Merge branch 'stable/bug.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / fs / jfs / jfs_logmgr.c
1 /*
2  *   Copyright (C) International Business Machines Corp., 2000-2004
3  *   Portions Copyright (C) Christoph Hellwig, 2001-2002
4  *
5  *   This program is free software;  you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
13  *   the GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program;  if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  */
19
20 /*
21  *      jfs_logmgr.c: log manager
22  *
23  * for related information, see transaction manager (jfs_txnmgr.c), and
24  * recovery manager (jfs_logredo.c).
25  *
26  * note: for detail, RTFS.
27  *
28  *      log buffer manager:
29  * special purpose buffer manager supporting log i/o requirements.
30  * per log serial pageout of logpage
31  * queuing i/o requests and redrive i/o at iodone
32  * maintain current logpage buffer
33  * no caching since append only
34  * appropriate jfs buffer cache buffers as needed
35  *
36  *      group commit:
37  * transactions which wrote COMMIT records in the same in-memory
38  * log page during the pageout of previous/current log page(s) are
39  * committed together by the pageout of the page.
40  *
41  *      TBD lazy commit:
42  * transactions are committed asynchronously when the log page
43  * containing it COMMIT is paged out when it becomes full;
44  *
45  *      serialization:
46  * . a per log lock serialize log write.
47  * . a per log lock serialize group commit.
48  * . a per log lock serialize log open/close;
49  *
50  *      TBD log integrity:
51  * careful-write (ping-pong) of last logpage to recover from crash
52  * in overwrite.
53  * detection of split (out-of-order) write of physical sectors
54  * of last logpage via timestamp at end of each sector
55  * with its mirror data array at trailer).
56  *
57  *      alternatives:
58  * lsn - 64-bit monotonically increasing integer vs
59  * 32-bit lspn and page eor.
60  */
61
62 #include <linux/fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/interrupt.h>
65 #include <linux/completion.h>
66 #include <linux/kthread.h>
67 #include <linux/buffer_head.h>          /* for sync_blockdev() */
68 #include <linux/bio.h>
69 #include <linux/freezer.h>
70 #include <linux/delay.h>
71 #include <linux/mutex.h>
72 #include <linux/seq_file.h>
73 #include <linux/slab.h>
74 #include "jfs_incore.h"
75 #include "jfs_filsys.h"
76 #include "jfs_metapage.h"
77 #include "jfs_superblock.h"
78 #include "jfs_txnmgr.h"
79 #include "jfs_debug.h"
80
81
82 /*
83  * lbuf's ready to be redriven.  Protected by log_redrive_lock (jfsIO thread)
84  */
85 static struct lbuf *log_redrive_list;
86 static DEFINE_SPINLOCK(log_redrive_lock);
87
88
89 /*
90  *      log read/write serialization (per log)
91  */
92 #define LOG_LOCK_INIT(log)      mutex_init(&(log)->loglock)
93 #define LOG_LOCK(log)           mutex_lock(&((log)->loglock))
94 #define LOG_UNLOCK(log)         mutex_unlock(&((log)->loglock))
95
96
97 /*
98  *      log group commit serialization (per log)
99  */
100
101 #define LOGGC_LOCK_INIT(log)    spin_lock_init(&(log)->gclock)
102 #define LOGGC_LOCK(log)         spin_lock_irq(&(log)->gclock)
103 #define LOGGC_UNLOCK(log)       spin_unlock_irq(&(log)->gclock)
104 #define LOGGC_WAKEUP(tblk)      wake_up_all(&(tblk)->gcwait)
105
106 /*
107  *      log sync serialization (per log)
108  */
109 #define LOGSYNC_DELTA(logsize)          min((logsize)/8, 128*LOGPSIZE)
110 #define LOGSYNC_BARRIER(logsize)        ((logsize)/4)
111 /*
112 #define LOGSYNC_DELTA(logsize)          min((logsize)/4, 256*LOGPSIZE)
113 #define LOGSYNC_BARRIER(logsize)        ((logsize)/2)
114 */
115
116
117 /*
118  *      log buffer cache synchronization
119  */
120 static DEFINE_SPINLOCK(jfsLCacheLock);
121
122 #define LCACHE_LOCK(flags)      spin_lock_irqsave(&jfsLCacheLock, flags)
123 #define LCACHE_UNLOCK(flags)    spin_unlock_irqrestore(&jfsLCacheLock, flags)
124
125 /*
126  * See __SLEEP_COND in jfs_locks.h
127  */
128 #define LCACHE_SLEEP_COND(wq, cond, flags)      \
129 do {                                            \
130         if (cond)                               \
131                 break;                          \
132         __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
133 } while (0)
134
135 #define LCACHE_WAKEUP(event)    wake_up(event)
136
137
138 /*
139  *      lbuf buffer cache (lCache) control
140  */
141 /* log buffer manager pageout control (cumulative, inclusive) */
142 #define lbmREAD         0x0001
143 #define lbmWRITE        0x0002  /* enqueue at tail of write queue;
144                                  * init pageout if at head of queue;
145                                  */
146 #define lbmRELEASE      0x0004  /* remove from write queue
147                                  * at completion of pageout;
148                                  * do not free/recycle it yet:
149                                  * caller will free it;
150                                  */
151 #define lbmSYNC         0x0008  /* do not return to freelist
152                                  * when removed from write queue;
153                                  */
154 #define lbmFREE         0x0010  /* return to freelist
155                                  * at completion of pageout;
156                                  * the buffer may be recycled;
157                                  */
158 #define lbmDONE         0x0020
159 #define lbmERROR        0x0040
160 #define lbmGC           0x0080  /* lbmIODone to perform post-GC processing
161                                  * of log page
162                                  */
163 #define lbmDIRECT       0x0100
164
165 /*
166  * Global list of active external journals
167  */
168 static LIST_HEAD(jfs_external_logs);
169 static struct jfs_log *dummy_log = NULL;
170 static DEFINE_MUTEX(jfs_log_mutex);
171
172 /*
173  * forward references
174  */
175 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
176                          struct lrd * lrd, struct tlock * tlck);
177
178 static int lmNextPage(struct jfs_log * log);
179 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
180                            int activate);
181
182 static int open_inline_log(struct super_block *sb);
183 static int open_dummy_log(struct super_block *sb);
184 static int lbmLogInit(struct jfs_log * log);
185 static void lbmLogShutdown(struct jfs_log * log);
186 static struct lbuf *lbmAllocate(struct jfs_log * log, int);
187 static void lbmFree(struct lbuf * bp);
188 static void lbmfree(struct lbuf * bp);
189 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
190 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
191 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
192 static int lbmIOWait(struct lbuf * bp, int flag);
193 static bio_end_io_t lbmIODone;
194 static void lbmStartIO(struct lbuf * bp);
195 static void lmGCwrite(struct jfs_log * log, int cant_block);
196 static int lmLogSync(struct jfs_log * log, int hard_sync);
197
198
199
200 /*
201  *      statistics
202  */
203 #ifdef CONFIG_JFS_STATISTICS
204 static struct lmStat {
205         uint commit;            /* # of commit */
206         uint pagedone;          /* # of page written */
207         uint submitted;         /* # of pages submitted */
208         uint full_page;         /* # of full pages submitted */
209         uint partial_page;      /* # of partial pages submitted */
210 } lmStat;
211 #endif
212
213 static void write_special_inodes(struct jfs_log *log,
214                                  int (*writer)(struct address_space *))
215 {
216         struct jfs_sb_info *sbi;
217
218         list_for_each_entry(sbi, &log->sb_list, log_list) {
219                 writer(sbi->ipbmap->i_mapping);
220                 writer(sbi->ipimap->i_mapping);
221                 writer(sbi->direct_inode->i_mapping);
222         }
223 }
224
225 /*
226  * NAME:        lmLog()
227  *
228  * FUNCTION:    write a log record;
229  *
230  * PARAMETER:
231  *
232  * RETURN:      lsn - offset to the next log record to write (end-of-log);
233  *              -1  - error;
234  *
235  * note: todo: log error handler
236  */
237 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
238           struct tlock * tlck)
239 {
240         int lsn;
241         int diffp, difft;
242         struct metapage *mp = NULL;
243         unsigned long flags;
244
245         jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
246                  log, tblk, lrd, tlck);
247
248         LOG_LOCK(log);
249
250         /* log by (out-of-transaction) JFS ? */
251         if (tblk == NULL)
252                 goto writeRecord;
253
254         /* log from page ? */
255         if (tlck == NULL ||
256             tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
257                 goto writeRecord;
258
259         /*
260          *      initialize/update page/transaction recovery lsn
261          */
262         lsn = log->lsn;
263
264         LOGSYNC_LOCK(log, flags);
265
266         /*
267          * initialize page lsn if first log write of the page
268          */
269         if (mp->lsn == 0) {
270                 mp->log = log;
271                 mp->lsn = lsn;
272                 log->count++;
273
274                 /* insert page at tail of logsynclist */
275                 list_add_tail(&mp->synclist, &log->synclist);
276         }
277
278         /*
279          *      initialize/update lsn of tblock of the page
280          *
281          * transaction inherits oldest lsn of pages associated
282          * with allocation/deallocation of resources (their
283          * log records are used to reconstruct allocation map
284          * at recovery time: inode for inode allocation map,
285          * B+-tree index of extent descriptors for block
286          * allocation map);
287          * allocation map pages inherit transaction lsn at
288          * commit time to allow forwarding log syncpt past log
289          * records associated with allocation/deallocation of
290          * resources only after persistent map of these map pages
291          * have been updated and propagated to home.
