Merge branch 'fix/hda' into for-linus
[pandora-kernel.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29
30 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
31
32 /*
33  * jbd2_get_transaction: obtain a new transaction_t object.
34  *
35  * Simply allocate and initialise a new transaction.  Create it in
36  * RUNNING state and add it to the current journal (which should not
37  * have an existing running transaction: we only make a new transaction
38  * once we have started to commit the old one).
39  *
40  * Preconditions:
41  *      The journal MUST be locked.  We don't perform atomic mallocs on the
42  *      new transaction and we can't block without protecting against other
43  *      processes trying to touch the journal while it is in transition.
44  *
45  */
46
47 static transaction_t *
48 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
49 {
50         transaction->t_journal = journal;
51         transaction->t_state = T_RUNNING;
52         transaction->t_start_time = ktime_get();
53         transaction->t_tid = journal->j_transaction_sequence++;
54         transaction->t_expires = jiffies + journal->j_commit_interval;
55         spin_lock_init(&transaction->t_handle_lock);
56         INIT_LIST_HEAD(&transaction->t_inode_list);
57         INIT_LIST_HEAD(&transaction->t_private_list);
58
59         /* Set up the commit timer for the new transaction. */
60         journal->j_commit_timer.expires = round_jiffies(transaction->t_expires);
61         add_timer(&journal->j_commit_timer);
62
63         J_ASSERT(journal->j_running_transaction == NULL);
64         journal->j_running_transaction = transaction;
65         transaction->t_max_wait = 0;
66         transaction->t_start = jiffies;
67
68         return transaction;
69 }
70
71 /*
72  * Handle management.
73  *
74  * A handle_t is an object which represents a single atomic update to a
75  * filesystem, and which tracks all of the modifications which form part
76  * of that one update.
77  */
78
79 /*
80  * start_this_handle: Given a handle, deal with any locking or stalling
81  * needed to make sure that there is enough journal space for the handle
82  * to begin.  Attach the handle to a transaction and set up the
83  * transaction's buffer credits.
84  */
85
86 static int start_this_handle(journal_t *journal, handle_t *handle)
87 {
88         transaction_t *transaction;
89         int needed;
90         int nblocks = handle->h_buffer_credits;
91         transaction_t *new_transaction = NULL;
92         int ret = 0;
93         unsigned long ts = jiffies;
94
95         if (nblocks > journal->j_max_transaction_buffers) {
96                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
97                        current->comm, nblocks,
98                        journal->j_max_transaction_buffers);
99                 ret = -ENOSPC;
100                 goto out;
101         }
102
103 alloc_transaction:
104         if (!journal->j_running_transaction) {
105                 new_transaction = kzalloc(sizeof(*new_transaction),
106                                                 GFP_NOFS|__GFP_NOFAIL);
107                 if (!new_transaction) {
108                         ret = -ENOMEM;
109                         goto out;
110                 }
111         }
112
113         jbd_debug(3, "New handle %p going live.\n", handle);
114
115 repeat:
116
117         /*
118          * We need to hold j_state_lock until t_updates has been incremented,
119          * for proper journal barrier handling
120          */
121         spin_lock(&journal->j_state_lock);
122 repeat_locked:
123         if (is_journal_aborted(journal) ||
124             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
125                 spin_unlock(&journal->j_state_lock);
126                 ret = -EROFS;
127                 goto out;
128         }
129
130         /* Wait on the journal's transaction barrier if necessary */
131         if (journal->j_barrier_count) {
132                 spin_unlock(&journal->j_state_lock);
133                 wait_event(journal->j_wait_transaction_locked,
134                                 journal->j_barrier_count == 0);
135                 goto repeat;
136         }
137
138         if (!journal->j_running_transaction) {
139                 if (!new_transaction) {
140                         spin_unlock(&journal->j_state_lock);
141                         goto alloc_transaction;
142                 }
143                 jbd2_get_transaction(journal, new_transaction);
144                 new_transaction = NULL;
145         }
146
147         transaction = journal->j_running_transaction;
148
149         /*
150          * If the current transaction is locked down for commit, wait for the
151          * lock to be released.
