4482  * This should also work against the root extent list for tree's with 0
4483  * depth. If we consider the root extent list to be the rightmost leaf node
4484  * then the logic here makes sense.
4485  */
4486 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4487                                         struct ocfs2_extent_list *el,
4488                                         struct ocfs2_extent_rec *insert_rec)
4489 {
4490         int i;
4491         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4492         struct ocfs2_extent_rec *rec;
4493
4494         insert->ins_appending = APPEND_NONE;
4495
4496         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4497
4498         if (!el->l_next_free_rec)
4499                 goto set_tail_append;
4500
4501         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4502                 /* Were all records empty? */
4503                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4504                         goto set_tail_append;
4505         }
4506
4507         i = le16_to_cpu(el->l_next_free_rec) - 1;
4508         rec = &el->l_recs[i];
4509
4510         if (cpos >=
4511             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4512                 goto set_tail_append;
4513
4514         return;
4515
4516 set_tail_append:
4517         insert->ins_appending = APPEND_TAIL;
4518 }
4519
4520 /*
4521  * Helper function called at the begining of an insert.
4522  *
4523  * This computes a few things that are commonly used in the process of
4524  * inserting into the btree:
4525  *   - Whether the new extent is contiguous with an existing one.
4526  *   - The current tree depth.
4527  *   - Whether the insert is an appending one.
4528  *   - The total # of free records in the tree.
4529  *
4530  * All of the information is stored on the ocfs2_insert_type
4531  * structure.
4532  */
4533 static int ocfs2_figure_insert_type(struct inode *inode,
4534                                     struct ocfs2_extent_tree *et,
4535                                     struct buffer_head **last_eb_bh,
4536                                     struct ocfs2_extent_rec *insert_rec,
4537                                     int *free_records,
4538                                     struct ocfs2_insert_type *insert)
4539 {
4540         int ret;
4541         struct ocfs2_extent_block *eb;
4542         struct ocfs2_extent_list *el;
4543         struct ocfs2_path *path = NULL;
4544         struct buffer_head *bh = NULL;
4545
4546         insert->ins_split = SPLIT_NONE;
4547
4548         el = et->et_root_el;
4549         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4550
4551         if (el->l_tree_depth) {
4552                 /*
4553                  * If we have tree depth, we read in the
4554                  * rightmost extent block ahead of time as
4555                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4556                  * may want it later.
4557                  */
4558                 ret = ocfs2_read_extent_block(inode,
4559                                               ocfs2_et_get_last_eb_blk(et),
4560                                               &bh);
4561                 if (ret) {
4562                         mlog_exit(ret);
4563                         goto out;
4564                 }
4565                 eb = (struct ocfs2_extent_block *) bh->b_data;
4566                 el = &eb->h_list;
4567         }
4568
4569         /*
4570          * Unless we have a contiguous insert, we'll need to know if
4571          * there is room left in our allocation tree for another
4572          * extent record.
4573          *
4574          * XXX: This test is simplistic, we can search for empty
4575          * extent records too.
4576          */
4577         *free_records = le16_to_cpu(el->l_count) -
4578                 le16_to_cpu(el->l_next_free_rec);
4579
4580         if (!insert->ins_tree_depth) {
4581                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4582                 ocfs2_figure_appending_type(insert, el, insert_rec);
4583                 return 0;
4584         }
4585
4586         path = ocfs2_new_path_from_et(et);
4587         if (!path) {
4588                 ret = -ENOMEM;
4589                 mlog_errno(ret);
4590                 goto out;
4591         }
4592
4593         /*
4594          * In the case that we're inserting past what the tree
4595          * currently accounts for, ocfs2_find_path() will return for
4596          * us the rightmost tree path. This is accounted for below in
4597          * the appending code.
4598          */
4599         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4600         if (ret) {
4601                 mlog_errno(ret);
4602                 goto out;
4603         }
4604
4605         el = path_leaf_el(path);
4606
4607         /*
4608          * Now that we have the path, there's two things we want to determine:
4609          * 1) Contiguousness (also set contig_index if this is so)
4610          *
4611          * 2) Are we doing an append? We can trivially break this up
4612          *     into two types of appends: simple record append, or a
4613          *     rotate inside the tail leaf.
4614          */
4615         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4616
4617         /*
4618          * The insert code isn't quite ready to deal with all cases of
4619          * left contiguousness. Specifically, if it's an insert into
4620          * the 1st record in a leaf, it will require the adjustment of
4621          * cluster count on the last record of the path directly to it's
4622          * left. For now, just catch that case and fool the layers
4623          * above us. This works just fine for tree_depth == 0, which
4624          * is why we allow that above.
4625          */
4626         if (insert->ins_contig == CONTIG_LEFT &&
4627             insert->ins_contig_index == 0)
4628                 insert->ins_contig = CONTIG_NONE;
4629
4630         /*
4631          * Ok, so we can simply compare against last_eb to figure out
4632          * whether the path doesn't exist. This will only happen in
4633          * the case that we're doing a tail append, so maybe we can
4634          * take advantage of that information somehow.
4635          */
4636         if (ocfs2_et_get_last_eb_blk(et) ==
4637             path_leaf_bh(path)->b_blocknr) {
4638                 /*
4639                  * Ok, ocfs2_find_path() returned us the rightmost
4640                  * tree path. This might be an appending insert. There are
4641                  * two cases:
4642                  *    1) We're doing a true append at the tail:
4643                  *      -This might even be off the end of the leaf
4644                  *    2) We're "appending" by rotating in the tail
4645                  */
4646                 ocfs2_figure_appending_type(insert, el, insert_rec);
4647         }
4648
4649 out:
4650         ocfs2_free_path(path);
4651
4652         if (ret == 0)
4653                 *last_eb_bh = bh;
4654         else
4655                 brelse(bh);
4656         return ret;
4657 }
4658
4659 /*
4660  * Insert an extent into an inode btree.
4661  *
4662  * The caller needs to update fe->i_clusters
4663  */
4664 int ocfs2_insert_extent(struct ocfs2_super *osb,
4665                         handle_t *handle,
4666                         struct inode *inode,
4667                         struct ocfs2_extent_tree *et,
4668                         u32 cpos,
4669                         u64 start_blk,
4670                         u32 new_clusters,
4671                         u8 flags,
4672                         struct ocfs2_alloc_context *meta_ac)
4673 {
4674         int status;
4675         int uninitialized_var(free_records);
4676         struct buffer_head *last_eb_bh = NULL;
4677         struct ocfs2_insert_type insert = {0, };
4678         struct ocfs2_extent_rec rec;
4679
4680         mlog(0, "add %u clusters at position %u to inode %llu\n",
4681              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4682
4683         memset(&rec, 0, sizeof(rec));
4684         rec.e_cpos = cpu_to_le32(cpos);
4685         rec.e_blkno = cpu_to_le64(start_blk);
4686         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4687         rec.e_flags = flags;
4688         status = ocfs2_et_insert_check(inode, et, &rec);
4689         if (status) {
4690                 mlog_errno(status);
4691                 goto bail;
4692         }
4693
4694         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4695                                           &free_records, &insert);
4696         if (status < 0) {
4697                 mlog_errno(status);
4698                 goto bail;
4699         }
4700
4701         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4702              "Insert.contig_index: %d, Insert.free_records: %d, "
4703              "Insert.tree_depth: %d\n",
4704              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4705              free_records, insert.ins_tree_depth);
4706
4707         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4708                 status = ocfs2_grow_tree(inode, handle, et,
4709                                          &insert.ins_tree_depth, &last_eb_bh,
4710                                          meta_ac);
4711                 if (status) {
4712                         mlog_errno(status);
4713                         goto bail;
4714                 }
4715         }
4716
4717         /* Finally, we can add clusters. This might rotate the tree for us. */
4718         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4719         if (status < 0)
4720                 mlog_errno(status);
4721         else if (et->et_ops == &ocfs2_dinode_et_ops)
4722                 ocfs2_extent_map_insert_rec(inode, &rec);
4723
4724 bail:
4725         brelse(last_eb_bh);
4726
4727         mlog_exit(status);
4728         return status;
4729 }
4730
4731 /*
4732  * Allcate and add clusters into the extent b-tree.
4733  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4734  * The extent b-tree's root is specified by et, and
4735  * it is not limited to the file storage. Any extent tree can use this
4736  * function if it implements the proper ocfs2_extent_tree.
4737  */
4738 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4739                                 struct inode *inode,
4740                                 u32 *logical_offset,
4741                                 u32 clusters_to_add,
4742                                 int mark_unwritten,
4743                                 struct ocfs2_extent_tree *et,
4744                                 handle_t *handle,
4745                                 struct ocfs2_alloc_context *data_ac,
4746                                 struct ocfs2_alloc_context *meta_ac,
4747                                 enum ocfs2_alloc_restarted *reason_ret)
4748 {
4749         int status = 0;
4750         int free_extents;
4751         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4752         u32 bit_off, num_bits;
4753         u64 block;
4754         u8 flags = 0;
4755
4756         BUG_ON(!clusters_to_add);
4757
4758         if (mark_unwritten)
4759                 flags = OCFS2_EXT_UNWRITTEN;
4760
4761         free_extents = ocfs2_num_free_extents(osb, inode, et);
4762         if (free_extents < 0) {
4763                 status = free_extents;
4764                 mlog_errno(status);
4765                 goto leave;
4766         }
4767
4768         /* there are two cases which could cause us to EAGAIN in the
4769          * we-need-more-metadata case:
4770          * 1) we haven't reserved *any*
4771          * 2) we are so fragmented, we've needed to add metadata too
4772          *    many times. */
4773         if (!free_extents && !meta_ac) {
4774                 mlog(0, "we haven't reserved any metadata!\n");
4775                 status = -EAGAIN;
4776                 reason = RESTART_META;
4777                 goto leave;
4778         } else if ((!free_extents)
4779                    && (ocfs2_alloc_context_bits_left(meta_ac)
4780                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4781                 mlog(0, "filesystem is really fragmented...\n");
4782                 status = -EAGAIN;
4783                 reason = RESTART_META;
4784                 goto leave;
4785         }
4786
4787         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4788                                         clusters_to_add, &bit_off, &num_bits);
4789         if (status < 0) {
4790                 if (status != -ENOSPC)
4791                         mlog_errno(status);
4792                 goto leave;
4793         }
4794
4795         BUG_ON(num_bits > clusters_to_add);
4796
4797         /* reserve our write early -- insert_extent may update the tree root */
4798         status = ocfs2_et_root_journal_access(handle, inode, et,
4799                                               OCFS2_JOURNAL_ACCESS_WRITE);
4800         if (status < 0) {
4801                 mlog_errno(status);
4802                 goto leave;
4803         }
4804
4805         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4806         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4807              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4808         status = ocfs2_insert_extent(osb, handle, inode, et,
4809                                      *logical_offset, block,
4810                                      num_bits, flags, meta_ac);
4811         if (status < 0) {
4812                 mlog_errno(status);
4813                 goto leave;
4814         }
4815
4816         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4817         if (status < 0) {
4818                 mlog_errno(status);
4819                 goto leave;
4820         }
4821
4822         clusters_to_add -= num_bits;
4823         *logical_offset += num_bits;
4824
4825         if (clusters_to_add) {
4826                 mlog(0, "need to alloc once more, wanted = %u\n",
4827                      clusters_to_add);
4828                 status = -EAGAIN;
4829                 reason = RESTART_TRANS;
4830         }
4831
4832 leave:
4833         mlog_exit(status);
4834         if (reason_ret)
4835                 *reason_ret = reason;
4836         return status;
4837 }
4838
4839 static void ocfs2_make_right_split_rec(struct super_block *sb,
4840                                        struct ocfs2_extent_rec *split_rec,
4841                                        u32 cpos,
4842                                        struct ocfs2_extent_rec *rec)
4843 {
4844         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4845         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4846
4847         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4848
4849         split_rec->e_cpos = cpu_to_le32(cpos);
4850         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4851
4852         split_rec->e_blkno = rec->e_blkno;
4853         le64_add_cpu(&split_rec->e_blkno,
4854                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4855
4856         split_rec->e_flags = rec->e_flags;
4857 }
4858
4859 static int ocfs2_split_and_insert(struct inode *inode,
4860                                   handle_t *handle,
4861                                   struct ocfs2_path *path,
4862                                   struct ocfs2_extent_tree *et,
4863                                   struct buffer_head **last_eb_bh,
4864                                   int split_index,
4865                                   struct ocfs2_extent_rec *orig_split_rec,
4866                                   struct ocfs2_alloc_context *meta_ac)
4867 {
4868         int ret = 0, depth;
4869         unsigned int insert_range, rec_range, do_leftright = 0;
4870         struct ocfs2_extent_rec tmprec;
4871         struct ocfs2_extent_list *rightmost_el;
4872         struct ocfs2_extent_rec rec;
4873         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4874         struct ocfs2_insert_type insert;
4875         struct ocfs2_extent_block *eb;
4876
4877 leftright:
4878         /*
4879          * Store a copy of the record on the stack - it might move
4880          * around as the tree is manipulated below.