292          */
293         /*
294          * initialize transaction lsn:
295          */
296         if (tblk->lsn == 0) {
297                 /* inherit lsn of its first page logged */
298                 tblk->lsn = mp->lsn;
299                 log->count++;
300
301                 /* insert tblock after the page on logsynclist */
302                 list_add(&tblk->synclist, &mp->synclist);
303         }
304         /*
305          * update transaction lsn:
306          */
307         else {
308                 /* inherit oldest/smallest lsn of page */
309                 logdiff(diffp, mp->lsn, log);
310                 logdiff(difft, tblk->lsn, log);
311                 if (diffp < difft) {
312                         /* update tblock lsn with page lsn */
313                         tblk->lsn = mp->lsn;
314
315                         /* move tblock after page on logsynclist */
316                         list_move(&tblk->synclist, &mp->synclist);
317                 }
318         }
319
320         LOGSYNC_UNLOCK(log, flags);
321
322         /*
323          *      write the log record
324          */
325       writeRecord:
326         lsn = lmWriteRecord(log, tblk, lrd, tlck);
327
328         /*
329          * forward log syncpt if log reached next syncpt trigger
330          */
331         logdiff(diffp, lsn, log);
332         if (diffp >= log->nextsync)
333                 lsn = lmLogSync(log, 0);
334
335         /* update end-of-log lsn */
336         log->lsn = lsn;
337
338         LOG_UNLOCK(log);
339
340         /* return end-of-log address */
341         return lsn;
342 }
343
344 /*
345  * NAME:        lmWriteRecord()
346  *
347  * FUNCTION:    move the log record to current log page
348  *
349  * PARAMETER:   cd      - commit descriptor
350  *
351  * RETURN:      end-of-log address
352  *
353  * serialization: LOG_LOCK() held on entry/exit
354  */
355 static int
356 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
357               struct tlock * tlck)
358 {
359         int lsn = 0;            /* end-of-log address */
360         struct lbuf *bp;        /* dst log page buffer */
361         struct logpage *lp;     /* dst log page */
362         caddr_t dst;            /* destination address in log page */
363         int dstoffset;          /* end-of-log offset in log page */
364         int freespace;          /* free space in log page */
365         caddr_t p;              /* src meta-data page */
366         caddr_t src;
367         int srclen;
368         int nbytes;             /* number of bytes to move */
369         int i;
370         int len;
371         struct linelock *linelock;
372         struct lv *lv;
373         struct lvd *lvd;
374         int l2linesize;
375
376         len = 0;
377
378         /* retrieve destination log page to write */
379         bp = (struct lbuf *) log->bp;
380         lp = (struct logpage *) bp->l_ldata;
381         dstoffset = log->eor;
382
383         /* any log data to write ? */
384         if (tlck == NULL)
385                 goto moveLrd;
386
387         /*
388          *      move log record data
389          */
390         /* retrieve source meta-data page to log */
391         if (tlck->flag & tlckPAGELOCK) {
392                 p = (caddr_t) (tlck->mp->data);
393                 linelock = (struct linelock *) & tlck->lock;
394         }
395         /* retrieve source in-memory inode to log */
396         else if (tlck->flag & tlckINODELOCK) {
397                 if (tlck->type & tlckDTREE)
398                         p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
399                 else
400                         p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
401                 linelock = (struct linelock *) & tlck->lock;
402         }
403 #ifdef  _JFS_WIP
404         else if (tlck->flag & tlckINLINELOCK) {
405
406                 inlinelock = (struct inlinelock *) & tlck;
407                 p = (caddr_t) & inlinelock->pxd;
408                 linelock = (struct linelock *) & tlck;
409         }
410 #endif                          /* _JFS_WIP */
411         else {
412                 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
413                 return 0;       /* Probably should trap */
414         }
415         l2linesize = linelock->l2linesize;
416
417       moveData:
418         ASSERT(linelock->index <= linelock->maxcnt);
419
420         lv = linelock->lv;
421         for (i = 0; i < linelock->index; i++, lv++) {
422                 if (lv->length == 0)
423                         continue;
424
425                 /* is page full ? */
426                 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
427                         /* page become full: move on to next page */
428                         lmNextPage(log);
429
430                         bp = log->bp;
431                         lp = (struct logpage *) bp->l_ldata;
432                         dstoffset = LOGPHDRSIZE;
433                 }
434
435                 /*
436                  * move log vector data
437                  */
438                 src = (u8 *) p + (lv->offset << l2linesize);
439                 srclen = lv->length << l2linesize;
440                 len += srclen;
441                 while (srclen > 0) {
442                         freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
443                         nbytes = min(freespace, srclen);
444                         dst = (caddr_t) lp + dstoffset;
445                         memcpy(dst, src, nbytes);
446                         dstoffset += nbytes;
447
448                         /* is page not full ? */
449                         if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
450                                 break;
451
452                         /* page become full: move on to next page */
453                         lmNextPage(log);
454
455                         bp = (struct lbuf *) log->bp;
456                         lp = (struct logpage *) bp->l_ldata;
457                         dstoffset = LOGPHDRSIZE;
458
459                         srclen -= nbytes;
460                         src += nbytes;
461                 }
462
463                 /*
464                  * move log vector descriptor
465                  */
466                 len += 4;
467                 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
468                 lvd->offset = cpu_to_le16(lv->offset);
469                 lvd->length = cpu_to_le16(lv->length);
470                 dstoffset += 4;
471                 jfs_info("lmWriteRecord: lv offset:%d length:%d",
472                          lv->offset, lv->length);
473         }
474
475         if ((i = linelock->next)) {
476                 linelock = (struct linelock *) lid_to_tlock(i);
477                 goto moveData;
478         }
479
480         /*
481          *      move log record descriptor
482          */
483       moveLrd:
484         lrd->length = cpu_to_le16(len);
485
486         src = (caddr_t) lrd;
487         srclen = LOGRDSIZE;
488
489         while (srclen > 0) {
490                 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
491                 nbytes = min(freespace, srclen);
492                 dst = (caddr_t) lp + dstoffset;
493                 memcpy(dst, src, nbytes);
494
495                 dstoffset += nbytes;
496                 srclen -= nbytes;
497
498                 /* are there more to move than freespace of page ? */
499                 if (srclen)
500                         goto pageFull;
501
502                 /*
503                  * end of log record descriptor
504                  */
505
506                 /* update last log record eor */
507                 log->eor = dstoffset;
508                 bp->l_eor = dstoffset;
509                 lsn = (log->page << L2LOGPSIZE) + dstoffset;
510
511                 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
512                         tblk->clsn = lsn;
513                         jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
514                                  bp->l_eor);
515
516                         INCREMENT(lmStat.commit);       /* # of commit */
517
518                         /*
519                          * enqueue tblock for group commit:
520                          *
521                          * enqueue tblock of non-trivial/synchronous COMMIT
522                          * at tail of group commit queue
523                          * (trivial/asynchronous COMMITs are ignored by
524                          * group commit.)
525                          */
526                         LOGGC_LOCK(log);
527
528                         /* init tblock gc state */
529                         tblk->flag = tblkGC_QUEUE;
530                         tblk->bp = log->bp;
531                         tblk->pn = log->page;
532                         tblk->eor = log->eor;
533
534                         /* enqueue transaction to commit queue */
535                         list_add_tail(&tblk->cqueue, &log->cqueue);
536
537                         LOGGC_UNLOCK(log);
538                 }
539
540                 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
541                         le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
542
543                 /* page not full ? */
544                 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
545                         return lsn;
546
547               pageFull:
548                 /* page become full: move on to next page */
549                 lmNextPage(log);
550
551                 bp = (struct lbuf *) log->bp;
552                 lp = (struct logpage *) bp->l_ldata;
553                 dstoffset = LOGPHDRSIZE;
554                 src += nbytes;
555         }
556
557         return lsn;
558 }
559
560
561 /*
562  * NAME:        lmNextPage()
563  *
564  * FUNCTION:    write current page and allocate next page.
565  *
566  * PARAMETER:   log
567  *
568  * RETURN:      0
569  *
570  * serialization: LOG_LOCK() held on entry/exit
571  */
572 static int lmNextPage(struct jfs_log * log)
573 {
574         struct logpage *lp;
575         int lspn;               /* log sequence page number */
576         int pn;                 /* current page number */
577         struct lbuf *bp;
578         struct lbuf *nextbp;
579         struct tblock *tblk;
580
581         /* get current log page number and log sequence page number */
582         pn = log->page;
583         bp = log->bp;
584         lp = (struct logpage *) bp->l_ldata;
585         lspn = le32_to_cpu(lp->h.page);
586
587         LOGGC_LOCK(log);
588
589         /*
590          *      write or queue the full page at the tail of write queue
591          */
592         /* get the tail tblk on commit queue */
593         if (list_empty(&log->cqueue))
594                 tblk = NULL;
595         else
596                 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
597
598         /* every tblk who has COMMIT record on the current page,
599          * and has not been committed, must be on commit queue
600          * since tblk is queued at commit queueu at the time
601          * of writing its COMMIT record on the page before
602          * page becomes full (even though the tblk thread
603          * who wrote COMMIT record may have been suspended
604          * currently);
605          */
606
607         /* is page bound with outstanding tail tblk ? */
608         if (tblk && tblk->pn == pn) {
609                 /* mark tblk for end-of-page */
610                 tblk->flag |= tblkGC_EOP;
611
612                 if (log->cflag & logGC_PAGEOUT) {
613                         /* if page is not already on write queue,
614                          * just enqueue (no lbmWRITE to prevent redrive)
615                          * buffer to wqueue to ensure correct serial order
616                          * of the pages since log pages will be added
617                          * continuously
618                          */
619                         if (bp->l_wqnext == NULL)
620                                 lbmWrite(log, bp, 0, 0);
621                 } else {
622                         /*
623                          * No current GC leader, initiate group commit
624                          */
625                         log->cflag |= logGC_PAGEOUT;
626                         lmGCwrite(log, 0);
627                 }
628         }
629         /* page is not bound with outstanding tblk:
630          * init write or mark it to be redriven (lbmWRITE)
631          */
632         else {
633                 /* finalize the page */
634                 bp->l_ceor = bp->l_eor;
635                 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
636                 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
637         }
638         LOGGC_UNLOCK(log);
639
640         /*
641          *      allocate/initialize next page
642          */
643         /* if log wraps, the first data page of log is 2
644          * (0 never used, 1 is superblock).