152          */
153         if (transaction->t_state == T_LOCKED) {
154                 DEFINE_WAIT(wait);
155
156                 prepare_to_wait(&journal->j_wait_transaction_locked,
157                                         &wait, TASK_UNINTERRUPTIBLE);
158                 spin_unlock(&journal->j_state_lock);
159                 schedule();
160                 finish_wait(&journal->j_wait_transaction_locked, &wait);
161                 goto repeat;
162         }
163
164         /*
165          * If there is not enough space left in the log to write all potential
166          * buffers requested by this operation, we need to stall pending a log
167          * checkpoint to free some more log space.
168          */
169         spin_lock(&transaction->t_handle_lock);
170         needed = transaction->t_outstanding_credits + nblocks;
171
172         if (needed > journal->j_max_transaction_buffers) {
173                 /*
174                  * If the current transaction is already too large, then start
175                  * to commit it: we can then go back and attach this handle to
176                  * a new transaction.
177                  */
178                 DEFINE_WAIT(wait);
179
180                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
181                 spin_unlock(&transaction->t_handle_lock);
182                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
183                                 TASK_UNINTERRUPTIBLE);
184                 __jbd2_log_start_commit(journal, transaction->t_tid);
185                 spin_unlock(&journal->j_state_lock);
186                 schedule();
187                 finish_wait(&journal->j_wait_transaction_locked, &wait);
188                 goto repeat;
189         }
190
191         /*
192          * The commit code assumes that it can get enough log space
193          * without forcing a checkpoint.  This is *critical* for
194          * correctness: a checkpoint of a buffer which is also
195          * associated with a committing transaction creates a deadlock,
196          * so commit simply cannot force through checkpoints.
197          *
198          * We must therefore ensure the necessary space in the journal
199          * *before* starting to dirty potentially checkpointed buffers
200          * in the new transaction.
201          *
202          * The worst part is, any transaction currently committing can
203          * reduce the free space arbitrarily.  Be careful to account for
204          * those buffers when checkpointing.
205          */
206
207         /*
208          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
209          * a _lot_ of headroom: 1/4 of the journal plus the size of
210          * the committing transaction.  Really, we only need to give it
211          * committing_transaction->t_outstanding_credits plus "enough" for
212          * the log control blocks.
213          * Also, this test is inconsitent with the matching one in
214          * jbd2_journal_extend().
215          */
216         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
217                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
218                 spin_unlock(&transaction->t_handle_lock);
219                 __jbd2_log_wait_for_space(journal);
220                 goto repeat_locked;
221         }
222
223         /* OK, account for the buffers that this operation expects to
224          * use and add the handle to the running transaction. */
225
226         if (time_after(transaction->t_start, ts)) {
227                 ts = jbd2_time_diff(ts, transaction->t_start);
228                 if (ts > transaction->t_max_wait)
229                         transaction->t_max_wait = ts;
230         }
231
232         handle->h_transaction = transaction;
233         transaction->t_outstanding_credits += nblocks;
234         transaction->t_updates++;
235         transaction->t_handle_count++;
236         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
237                   handle, nblocks, transaction->t_outstanding_credits,
238                   __jbd2_log_space_left(journal));
239         spin_unlock(&transaction->t_handle_lock);
240         spin_unlock(&journal->j_state_lock);
241 out:
242         if (unlikely(new_transaction))          /* It's usually NULL */
243                 kfree(new_transaction);
244         return ret;
245 }
246
247 static struct lock_class_key jbd2_handle_key;
248
249 /* Allocate a new handle.  This should probably be in a slab... */
250 static handle_t *new_handle(int nblocks)
251 {
252         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
253         if (!handle)
254                 return NULL;
255         memset(handle, 0, sizeof(*handle));
256         handle->h_buffer_credits = nblocks;
257         handle->h_ref = 1;
258
259         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
260                                                 &jbd2_handle_key, 0);
261
262         return handle;
263 }
264
265 /**
266  * handle_t *jbd2_journal_start() - Obtain a new handle.
267  * @journal: Journal to start transaction on.
268  * @nblocks: number of block buffer we might modify
269  *
270  * We make sure that the transaction can guarantee at least nblocks of
271  * modified buffers in the log.  We block until the log can guarantee
272  * that much space.