4881          */
4882         rec = path_leaf_el(path)->l_recs[split_index];
4883
4884         rightmost_el = et->et_root_el;
4885
4886         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4887         if (depth) {
4888                 BUG_ON(!(*last_eb_bh));
4889                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4890                 rightmost_el = &eb->h_list;
4891         }
4892
4893         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4894             le16_to_cpu(rightmost_el->l_count)) {
4895                 ret = ocfs2_grow_tree(inode, handle, et,
4896                                       &depth, last_eb_bh, meta_ac);
4897                 if (ret) {
4898                         mlog_errno(ret);
4899                         goto out;
4900                 }
4901         }
4902
4903         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4904         insert.ins_appending = APPEND_NONE;
4905         insert.ins_contig = CONTIG_NONE;
4906         insert.ins_tree_depth = depth;
4907
4908         insert_range = le32_to_cpu(split_rec.e_cpos) +
4909                 le16_to_cpu(split_rec.e_leaf_clusters);
4910         rec_range = le32_to_cpu(rec.e_cpos) +
4911                 le16_to_cpu(rec.e_leaf_clusters);
4912
4913         if (split_rec.e_cpos == rec.e_cpos) {
4914                 insert.ins_split = SPLIT_LEFT;
4915         } else if (insert_range == rec_range) {
4916                 insert.ins_split = SPLIT_RIGHT;
4917         } else {
4918                 /*
4919                  * Left/right split. We fake this as a right split
4920                  * first and then make a second pass as a left split.
4921                  */
4922                 insert.ins_split = SPLIT_RIGHT;
4923
4924                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4925                                            &rec);
4926
4927                 split_rec = tmprec;
4928
4929                 BUG_ON(do_leftright);
4930                 do_leftright = 1;
4931         }
4932
4933         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4934         if (ret) {
4935                 mlog_errno(ret);
4936                 goto out;
4937         }
4938
4939         if (do_leftright == 1) {
4940                 u32 cpos;
4941                 struct ocfs2_extent_list *el;
4942
4943                 do_leftright++;
4944                 split_rec = *orig_split_rec;
4945
4946                 ocfs2_reinit_path(path, 1);
4947
4948                 cpos = le32_to_cpu(split_rec.e_cpos);
4949                 ret = ocfs2_find_path(inode, path, cpos);
4950                 if (ret) {
4951                         mlog_errno(ret);
4952                         goto out;
4953                 }
4954
4955                 el = path_leaf_el(path);
4956                 split_index = ocfs2_search_extent_list(el, cpos);
4957                 goto leftright;
4958         }
4959 out:
4960
4961         return ret;
4962 }
4963
4964 static int ocfs2_replace_extent_rec(struct inode *inode,
4965                                     handle_t *handle,
4966                                     struct ocfs2_path *path,
4967                                     struct ocfs2_extent_list *el,
4968                                     int split_index,
4969                                     struct ocfs2_extent_rec *split_rec)
4970 {
4971         int ret;
4972
4973         ret = ocfs2_path_bh_journal_access(handle, inode, path,
4974                                            path_num_items(path) - 1);
4975         if (ret) {
4976                 mlog_errno(ret);
4977                 goto out;
4978         }
4979
4980         el->l_recs[split_index] = *split_rec;
4981
4982         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4983 out:
4984         return ret;
4985 }
4986
4987 /*
4988  * Mark part or all of the extent record at split_index in the leaf
4989  * pointed to by path as written. This removes the unwritten
4990  * extent flag.
4991  *
4992  * Care is taken to handle contiguousness so as to not grow the tree.
4993  *
4994  * meta_ac is not strictly necessary - we only truly need it if growth
4995  * of the tree is required. All other cases will degrade into a less
4996  * optimal tree layout.
4997  *
4998  * last_eb_bh should be the rightmost leaf block for any extent
4999  * btree. Since a split may grow the tree or a merge might shrink it,
5000  * the caller cannot trust the contents of that buffer after this call.
5001  *
5002  * This code is optimized for readability - several passes might be
5003  * made over certain portions of the tree. All of those blocks will
5004  * have been brought into cache (and pinned via the journal), so the
5005  * extra overhead is not expressed in terms of disk reads.
5006  */
5007 static int __ocfs2_mark_extent_written(struct inode *inode,
5008                                        struct ocfs2_extent_tree *et,
5009                                        handle_t *handle,
5010                                        struct ocfs2_path *path,
5011                                        int split_index,
5012                                        struct ocfs2_extent_rec *split_rec,
5013                                        struct ocfs2_alloc_context *meta_ac,
5014                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
5015 {
5016         int ret = 0;
5017         struct ocfs2_extent_list *el = path_leaf_el(path);
5018         struct buffer_head *last_eb_bh = NULL;
5019         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5020         struct ocfs2_merge_ctxt ctxt;
5021         struct ocfs2_extent_list *rightmost_el;
5022
5023         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5024                 ret = -EIO;
5025                 mlog_errno(ret);
5026                 goto out;
5027         }
5028
5029         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5030             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5031              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5032                 ret = -EIO;
5033                 mlog_errno(ret);
5034                 goto out;
5035         }
5036
5037         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5038                                                             split_index,
5039                                                             split_rec);
5040
5041         /*
5042          * The core merge / split code wants to know how much room is
5043          * left in this inodes allocation tree, so we pass the
5044          * rightmost extent list.
5045          */
5046         if (path->p_tree_depth) {
5047                 struct ocfs2_extent_block *eb;
5048
5049                 ret = ocfs2_read_extent_block(inode,
5050                                               ocfs2_et_get_last_eb_blk(et),
5051                                               &last_eb_bh);
5052                 if (ret) {
5053                         mlog_exit(ret);
5054                         goto out;
5055                 }
5056
5057                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5058                 rightmost_el = &eb->h_list;
5059         } else
5060                 rightmost_el = path_root_el(path);
5061
5062         if (rec->e_cpos == split_rec->e_cpos &&
5063             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5064                 ctxt.c_split_covers_rec = 1;
5065         else
5066                 ctxt.c_split_covers_rec = 0;
5067
5068         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5069
5070         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5071              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5072              ctxt.c_split_covers_rec);
5073
5074         if (ctxt.c_contig_type == CONTIG_NONE) {
5075                 if (ctxt.c_split_covers_rec)
5076                         ret = ocfs2_replace_extent_rec(inode, handle,
5077                                                        path, el,
5078                                                        split_index, split_rec);
5079                 else
5080                         ret = ocfs2_split_and_insert(inode, handle, path, et,
5081                                                      &last_eb_bh, split_index,
5082                                                      split_rec, meta_ac);
5083                 if (ret)
5084                         mlog_errno(ret);
5085         } else {
5086                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
5087                                                 split_index, split_rec,
5088                                                 dealloc, &ctxt, et);
5089                 if (ret)
5090                         mlog_errno(ret);
5091         }
5092
5093 out:
5094         brelse(last_eb_bh);
5095         return ret;
5096 }
5097
5098 /*
5099  * Mark the already-existing extent at cpos as written for len clusters.
5100  *
5101  * If the existing extent is larger than the request, initiate a
5102  * split. An attempt will be made at merging with adjacent extents.
5103  *
5104  * The caller is responsible for passing down meta_ac if we'll need it.
5105  */
5106 int ocfs2_mark_extent_written(struct inode *inode,
5107                               struct ocfs2_extent_tree *et,
5108                               handle_t *handle, u32 cpos, u32 len, u32 phys,
5109                               struct ocfs2_alloc_context *meta_ac,
5110                               struct ocfs2_cached_dealloc_ctxt *dealloc)
5111 {
5112         int ret, index;
5113         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5114         struct ocfs2_extent_rec split_rec;
5115         struct ocfs2_path *left_path = NULL;
5116         struct ocfs2_extent_list *el;
5117
5118         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5119              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5120
5121         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5122                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5123                             "that are being written to, but the feature bit "
5124                             "is not set in the super block.",
5125                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
5126                 ret = -EROFS;
5127                 goto out;
5128         }
5129
5130         /*
5131          * XXX: This should be fixed up so that we just re-insert the
5132          * next extent records.
5133          *
5134          * XXX: This is a hack on the extent tree, maybe it should be
5135          * an op?
5136          */
5137         if (et->et_ops == &ocfs2_dinode_et_ops)
5138                 ocfs2_extent_map_trunc(inode, 0);
5139
5140         left_path = ocfs2_new_path_from_et(et);
5141         if (!left_path) {
5142                 ret = -ENOMEM;
5143                 mlog_errno(ret);
5144                 goto out;
5145         }
5146
5147         ret = ocfs2_find_path(inode, left_path, cpos);
5148         if (ret) {
5149                 mlog_errno(ret);
5150                 goto out;
5151         }
5152         el = path_leaf_el(left_path);
5153
5154         index = ocfs2_search_extent_list(el, cpos);
5155         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5156                 ocfs2_error(inode->i_sb,
5157                             "Inode %llu has an extent at cpos %u which can no "
5158                             "longer be found.\n",
5159                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5160                 ret = -EROFS;
5161                 goto out;
5162         }
5163
5164         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5165         split_rec.e_cpos = cpu_to_le32(cpos);
5166         split_rec.e_leaf_clusters = cpu_to_le16(len);
5167         split_rec.e_blkno = cpu_to_le64(start_blkno);
5168         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5169         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5170
5171         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5172                                           index, &split_rec, meta_ac,
5173                                           dealloc);
5174         if (ret)
5175                 mlog_errno(ret);
5176
5177 out:
5178         ocfs2_free_path(left_path);
5179         return ret;
5180 }
5181
5182 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5183                             handle_t *handle, struct ocfs2_path *path,
5184                             int index, u32 new_range,
5185                             struct ocfs2_alloc_context *meta_ac)
5186 {
5187         int ret, depth, credits = handle->h_buffer_credits;
5188         struct buffer_head *last_eb_bh = NULL;
5189         struct ocfs2_extent_block *eb;
5190         struct ocfs2_extent_list *rightmost_el, *el;
5191         struct ocfs2_extent_rec split_rec;
5192         struct ocfs2_extent_rec *rec;
5193         struct ocfs2_insert_type insert;
5194
5195         /*
5196          * Setup the record to split before we grow the tree.