645          */
646         log->page = (pn == log->size - 1) ? 2 : pn + 1;
647         log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
648
649         /* allocate/initialize next log page buffer */
650         nextbp = lbmAllocate(log, log->page);
651         nextbp->l_eor = log->eor;
652         log->bp = nextbp;
653
654         /* initialize next log page */
655         lp = (struct logpage *) nextbp->l_ldata;
656         lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
657         lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
658
659         return 0;
660 }
661
662
663 /*
664  * NAME:        lmGroupCommit()
665  *
666  * FUNCTION:    group commit
667  *      initiate pageout of the pages with COMMIT in the order of
668  *      page number - redrive pageout of the page at the head of
669  *      pageout queue until full page has been written.
670  *
671  * RETURN:
672  *
673  * NOTE:
674  *      LOGGC_LOCK serializes log group commit queue, and
675  *      transaction blocks on the commit queue.
676  *      N.B. LOG_LOCK is NOT held during lmGroupCommit().
677  */
678 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
679 {
680         int rc = 0;
681
682         LOGGC_LOCK(log);
683
684         /* group committed already ? */
685         if (tblk->flag & tblkGC_COMMITTED) {
686                 if (tblk->flag & tblkGC_ERROR)
687                         rc = -EIO;
688
689                 LOGGC_UNLOCK(log);
690                 return rc;
691         }
692         jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
693
694         if (tblk->xflag & COMMIT_LAZY)
695                 tblk->flag |= tblkGC_LAZY;
696
697         if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
698             (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
699              || jfs_tlocks_low)) {
700                 /*
701                  * No pageout in progress
702                  *
703                  * start group commit as its group leader.
704                  */
705                 log->cflag |= logGC_PAGEOUT;
706
707                 lmGCwrite(log, 0);
708         }
709
710         if (tblk->xflag & COMMIT_LAZY) {
711                 /*
712                  * Lazy transactions can leave now
713                  */
714                 LOGGC_UNLOCK(log);
715                 return 0;
716         }
717
718         /* lmGCwrite gives up LOGGC_LOCK, check again */
719
720         if (tblk->flag & tblkGC_COMMITTED) {
721                 if (tblk->flag & tblkGC_ERROR)
722                         rc = -EIO;
723
724                 LOGGC_UNLOCK(log);
725                 return rc;
726         }
727
728         /* upcount transaction waiting for completion
729          */
730         log->gcrtc++;
731         tblk->flag |= tblkGC_READY;
732
733         __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
734                      LOGGC_LOCK(log), LOGGC_UNLOCK(log));
735
736         /* removed from commit queue */
737         if (tblk->flag & tblkGC_ERROR)
738                 rc = -EIO;
739
740         LOGGC_UNLOCK(log);
741         return rc;
742 }
743
744 /*
745  * NAME:        lmGCwrite()
746  *
747  * FUNCTION:    group commit write
748  *      initiate write of log page, building a group of all transactions
749  *      with commit records on that page.
750  *
751  * RETURN:      None
752  *
753  * NOTE:
754  *      LOGGC_LOCK must be held by caller.
755  *      N.B. LOG_LOCK is NOT held during lmGroupCommit().
756  */
757 static void lmGCwrite(struct jfs_log * log, int cant_write)
758 {
759         struct lbuf *bp;
760         struct logpage *lp;
761         int gcpn;               /* group commit page number */
762         struct tblock *tblk;
763         struct tblock *xtblk = NULL;
764
765         /*
766          * build the commit group of a log page
767          *
768          * scan commit queue and make a commit group of all
769          * transactions with COMMIT records on the same log page.
770          */
771         /* get the head tblk on the commit queue */
772         gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
773
774         list_for_each_entry(tblk, &log->cqueue, cqueue) {
775                 if (tblk->pn != gcpn)
776                         break;
777
778                 xtblk = tblk;
779
780                 /* state transition: (QUEUE, READY) -> COMMIT */
781                 tblk->flag |= tblkGC_COMMIT;
782         }
783         tblk = xtblk;           /* last tblk of the page */
784
785         /*
786          * pageout to commit transactions on the log page.
787          */
788         bp = (struct lbuf *) tblk->bp;
789         lp = (struct logpage *) bp->l_ldata;
790         /* is page already full ? */
791         if (tblk->flag & tblkGC_EOP) {
792                 /* mark page to free at end of group commit of the page */
793                 tblk->flag &= ~tblkGC_EOP;
794                 tblk->flag |= tblkGC_FREE;
795                 bp->l_ceor = bp->l_eor;
796                 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
797                 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
798                          cant_write);
799                 INCREMENT(lmStat.full_page);
800         }
801         /* page is not yet full */
802         else {
803                 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
804                 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
805                 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
806                 INCREMENT(lmStat.partial_page);
807         }
808 }
809
810 /*
811  * NAME:        lmPostGC()
812  *
813  * FUNCTION:    group commit post-processing
814  *      Processes transactions after their commit records have been written
815  *      to disk, redriving log I/O if necessary.
816  *
817  * RETURN:      None
818  *
819  * NOTE:
820  *      This routine is called a interrupt time by lbmIODone
821  */
822 static void lmPostGC(struct lbuf * bp)
823 {
824         unsigned long flags;
825         struct jfs_log *log = bp->l_log;
826         struct logpage *lp;
827         struct tblock *tblk, *temp;
828
829         //LOGGC_LOCK(log);
830         spin_lock_irqsave(&log->gclock, flags);
831         /*
832          * current pageout of group commit completed.
833          *
834          * remove/wakeup transactions from commit queue who were
835          * group committed with the current log page
836          */
837         list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
838                 if (!(tblk->flag & tblkGC_COMMIT))
839                         break;
840                 /* if transaction was marked GC_COMMIT then
841                  * it has been shipped in the current pageout
842                  * and made it to disk - it is committed.
843                  */
844
845                 if (bp->l_flag & lbmERROR)
846                         tblk->flag |= tblkGC_ERROR;
847
848                 /* remove it from the commit queue */
849                 list_del(&tblk->cqueue);
850                 tblk->flag &= ~tblkGC_QUEUE;
851
852                 if (tblk == log->flush_tblk) {
853                         /* we can stop flushing the log now */
854                         clear_bit(log_FLUSH, &log->flag);
855                         log->flush_tblk = NULL;
856                 }
857
858                 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
859                          tblk->flag);
860
861                 if (!(tblk->xflag & COMMIT_FORCE))
862                         /*
863                          * Hand tblk over to lazy commit thread
864                          */
865                         txLazyUnlock(tblk);
866                 else {
867                         /* state transition: COMMIT -> COMMITTED */
868                         tblk->flag |= tblkGC_COMMITTED;
869
870                         if (tblk->flag & tblkGC_READY)
871                                 log->gcrtc--;
872
873                         LOGGC_WAKEUP(tblk);
874                 }
875
876                 /* was page full before pageout ?
877                  * (and this is the last tblk bound with the page)
878                  */
879                 if (tblk->flag & tblkGC_FREE)
880                         lbmFree(bp);
881                 /* did page become full after pageout ?
882                  * (and this is the last tblk bound with the page)
883                  */
884                 else if (tblk->flag & tblkGC_EOP) {
885                         /* finalize the page */
886                         lp = (struct logpage *) bp->l_ldata;
887                         bp->l_ceor = bp->l_eor;
888                         lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
889                         jfs_info("lmPostGC: calling lbmWrite");
890                         lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
891                                  1);
892                 }
893
894         }
895
896         /* are there any transactions who have entered lnGroupCommit()
897          * (whose COMMITs are after that of the last log page written.
898          * They are waiting for new group commit (above at (SLEEP 1))
899          * or lazy transactions are on a full (queued) log page,
900          * select the latest ready transaction as new group leader and
901          * wake her up to lead her group.
902          */
903         if ((!list_empty(&log->cqueue)) &&
904             ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
905              test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
906                 /*
907                  * Call lmGCwrite with new group leader
908                  */
909                 lmGCwrite(log, 1);
910
911         /* no transaction are ready yet (transactions are only just
912          * queued (GC_QUEUE) and not entered for group commit yet).
913          * the first transaction entering group commit
914          * will elect herself as new group leader.
915          */
916         else
917                 log->cflag &= ~logGC_PAGEOUT;
918
919         //LOGGC_UNLOCK(log);
920         spin_unlock_irqrestore(&log->gclock, flags);
921         return;
922 }
923
924 /*
925  * NAME:        lmLogSync()
926  *
927  * FUNCTION:    write log SYNCPT record for specified log
928  *      if new sync address is available
929  *      (normally the case if sync() is executed by back-ground
930  *      process).
931  *      calculate new value of i_nextsync which determines when
932  *      this code is called again.
933  *
934  * PARAMETERS:  log     - log structure
935  *              hard_sync - 1 to force all metadata to be written
936  *
937  * RETURN:      0
938  *
939  * serialization: LOG_LOCK() held on entry/exit
940  */
941 static int lmLogSync(struct jfs_log * log, int hard_sync)
942 {
943         int logsize;
944         int written;            /* written since last syncpt */
945         int free;               /* free space left available */
946         int delta;              /* additional delta to write normally */
947         int more;               /* additional write granted */
948         struct lrd lrd;
949         int lsn;
950         struct logsyncblk *lp;
951         unsigned long flags;
952
953         /* push dirty metapages out to disk */
954         if (hard_sync)
955                 write_special_inodes(log, filemap_fdatawrite);
956         else
957                 write_special_inodes(log, filemap_flush);
958
959         /*
960          *      forward syncpt
961          */
962         /* if last sync is same as last syncpt,
963          * invoke sync point forward processing to update sync.