273  *
274  * This function is visible to journal users (like ext3fs), so is not
275  * called with the journal already locked.
276  *
277  * Return a pointer to a newly allocated handle, or NULL on failure
278  */
279 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
280 {
281         handle_t *handle = journal_current_handle();
282         int err;
283
284         if (!journal)
285                 return ERR_PTR(-EROFS);
286
287         if (handle) {
288                 J_ASSERT(handle->h_transaction->t_journal == journal);
289                 handle->h_ref++;
290                 return handle;
291         }
292
293         handle = new_handle(nblocks);
294         if (!handle)
295                 return ERR_PTR(-ENOMEM);
296
297         current->journal_info = handle;
298
299         err = start_this_handle(journal, handle);
300         if (err < 0) {
301                 jbd2_free_handle(handle);
302                 current->journal_info = NULL;
303                 handle = ERR_PTR(err);
304                 goto out;
305         }
306
307         lock_map_acquire(&handle->h_lockdep_map);
308 out:
309         return handle;
310 }
311
312 /**
313  * int jbd2_journal_extend() - extend buffer credits.
314  * @handle:  handle to 'extend'
315  * @nblocks: nr blocks to try to extend by.
316  *
317  * Some transactions, such as large extends and truncates, can be done
318  * atomically all at once or in several stages.  The operation requests
319  * a credit for a number of buffer modications in advance, but can
320  * extend its credit if it needs more.
321  *
322  * jbd2_journal_extend tries to give the running handle more buffer credits.
323  * It does not guarantee that allocation - this is a best-effort only.
324  * The calling process MUST be able to deal cleanly with a failure to
325  * extend here.
326  *
327  * Return 0 on success, non-zero on failure.
328  *
329  * return code < 0 implies an error
330  * return code > 0 implies normal transaction-full status.
331  */
332 int jbd2_journal_extend(handle_t *handle, int nblocks)
333 {
334         transaction_t *transaction = handle->h_transaction;
335         journal_t *journal = transaction->t_journal;
336         int result;
337         int wanted;
338
339         result = -EIO;
340         if (is_handle_aborted(handle))
341                 goto out;
342
343         result = 1;
344
345         spin_lock(&journal->j_state_lock);
346
347         /* Don't extend a locked-down transaction! */
348         if (handle->h_transaction->t_state != T_RUNNING) {
349                 jbd_debug(3, "denied handle %p %d blocks: "
350                           "transaction not running\n", handle, nblocks);
351                 goto error_out;
352         }
353
354         spin_lock(&transaction->t_handle_lock);
355         wanted = transaction->t_outstanding_credits + nblocks;
356
357         if (wanted > journal->j_max_transaction_buffers) {
358                 jbd_debug(3, "denied handle %p %d blocks: "
359                           "transaction too large\n", handle, nblocks);
360                 goto unlock;
361         }
362
363         if (wanted > __jbd2_log_space_left(journal)) {
364                 jbd_debug(3, "denied handle %p %d blocks: "
365                           "insufficient log space\n", handle, nblocks);
366                 goto unlock;
367         }
368
369         handle->h_buffer_credits += nblocks;
370         transaction->t_outstanding_credits += nblocks;
371         result = 0;
372
373         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
374 unlock:
375         spin_unlock(&transaction->t_handle_lock);
376 error_out:
377         spin_unlock(&journal->j_state_lock);
378 out:
379         return result;
380 }
381
382
383 /**
384  * int jbd2_journal_restart() - restart a handle .
385  * @handle:  handle to restart
386  * @nblocks: nr credits requested
387  *
388  * Restart a handle for a multi-transaction filesystem
389  * operation.
390  *
391  * If the jbd2_journal_extend() call above fails to grant new buffer credits
392  * to a running handle, a call to jbd2_journal_restart will commit the
393  * handle's transaction so far and reattach the handle to a new
394  * transaction capabable of guaranteeing the requested number of
395  * credits.