5197          */
5198         el = path_leaf_el(path);
5199         rec = &el->l_recs[index];
5200         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5201
5202         depth = path->p_tree_depth;
5203         if (depth > 0) {
5204                 ret = ocfs2_read_extent_block(inode,
5205                                               ocfs2_et_get_last_eb_blk(et),
5206                                               &last_eb_bh);
5207                 if (ret < 0) {
5208                         mlog_errno(ret);
5209                         goto out;
5210                 }
5211
5212                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5213                 rightmost_el = &eb->h_list;
5214         } else
5215                 rightmost_el = path_leaf_el(path);
5216
5217         credits += path->p_tree_depth +
5218                    ocfs2_extend_meta_needed(et->et_root_el);
5219         ret = ocfs2_extend_trans(handle, credits);
5220         if (ret) {
5221                 mlog_errno(ret);
5222                 goto out;
5223         }
5224
5225         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5226             le16_to_cpu(rightmost_el->l_count)) {
5227                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5228                                       meta_ac);
5229                 if (ret) {
5230                         mlog_errno(ret);
5231                         goto out;
5232                 }
5233         }
5234
5235         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5236         insert.ins_appending = APPEND_NONE;
5237         insert.ins_contig = CONTIG_NONE;
5238         insert.ins_split = SPLIT_RIGHT;
5239         insert.ins_tree_depth = depth;
5240
5241         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5242         if (ret)
5243                 mlog_errno(ret);
5244
5245 out:
5246         brelse(last_eb_bh);
5247         return ret;
5248 }
5249
5250 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5251                               struct ocfs2_path *path, int index,
5252                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5253                               u32 cpos, u32 len,
5254                               struct ocfs2_extent_tree *et)
5255 {
5256         int ret;
5257         u32 left_cpos, rec_range, trunc_range;
5258         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5259         struct super_block *sb = inode->i_sb;
5260         struct ocfs2_path *left_path = NULL;
5261         struct ocfs2_extent_list *el = path_leaf_el(path);
5262         struct ocfs2_extent_rec *rec;
5263         struct ocfs2_extent_block *eb;
5264
5265         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5266                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5267                 if (ret) {
5268                         mlog_errno(ret);
5269                         goto out;
5270                 }
5271
5272                 index--;
5273         }
5274
5275         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5276             path->p_tree_depth) {
5277                 /*
5278                  * Check whether this is the rightmost tree record. If
5279                  * we remove all of this record or part of its right
5280                  * edge then an update of the record lengths above it
5281                  * will be required.
5282                  */
5283                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5284                 if (eb->h_next_leaf_blk == 0)
5285                         is_rightmost_tree_rec = 1;
5286         }
5287
5288         rec = &el->l_recs[index];
5289         if (index == 0 && path->p_tree_depth &&
5290             le32_to_cpu(rec->e_cpos) == cpos) {
5291                 /*
5292                  * Changing the leftmost offset (via partial or whole
5293                  * record truncate) of an interior (or rightmost) path
5294                  * means we have to update the subtree that is formed
5295                  * by this leaf and the one to it's left.
5296                  *
5297                  * There are two cases we can skip:
5298                  *   1) Path is the leftmost one in our inode tree.
5299                  *   2) The leaf is rightmost and will be empty after
5300                  *      we remove the extent record - the rotate code
5301                  *      knows how to update the newly formed edge.
5302                  */
5303
5304                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5305                                                     &left_cpos);
5306                 if (ret) {
5307                         mlog_errno(ret);
5308                         goto out;
5309                 }
5310
5311                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5312                         left_path = ocfs2_new_path_from_path(path);
5313                         if (!left_path) {
5314                                 ret = -ENOMEM;
5315                                 mlog_errno(ret);
5316                                 goto out;
5317                         }
5318
5319                         ret = ocfs2_find_path(inode, left_path, left_cpos);
5320                         if (ret) {
5321                                 mlog_errno(ret);
5322                                 goto out;
5323                         }
5324                 }
5325         }
5326
5327         ret = ocfs2_extend_rotate_transaction(handle, 0,
5328                                               handle->h_buffer_credits,
5329                                               path);
5330         if (ret) {
5331                 mlog_errno(ret);
5332                 goto out;
5333         }
5334
5335         ret = ocfs2_journal_access_path(inode, handle, path);
5336         if (ret) {
5337                 mlog_errno(ret);
5338                 goto out;
5339         }
5340
5341         ret = ocfs2_journal_access_path(inode, handle, left_path);
5342         if (ret) {
5343                 mlog_errno(ret);
5344                 goto out;
5345         }
5346
5347         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5348         trunc_range = cpos + len;
5349
5350         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5351                 int next_free;
5352
5353                 memset(rec, 0, sizeof(*rec));
5354                 ocfs2_cleanup_merge(el, index);
5355                 wants_rotate = 1;
5356
5357                 next_free = le16_to_cpu(el->l_next_free_rec);
5358                 if (is_rightmost_tree_rec && next_free > 1) {
5359                         /*
5360                          * We skip the edge update if this path will
5361                          * be deleted by the rotate code.
5362                          */
5363                         rec = &el->l_recs[next_free - 1];
5364                         ocfs2_adjust_rightmost_records(inode, handle, path,
5365                                                        rec);
5366                 }
5367         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5368                 /* Remove leftmost portion of the record. */
5369                 le32_add_cpu(&rec->e_cpos, len);
5370                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5371                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5372         } else if (rec_range == trunc_range) {
5373                 /* Remove rightmost portion of the record */
5374                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5375                 if (is_rightmost_tree_rec)
5376                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5377         } else {
5378                 /* Caller should have trapped this. */
5379                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5380                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5381                      le32_to_cpu(rec->e_cpos),
5382                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5383                 BUG();
5384         }
5385
5386         if (left_path) {
5387                 int subtree_index;
5388
5389                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5390                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5391                                            subtree_index);
5392         }
5393
5394         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5395
5396         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5397         if (ret) {
5398                 mlog_errno(ret);
5399                 goto out;
5400         }
5401
5402 out:
5403         ocfs2_free_path(left_path);
5404         return ret;
5405 }
5406
5407 int ocfs2_remove_extent(struct inode *inode,
5408                         struct ocfs2_extent_tree *et,
5409                         u32 cpos, u32 len, handle_t *handle,
5410                         struct ocfs2_alloc_context *meta_ac,
5411                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5412 {
5413         int ret, index;
5414         u32 rec_range, trunc_range;
5415         struct ocfs2_extent_rec *rec;
5416         struct ocfs2_extent_list *el;
5417         struct ocfs2_path *path = NULL;
5418
5419         ocfs2_extent_map_trunc(inode, 0);
5420
5421         path = ocfs2_new_path_from_et(et);
5422         if (!path) {
5423                 ret = -ENOMEM;
5424                 mlog_errno(ret);
5425                 goto out;
5426         }
5427
5428         ret = ocfs2_find_path(inode, path, cpos);
5429         if (ret) {
5430                 mlog_errno(ret);
5431                 goto out;
5432         }
5433
5434         el = path_leaf_el(path);
5435         index = ocfs2_search_extent_list(el, cpos);
5436         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5437                 ocfs2_error(inode->i_sb,
5438                             "Inode %llu has an extent at cpos %u which can no "
5439                             "longer be found.\n",
5440                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5441                 ret = -EROFS;
5442                 goto out;
5443         }
5444
5445         /*
5446          * We have 3 cases of extent removal:
5447          *   1) Range covers the entire extent rec
5448          *   2) Range begins or ends on one edge of the extent rec
5449          *   3) Range is in the middle of the extent rec (no shared edges)
5450          *
5451          * For case 1 we remove the extent rec and left rotate to
5452          * fill the hole.
5453          *
5454          * For case 2 we just shrink the existing extent rec, with a
5455          * tree update if the shrinking edge is also the edge of an
5456          * extent block.
5457          *
5458          * For case 3 we do a right split to turn the extent rec into
5459          * something case 2 can handle.
5460          */
5461         rec = &el->l_recs[index];
5462         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5463         trunc_range = cpos + len;
5464
5465         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5466
5467         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5468              "(cpos %u, len %u)\n",
5469              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5470              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5471
5472         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5473                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5474                                          cpos, len, et);
5475                 if (ret) {
5476                         mlog_errno(ret);
5477                         goto out;
5478                 }
5479         } else {
5480                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5481                                        trunc_range, meta_ac);
5482                 if (ret) {
5483                         mlog_errno(ret);
5484                         goto out;
5485                 }
5486
5487                 /*
5488                  * The split could have manipulated the tree enough to
5489                  * move the record location, so we have to look for it again.
5490                  */
5491                 ocfs2_reinit_path(path, 1);
5492
5493                 ret = ocfs2_find_path(inode, path, cpos);
5494                 if (ret) {
5495                         mlog_errno(ret);
5496                         goto out;
5497                 }
5498
5499                 el = path_leaf_el(path);
5500                 index = ocfs2_search_extent_list(el, cpos);
5501                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5502                         ocfs2_error(inode->i_sb,
5503                                     "Inode %llu: split at cpos %u lost record.",
5504                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5505                                     cpos);
5506                         ret = -EROFS;
5507                         goto out;
5508                 }
5509
5510                 /*
5511                  * Double check our values here. If anything is fishy,
5512                  * it's easier to catch it at the top level.