964          */
965
966         if (log->sync == log->syncpt) {
967                 LOGSYNC_LOCK(log, flags);
968                 if (list_empty(&log->synclist))
969                         log->sync = log->lsn;
970                 else {
971                         lp = list_entry(log->synclist.next,
972                                         struct logsyncblk, synclist);
973                         log->sync = lp->lsn;
974                 }
975                 LOGSYNC_UNLOCK(log, flags);
976
977         }
978
979         /* if sync is different from last syncpt,
980          * write a SYNCPT record with syncpt = sync.
981          * reset syncpt = sync
982          */
983         if (log->sync != log->syncpt) {
984                 lrd.logtid = 0;
985                 lrd.backchain = 0;
986                 lrd.type = cpu_to_le16(LOG_SYNCPT);
987                 lrd.length = 0;
988                 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
989                 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
990
991                 log->syncpt = log->sync;
992         } else
993                 lsn = log->lsn;
994
995         /*
996          *      setup next syncpt trigger (SWAG)
997          */
998         logsize = log->logsize;
999
1000         logdiff(written, lsn, log);
1001         free = logsize - written;
1002         delta = LOGSYNC_DELTA(logsize);
1003         more = min(free / 2, delta);
1004         if (more < 2 * LOGPSIZE) {
1005                 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1006                 /*
1007                  *      log wrapping
1008                  *
1009                  * option 1 - panic ? No.!
1010                  * option 2 - shutdown file systems
1011                  *            associated with log ?
1012                  * option 3 - extend log ?
1013                  * option 4 - second chance
1014                  *
1015                  * mark log wrapped, and continue.
1016                  * when all active transactions are completed,
1017                  * mark log valid for recovery.
1018                  * if crashed during invalid state, log state
1019                  * implies invalid log, forcing fsck().
1020                  */
1021                 /* mark log state log wrap in log superblock */
1022                 /* log->state = LOGWRAP; */
1023
1024                 /* reset sync point computation */
1025                 log->syncpt = log->sync = lsn;
1026                 log->nextsync = delta;
1027         } else
1028                 /* next syncpt trigger = written + more */
1029                 log->nextsync = written + more;
1030
1031         /* if number of bytes written from last sync point is more
1032          * than 1/4 of the log size, stop new transactions from
1033          * starting until all current transactions are completed
1034          * by setting syncbarrier flag.
1035          */
1036         if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1037             (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1038                 set_bit(log_SYNCBARRIER, &log->flag);
1039                 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1040                          log->syncpt);
1041                 /*
1042                  * We may have to initiate group commit
1043                  */
1044                 jfs_flush_journal(log, 0);
1045         }
1046
1047         return lsn;
1048 }
1049
1050 /*
1051  * NAME:        jfs_syncpt
1052  *
1053  * FUNCTION:    write log SYNCPT record for specified log
1054  *
1055  * PARAMETERS:  log       - log structure
1056  *              hard_sync - set to 1 to force metadata to be written
1057  */
1058 void jfs_syncpt(struct jfs_log *log, int hard_sync)
1059 {       LOG_LOCK(log);
1060         lmLogSync(log, hard_sync);
1061         LOG_UNLOCK(log);
1062 }
1063
1064 /*
1065  * NAME:        lmLogOpen()
1066  *
1067  * FUNCTION:    open the log on first open;
1068  *      insert filesystem in the active list of the log.
1069  *
1070  * PARAMETER:   ipmnt   - file system mount inode
1071  *              iplog   - log inode (out)
1072  *
1073  * RETURN:
1074  *
1075  * serialization:
1076  */
1077 int lmLogOpen(struct super_block *sb)
1078 {
1079         int rc;
1080         struct block_device *bdev;
1081         struct jfs_log *log;
1082         struct jfs_sb_info *sbi = JFS_SBI(sb);
1083
1084         if (sbi->flag & JFS_NOINTEGRITY)
1085                 return open_dummy_log(sb);
1086
1087         if (sbi->mntflag & JFS_INLINELOG)
1088                 return open_inline_log(sb);
1089
1090         mutex_lock(&jfs_log_mutex);
1091         list_for_each_entry(log, &jfs_external_logs, journal_list) {
1092                 if (log->bdev->bd_dev == sbi->logdev) {
1093                         if (memcmp(log->uuid, sbi->loguuid,
1094                                    sizeof(log->uuid))) {
1095                                 jfs_warn("wrong uuid on JFS journal\n");
1096                                 mutex_unlock(&jfs_log_mutex);
1097                                 return -EINVAL;
1098                         }
1099                         /*
1100                          * add file system to log active file system list
1101                          */
1102                         if ((rc = lmLogFileSystem(log, sbi, 1))) {
1103                                 mutex_unlock(&jfs_log_mutex);
1104                                 return rc;
1105                         }
1106                         goto journal_found;
1107                 }
1108         }
1109
1110         if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1111                 mutex_unlock(&jfs_log_mutex);
1112                 return -ENOMEM;
1113         }
1114         INIT_LIST_HEAD(&log->sb_list);
1115         init_waitqueue_head(&log->syncwait);
1116
1117         /*
1118          *      external log as separate logical volume
1119          *
1120          * file systems to log may have n-to-1 relationship;
1121          */
1122
1123         bdev = blkdev_get_by_dev(sbi->logdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1124                                  log);
1125         if (IS_ERR(bdev)) {
1126                 rc = PTR_ERR(bdev);
1127                 goto free;
1128         }
1129
1130         log->bdev = bdev;
1131         memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1132
1133         /*
1134          * initialize log:
1135          */
1136         if ((rc = lmLogInit(log)))
1137                 goto close;
1138
1139         list_add(&log->journal_list, &jfs_external_logs);
1140
1141         /*
1142          * add file system to log active file system list
1143          */
1144         if ((rc = lmLogFileSystem(log, sbi, 1)))
1145                 goto shutdown;
1146
1147 journal_found:
1148         LOG_LOCK(log);
1149         list_add(&sbi->log_list, &log->sb_list);
1150         sbi->log = log;
1151         LOG_UNLOCK(log);
1152
1153         mutex_unlock(&jfs_log_mutex);
1154         return 0;
1155
1156         /*
1157          *      unwind on error
1158          */
1159       shutdown:         /* unwind lbmLogInit() */
1160         list_del(&log->journal_list);
1161         lbmLogShutdown(log);
1162
1163       close:            /* close external log device */
1164         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1165
1166       free:             /* free log descriptor */
1167         mutex_unlock(&jfs_log_mutex);
1168         kfree(log);
1169
1170         jfs_warn("lmLogOpen: exit(%d)", rc);
1171         return rc;
1172 }
1173
1174 static int open_inline_log(struct super_block *sb)
1175 {
1176         struct jfs_log *log;
1177         int rc;
1178
1179         if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1180                 return -ENOMEM;
1181         INIT_LIST_HEAD(&log->sb_list);
1182         init_waitqueue_head(&log->syncwait);
1183
1184         set_bit(log_INLINELOG, &log->flag);
1185         log->bdev = sb->s_bdev;
1186         log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1187         log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1188             (L2LOGPSIZE - sb->s_blocksize_bits);
1189         log->l2bsize = sb->s_blocksize_bits;
1190         ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1191
1192         /*
1193          * initialize log.
1194          */
1195         if ((rc = lmLogInit(log))) {
1196                 kfree(log);
1197                 jfs_warn("lmLogOpen: exit(%d)", rc);
1198                 return rc;
1199         }
1200
1201         list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1202         JFS_SBI(sb)->log = log;
1203
1204         return rc;
1205 }
1206
1207 static int open_dummy_log(struct super_block *sb)
1208 {
1209         int rc;
1210
1211         mutex_lock(&jfs_log_mutex);
1212         if (!dummy_log) {
1213                 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1214                 if (!dummy_log) {
1215                         mutex_unlock(&jfs_log_mutex);
1216                         return -ENOMEM;
1217                 }
1218                 INIT_LIST_HEAD(&dummy_log->sb_list);
1219                 init_waitqueue_head(&dummy_log->syncwait);
1220                 dummy_log->no_integrity = 1;
1221                 /* Make up some stuff */
1222                 dummy_log->base = 0;
1223                 dummy_log->size = 1024;
1224                 rc = lmLogInit(dummy_log);
1225                 if (rc) {
1226                         kfree(dummy_log);
1227                         dummy_log = NULL;
1228                         mutex_unlock(&jfs_log_mutex);
1229                         return rc;
1230                 }
1231         }
1232
1233         LOG_LOCK(dummy_log);
1234         list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1235         JFS_SBI(sb)->log = dummy_log;
1236         LOG_UNLOCK(dummy_log);
1237         mutex_unlock(&jfs_log_mutex);
1238
1239         return 0;
1240 }
1241
1242 /*
1243  * NAME:        lmLogInit()
1244  *
1245  * FUNCTION:    log initialization at first log open.
1246  *
1247  *      logredo() (or logformat()) should have been run previously.
1248  *      initialize the log from log superblock.
1249  *      set the log state in the superblock to LOGMOUNT and
1250  *      write SYNCPT log record.
1251  *
1252  * PARAMETER:   log     - log structure
1253  *
1254  * RETURN:      0       - if ok
1255  *              -EINVAL - bad log magic number or superblock dirty
1256  *              error returned from logwait()
1257  *
1258  * serialization: single first open thread
1259  */
1260 int lmLogInit(struct jfs_log * log)
1261 {
1262         int rc = 0;
1263         struct lrd lrd;
1264         struct logsuper *logsuper;
1265         struct lbuf *bpsuper;
1266         struct lbuf *bp;
1267         struct logpage *lp;
1268         int lsn = 0;
1269
1270         jfs_info("lmLogInit: log:0x%p", log);
1271
1272         /* initialize the group commit serialization lock */
1273         LOGGC_LOCK_INIT(log);
1274
1275         /* allocate/initialize the log write serialization lock */
1276         LOG_LOCK_INIT(log);
1277
1278         LOGSYNC_LOCK_INIT(log);
1279
1280         INIT_LIST_HEAD(&log->synclist);
1281
1282         INIT_LIST_HEAD(&log->cqueue);
1283         log->flush_tblk = NULL;
1284
1285         log->count = 0;
1286
1287         /*
1288          * initialize log i/o
1289          */
1290         if ((rc = lbmLogInit(log)))
1291                 return rc;
1292
1293         if (!test_bit(log_INLINELOG, &log->flag))
1294                 log->l2bsize = L2LOGPSIZE;
1295
1296         /* check for disabled journaling to disk */
1297         if (log->no_integrity) {
1298                 /*
1299                  * Journal pages will still be filled.  When the time comes
1300                  * to actually do the I/O, the write is not done, and the
1301                  * endio routine is called directly.