396  */
397
398 int jbd2_journal_restart(handle_t *handle, int nblocks)
399 {
400         transaction_t *transaction = handle->h_transaction;
401         journal_t *journal = transaction->t_journal;
402         int ret;
403
404         /* If we've had an abort of any type, don't even think about
405          * actually doing the restart! */
406         if (is_handle_aborted(handle))
407                 return 0;
408
409         /*
410          * First unlink the handle from its current transaction, and start the
411          * commit on that.
412          */
413         J_ASSERT(transaction->t_updates > 0);
414         J_ASSERT(journal_current_handle() == handle);
415
416         spin_lock(&journal->j_state_lock);
417         spin_lock(&transaction->t_handle_lock);
418         transaction->t_outstanding_credits -= handle->h_buffer_credits;
419         transaction->t_updates--;
420
421         if (!transaction->t_updates)
422                 wake_up(&journal->j_wait_updates);
423         spin_unlock(&transaction->t_handle_lock);
424
425         jbd_debug(2, "restarting handle %p\n", handle);
426         __jbd2_log_start_commit(journal, transaction->t_tid);
427         spin_unlock(&journal->j_state_lock);
428
429         handle->h_buffer_credits = nblocks;
430         ret = start_this_handle(journal, handle);
431         return ret;
432 }
433
434
435 /**
436  * void jbd2_journal_lock_updates () - establish a transaction barrier.
437  * @journal:  Journal to establish a barrier on.
438  *
439  * This locks out any further updates from being started, and blocks
440  * until all existing updates have completed, returning only once the
441  * journal is in a quiescent state with no updates running.
442  *
443  * The journal lock should not be held on entry.
444  */
445 void jbd2_journal_lock_updates(journal_t *journal)
446 {
447         DEFINE_WAIT(wait);
448
449         spin_lock(&journal->j_state_lock);
450         ++journal->j_barrier_count;
451
452         /* Wait until there are no running updates */
453         while (1) {
454                 transaction_t *transaction = journal->j_running_transaction;
455
456                 if (!transaction)
457                         break;
458
459                 spin_lock(&transaction->t_handle_lock);
460                 if (!transaction->t_updates) {
461                         spin_unlock(&transaction->t_handle_lock);
462                         break;
463                 }
464                 prepare_to_wait(&journal->j_wait_updates, &wait,
465                                 TASK_UNINTERRUPTIBLE);
466                 spin_unlock(&transaction->t_handle_lock);
467                 spin_unlock(&journal->j_state_lock);
468                 schedule();
469                 finish_wait(&journal->j_wait_updates, &wait);
470                 spin_lock(&journal->j_state_lock);
471         }
472         spin_unlock(&journal->j_state_lock);
473
474         /*
475          * We have now established a barrier against other normal updates, but
476          * we also need to barrier against other jbd2_journal_lock_updates() calls
477          * to make sure that we serialise special journal-locked operations
478          * too.
479          */
480         mutex_lock(&journal->j_barrier);
481 }
482
483 /**
484  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
485  * @journal:  Journal to release the barrier on.
486  *
487  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
488  *
489  * Should be called without the journal lock held.
490  */
491 void jbd2_journal_unlock_updates (journal_t *journal)
492 {
493         J_ASSERT(journal->j_barrier_count != 0);
494
495         mutex_unlock(&journal->j_barrier);
496         spin_lock(&journal->j_state_lock);
497         --journal->j_barrier_count;
498         spin_unlock(&journal->j_state_lock);
499         wake_up(&journal->j_wait_transaction_locked);
500 }
501
502 static void warn_dirty_buffer(struct buffer_head *bh)
503 {
504         char b[BDEVNAME_SIZE];
505
506         printk(KERN_WARNING
507                "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
508                "There's a risk of filesystem corruption in case of system "
509                "crash.\n",
510                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
511 }
512
513 /*
514  * If the buffer is already part of the current transaction, then there
515  * is nothing we need to do.  If it is already part of a prior
516  * transaction which we are still committing to disk, then we need to
517  * make sure that we do not overwrite the old copy: we do copy-out to
518  * preserve the copy going to disk.  We also account the buffer against
519  * the handle's metadata buffer credits (unless the buffer is already
520  * part of the transaction, that is).