5513                  */
5514                 rec = &el->l_recs[index];
5515                 rec_range = le32_to_cpu(rec->e_cpos) +
5516                         ocfs2_rec_clusters(el, rec);
5517                 if (rec_range != trunc_range) {
5518                         ocfs2_error(inode->i_sb,
5519                                     "Inode %llu: error after split at cpos %u"
5520                                     "trunc len %u, existing record is (%u,%u)",
5521                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5522                                     cpos, len, le32_to_cpu(rec->e_cpos),
5523                                     ocfs2_rec_clusters(el, rec));
5524                         ret = -EROFS;
5525                         goto out;
5526                 }
5527
5528                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5529                                          cpos, len, et);
5530                 if (ret) {
5531                         mlog_errno(ret);
5532                         goto out;
5533                 }
5534         }
5535
5536 out:
5537         ocfs2_free_path(path);
5538         return ret;
5539 }
5540
5541 int ocfs2_remove_btree_range(struct inode *inode,
5542                              struct ocfs2_extent_tree *et,
5543                              u32 cpos, u32 phys_cpos, u32 len,
5544                              struct ocfs2_cached_dealloc_ctxt *dealloc)
5545 {
5546         int ret;
5547         u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5548         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5549         struct inode *tl_inode = osb->osb_tl_inode;
5550         handle_t *handle;
5551         struct ocfs2_alloc_context *meta_ac = NULL;
5552
5553         ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5554         if (ret) {
5555                 mlog_errno(ret);
5556                 return ret;
5557         }
5558
5559         mutex_lock(&tl_inode->i_mutex);
5560
5561         if (ocfs2_truncate_log_needs_flush(osb)) {
5562                 ret = __ocfs2_flush_truncate_log(osb);
5563                 if (ret < 0) {
5564                         mlog_errno(ret);
5565                         goto out;
5566                 }
5567         }
5568
5569         handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5570         if (IS_ERR(handle)) {
5571                 ret = PTR_ERR(handle);
5572                 mlog_errno(ret);
5573                 goto out;
5574         }
5575
5576         ret = ocfs2_et_root_journal_access(handle, inode, et,
5577                                            OCFS2_JOURNAL_ACCESS_WRITE);
5578         if (ret) {
5579                 mlog_errno(ret);
5580                 goto out;
5581         }
5582
5583         vfs_dq_free_space_nodirty(inode,
5584                                   ocfs2_clusters_to_bytes(inode->i_sb, len));
5585
5586         ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5587                                   dealloc);
5588         if (ret) {
5589                 mlog_errno(ret);
5590                 goto out_commit;
5591         }
5592
5593         ocfs2_et_update_clusters(inode, et, -len);
5594
5595         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5596         if (ret) {
5597                 mlog_errno(ret);
5598                 goto out_commit;
5599         }
5600
5601         ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5602         if (ret)
5603                 mlog_errno(ret);
5604
5605 out_commit:
5606         ocfs2_commit_trans(osb, handle);
5607 out:
5608         mutex_unlock(&tl_inode->i_mutex);
5609
5610         if (meta_ac)
5611                 ocfs2_free_alloc_context(meta_ac);
5612
5613         return ret;
5614 }
5615
5616 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5617 {
5618         struct buffer_head *tl_bh = osb->osb_tl_bh;
5619         struct ocfs2_dinode *di;
5620         struct ocfs2_truncate_log *tl;
5621
5622         di = (struct ocfs2_dinode *) tl_bh->b_data;
5623         tl = &di->id2.i_dealloc;
5624
5625         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5626                         "slot %d, invalid truncate log parameters: used = "
5627                         "%u, count = %u\n", osb->slot_num,
5628                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5629         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5630 }
5631
5632 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5633                                            unsigned int new_start)
5634 {
5635         unsigned int tail_index;
5636         unsigned int current_tail;
5637
5638         /* No records, nothing to coalesce */
5639         if (!le16_to_cpu(tl->tl_used))
5640                 return 0;
5641
5642         tail_index = le16_to_cpu(tl->tl_used) - 1;
5643         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5644         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5645
5646         return current_tail == new_start;
5647 }
5648
5649 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5650                               handle_t *handle,
5651                               u64 start_blk,
5652                               unsigned int num_clusters)
5653 {
5654         int status, index;
5655         unsigned int start_cluster, tl_count;
5656         struct inode *tl_inode = osb->osb_tl_inode;
5657         struct buffer_head *tl_bh = osb->osb_tl_bh;
5658         struct ocfs2_dinode *di;
5659         struct ocfs2_truncate_log *tl;
5660
5661         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5662                    (unsigned long long)start_blk, num_clusters);
5663
5664         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5665
5666         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5667
5668         di = (struct ocfs2_dinode *) tl_bh->b_data;
5669
5670         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5671          * by the underlying call to ocfs2_read_inode_block(), so any
5672          * corruption is a code bug */
5673         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5674
5675         tl = &di->id2.i_dealloc;
5676         tl_count = le16_to_cpu(tl->tl_count);
5677         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5678                         tl_count == 0,
5679                         "Truncate record count on #%llu invalid "
5680                         "wanted %u, actual %u\n",
5681                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5682                         ocfs2_truncate_recs_per_inode(osb->sb),
5683                         le16_to_cpu(tl->tl_count));
5684
5685         /* Caller should have known to flush before calling us. */
5686         index = le16_to_cpu(tl->tl_used);
5687         if (index >= tl_count) {
5688                 status = -ENOSPC;
5689                 mlog_errno(status);
5690                 goto bail;
5691         }
5692
5693         status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5694                                          OCFS2_JOURNAL_ACCESS_WRITE);
5695         if (status < 0) {
5696                 mlog_errno(status);
5697                 goto bail;
5698         }
5699
5700         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5701              "%llu (index = %d)\n", num_clusters, start_cluster,
5702              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5703
5704         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5705                 /*
5706                  * Move index back to the record we are coalescing with.
5707                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5708                  */
5709                 index--;
5710
5711                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5712                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5713                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5714                      num_clusters);
5715         } else {
5716                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5717                 tl->tl_used = cpu_to_le16(index + 1);
5718         }
5719         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5720
5721         status = ocfs2_journal_dirty(handle, tl_bh);
5722         if (status < 0) {
5723                 mlog_errno(status);
5724                 goto bail;
5725         }
5726
5727 bail:
5728         mlog_exit(status);
5729         return status;
5730 }
5731
5732 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5733                                          handle_t *handle,
5734                                          struct inode *data_alloc_inode,
5735                                          struct buffer_head *data_alloc_bh)
5736 {
5737         int status = 0;
5738         int i;
5739         unsigned int num_clusters;
5740         u64 start_blk;
5741         struct ocfs2_truncate_rec rec;
5742         struct ocfs2_dinode *di;
5743         struct ocfs2_truncate_log *tl;
5744         struct inode *tl_inode = osb->osb_tl_inode;
5745         struct buffer_head *tl_bh = osb->osb_tl_bh;
5746
5747         mlog_entry_void();
5748
5749         di = (struct ocfs2_dinode *) tl_bh->b_data;
5750         tl = &di->id2.i_dealloc;
5751         i = le16_to_cpu(tl->tl_used) - 1;
5752         while (i >= 0) {
5753                 /* Caller has given us at least enough credits to
5754                  * update the truncate log dinode */
5755                 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5756                                                  OCFS2_JOURNAL_ACCESS_WRITE);
5757                 if (status < 0) {
5758                         mlog_errno(status);
5759                         goto bail;
5760                 }
5761
5762                 tl->tl_used = cpu_to_le16(i);
5763
5764                 status = ocfs2_journal_dirty(handle, tl_bh);
5765                 if (status < 0) {
5766                         mlog_errno(status);
5767                         goto bail;
5768                 }
5769
5770                 /* TODO: Perhaps we can calculate the bulk of the
5771                  * credits up front rather than extending like
5772                  * this. */
5773                 status = ocfs2_extend_trans(handle,
5774                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5775                 if (status < 0) {
5776                         mlog_errno(status);
5777                         goto bail;
5778                 }
5779
5780                 rec = tl->tl_recs[i];
5781                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5782                                                     le32_to_cpu(rec.t_start));
5783                 num_clusters = le32_to_cpu(rec.t_clusters);
5784
5785                 /* if start_blk is not set, we ignore the record as
5786                  * invalid. */
5787                 if (start_blk) {
5788                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5789                              i, le32_to_cpu(rec.t_start), num_clusters);
5790
5791                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5792                                                      data_alloc_bh, start_blk,
5793                                                      num_clusters);
5794                         if (status < 0) {
5795                                 mlog_errno(status);
5796                                 goto bail;
5797                         }
5798                 }
5799                 i--;
5800         }
5801
5802 bail:
5803         mlog_exit(status);
5804         return status;
5805 }
5806
5807 /* Expects you to already be holding tl_inode->i_mutex */
5808 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5809 {
5810         int status;
5811         unsigned int num_to_flush;
5812         handle_t *handle;
5813         struct inode *tl_inode = osb->osb_tl_inode;
5814         struct inode *data_alloc_inode = NULL;
5815         struct buffer_head *tl_bh = osb->osb_tl_bh;
5816         struct buffer_head *data_alloc_bh = NULL;
5817         struct ocfs2_dinode *di;
5818         struct ocfs2_truncate_log *tl;
5819
5820         mlog_entry_void();
5821
5822         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5823
5824         di = (struct ocfs2_dinode *) tl_bh->b_data;
5825
5826         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5827          * by the underlying call to ocfs2_read_inode_block(), so any
5828          * corruption is a code bug */
5829         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5830
5831         tl = &di->id2.i_dealloc;
5832         num_to_flush = le16_to_cpu(tl->tl_used);
5833         mlog(0, "Flush %u records from truncate log #%llu\n",
5834              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5835         if (!num_to_flush) {
5836                 status = 0;
5837                 goto out;
5838         }
5839
5840         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5841                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5842                                                        OCFS2_INVALID_SLOT);
5843         if (!data_alloc_inode) {
5844                 status = -EINVAL;
5845                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5846                 goto out;
5847         }
5848
5849         mutex_lock(&data_alloc_inode->i_mutex);
5850
5851         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5852         if (status < 0) {
5853                 mlog_errno(status);
5854                 goto out_mutex;
5855         }
5856
5857         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5858         if (IS_ERR(handle)) {
5859                 status = PTR_ERR(handle);
5860                 mlog_errno(status);
5861                 goto out_unlock;
5862         }
5863
5864         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5865                                                data_alloc_bh);
5866         if (status < 0)
5867                 mlog_errno(status);
5868
5869         ocfs2_commit_trans(osb, handle);
5870
5871 out_unlock:
5872         brelse(data_alloc_bh);
5873         ocfs2_inode_unlock(data_alloc_inode, 1);
5874
5875 out_mutex:
5876         mutex_unlock(&data_alloc_inode->i_mutex);
5877         iput(data_alloc_inode);
5878
5879 out:
5880         mlog_exit(status);
5881         return status;
5882 }
5883
5884 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5885 {
5886         int status;
5887         struct inode *tl_inode = osb->osb_tl_inode;
5888
5889         mutex_lock(&tl_inode->i_mutex);
5890         status = __ocfs2_flush_truncate_log(osb);
5891         mutex_unlock(&tl_inode->i_mutex);
5892
5893         return status;
5894 }
5895
5896 static void ocfs2_truncate_log_worker(struct work_struct *work)
5897 {
5898         int status;
5899         struct ocfs2_super *osb =
5900                 container_of(work, struct ocfs2_super,
5901                              osb_truncate_log_wq.work);
5902
5903         mlog_entry_void();
5904
5905         status = ocfs2_flush_truncate_log(osb);
5906         if (status < 0)
5907                 mlog_errno(status);
5908         else
5909                 ocfs2_init_inode_steal_slot(osb);
5910
5911         mlog_exit(status);
5912 }
5913
5914 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5915 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5916                                        int cancel)
5917 {
5918         if (osb->osb_tl_inode) {
5919                 /* We want to push off log flushes while truncates are
5920                  * still running. */
5921                 if (cancel)
5922                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5923
5924                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5925                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5926         }
5927 }
5928
5929 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5930                                        int slot_num,
5931                                        struct inode **tl_inode,