1302                  */
1303                 bp = lbmAllocate(log , 0);
1304                 log->bp = bp;
1305                 bp->l_pn = bp->l_eor = 0;
1306         } else {
1307                 /*
1308                  * validate log superblock
1309                  */
1310                 if ((rc = lbmRead(log, 1, &bpsuper)))
1311                         goto errout10;
1312
1313                 logsuper = (struct logsuper *) bpsuper->l_ldata;
1314
1315                 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1316                         jfs_warn("*** Log Format Error ! ***");
1317                         rc = -EINVAL;
1318                         goto errout20;
1319                 }
1320
1321                 /* logredo() should have been run successfully. */
1322                 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1323                         jfs_warn("*** Log Is Dirty ! ***");
1324                         rc = -EINVAL;
1325                         goto errout20;
1326                 }
1327
1328                 /* initialize log from log superblock */
1329                 if (test_bit(log_INLINELOG,&log->flag)) {
1330                         if (log->size != le32_to_cpu(logsuper->size)) {
1331                                 rc = -EINVAL;
1332                                 goto errout20;
1333                         }
1334                         jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1335                                  "size:0x%x", log,
1336                                  (unsigned long long) log->base, log->size);
1337                 } else {
1338                         if (memcmp(logsuper->uuid, log->uuid, 16)) {
1339                                 jfs_warn("wrong uuid on JFS log device");
1340                                 goto errout20;
1341                         }
1342                         log->size = le32_to_cpu(logsuper->size);
1343                         log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1344                         jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1345                                  "size:0x%x", log,
1346                                  (unsigned long long) log->base, log->size);
1347                 }
1348
1349                 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1350                 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1351
1352                 /*
1353                  * initialize for log append write mode
1354                  */
1355                 /* establish current/end-of-log page/buffer */
1356                 if ((rc = lbmRead(log, log->page, &bp)))
1357                         goto errout20;
1358
1359                 lp = (struct logpage *) bp->l_ldata;
1360
1361                 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1362                          le32_to_cpu(logsuper->end), log->page, log->eor,
1363                          le16_to_cpu(lp->h.eor));
1364
1365                 log->bp = bp;
1366                 bp->l_pn = log->page;
1367                 bp->l_eor = log->eor;
1368
1369                 /* if current page is full, move on to next page */
1370                 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1371                         lmNextPage(log);
1372
1373                 /*
1374                  * initialize log syncpoint
1375                  */
1376                 /*
1377                  * write the first SYNCPT record with syncpoint = 0
1378                  * (i.e., log redo up to HERE !);
1379                  * remove current page from lbm write queue at end of pageout
1380                  * (to write log superblock update), but do not release to
1381                  * freelist;
1382                  */
1383                 lrd.logtid = 0;
1384                 lrd.backchain = 0;
1385                 lrd.type = cpu_to_le16(LOG_SYNCPT);
1386                 lrd.length = 0;
1387                 lrd.log.syncpt.sync = 0;
1388                 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1389                 bp = log->bp;
1390                 bp->l_ceor = bp->l_eor;
1391                 lp = (struct logpage *) bp->l_ldata;
1392                 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1393                 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1394                 if ((rc = lbmIOWait(bp, 0)))
1395                         goto errout30;
1396
1397                 /*
1398                  * update/write superblock
1399                  */
1400                 logsuper->state = cpu_to_le32(LOGMOUNT);
1401                 log->serial = le32_to_cpu(logsuper->serial) + 1;
1402                 logsuper->serial = cpu_to_le32(log->serial);
1403                 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1404                 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1405                         goto errout30;
1406         }
1407
1408         /* initialize logsync parameters */
1409         log->logsize = (log->size - 2) << L2LOGPSIZE;
1410         log->lsn = lsn;
1411         log->syncpt = lsn;
1412         log->sync = log->syncpt;
1413         log->nextsync = LOGSYNC_DELTA(log->logsize);
1414
1415         jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1416                  log->lsn, log->syncpt, log->sync);
1417
1418         /*
1419          * initialize for lazy/group commit
1420          */
1421         log->clsn = lsn;
1422
1423         return 0;
1424
1425         /*
1426          *      unwind on error
1427          */
1428       errout30:         /* release log page */
1429         log->wqueue = NULL;
1430         bp->l_wqnext = NULL;
1431         lbmFree(bp);
1432
1433       errout20:         /* release log superblock */
1434         lbmFree(bpsuper);
1435
1436       errout10:         /* unwind lbmLogInit() */
1437         lbmLogShutdown(log);
1438
1439         jfs_warn("lmLogInit: exit(%d)", rc);
1440         return rc;
1441 }
1442
1443
1444 /*
1445  * NAME:        lmLogClose()
1446  *
1447  * FUNCTION:    remove file system <ipmnt> from active list of log <iplog>
1448  *              and close it on last close.
1449  *
1450  * PARAMETER:   sb      - superblock
1451  *
1452  * RETURN:      errors from subroutines
1453  *
1454  * serialization:
1455  */
1456 int lmLogClose(struct super_block *sb)
1457 {
1458         struct jfs_sb_info *sbi = JFS_SBI(sb);
1459         struct jfs_log *log = sbi->log;
1460         struct block_device *bdev;
1461         int rc = 0;
1462
1463         jfs_info("lmLogClose: log:0x%p", log);
1464
1465         mutex_lock(&jfs_log_mutex);
1466         LOG_LOCK(log);
1467         list_del(&sbi->log_list);
1468         LOG_UNLOCK(log);
1469         sbi->log = NULL;
1470
1471         /*
1472          * We need to make sure all of the "written" metapages
1473          * actually make it to disk
1474          */
1475         sync_blockdev(sb->s_bdev);
1476
1477         if (test_bit(log_INLINELOG, &log->flag)) {
1478                 /*
1479                  *      in-line log in host file system
1480                  */
1481                 rc = lmLogShutdown(log);
1482                 kfree(log);
1483                 goto out;
1484         }
1485
1486         if (!log->no_integrity)
1487                 lmLogFileSystem(log, sbi, 0);
1488
1489         if (!list_empty(&log->sb_list))
1490                 goto out;
1491
1492         /*
1493          * TODO: ensure that the dummy_log is in a state to allow
1494          * lbmLogShutdown to deallocate all the buffers and call
1495          * kfree against dummy_log.  For now, leave dummy_log & its
1496          * buffers in memory, and resuse if another no-integrity mount
1497          * is requested.
1498          */
1499         if (log->no_integrity)
1500                 goto out;
1501
1502         /*
1503          *      external log as separate logical volume
1504          */
1505         list_del(&log->journal_list);
1506         bdev = log->bdev;
1507         rc = lmLogShutdown(log);
1508
1509         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1510
1511         kfree(log);
1512
1513       out:
1514         mutex_unlock(&jfs_log_mutex);
1515         jfs_info("lmLogClose: exit(%d)", rc);
1516         return rc;
1517 }
1518
1519
1520 /*
1521  * NAME:        jfs_flush_journal()
1522  *
1523  * FUNCTION:    initiate write of any outstanding transactions to the journal
1524  *              and optionally wait until they are all written to disk
1525  *
1526  *              wait == 0  flush until latest txn is committed, don't wait
1527  *              wait == 1  flush until latest txn is committed, wait
1528  *              wait > 1   flush until all txn's are complete, wait
1529  */
1530 void jfs_flush_journal(struct jfs_log *log, int wait)
1531 {
1532         int i;
1533         struct tblock *target = NULL;
1534
1535         /* jfs_write_inode may call us during read-only mount */
1536         if (!log)
1537                 return;
1538
1539         jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1540
1541         LOGGC_LOCK(log);
1542
1543         if (!list_empty(&log->cqueue)) {
1544                 /*
1545                  * This ensures that we will keep writing to the journal as long
1546                  * as there are unwritten commit records
1547                  */
1548                 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1549
1550                 if (test_bit(log_FLUSH, &log->flag)) {
1551                         /*
1552                          * We're already flushing.
1553                          * if flush_tblk is NULL, we are flushing everything,
1554                          * so leave it that way.  Otherwise, update it to the
1555                          * latest transaction
1556                          */
1557                         if (log->flush_tblk)
1558                                 log->flush_tblk = target;
1559                 } else {
1560                         /* Only flush until latest transaction is committed */
1561                         log->flush_tblk = target;
1562                         set_bit(log_FLUSH, &log->flag);
1563
1564                         /*
1565                          * Initiate I/O on outstanding transactions
1566                          */
1567                         if (!(log->cflag & logGC_PAGEOUT)) {
1568                                 log->cflag |= logGC_PAGEOUT;
1569                                 lmGCwrite(log, 0);
1570                         }
1571                 }
1572         }
1573         if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1574                 /* Flush until all activity complete */
1575                 set_bit(log_FLUSH, &log->flag);
1576                 log->flush_tblk = NULL;
1577         }
1578
1579         if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1580                 DECLARE_WAITQUEUE(__wait, current);
1581
1582                 add_wait_queue(&target->gcwait, &__wait);
1583                 set_current_state(TASK_UNINTERRUPTIBLE);
1584                 LOGGC_UNLOCK(log);
1585                 schedule();
1586                 __set_current_state(TASK_RUNNING);
1587                 LOGGC_LOCK(log);
1588                 remove_wait_queue(&target->gcwait, &__wait);
1589         }
1590         LOGGC_UNLOCK(log);
1591
1592         if (wait < 2)
1593                 return;
1594
1595         write_special_inodes(log, filemap_fdatawrite);
1596
1597         /*
1598          * If there was recent activity, we may need to wait
1599          * for the lazycommit thread to catch up
1600          */
1601         if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1602                 for (i = 0; i < 200; i++) {     /* Too much? */
1603                         msleep(250);
1604                         write_special_inodes(log, filemap_fdatawrite);
1605                         if (list_empty(&log->cqueue) &&
1606                             list_empty(&log->synclist))
1607                                 break;
1608                 }
1609         }
1610         assert(list_empty(&log->cqueue));
1611
1612 #ifdef CONFIG_JFS_DEBUG
1613         if (!list_empty(&log->synclist)) {
1614                 struct logsyncblk *lp;
1615
1616                 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
1617                 list_for_each_entry(lp, &log->synclist, synclist) {
1618                         if (lp->xflag & COMMIT_PAGE) {
1619                                 struct metapage *mp = (struct metapage *)lp;
1620                                 print_hex_dump(KERN_ERR, "metapage: ",
1621                                                DUMP_PREFIX_ADDRESS, 16, 4,
1622                                                mp, sizeof(struct metapage), 0);
1623                                 print_hex_dump(KERN_ERR, "page: ",
1624                                                DUMP_PREFIX_ADDRESS, 16,
1625                                                sizeof(long), mp->page,
1626                                                sizeof(struct page), 0);
1627                         } else
1628                                 print_hex_dump(KERN_ERR, "tblock:",
1629                                                DUMP_PREFIX_ADDRESS, 16, 4,
1630                                                lp, sizeof(struct tblock), 0);
1631                 }
1632         }
1633 #else
1634         WARN_ON(!list_empty(&log->synclist));
1635 #endif
1636         clear_bit(log_FLUSH, &log->flag);
1637 }
1638
1639 /*
1640  * NAME:        lmLogShutdown()
1641  *
1642  * FUNCTION:    log shutdown at last LogClose().
1643  *
1644  *              write log syncpt record.
1645  *              update super block to set redone flag to 0.
1646  *
1647  * PARAMETER:   log     - log inode
1648  *
1649  * RETURN:      0       - success
1650  *
1651  * serialization: single last close thread
1652  */
1653 int lmLogShutdown(struct jfs_log * log)
1654 {
1655         int rc;
1656         struct lrd lrd;
1657         int lsn;
1658         struct logsuper *logsuper;
1659         struct lbuf *bpsuper;
1660         struct lbuf *bp;
1661         struct logpage *lp;
1662
1663         jfs_info("lmLogShutdown: log:0x%p", log);
1664
1665         jfs_flush_journal(log, 2);
1666
1667         /*
1668          * write the last SYNCPT record with syncpoint = 0
1669          * (i.e., log redo up to HERE !)
1670          */
1671         lrd.logtid = 0;
1672         lrd.backchain = 0;
1673         lrd.type = cpu_to_le16(LOG_SYNCPT);
1674         lrd.length = 0;
1675         lrd.log.syncpt.sync = 0;
1676
1677         lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1678         bp = log->bp;
1679         lp = (struct logpage *) bp->l_ldata;
1680         lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1681         lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1682         lbmIOWait(log->bp, lbmFREE);
1683         log->bp = NULL;
1684
1685         /*
1686          * synchronous update log superblock
1687          * mark log state as shutdown cleanly
1688          * (i.e., Log does not need to be replayed).
1689          */
1690         if ((rc = lbmRead(log, 1, &bpsuper)))
1691                 goto out;
1692
1693         logsuper = (struct logsuper *) bpsuper->l_ldata;
1694         logsuper->state = cpu_to_le32(LOGREDONE);
1695         logsuper->end = cpu_to_le32(lsn);
1696         lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1697         rc = lbmIOWait(bpsuper, lbmFREE);
1698
1699         jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1700                  lsn, log->page, log->eor);
1701
1702       out:
1703         /*
1704          * shutdown per log i/o
1705          */
1706         lbmLogShutdown(log);
1707
1708         if (rc) {
1709                 jfs_warn("lmLogShutdown: exit(%d)", rc);
1710         }
1711         return rc;
1712 }
1713
1714
1715 /*
1716  * NAME:        lmLogFileSystem()
1717  *
1718  * FUNCTION:    insert (<activate> = true)/remove (<activate> = false)
1719  *      file system into/from log active file system list.
1720  *
1721  * PARAMETE:    log     - pointer to logs inode.
1722  *              fsdev   - kdev_t of filesystem.
1723  *              serial  - pointer to returned log serial number
1724  *              activate - insert/remove device from active list.
1725  *
1726  * RETURN:      0       - success
1727  *              errors returned by vms_iowait().
1728  */
1729 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1730                            int activate)
1731 {
1732         int rc = 0;
1733         int i;
1734         struct logsuper *logsuper;
1735         struct lbuf *bpsuper;
1736         char *uuid = sbi->uuid;
1737
1738         /*
1739          * insert/remove file system device to log active file system list.
1740          */
1741         if ((rc = lbmRead(log, 1, &bpsuper)))
1742                 return rc;
1743
1744         logsuper = (struct logsuper *) bpsuper->l_ldata;
1745         if (activate) {
1746                 for (i = 0; i < MAX_ACTIVE; i++)
1747                         if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1748                                 memcpy(logsuper->active[i].uuid, uuid, 16);
1749                                 sbi->aggregate = i;
1750                                 break;
1751                         }
1752                 if (i == MAX_ACTIVE) {
1753                         jfs_warn("Too many file systems sharing journal!");
1754                         lbmFree(bpsuper);
1755                         return -EMFILE; /* Is there a better rc? */
1756                 }
1757         } else {
1758                 for (i = 0; i < MAX_ACTIVE; i++)
1759                         if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1760                                 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1761                                 break;
1762                         }
1763                 if (i == MAX_ACTIVE) {
1764                         jfs_warn("Somebody stomped on the journal!");
1765                         lbmFree(bpsuper);
1766                         return -EIO;
1767                 }
1768
1769         }
1770
1771         /*
1772          * synchronous write log superblock:
1773          *
1774          * write sidestream bypassing write queue:
1775          * at file system mount, log super block is updated for
1776          * activation of the file system before any log record
1777          * (MOUNT record) of the file system, and at file system
1778          * unmount, all meta data for the file system has been
1779          * flushed before log super block is updated for deactivation
1780          * of the file system.
1781          */
1782         lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1783         rc = lbmIOWait(bpsuper, lbmFREE);
1784
1785         return rc;
1786 }
1787
1788 /*
1789  *              log buffer manager (lbm)
1790  *              ------------------------
1791  *
1792  * special purpose buffer manager supporting log i/o requirements.
1793  *
1794  * per log write queue:
1795  * log pageout occurs in serial order by fifo write queue and
1796  * restricting to a single i/o in pregress at any one time.
1797  * a circular singly-linked list
1798  * (log->wrqueue points to the tail, and buffers are linked via
1799  * bp->wrqueue field), and
1800  * maintains log page in pageout ot waiting for pageout in serial pageout.
1801  */
1802
1803 /*
1804  *      lbmLogInit()
1805  *
1806  * initialize per log I/O setup at lmLogInit()
1807  */
1808 static int lbmLogInit(struct jfs_log * log)
1809 {                               /* log inode */
1810         int i;
1811         struct lbuf *lbuf;
1812
1813         jfs_info("lbmLogInit: log:0x%p", log);
1814
1815         /* initialize current buffer cursor */
1816         log->bp = NULL;
1817
1818         /* initialize log device write queue */
1819         log->wqueue = NULL;
1820
1821         /*
1822          * Each log has its own buffer pages allocated to it.  These are
1823          * not managed by the page cache.  This ensures that a transaction
1824          * writing to the log does not block trying to allocate a page from
1825          * the page cache (for the log).  This would be bad, since page
1826          * allocation waits on the kswapd thread that may be committing inodes
1827          * which would cause log activity.  Was that clear?  I'm trying to
1828          * avoid deadlock here.