5932                                        struct buffer_head **tl_bh)
5933 {
5934         int status;
5935         struct inode *inode = NULL;
5936         struct buffer_head *bh = NULL;
5937
5938         inode = ocfs2_get_system_file_inode(osb,
5939                                            TRUNCATE_LOG_SYSTEM_INODE,
5940                                            slot_num);
5941         if (!inode) {
5942                 status = -EINVAL;
5943                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5944                 goto bail;
5945         }
5946
5947         status = ocfs2_read_inode_block(inode, &bh);
5948         if (status < 0) {
5949                 iput(inode);
5950                 mlog_errno(status);
5951                 goto bail;
5952         }
5953
5954         *tl_inode = inode;
5955         *tl_bh    = bh;
5956 bail:
5957         mlog_exit(status);
5958         return status;
5959 }
5960
5961 /* called during the 1st stage of node recovery. we stamp a clean
5962  * truncate log and pass back a copy for processing later. if the
5963  * truncate log does not require processing, a *tl_copy is set to
5964  * NULL. */
5965 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5966                                       int slot_num,
5967                                       struct ocfs2_dinode **tl_copy)
5968 {
5969         int status;
5970         struct inode *tl_inode = NULL;
5971         struct buffer_head *tl_bh = NULL;
5972         struct ocfs2_dinode *di;
5973         struct ocfs2_truncate_log *tl;
5974
5975         *tl_copy = NULL;
5976
5977         mlog(0, "recover truncate log from slot %d\n", slot_num);
5978
5979         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5980         if (status < 0) {
5981                 mlog_errno(status);
5982                 goto bail;
5983         }
5984
5985         di = (struct ocfs2_dinode *) tl_bh->b_data;
5986
5987         /* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5988          * validated by the underlying call to ocfs2_read_inode_block(),
5989          * so any corruption is a code bug */
5990         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5991
5992         tl = &di->id2.i_dealloc;
5993         if (le16_to_cpu(tl->tl_used)) {
5994                 mlog(0, "We'll have %u logs to recover\n",
5995                      le16_to_cpu(tl->tl_used));
5996
5997                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5998                 if (!(*tl_copy)) {
5999                         status = -ENOMEM;
6000                         mlog_errno(status);
6001                         goto bail;
6002                 }
6003
6004                 /* Assuming the write-out below goes well, this copy
6005                  * will be passed back to recovery for processing. */
6006                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6007
6008                 /* All we need to do to clear the truncate log is set
6009                  * tl_used. */
6010                 tl->tl_used = 0;
6011
6012                 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6013                 status = ocfs2_write_block(osb, tl_bh, tl_inode);
6014                 if (status < 0) {
6015                         mlog_errno(status);
6016                         goto bail;
6017                 }
6018         }
6019
6020 bail:
6021         if (tl_inode)
6022                 iput(tl_inode);
6023         brelse(tl_bh);
6024
6025         if (status < 0 && (*tl_copy)) {
6026                 kfree(*tl_copy);
6027                 *tl_copy = NULL;
6028         }
6029
6030         mlog_exit(status);
6031         return status;
6032 }
6033
6034 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6035                                          struct ocfs2_dinode *tl_copy)
6036 {
6037         int status = 0;
6038         int i;
6039         unsigned int clusters, num_recs, start_cluster;
6040         u64 start_blk;
6041         handle_t *handle;
6042         struct inode *tl_inode = osb->osb_tl_inode;
6043         struct ocfs2_truncate_log *tl;
6044
6045         mlog_entry_void();
6046
6047         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6048                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6049                 return -EINVAL;
6050         }
6051
6052         tl = &tl_copy->id2.i_dealloc;
6053         num_recs = le16_to_cpu(tl->tl_used);
6054         mlog(0, "cleanup %u records from %llu\n", num_recs,
6055              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6056
6057         mutex_lock(&tl_inode->i_mutex);
6058         for(i = 0; i < num_recs; i++) {
6059                 if (ocfs2_truncate_log_needs_flush(osb)) {
6060                         status = __ocfs2_flush_truncate_log(osb);
6061                         if (status < 0) {
6062                                 mlog_errno(status);
6063                                 goto bail_up;
6064                         }
6065                 }
6066
6067                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6068                 if (IS_ERR(handle)) {
6069                         status = PTR_ERR(handle);
6070                         mlog_errno(status);
6071                         goto bail_up;
6072                 }
6073
6074                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6075                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6076                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6077
6078                 status = ocfs2_truncate_log_append(osb, handle,
6079                                                    start_blk, clusters);
6080                 ocfs2_commit_trans(osb, handle);
6081                 if (status < 0) {
6082                         mlog_errno(status);
6083                         goto bail_up;
6084                 }
6085         }
6086
6087 bail_up:
6088         mutex_unlock(&tl_inode->i_mutex);
6089
6090         mlog_exit(status);
6091         return status;
6092 }
6093
6094 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6095 {
6096         int status;
6097         struct inode *tl_inode = osb->osb_tl_inode;
6098
6099         mlog_entry_void();
6100
6101         if (tl_inode) {
6102                 cancel_delayed_work(&osb->osb_truncate_log_wq);
6103                 flush_workqueue(ocfs2_wq);
6104
6105                 status = ocfs2_flush_truncate_log(osb);
6106                 if (status < 0)
6107                         mlog_errno(status);
6108
6109                 brelse(osb->osb_tl_bh);
6110                 iput(osb->osb_tl_inode);
6111         }
6112
6113         mlog_exit_void();
6114 }
6115
6116 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6117 {
6118         int status;
6119         struct inode *tl_inode = NULL;
6120         struct buffer_head *tl_bh = NULL;
6121
6122         mlog_entry_void();
6123
6124         status = ocfs2_get_truncate_log_info(osb,
6125                                              osb->slot_num,
6126                                              &tl_inode,
6127                                              &tl_bh);
6128         if (status < 0)
6129                 mlog_errno(status);
6130
6131         /* ocfs2_truncate_log_shutdown keys on the existence of
6132          * osb->osb_tl_inode so we don't set any of the osb variables
6133          * until we're sure all is well. */
6134         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6135                           ocfs2_truncate_log_worker);
6136         osb->osb_tl_bh    = tl_bh;
6137         osb->osb_tl_inode = tl_inode;
6138
6139         mlog_exit(status);
6140         return status;
6141 }
6142
6143 /*
6144  * Delayed de-allocation of suballocator blocks.
6145  *
6146  * Some sets of block de-allocations might involve multiple suballocator inodes.
6147  *
6148  * The locking for this can get extremely complicated, especially when
6149  * the suballocator inodes to delete from aren't known until deep
6150  * within an unrelated codepath.
6151  *
6152  * ocfs2_extent_block structures are a good example of this - an inode
6153  * btree could have been grown by any number of nodes each allocating
6154  * out of their own suballoc inode.
6155  *
6156  * These structures allow the delay of block de-allocation until a
6157  * later time, when locking of multiple cluster inodes won't cause
6158  * deadlock.
6159  */
6160
6161 /*
6162  * Describe a single bit freed from a suballocator.  For the block
6163  * suballocators, it represents one block.  For the global cluster
6164  * allocator, it represents some clusters and free_bit indicates
6165  * clusters number.
6166  */
6167 struct ocfs2_cached_block_free {
6168         struct ocfs2_cached_block_free          *free_next;
6169         u64                                     free_blk;
6170         unsigned int                            free_bit;
6171 };
6172
6173 struct ocfs2_per_slot_free_list {
6174         struct ocfs2_per_slot_free_list         *f_next_suballocator;
6175         int                                     f_inode_type;
6176         int                                     f_slot;
6177         struct ocfs2_cached_block_free          *f_first;
6178 };
6179
6180 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6181                                     int sysfile_type,
6182                                     int slot,
6183                                     struct ocfs2_cached_block_free *head)
6184 {
6185         int ret;
6186         u64 bg_blkno;
6187         handle_t *handle;
6188         struct inode *inode;
6189         struct buffer_head *di_bh = NULL;
6190         struct ocfs2_cached_block_free *tmp;
6191
6192         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6193         if (!inode) {
6194                 ret = -EINVAL;
6195                 mlog_errno(ret);
6196                 goto out;
6197         }
6198
6199         mutex_lock(&inode->i_mutex);
6200
6201         ret = ocfs2_inode_lock(inode, &di_bh, 1);
6202         if (ret) {
6203                 mlog_errno(ret);
6204                 goto out_mutex;
6205         }
6206
6207         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6208         if (IS_ERR(handle)) {
6209                 ret = PTR_ERR(handle);
6210                 mlog_errno(ret);
6211                 goto out_unlock;
6212         }
6213
6214         while (head) {
6215                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6216                                                       head->free_bit);
6217                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6218                      head->free_bit, (unsigned long long)head->free_blk);
6219
6220                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6221                                                head->free_bit, bg_blkno, 1);
6222                 if (ret) {
6223                         mlog_errno(ret);
6224                         goto out_journal;
6225                 }
6226
6227                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6228                 if (ret) {
6229                         mlog_errno(ret);
6230                         goto out_journal;
6231                 }
6232
6233                 tmp = head;
6234                 head = head->free_next;
6235                 kfree(tmp);
6236         }
6237
6238 out_journal:
6239         ocfs2_commit_trans(osb, handle);
6240
6241 out_unlock:
6242         ocfs2_inode_unlock(inode, 1);
6243         brelse(di_bh);
6244 out_mutex:
6245         mutex_unlock(&inode->i_mutex);
6246         iput(inode);
6247 out:
6248         while(head) {
6249                 /* Premature exit may have left some dangling items. */
6250                 tmp = head;
6251                 head = head->free_next;
6252                 kfree(tmp);
6253         }
6254
6255         return ret;
6256 }
6257
6258 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6259                                 u64 blkno, unsigned int bit)
6260 {
6261         int ret = 0;
6262         struct ocfs2_cached_block_free *item;
6263
6264         item = kmalloc(sizeof(*item), GFP_NOFS);
6265         if (item == NULL) {
6266                 ret = -ENOMEM;
6267                 mlog_errno(ret);
6268                 return ret;
6269         }
6270
6271         mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6272              bit, (unsigned long long)blkno);
6273
6274         item->free_blk = blkno;
6275         item->free_bit = bit;
6276         item->free_next = ctxt->c_global_allocator;
6277
6278         ctxt->c_global_allocator = item;
6279         return ret;
6280 }
6281
6282 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6283                                       struct ocfs2_cached_block_free *head)
6284 {
6285         struct ocfs2_cached_block_free *tmp;
6286         struct inode *tl_inode = osb->osb_tl_inode;
6287         handle_t *handle;
6288         int ret = 0;
6289
6290         mutex_lock(&tl_inode->i_mutex);
6291
6292         while (head) {
6293                 if (ocfs2_truncate_log_needs_flush(osb)) {
6294                         ret = __ocfs2_flush_truncate_log(osb);
6295                         if (ret < 0) {
6296                                 mlog_errno(ret);
6297                                 break;
6298                         }
6299                 }
6300
6301                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6302                 if (IS_ERR(handle)) {
6303                         ret = PTR_ERR(handle);
6304                         mlog_errno(ret);
6305                         break;
6306                 }
6307
6308                 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6309                                                 head->free_bit);
6310
6311                 ocfs2_commit_trans(osb, handle);
6312                 tmp = head;
6313                 head = head->free_next;
6314                 kfree(tmp);
6315
6316                 if (ret < 0) {
6317                         mlog_errno(ret);
6318                         break;
6319                 }
6320         }
6321
6322         mutex_unlock(&tl_inode->i_mutex);
6323
6324         while (head) {
6325                 /* Premature exit may have left some dangling items. */
6326                 tmp = head;
6327                 head = head->free_next;
6328                 kfree(tmp);
6329         }
6330
6331         return ret;
6332 }
6333
6334 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6335                        struct ocfs2_cached_dealloc_ctxt *ctxt)
6336 {
6337         int ret = 0, ret2;
6338         struct ocfs2_per_slot_free_list *fl;
6339
6340         if (!ctxt)
6341                 return 0;
6342
6343         while (ctxt->c_first_suballocator) {
6344                 fl = ctxt->c_first_suballocator;
6345
6346                 if (fl->f_first) {
6347                         mlog(0, "Free items: (type %u, slot %d)\n",
6348                              fl->f_inode_type, fl->f_slot);
6349                         ret2 = ocfs2_free_cached_blocks(osb,
6350                                                         fl->f_inode_type,
6351                                                         fl->f_slot,
6352                                                         fl->f_first);
6353                         if (ret2)
6354                                 mlog_errno(ret2);
6355                         if (!ret)
6356                                 ret = ret2;
6357                 }
6358
6359                 ctxt->c_first_suballocator = fl->f_next_suballocator;
6360                 kfree(fl);
6361         }
6362
6363         if (ctxt->c_global_allocator) {
6364                 ret2 = ocfs2_free_cached_clusters(osb,
6365                                                   ctxt->c_global_allocator);
6366                 if (ret2)
6367                         mlog_errno(ret2);
6368                 if (!ret)
6369                         ret = ret2;
6370
6371                 ctxt->c_global_allocator = NULL;
6372         }
6373
6374         return ret;
6375 }
6376
6377 static struct ocfs2_per_slot_free_list *
6378 ocfs2_find_per_slot_free_list(int type,