1829          */
1830         init_waitqueue_head(&log->free_wait);
1831
1832         log->lbuf_free = NULL;
1833
1834         for (i = 0; i < LOGPAGES;) {
1835                 char *buffer;
1836                 uint offset;
1837                 struct page *page;
1838
1839                 buffer = (char *) get_zeroed_page(GFP_KERNEL);
1840                 if (buffer == NULL)
1841                         goto error;
1842                 page = virt_to_page(buffer);
1843                 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1844                         lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1845                         if (lbuf == NULL) {
1846                                 if (offset == 0)
1847                                         free_page((unsigned long) buffer);
1848                                 goto error;
1849                         }
1850                         if (offset) /* we already have one reference */
1851                                 get_page(page);
1852                         lbuf->l_offset = offset;
1853                         lbuf->l_ldata = buffer + offset;
1854                         lbuf->l_page = page;
1855                         lbuf->l_log = log;
1856                         init_waitqueue_head(&lbuf->l_ioevent);
1857
1858                         lbuf->l_freelist = log->lbuf_free;
1859                         log->lbuf_free = lbuf;
1860                         i++;
1861                 }
1862         }
1863
1864         return (0);
1865
1866       error:
1867         lbmLogShutdown(log);
1868         return -ENOMEM;
1869 }
1870
1871
1872 /*
1873  *      lbmLogShutdown()
1874  *
1875  * finalize per log I/O setup at lmLogShutdown()
1876  */
1877 static void lbmLogShutdown(struct jfs_log * log)
1878 {
1879         struct lbuf *lbuf;
1880
1881         jfs_info("lbmLogShutdown: log:0x%p", log);
1882
1883         lbuf = log->lbuf_free;
1884         while (lbuf) {
1885                 struct lbuf *next = lbuf->l_freelist;
1886                 __free_page(lbuf->l_page);
1887                 kfree(lbuf);
1888                 lbuf = next;
1889         }
1890 }
1891
1892
1893 /*
1894  *      lbmAllocate()
1895  *
1896  * allocate an empty log buffer
1897  */
1898 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1899 {
1900         struct lbuf *bp;
1901         unsigned long flags;
1902
1903         /*
1904          * recycle from log buffer freelist if any
1905          */
1906         LCACHE_LOCK(flags);
1907         LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1908         log->lbuf_free = bp->l_freelist;
1909         LCACHE_UNLOCK(flags);
1910
1911         bp->l_flag = 0;
1912
1913         bp->l_wqnext = NULL;
1914         bp->l_freelist = NULL;
1915
1916         bp->l_pn = pn;
1917         bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1918         bp->l_ceor = 0;
1919
1920         return bp;
1921 }
1922
1923
1924 /*
1925  *      lbmFree()
1926  *
1927  * release a log buffer to freelist
1928  */
1929 static void lbmFree(struct lbuf * bp)
1930 {
1931         unsigned long flags;
1932
1933         LCACHE_LOCK(flags);
1934
1935         lbmfree(bp);
1936
1937         LCACHE_UNLOCK(flags);
1938 }
1939
1940 static void lbmfree(struct lbuf * bp)
1941 {
1942         struct jfs_log *log = bp->l_log;
1943
1944         assert(bp->l_wqnext == NULL);
1945
1946         /*
1947          * return the buffer to head of freelist
1948          */
1949         bp->l_freelist = log->lbuf_free;
1950         log->lbuf_free = bp;
1951
1952         wake_up(&log->free_wait);
1953         return;
1954 }
1955
1956
1957 /*
1958  * NAME:        lbmRedrive
1959  *
1960  * FUNCTION:    add a log buffer to the log redrive list
1961  *
1962  * PARAMETER:
1963  *      bp      - log buffer
1964  *
1965  * NOTES:
1966  *      Takes log_redrive_lock.
1967  */
1968 static inline void lbmRedrive(struct lbuf *bp)
1969 {
1970         unsigned long flags;
1971
1972         spin_lock_irqsave(&log_redrive_lock, flags);
1973         bp->l_redrive_next = log_redrive_list;
1974         log_redrive_list = bp;
1975         spin_unlock_irqrestore(&log_redrive_lock, flags);
1976
1977         wake_up_process(jfsIOthread);
1978 }
1979
1980
1981 /*
1982  *      lbmRead()
1983  */
1984 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1985 {
1986         struct bio *bio;
1987         struct lbuf *bp;
1988
1989         /*
1990          * allocate a log buffer
1991          */
1992         *bpp = bp = lbmAllocate(log, pn);
1993         jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
1994
1995         bp->l_flag |= lbmREAD;
1996
1997         bio = bio_alloc(GFP_NOFS, 1);
1998
1999         bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2000         bio->bi_bdev = log->bdev;
2001         bio->bi_io_vec[0].bv_page = bp->l_page;
2002         bio->bi_io_vec[0].bv_len = LOGPSIZE;
2003         bio->bi_io_vec[0].bv_offset = bp->l_offset;
2004
2005         bio->bi_vcnt = 1;
2006         bio->bi_idx = 0;
2007         bio->bi_size = LOGPSIZE;
2008
2009         bio->bi_end_io = lbmIODone;
2010         bio->bi_private = bp;
2011         submit_bio(READ_SYNC, bio);
2012
2013         wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2014
2015         return 0;
2016 }
2017
2018
2019 /*
2020  *      lbmWrite()
2021  *
2022  * buffer at head of pageout queue stays after completion of
2023  * partial-page pageout and redriven by explicit initiation of
2024  * pageout by caller until full-page pageout is completed and
2025  * released.
2026  *
2027  * device driver i/o done redrives pageout of new buffer at
2028  * head of pageout queue when current buffer at head of pageout
2029  * queue is released at the completion of its full-page pageout.
2030  *
2031  * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2032  * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2033  */
2034 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2035                      int cant_block)
2036 {
2037         struct lbuf *tail;
2038         unsigned long flags;
2039
2040         jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2041
2042         /* map the logical block address to physical block address */
2043         bp->l_blkno =
2044             log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2045
2046         LCACHE_LOCK(flags);             /* disable+lock */
2047
2048         /*
2049          * initialize buffer for device driver
2050          */
2051         bp->l_flag = flag;
2052
2053         /*
2054          *      insert bp at tail of write queue associated with log
2055          *
2056          * (request is either for bp already/currently at head of queue
2057          * or new bp to be inserted at tail)
2058          */
2059         tail = log->wqueue;
2060
2061         /* is buffer not already on write queue ? */
2062         if (bp->l_wqnext == NULL) {
2063                 /* insert at tail of wqueue */
2064                 if (tail == NULL) {
2065                         log->wqueue = bp;
2066                         bp->l_wqnext = bp;
2067                 } else {
2068                         log->wqueue = bp;
2069                         bp->l_wqnext = tail->l_wqnext;
2070                         tail->l_wqnext = bp;
2071                 }
2072
2073                 tail = bp;
2074         }
2075
2076         /* is buffer at head of wqueue and for write ? */
2077         if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2078                 LCACHE_UNLOCK(flags);   /* unlock+enable */
2079                 return;
2080         }
2081
2082         LCACHE_UNLOCK(flags);   /* unlock+enable */
2083
2084         if (cant_block)
2085                 lbmRedrive(bp);
2086         else if (flag & lbmSYNC)
2087                 lbmStartIO(bp);
2088         else {
2089                 LOGGC_UNLOCK(log);
2090                 lbmStartIO(bp);
2091                 LOGGC_LOCK(log);
2092         }
2093 }
2094
2095
2096 /*
2097  *      lbmDirectWrite()
2098  *
2099  * initiate pageout bypassing write queue for sidestream
2100  * (e.g., log superblock) write;
2101  */
2102 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2103 {
2104         jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2105                  bp, flag, bp->l_pn);
2106
2107         /*
2108          * initialize buffer for device driver
2109          */
2110         bp->l_flag = flag | lbmDIRECT;
2111
2112         /* map the logical block address to physical block address */
2113         bp->l_blkno =
2114             log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2115
2116         /*
2117          *      initiate pageout of the page
2118          */
2119         lbmStartIO(bp);
2120 }
2121
2122
2123 /*
2124  * NAME:        lbmStartIO()
2125  *
2126  * FUNCTION:    Interface to DD strategy routine
2127  *
2128  * RETURN:      none
2129  *
2130  * serialization: LCACHE_LOCK() is NOT held during log i/o;
2131  */
2132 static void lbmStartIO(struct lbuf * bp)
2133 {
2134         struct bio *bio;
2135         struct jfs_log *log = bp->l_log;
2136
2137         jfs_info("lbmStartIO\n");
2138
2139         bio = bio_alloc(GFP_NOFS, 1);
2140         bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2141         bio->bi_bdev = log->bdev;
2142         bio->bi_io_vec[0].bv_page = bp->l_page;
2143         bio->bi_io_vec[0].bv_len = LOGPSIZE;
2144         bio->bi_io_vec[0].bv_offset = bp->l_offset;
2145
2146         bio->bi_vcnt = 1;
2147         bio->bi_idx = 0;
2148         bio->bi_size = LOGPSIZE;
2149
2150         bio->bi_end_io = lbmIODone;
2151         bio->bi_private = bp;
2152
2153         /* check if journaling to disk has been disabled */
2154         if (log->no_integrity) {
2155                 bio->bi_size = 0;
2156                 lbmIODone(bio, 0);
2157         } else {
2158                 submit_bio(WRITE_SYNC, bio);
2159                 INCREMENT(lmStat.submitted);
2160         }
2161 }
2162
2163
2164 /*
2165  *      lbmIOWait()
2166  */
2167 static int lbmIOWait(struct lbuf * bp, int flag)
2168 {
2169         unsigned long flags;
2170         int rc = 0;
2171
2172         jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2173
2174         LCACHE_LOCK(flags);             /* disable+lock */
2175
2176         LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2177
2178         rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2179
2180         if (flag & lbmFREE)
2181                 lbmfree(bp);
2182
2183         LCACHE_UNLOCK(flags);   /* unlock+enable */
2184
2185         jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2186         return rc;
2187 }
2188
2189 /*
2190  *      lbmIODone()
2191  *
2192  * executed at INTIODONE level
2193  */
2194 static void lbmIODone(struct bio *bio, int error)
2195 {
2196         struct lbuf *bp = bio->bi_private;
2197         struct lbuf *nextbp, *tail;
2198         struct jfs_log *log;
2199         unsigned long flags;
2200
2201         /*
2202          * get back jfs buffer bound to the i/o buffer
2203          */
2204         jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2205
2206         LCACHE_LOCK(flags);             /* disable+lock */
2207
2208         bp->l_flag |= lbmDONE;
2209
2210         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2211                 bp->l_flag |= lbmERROR;
2212
2213                 jfs_err("lbmIODone: I/O error in JFS log");
2214         }
2215
2216         bio_put(bio);
2217
2218         /*
2219          *      pagein completion
2220          */
2221         if (bp->l_flag & lbmREAD) {
2222                 bp->l_flag &= ~lbmREAD;
2223
2224                 LCACHE_UNLOCK(flags);   /* unlock+enable */
2225
2226                 /* wakeup I/O initiator */
2227                 LCACHE_WAKEUP(&bp->l_ioevent);
2228
2229                 return;
2230         }
2231
2232         /*
2233          *      pageout completion
2234          *
2235          * the bp at the head of write queue has completed pageout.
2236          *
2237          * if single-commit/full-page pageout, remove the current buffer
2238          * from head of pageout queue, and redrive pageout with
2239          * the new buffer at head of pageout queue;
2240          * otherwise, the partial-page pageout buffer stays at
2241          * the head of pageout queue to be redriven for pageout
2242          * by lmGroupCommit() until full-page pageout is completed.