6379                               int slot,
6380                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6381 {
6382         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6383
6384         while (fl) {
6385                 if (fl->f_inode_type == type && fl->f_slot == slot)
6386                         return fl;
6387
6388                 fl = fl->f_next_suballocator;
6389         }
6390
6391         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6392         if (fl) {
6393                 fl->f_inode_type = type;
6394                 fl->f_slot = slot;
6395                 fl->f_first = NULL;
6396                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6397
6398                 ctxt->c_first_suballocator = fl;
6399         }
6400         return fl;
6401 }
6402
6403 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6404                                      int type, int slot, u64 blkno,
6405                                      unsigned int bit)
6406 {
6407         int ret;
6408         struct ocfs2_per_slot_free_list *fl;
6409         struct ocfs2_cached_block_free *item;
6410
6411         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6412         if (fl == NULL) {
6413                 ret = -ENOMEM;
6414                 mlog_errno(ret);
6415                 goto out;
6416         }
6417
6418         item = kmalloc(sizeof(*item), GFP_NOFS);
6419         if (item == NULL) {
6420                 ret = -ENOMEM;
6421                 mlog_errno(ret);
6422                 goto out;
6423         }
6424
6425         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6426              type, slot, bit, (unsigned long long)blkno);
6427
6428         item->free_blk = blkno;
6429         item->free_bit = bit;
6430         item->free_next = fl->f_first;
6431
6432         fl->f_first = item;
6433
6434         ret = 0;
6435 out:
6436         return ret;
6437 }
6438
6439 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6440                                          struct ocfs2_extent_block *eb)
6441 {
6442         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6443                                          le16_to_cpu(eb->h_suballoc_slot),
6444                                          le64_to_cpu(eb->h_blkno),
6445                                          le16_to_cpu(eb->h_suballoc_bit));
6446 }
6447
6448 /* This function will figure out whether the currently last extent
6449  * block will be deleted, and if it will, what the new last extent
6450  * block will be so we can update his h_next_leaf_blk field, as well
6451  * as the dinodes i_last_eb_blk */
6452 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6453                                        unsigned int clusters_to_del,
6454                                        struct ocfs2_path *path,
6455                                        struct buffer_head **new_last_eb)
6456 {
6457         int next_free, ret = 0;
6458         u32 cpos;
6459         struct ocfs2_extent_rec *rec;
6460         struct ocfs2_extent_block *eb;
6461         struct ocfs2_extent_list *el;
6462         struct buffer_head *bh = NULL;
6463
6464         *new_last_eb = NULL;
6465
6466         /* we have no tree, so of course, no last_eb. */
6467         if (!path->p_tree_depth)
6468                 goto out;
6469
6470         /* trunc to zero special case - this makes tree_depth = 0
6471          * regardless of what it is.  */
6472         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6473                 goto out;
6474
6475         el = path_leaf_el(path);
6476         BUG_ON(!el->l_next_free_rec);
6477
6478         /*
6479          * Make sure that this extent list will actually be empty
6480          * after we clear away the data. We can shortcut out if
6481          * there's more than one non-empty extent in the
6482          * list. Otherwise, a check of the remaining extent is
6483          * necessary.
6484          */
6485         next_free = le16_to_cpu(el->l_next_free_rec);
6486         rec = NULL;
6487         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6488                 if (next_free > 2)
6489                         goto out;
6490
6491                 /* We may have a valid extent in index 1, check it. */
6492                 if (next_free == 2)
6493                         rec = &el->l_recs[1];
6494
6495                 /*
6496                  * Fall through - no more nonempty extents, so we want
6497                  * to delete this leaf.
6498                  */
6499         } else {
6500                 if (next_free > 1)
6501                         goto out;
6502
6503                 rec = &el->l_recs[0];
6504         }
6505
6506         if (rec) {
6507                 /*
6508                  * Check it we'll only be trimming off the end of this
6509                  * cluster.
6510                  */
6511                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6512                         goto out;
6513         }
6514
6515         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6516         if (ret) {
6517                 mlog_errno(ret);
6518                 goto out;
6519         }
6520
6521         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6522         if (ret) {
6523                 mlog_errno(ret);
6524                 goto out;
6525         }
6526
6527         eb = (struct ocfs2_extent_block *) bh->b_data;
6528         el = &eb->h_list;
6529
6530         /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6531          * Any corruption is a code bug. */
6532         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6533
6534         *new_last_eb = bh;
6535         get_bh(*new_last_eb);
6536         mlog(0, "returning block %llu, (cpos: %u)\n",
6537              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6538 out:
6539         brelse(bh);
6540
6541         return ret;
6542 }
6543
6544 /*
6545  * Trim some clusters off the rightmost edge of a tree. Only called
6546  * during truncate.
6547  *
6548  * The caller needs to:
6549  *   - start journaling of each path component.
6550  *   - compute and fully set up any new last ext block
6551  */
6552 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6553                            handle_t *handle, struct ocfs2_truncate_context *tc,
6554                            u32 clusters_to_del, u64 *delete_start)
6555 {
6556         int ret, i, index = path->p_tree_depth;
6557         u32 new_edge = 0;
6558         u64 deleted_eb = 0;
6559         struct buffer_head *bh;
6560         struct ocfs2_extent_list *el;
6561         struct ocfs2_extent_rec *rec;
6562
6563         *delete_start = 0;
6564
6565         while (index >= 0) {
6566                 bh = path->p_node[index].bh;
6567                 el = path->p_node[index].el;
6568
6569                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6570                      index,  (unsigned long long)bh->b_blocknr);
6571
6572                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6573
6574                 if (index !=
6575                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6576                         ocfs2_error(inode->i_sb,
6577                                     "Inode %lu has invalid ext. block %llu",
6578                                     inode->i_ino,
6579                                     (unsigned long long)bh->b_blocknr);
6580                         ret = -EROFS;
6581                         goto out;
6582                 }
6583
6584 find_tail_record:
6585                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6586                 rec = &el->l_recs[i];
6587
6588                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6589                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6590                      ocfs2_rec_clusters(el, rec),
6591                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6592                      le16_to_cpu(el->l_next_free_rec));
6593
6594                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6595
6596                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6597                         /*
6598                          * If the leaf block contains a single empty
6599                          * extent and no records, we can just remove
6600                          * the block.
6601                          */
6602                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6603                                 memset(rec, 0,
6604                                        sizeof(struct ocfs2_extent_rec));
6605                                 el->l_next_free_rec = cpu_to_le16(0);
6606
6607                                 goto delete;
6608                         }
6609
6610                         /*
6611                          * Remove any empty extents by shifting things
6612                          * left. That should make life much easier on
6613                          * the code below. This condition is rare
6614                          * enough that we shouldn't see a performance
6615                          * hit.
6616                          */
6617                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6618                                 le16_add_cpu(&el->l_next_free_rec, -1);
6619
6620                                 for(i = 0;
6621                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6622                                         el->l_recs[i] = el->l_recs[i + 1];
6623
6624                                 memset(&el->l_recs[i], 0,
6625                                        sizeof(struct ocfs2_extent_rec));
6626
6627                                 /*
6628                                  * We've modified our extent list. The
6629                                  * simplest way to handle this change
6630                                  * is to being the search from the
6631                                  * start again.
6632                                  */
6633                                 goto find_tail_record;
6634                         }
6635
6636                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6637
6638                         /*
6639                          * We'll use "new_edge" on our way back up the
6640                          * tree to know what our rightmost cpos is.
6641                          */
6642                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6643                         new_edge += le32_to_cpu(rec->e_cpos);
6644
6645                         /*
6646                          * The caller will use this to delete data blocks.
6647                          */
6648                         *delete_start = le64_to_cpu(rec->e_blkno)
6649                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6650                                         le16_to_cpu(rec->e_leaf_clusters));
6651
6652                         /*
6653                          * If it's now empty, remove this record.
6654                          */
6655                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6656                                 memset(rec, 0,
6657                                        sizeof(struct ocfs2_extent_rec));
6658                                 le16_add_cpu(&el->l_next_free_rec, -1);
6659                         }
6660                 } else {
6661                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6662                                 memset(rec, 0,
6663                                        sizeof(struct ocfs2_extent_rec));
6664                                 le16_add_cpu(&el->l_next_free_rec, -1);
6665
6666                                 goto delete;
6667                         }
6668
6669                         /* Can this actually happen? */
6670                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6671                                 goto delete;
6672
6673                         /*
6674                          * We never actually deleted any clusters
6675                          * because our leaf was empty. There's no
6676                          * reason to adjust the rightmost edge then.
6677                          */
6678                         if (new_edge == 0)
6679                                 goto delete;
6680
6681                         rec->e_int_clusters = cpu_to_le32(new_edge);
6682                         le32_add_cpu(&rec->e_int_clusters,
6683                                      -le32_to_cpu(rec->e_cpos));
6684
6685                          /*
6686                           * A deleted child record should have been
6687                           * caught above.
6688                           */
6689                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6690                 }
6691
6692 delete:
6693                 ret = ocfs2_journal_dirty(handle, bh);
6694                 if (ret) {
6695                         mlog_errno(ret);
6696                         goto out;
6697                 }
6698
6699                 mlog(0, "extent list container %llu, after: record %d: "
6700                      "(%u, %u, %llu), next = %u.\n",
6701                      (unsigned long long)bh->b_blocknr, i,
6702                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6703                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6704                      le16_to_cpu(el->l_next_free_rec));
6705
6706                 /*
6707                  * We must be careful to only attempt delete of an
6708                  * extent block (and not the root inode block).
6709                  */
6710                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6711                         struct ocfs2_extent_block *eb =
6712                                 (struct ocfs2_extent_block *)bh->b_data;
6713
6714                         /*
6715                          * Save this for use when processing the
6716                          * parent block.
6717                          */
6718                         deleted_eb = le64_to_cpu(eb->h_blkno);
6719
6720                         mlog(0, "deleting this extent block.\n");
6721
6722                         ocfs2_remove_from_cache(inode, bh);
6723
6724                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6725                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6726                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6727
6728                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6729                         /* An error here is not fatal. */
6730                         if (ret < 0)
6731                                 mlog_errno(ret);
6732                 } else {
6733                         deleted_eb = 0;
6734                 }
6735
6736                 index--;
6737         }
6738
6739         ret = 0;
6740 out:
6741         return ret;
6742 }
6743
6744 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6745                              unsigned int clusters_to_del,
6746                              struct inode *inode,
6747                              struct buffer_head *fe_bh,
6748                              handle_t *handle,
6749                              struct ocfs2_truncate_context *tc,
6750                              struct ocfs2_path *path)
6751 {
6752         int status;
6753         struct ocfs2_dinode *fe;
6754         struct ocfs2_extent_block *last_eb = NULL;
6755         struct ocfs2_extent_list *el;
6756         struct buffer_head *last_eb_bh = NULL;
6757         u64 delete_blk = 0;
6758
6759         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6760
6761         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6762                                              path, &last_eb_bh);
6763         if (status < 0) {
6764                 mlog_errno(status);
6765                 goto bail;
6766         }
6767
6768         /*
6769          * Each component will be touched, so we might as well journal
6770          * here to avoid having to handle errors later.
6771          */
6772         status = ocfs2_journal_access_path(inode, handle, path);
6773         if (status < 0) {
6774                 mlog_errno(status);
6775                 goto bail;
6776         }
6777
6778         if (last_eb_bh) {
6779                 status = ocfs2_journal_access_eb(handle, inode, last_eb_bh,
6780                                                  OCFS2_JOURNAL_ACCESS_WRITE);
6781                 if (status < 0) {
6782                         mlog_errno(status);
6783                         goto bail;
6784                 }
6785
6786                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6787         }
6788
6789         el = &(fe->id2.i_list);
6790
6791         /*
6792          * Lower levels depend on this never happening, but it's best
6793          * to check it up here before changing the tree.
6794          */
6795         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6796                 ocfs2_error(inode->i_sb,
6797                             "Inode %lu has an empty extent record, depth %u\n",
6798                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6799                 status = -EROFS;
6800                 goto bail;
6801         }
6802
6803         vfs_dq_free_space_nodirty(inode,
6804                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6805         spin_lock(&OCFS2_I(inode)->ip_lock);
6806         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6807                                       clusters_to_del;
6808         spin_unlock(&OCFS2_I(inode)->ip_lock);
6809         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6810         inode->i_blocks = ocfs2_inode_sector_count(inode);
6811
6812         status = ocfs2_trim_tree(inode, path, handle, tc,
6813                                  clusters_to_del, &delete_blk);
6814         if (status) {
6815                 mlog_errno(status);
6816                 goto bail;
6817         }
6818
6819         if (le32_to_cpu(fe->i_clusters) == 0) {
6820                 /* trunc to zero is a special case. */
6821                 el->l_tree_depth = 0;
6822                 fe->i_last_eb_blk = 0;
6823         } else if (last_eb)
6824                 fe->i_last_eb_blk = last_eb->h_blkno;
6825
6826         status = ocfs2_journal_dirty(handle, fe_bh);
6827         if (status < 0) {
6828                 mlog_errno(status);
6829                 goto bail;
6830         }
6831
6832         if (last_eb) {
6833                 /* If there will be a new last extent block, then by
6834                  * definition, there cannot be any leaves to the right of
6835                  * him. */
6836                 last_eb->h_next_leaf_blk = 0;
6837                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6838                 if (status < 0) {
6839                         mlog_errno(status);
6840                         goto bail;
6841                 }
6842         }
6843
6844         if (delete_blk) {
6845                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6846                                                    clusters_to_del);
6847                 if (status < 0) {
6848                         mlog_errno(status);
6849                         goto bail;
6850                 }
6851         }
6852         status = 0;
6853 bail:
6854         brelse(last_eb_bh);
6855         mlog_exit(status);
6856         return status;
6857 }
6858
6859 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6860 {
6861         set_buffer_uptodate(bh);
6862         mark_buffer_dirty(bh);
6863         return 0;
6864 }
6865
6866 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6867                                      unsigned int from, unsigned int to,
6868                                      struct page *page, int zero, u64 *phys)
6869 {
6870         int ret, partial = 0;
6871
6872         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6873         if (ret)
6874                 mlog_errno(ret);
6875
6876         if (zero)
6877                 zero_user_segment(page, from, to);
6878
6879         /*
6880          * Need to set the buffers we zero'd into uptodate
6881          * here if they aren't - ocfs2_map_page_blocks()
6882          * might've skipped some
6883          */
6884         ret = walk_page_buffers(handle, page_buffers(page),
6885                                 from, to, &partial,
6886                                 ocfs2_zero_func);
6887         if (ret < 0)
6888                 mlog_errno(ret);
6889         else if (ocfs2_should_order_data(inode)) {
6890                 ret = ocfs2_jbd2_file_inode(handle, inode);
6891                 if (ret < 0)
6892                         mlog_errno(ret);
6893         }
6894
6895         if (!partial)
6896                 SetPageUptodate(page);
6897
6898         flush_dcache_page(page);
6899 }
6900
6901 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6902                                      loff_t end, struct page **pages,
6903                                      int numpages, u64 phys, handle_t *handle)
6904 {
6905         int i;
6906         struct page *page;
6907         unsigned int from, to = PAGE_CACHE_SIZE;
6908         struct super_block *sb = inode->i_sb;
6909
6910         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6911
6912         if (numpages == 0)
6913                 goto out;
6914
6915         to = PAGE_CACHE_SIZE;
6916         for(i = 0; i < numpages; i++) {
6917                 page = pages[i];
6918
6919                 from = start & (PAGE_CACHE_SIZE - 1);
6920                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6921                         to = end & (PAGE_CACHE_SIZE - 1);
6922
6923                 BUG_ON(from > PAGE_CACHE_SIZE);
6924                 BUG_ON(to > PAGE_CACHE_SIZE);
6925
6926                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6927                                          &phys);
6928
6929                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6930         }
6931 out:
6932         if (pages)
6933                 ocfs2_unlock_and_free_pages(pages, numpages);
6934 }
6935
6936 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6937                                 struct page **pages, int *num)
6938 {
6939         int numpages, ret = 0;
6940         struct super_block *sb = inode->i_sb;
6941         struct address_space *mapping = inode->i_mapping;
6942         unsigned long index;
6943         loff_t last_page_bytes;
6944
6945         BUG_ON(start > end);
6946
6947         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6948                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6949
6950         numpages = 0;
6951         last_page_bytes = PAGE_ALIGN(end);
6952         index = start >> PAGE_CACHE_SHIFT;
6953         do {
6954                 pages[numpages] = grab_cache_page(mapping, index);
6955                 if (!pages[numpages]) {
6956                         ret = -ENOMEM;
6957                         mlog_errno(ret);
6958                         goto out;
6959                 }
6960
6961                 numpages++;
6962                 index++;
6963         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6964
6965 out:
6966         if (ret != 0) {
6967                 if (pages)
6968                         ocfs2_unlock_and_free_pages(pages, numpages);
6969                 numpages = 0;
6970         }
6971
6972         *num = numpages;
6973
6974         return ret;
6975 }
6976
6977 /*
6978  * Zero the area past i_size but still within an allocated
6979  * cluster. This avoids exposing nonzero data on subsequent file
6980  * extends.
6981  *
6982  * We need to call this before i_size is updated on the inode because
6983  * otherwise block_write_full_page() will skip writeout of pages past
6984  * i_size. The new_i_size parameter is passed for this reason.
6985  */
6986 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6987                                   u64 range_start, u64 range_end)
6988 {
6989         int ret = 0, numpages;
6990         struct page **pages = NULL;
6991         u64 phys;
6992         unsigned int ext_flags;
6993         struct super_block *sb = inode->i_sb;
6994
6995         /*
6996          * File systems which don't support sparse files zero on every
6997          * extend.
6998          */
6999         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
7000                 return 0;
7001
7002         pages = kcalloc(ocfs2_pages_per_cluster(sb),
7003                         sizeof(struct page *), GFP_NOFS);
7004         if (pages == NULL) {
7005                 ret = -ENOMEM;
7006                 mlog_errno(ret);
7007                 goto out;
7008         }
7009
7010         if (range_start == range_end)
7011                 goto out;
7012
7013         ret = ocfs2_extent_map_get_blocks(inode,
7014                                           range_start >> sb->s_blocksize_bits,
7015                                           &phys, NULL, &ext_flags);
7016         if (ret) {
7017                 mlog_errno(ret);
7018                 goto out;
7019         }
7020
7021         /*
7022          * Tail is a hole, or is marked unwritten. In either case, we
7023          * can count on read and write to return/push zero's.
7024          */
7025         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7026                 goto out;
7027
7028         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7029                                    &numpages);
7030         if (ret) {
7031                 mlog_errno(ret);
7032                 goto out;
7033         }
7034
7035         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7036                                  numpages, phys, handle);
7037
7038         /*
7039          * Initiate writeout of the pages we zero'd here. We don't
7040          * wait on them - the truncate_inode_pages() call later will
7041          * do that for us.
7042          */
7043         ret = do_sync_mapping_range(inode->i_mapping, range_start,
7044                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
7045         if (ret)
7046                 mlog_errno(ret);
7047
7048 out:
7049         if (pages)
7050                 kfree(pages);
7051
7052         return ret;
7053 }
7054
7055 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7056                                              struct ocfs2_dinode *di)
7057 {
7058         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7059         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7060
7061         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7062                 memset(&di->id2, 0, blocksize -
7063                                     offsetof(struct ocfs2_dinode, id2) -
7064                                     xattrsize);
7065         else
7066                 memset(&di->id2, 0, blocksize -
7067                                     offsetof(struct ocfs2_dinode, id2));
7068 }
7069
7070 void ocfs2_dinode_new_extent_list(struct inode *inode,
7071                                   struct ocfs2_dinode *di)
7072 {
7073         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7074         di->id2.i_list.l_tree_depth = 0;
7075         di->id2.i_list.l_next_free_rec = 0;
7076         di->id2.i_list.l_count = cpu_to_le16(
7077                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7078 }
7079
7080 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7081 {
7082         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7083         struct ocfs2_inline_data *idata = &di->id2.i_data;
7084
7085         spin_lock(&oi->ip_lock);
7086         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7087         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7088         spin_unlock(&oi->ip_lock);
7089
7090         /*
7091          * We clear the entire i_data structure here so that all
7092          * fields can be properly initialized.
7093          */
7094         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7095
7096         idata->id_count = cpu_to_le16(
7097                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7098 }
7099
7100 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7101                                          struct buffer_head *di_bh)
7102 {
7103         int ret, i, has_data, num_pages = 0;
7104         handle_t *handle;
7105         u64 uninitialized_var(block);
7106         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7107         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7108         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7109         struct ocfs2_alloc_context *data_ac = NULL;
7110         struct page **pages = NULL;
7111         loff_t end = osb->s_clustersize;
7112         struct ocfs2_extent_tree et;
7113         int did_quota = 0;
7114
7115         has_data = i_size_read(inode) ? 1 : 0;
7116
7117         if (has_data) {
7118                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7119                                 sizeof(struct page *), GFP_NOFS);
7120                 if (pages == NULL) {
7121                         ret = -ENOMEM;
7122                         mlog_errno(ret);
7123                         goto out;
7124                 }
7125
7126                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7127                 if (ret) {
7128                         mlog_errno(ret);
7129                         goto out;
7130                 }
7131         }
7132
7133         handle = ocfs2_start_trans(osb,
7134                                    ocfs2_inline_to_extents_credits(osb->sb));
7135         if (IS_ERR(handle)) {
7136                 ret = PTR_ERR(handle);
7137                 mlog_errno(ret);
7138                 goto out_unlock;
7139         }
7140
7141         ret = ocfs2_journal_access_di(handle, inode, di_bh,
7142                                       OCFS2_JOURNAL_ACCESS_WRITE);
7143         if (ret) {
7144                 mlog_errno(ret);
7145                 goto out_commit;
7146         }
7147
7148         if (has_data) {
7149                 u32 bit_off, num;
7150                 unsigned int page_end;
7151                 u64 phys;
7152
7153                 if (vfs_dq_alloc_space_nodirty(inode,
7154                                        ocfs2_clusters_to_bytes(osb->sb, 1))) {
7155                         ret = -EDQUOT;
7156                         goto out_commit;
7157                 }
7158                 did_quota = 1;
7159
7160                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7161                                            &num);
7162                 if (ret) {
7163                         mlog_errno(ret);
7164                         goto out_commit;
7165                 }
7166
7167                 /*
7168                  * Save two copies, one for insert, and one that can
7169                  * be changed by ocfs2_map_and_dirty_page() below.