2243          */
2244         bp->l_flag &= ~lbmWRITE;
2245         INCREMENT(lmStat.pagedone);
2246
2247         /* update committed lsn */
2248         log = bp->l_log;
2249         log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2250
2251         if (bp->l_flag & lbmDIRECT) {
2252                 LCACHE_WAKEUP(&bp->l_ioevent);
2253                 LCACHE_UNLOCK(flags);
2254                 return;
2255         }
2256
2257         tail = log->wqueue;
2258
2259         /* single element queue */
2260         if (bp == tail) {
2261                 /* remove head buffer of full-page pageout
2262                  * from log device write queue
2263                  */
2264                 if (bp->l_flag & lbmRELEASE) {
2265                         log->wqueue = NULL;
2266                         bp->l_wqnext = NULL;
2267                 }
2268         }
2269         /* multi element queue */
2270         else {
2271                 /* remove head buffer of full-page pageout
2272                  * from log device write queue
2273                  */
2274                 if (bp->l_flag & lbmRELEASE) {
2275                         nextbp = tail->l_wqnext = bp->l_wqnext;
2276                         bp->l_wqnext = NULL;
2277
2278                         /*
2279                          * redrive pageout of next page at head of write queue:
2280                          * redrive next page without any bound tblk
2281                          * (i.e., page w/o any COMMIT records), or
2282                          * first page of new group commit which has been
2283                          * queued after current page (subsequent pageout
2284                          * is performed synchronously, except page without
2285                          * any COMMITs) by lmGroupCommit() as indicated
2286                          * by lbmWRITE flag;
2287                          */
2288                         if (nextbp->l_flag & lbmWRITE) {
2289                                 /*
2290                                  * We can't do the I/O at interrupt time.
2291                                  * The jfsIO thread can do it
2292                                  */
2293                                 lbmRedrive(nextbp);
2294                         }
2295                 }
2296         }
2297
2298         /*
2299          *      synchronous pageout:
2300          *
2301          * buffer has not necessarily been removed from write queue
2302          * (e.g., synchronous write of partial-page with COMMIT):
2303          * leave buffer for i/o initiator to dispose
2304          */
2305         if (bp->l_flag & lbmSYNC) {
2306                 LCACHE_UNLOCK(flags);   /* unlock+enable */
2307
2308                 /* wakeup I/O initiator */
2309                 LCACHE_WAKEUP(&bp->l_ioevent);
2310         }
2311
2312         /*
2313          *      Group Commit pageout:
2314          */
2315         else if (bp->l_flag & lbmGC) {
2316                 LCACHE_UNLOCK(flags);
2317                 lmPostGC(bp);
2318         }
2319
2320         /*
2321          *      asynchronous pageout:
2322          *
2323          * buffer must have been removed from write queue:
2324          * insert buffer at head of freelist where it can be recycled
2325          */
2326         else {
2327                 assert(bp->l_flag & lbmRELEASE);
2328                 assert(bp->l_flag & lbmFREE);
2329                 lbmfree(bp);
2330
2331                 LCACHE_UNLOCK(flags);   /* unlock+enable */
2332         }
2333 }
2334
2335 int jfsIOWait(void *arg)
2336 {
2337         struct lbuf *bp;
2338
2339         do {
2340                 spin_lock_irq(&log_redrive_lock);
2341                 while ((bp = log_redrive_list)) {
2342                         log_redrive_list = bp->l_redrive_next;
2343                         bp->l_redrive_next = NULL;
2344                         spin_unlock_irq(&log_redrive_lock);
2345                         lbmStartIO(bp);
2346                         spin_lock_irq(&log_redrive_lock);
2347                 }
2348
2349                 if (freezing(current)) {
2350                         spin_unlock_irq(&log_redrive_lock);
2351                         refrigerator();
2352                 } else {
2353                         set_current_state(TASK_INTERRUPTIBLE);
2354                         spin_unlock_irq(&log_redrive_lock);
2355                         schedule();
2356                         __set_current_state(TASK_RUNNING);
2357                 }
2358         } while (!kthread_should_stop());
2359
2360         jfs_info("jfsIOWait being killed!");
2361         return 0;
2362 }
2363
2364 /*
2365  * NAME:        lmLogFormat()/jfs_logform()
2366  *
2367  * FUNCTION:    format file system log
2368  *
2369  * PARAMETERS:
2370  *      log     - volume log
2371  *      logAddress - start address of log space in FS block
2372  *      logSize - length of log space in FS block;
2373  *
2374  * RETURN:      0       - success
2375  *              -EIO    - i/o error
2376  *
2377  * XXX: We're synchronously writing one page at a time.  This needs to
2378  *      be improved by writing multiple pages at once.
2379  */
2380 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2381 {
2382         int rc = -EIO;
2383         struct jfs_sb_info *sbi;
2384         struct logsuper *logsuper;
2385         struct logpage *lp;
2386         int lspn;               /* log sequence page number */
2387         struct lrd *lrd_ptr;
2388         int npages = 0;
2389         struct lbuf *bp;
2390
2391         jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2392                  (long long)logAddress, logSize);
2393
2394         sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2395
2396         /* allocate a log buffer */
2397         bp = lbmAllocate(log, 1);
2398
2399         npages = logSize >> sbi->l2nbperpage;
2400
2401         /*
2402          *      log space:
2403          *
2404          * page 0 - reserved;
2405          * page 1 - log superblock;
2406          * page 2 - log data page: A SYNC log record is written
2407          *          into this page at logform time;
2408          * pages 3-N - log data page: set to empty log data pages;
2409          */
2410         /*
2411          *      init log superblock: log page 1
2412          */
2413         logsuper = (struct logsuper *) bp->l_ldata;
2414
2415         logsuper->magic = cpu_to_le32(LOGMAGIC);
2416         logsuper->version = cpu_to_le32(LOGVERSION);
2417         logsuper->state = cpu_to_le32(LOGREDONE);
2418         logsuper->flag = cpu_to_le32(sbi->mntflag);     /* ? */
2419         logsuper->size = cpu_to_le32(npages);
2420         logsuper->bsize = cpu_to_le32(sbi->bsize);
2421         logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2422         logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2423
2424         bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2425         bp->l_blkno = logAddress + sbi->nbperpage;
2426         lbmStartIO(bp);
2427         if ((rc = lbmIOWait(bp, 0)))
2428                 goto exit;
2429
2430         /*
2431          *      init pages 2 to npages-1 as log data pages:
2432          *
2433          * log page sequence number (lpsn) initialization:
2434          *
2435          * pn:   0     1     2     3                 n-1
2436          *       +-----+-----+=====+=====+===.....===+=====+
2437          * lspn:             N-1   0     1           N-2
2438          *                   <--- N page circular file ---->
2439          *
2440          * the N (= npages-2) data pages of the log is maintained as
2441          * a circular file for the log records;
2442          * lpsn grows by 1 monotonically as each log page is written
2443          * to the circular file of the log;
2444          * and setLogpage() will not reset the page number even if
2445          * the eor is equal to LOGPHDRSIZE. In order for binary search
2446          * still work in find log end process, we have to simulate the
2447          * log wrap situation at the log format time.
2448          * The 1st log page written will have the highest lpsn. Then
2449          * the succeeding log pages will have ascending order of
2450          * the lspn starting from 0, ... (N-2)
2451          */
2452         lp = (struct logpage *) bp->l_ldata;
2453         /*
2454          * initialize 1st log page to be written: lpsn = N - 1,
2455          * write a SYNCPT log record is written to this page
2456          */
2457         lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2458         lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2459
2460         lrd_ptr = (struct lrd *) &lp->data;
2461         lrd_ptr->logtid = 0;
2462         lrd_ptr->backchain = 0;
2463         lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2464         lrd_ptr->length = 0;
2465         lrd_ptr->log.syncpt.sync = 0;
2466
2467         bp->l_blkno += sbi->nbperpage;
2468         bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2469         lbmStartIO(bp);
2470         if ((rc = lbmIOWait(bp, 0)))
2471                 goto exit;
2472
2473         /*
2474          *      initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2475          */
2476         for (lspn = 0; lspn < npages - 3; lspn++) {
2477                 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2478                 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2479
2480                 bp->l_blkno += sbi->nbperpage;
2481                 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2482                 lbmStartIO(bp);
2483                 if ((rc = lbmIOWait(bp, 0)))
2484                         goto exit;
2485         }
2486
2487         rc = 0;
2488 exit:
2489         /*
2490          *      finalize log
2491          */
2492         /* release the buffer */
2493         lbmFree(bp);
2494
2495         return rc;
2496 }
2497
2498 #ifdef CONFIG_JFS_STATISTICS
2499 static int jfs_lmstats_proc_show(struct seq_file *m, void *v)
2500 {
2501         seq_printf(m,
2502                        "JFS Logmgr stats\n"
2503                        "================\n"
2504                        "commits = %d\n"
2505                        "writes submitted = %d\n"
2506                        "writes completed = %d\n"
2507                        "full pages submitted = %d\n"
2508                        "partial pages submitted = %d\n",
2509                        lmStat.commit,
2510                        lmStat.submitted,
2511                        lmStat.pagedone,
2512                        lmStat.full_page,
2513                        lmStat.partial_page);
2514         return 0;
2515 }
2516
2517 static int jfs_lmstats_proc_open(struct inode *inode, struct file *file)
2518 {
2519         return single_open(file, jfs_lmstats_proc_show, NULL);
2520 }
2521
2522 const struct file_operations jfs_lmstats_proc_fops = {
2523         .owner          = THIS_MODULE,
2524         .open           = jfs_lmstats_proc_open,
2525         .read           = seq_read,
2526         .llseek         = seq_lseek,
2527         .release        = single_release,
2528 };
2529 #endif /* CONFIG_JFS_STATISTICS */