7170                  */
7171                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7172
7173                 /*
7174                  * Non sparse file systems zero on extend, so no need
7175                  * to do that now.
7176                  */
7177                 if (!ocfs2_sparse_alloc(osb) &&
7178                     PAGE_CACHE_SIZE < osb->s_clustersize)
7179                         end = PAGE_CACHE_SIZE;
7180
7181                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7182                 if (ret) {
7183                         mlog_errno(ret);
7184                         goto out_commit;
7185                 }
7186
7187                 /*
7188                  * This should populate the 1st page for us and mark
7189                  * it up to date.
7190                  */
7191                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7192                 if (ret) {
7193                         mlog_errno(ret);
7194                         goto out_commit;
7195                 }
7196
7197                 page_end = PAGE_CACHE_SIZE;
7198                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7199                         page_end = osb->s_clustersize;
7200
7201                 for (i = 0; i < num_pages; i++)
7202                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7203                                                  pages[i], i > 0, &phys);
7204         }
7205
7206         spin_lock(&oi->ip_lock);
7207         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7208         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7209         spin_unlock(&oi->ip_lock);
7210
7211         ocfs2_dinode_new_extent_list(inode, di);
7212
7213         ocfs2_journal_dirty(handle, di_bh);
7214
7215         if (has_data) {
7216                 /*
7217                  * An error at this point should be extremely rare. If
7218                  * this proves to be false, we could always re-build
7219                  * the in-inode data from our pages.
7220                  */
7221                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7222                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7223                                           0, block, 1, 0, NULL);
7224                 if (ret) {
7225                         mlog_errno(ret);
7226                         goto out_commit;
7227                 }
7228
7229                 inode->i_blocks = ocfs2_inode_sector_count(inode);
7230         }
7231
7232 out_commit:
7233         if (ret < 0 && did_quota)
7234                 vfs_dq_free_space_nodirty(inode,
7235                                           ocfs2_clusters_to_bytes(osb->sb, 1));
7236
7237         ocfs2_commit_trans(osb, handle);
7238
7239 out_unlock:
7240         if (data_ac)
7241                 ocfs2_free_alloc_context(data_ac);
7242
7243 out:
7244         if (pages) {
7245                 ocfs2_unlock_and_free_pages(pages, num_pages);
7246                 kfree(pages);
7247         }
7248
7249         return ret;
7250 }
7251
7252 /*
7253  * It is expected, that by the time you call this function,
7254  * inode->i_size and fe->i_size have been adjusted.
7255  *
7256  * WARNING: This will kfree the truncate context
7257  */
7258 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7259                           struct inode *inode,
7260                           struct buffer_head *fe_bh,
7261                           struct ocfs2_truncate_context *tc)
7262 {
7263         int status, i, credits, tl_sem = 0;
7264         u32 clusters_to_del, new_highest_cpos, range;
7265         struct ocfs2_extent_list *el;
7266         handle_t *handle = NULL;
7267         struct inode *tl_inode = osb->osb_tl_inode;
7268         struct ocfs2_path *path = NULL;
7269         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7270
7271         mlog_entry_void();
7272
7273         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7274                                                      i_size_read(inode));
7275
7276         path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7277                               ocfs2_journal_access_di);
7278         if (!path) {
7279                 status = -ENOMEM;
7280                 mlog_errno(status);
7281                 goto bail;
7282         }
7283
7284         ocfs2_extent_map_trunc(inode, new_highest_cpos);
7285
7286 start:
7287         /*
7288          * Check that we still have allocation to delete.
7289          */
7290         if (OCFS2_I(inode)->ip_clusters == 0) {
7291                 status = 0;
7292                 goto bail;
7293         }
7294
7295         /*
7296          * Truncate always works against the rightmost tree branch.
7297          */
7298         status = ocfs2_find_path(inode, path, UINT_MAX);
7299         if (status) {
7300                 mlog_errno(status);
7301                 goto bail;
7302         }
7303
7304         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7305              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7306
7307         /*
7308          * By now, el will point to the extent list on the bottom most
7309          * portion of this tree. Only the tail record is considered in
7310          * each pass.
7311          *
7312          * We handle the following cases, in order:
7313          * - empty extent: delete the remaining branch
7314          * - remove the entire record
7315          * - remove a partial record
7316          * - no record needs to be removed (truncate has completed)
7317          */
7318         el = path_leaf_el(path);
7319         if (le16_to_cpu(el->l_next_free_rec) == 0) {
7320                 ocfs2_error(inode->i_sb,
7321                             "Inode %llu has empty extent block at %llu\n",
7322                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7323                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
7324                 status = -EROFS;
7325                 goto bail;
7326         }
7327
7328         i = le16_to_cpu(el->l_next_free_rec) - 1;
7329         range = le32_to_cpu(el->l_recs[i].e_cpos) +
7330                 ocfs2_rec_clusters(el, &el->l_recs[i]);
7331         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7332                 clusters_to_del = 0;
7333         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7334                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7335         } else if (range > new_highest_cpos) {
7336                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7337                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
7338                                   new_highest_cpos;
7339         } else {
7340                 status = 0;
7341                 goto bail;
7342         }
7343
7344         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7345              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7346
7347         mutex_lock(&tl_inode->i_mutex);
7348         tl_sem = 1;
7349         /* ocfs2_truncate_log_needs_flush guarantees us at least one
7350          * record is free for use. If there isn't any, we flush to get
7351          * an empty truncate log.  */
7352         if (ocfs2_truncate_log_needs_flush(osb)) {
7353                 status = __ocfs2_flush_truncate_log(osb);
7354                 if (status < 0) {
7355                         mlog_errno(status);
7356                         goto bail;
7357                 }
7358         }
7359
7360         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7361                                                 (struct ocfs2_dinode *)fe_bh->b_data,
7362                                                 el);
7363         handle = ocfs2_start_trans(osb, credits);
7364         if (IS_ERR(handle)) {
7365                 status = PTR_ERR(handle);
7366                 handle = NULL;
7367                 mlog_errno(status);
7368                 goto bail;
7369         }
7370
7371         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7372                                    tc, path);
7373         if (status < 0) {
7374                 mlog_errno(status);
7375                 goto bail;
7376         }
7377
7378         mutex_unlock(&tl_inode->i_mutex);
7379         tl_sem = 0;
7380
7381         ocfs2_commit_trans(osb, handle);
7382         handle = NULL;
7383
7384         ocfs2_reinit_path(path, 1);
7385
7386         /*
7387          * The check above will catch the case where we've truncated
7388          * away all allocation.
7389          */
7390         goto start;
7391
7392 bail:
7393
7394         ocfs2_schedule_truncate_log_flush(osb, 1);
7395
7396         if (tl_sem)
7397                 mutex_unlock(&tl_inode->i_mutex);
7398
7399         if (handle)
7400                 ocfs2_commit_trans(osb, handle);
7401
7402         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7403
7404         ocfs2_free_path(path);
7405
7406         /* This will drop the ext_alloc cluster lock for us */
7407         ocfs2_free_truncate_context(tc);
7408
7409         mlog_exit(status);
7410         return status;
7411 }
7412
7413 /*
7414  * Expects the inode to already be locked.
7415  */
7416 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7417                            struct inode *inode,
7418                            struct buffer_head *fe_bh,
7419                            struct ocfs2_truncate_context **tc)
7420 {
7421         int status;
7422         unsigned int new_i_clusters;
7423         struct ocfs2_dinode *fe;
7424         struct ocfs2_extent_block *eb;
7425         struct buffer_head *last_eb_bh = NULL;
7426
7427         mlog_entry_void();
7428
7429         *tc = NULL;
7430
7431         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7432                                                   i_size_read(inode));
7433         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7434
7435         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7436              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7437              (unsigned long long)le64_to_cpu(fe->i_size));
7438
7439         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7440         if (!(*tc)) {
7441                 status = -ENOMEM;
7442                 mlog_errno(status);
7443                 goto bail;
7444         }
7445         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7446
7447         if (fe->id2.i_list.l_tree_depth) {
7448                 status = ocfs2_read_extent_block(inode,
7449                                                  le64_to_cpu(fe->i_last_eb_blk),
7450                                                  &last_eb_bh);
7451                 if (status < 0) {
7452                         mlog_errno(status);
7453                         goto bail;
7454                 }
7455                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7456         }
7457
7458         (*tc)->tc_last_eb_bh = last_eb_bh;
7459
7460         status = 0;
7461 bail:
7462         if (status < 0) {
7463                 if (*tc)
7464                         ocfs2_free_truncate_context(*tc);
7465                 *tc = NULL;
7466         }
7467         mlog_exit_void();
7468         return status;
7469 }
7470
7471 /*
7472  * 'start' is inclusive, 'end' is not.
7473  */
7474 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7475                           unsigned int start, unsigned int end, int trunc)
7476 {
7477         int ret;
7478         unsigned int numbytes;
7479         handle_t *handle;
7480         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7481         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7482         struct ocfs2_inline_data *idata = &di->id2.i_data;
7483
7484         if (end > i_size_read(inode))
7485                 end = i_size_read(inode);
7486
7487         BUG_ON(start >= end);
7488
7489         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7490             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7491             !ocfs2_supports_inline_data(osb)) {
7492                 ocfs2_error(inode->i_sb,
7493                             "Inline data flags for inode %llu don't agree! "
7494                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7495                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7496                             le16_to_cpu(di->i_dyn_features),
7497                             OCFS2_I(inode)->ip_dyn_features,
7498                             osb->s_feature_incompat);
7499                 ret = -EROFS;
7500                 goto out;
7501         }
7502
7503         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7504         if (IS_ERR(handle)) {
7505                 ret = PTR_ERR(handle);
7506                 mlog_errno(ret);
7507                 goto out;
7508         }
7509
7510         ret = ocfs2_journal_access_di(handle, inode, di_bh,
7511                                       OCFS2_JOURNAL_ACCESS_WRITE);
7512         if (ret) {
7513                 mlog_errno(ret);
7514                 goto out_commit;
7515         }
7516
7517         numbytes = end - start;
7518         memset(idata->id_data + start, 0, numbytes);
7519
7520         /*
7521          * No need to worry about the data page here - it's been
7522          * truncated already and inline data doesn't need it for
7523          * pushing zero's to disk, so we'll let readpage pick it up
7524          * later.
7525          */
7526         if (trunc) {
7527                 i_size_write(inode, start);
7528                 di->i_size = cpu_to_le64(start);
7529         }
7530
7531         inode->i_blocks = ocfs2_inode_sector_count(inode);
7532         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7533
7534         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7535         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7536
7537         ocfs2_journal_dirty(handle, di_bh);
7538
7539 out_commit:
7540         ocfs2_commit_trans(osb, handle);
7541
7542 out:
7543         return ret;
7544 }
7545
7546 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7547 {
7548         /*
7549          * The caller is responsible for completing deallocation
7550          * before freeing the context.
7551          */
7552         if (tc->tc_dealloc.c_first_suballocator != NULL)
7553                 mlog(ML_NOTICE,
7554                      "Truncate completion has non-empty dealloc context\n");
7555
7556         brelse(tc->tc_last_eb_bh);
7557
7558         kfree(tc);
7559 }