521  *
522  */
523 static int
524 do_get_write_access(handle_t *handle, struct journal_head *jh,
525                         int force_copy)
526 {
527         struct buffer_head *bh;
528         transaction_t *transaction;
529         journal_t *journal;
530         int error;
531         char *frozen_buffer = NULL;
532         int need_copy = 0;
533
534         if (is_handle_aborted(handle))
535                 return -EROFS;
536
537         transaction = handle->h_transaction;
538         journal = transaction->t_journal;
539
540         jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
541
542         JBUFFER_TRACE(jh, "entry");
543 repeat:
544         bh = jh2bh(jh);
545
546         /* @@@ Need to check for errors here at some point. */
547
548         lock_buffer(bh);
549         jbd_lock_bh_state(bh);
550
551         /* We now hold the buffer lock so it is safe to query the buffer
552          * state.  Is the buffer dirty?
553          *
554          * If so, there are two possibilities.  The buffer may be
555          * non-journaled, and undergoing a quite legitimate writeback.
556          * Otherwise, it is journaled, and we don't expect dirty buffers
557          * in that state (the buffers should be marked JBD_Dirty
558          * instead.)  So either the IO is being done under our own
559          * control and this is a bug, or it's a third party IO such as
560          * dump(8) (which may leave the buffer scheduled for read ---
561          * ie. locked but not dirty) or tune2fs (which may actually have
562          * the buffer dirtied, ugh.)  */
563
564         if (buffer_dirty(bh)) {
565                 /*
566                  * First question: is this buffer already part of the current
567                  * transaction or the existing committing transaction?
568                  */
569                 if (jh->b_transaction) {
570                         J_ASSERT_JH(jh,
571                                 jh->b_transaction == transaction ||
572                                 jh->b_transaction ==
573                                         journal->j_committing_transaction);
574                         if (jh->b_next_transaction)
575                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
576                                                         transaction);
577                         warn_dirty_buffer(bh);
578                 }
579                 /*
580                  * In any case we need to clean the dirty flag and we must
581                  * do it under the buffer lock to be sure we don't race
582                  * with running write-out.
583                  */
584                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
585                 clear_buffer_dirty(bh);
586                 set_buffer_jbddirty(bh);
587         }
588
589         unlock_buffer(bh);
590
591         error = -EROFS;
592         if (is_handle_aborted(handle)) {
593                 jbd_unlock_bh_state(bh);
594                 goto out;
595         }
596         error = 0;
597
598         /*
599          * The buffer is already part of this transaction if b_transaction or
600          * b_next_transaction points to it
601          */
602         if (jh->b_transaction == transaction ||
603             jh->b_next_transaction == transaction)
604                 goto done;
605
606         /*
607          * this is the first time this transaction is touching this buffer,
608          * reset the modified flag
609          */
610        jh->b_modified = 0;
611
612         /*
613          * If there is already a copy-out version of this buffer, then we don't
614          * need to make another one
615          */
616         if (jh->b_frozen_data) {
617                 JBUFFER_TRACE(jh, "has frozen data");
618                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
619                 jh->b_next_transaction = transaction;
620                 goto done;
621         }
622
623         /* Is there data here we need to preserve? */
624
625         if (jh->b_transaction && jh->b_transaction != transaction) {
626                 JBUFFER_TRACE(jh, "owned by older transaction");
627                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
628                 J_ASSERT_JH(jh, jh->b_transaction ==
629                                         journal->j_committing_transaction);
630
631                 /* There is one case we have to be very careful about.
632                  * If the committing transaction is currently writing
633                  * this buffer out to disk and has NOT made a copy-out,
634                  * then we cannot modify the buffer contents at all
635                  * right now.  The essence of copy-out is that it is the
636                  * extra copy, not the primary copy, which gets
637                  * journaled.  If the primary copy is already going to
638                  * disk then we cannot do copy-out here. */
639
640                 if (jh->b_jlist == BJ_Shadow) {
641                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
642                         wait_queue_head_t *wqh;
643
644                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
645
646                         JBUFFER_TRACE(jh, "on shadow: sleep");
647                         jbd_unlock_bh_state(bh);
648                         /* commit wakes up all shadow buffers after IO */
649                         for ( ; ; ) {
650                                 prepare_to_wait(wqh, &wait.wait,
651                                                 TASK_UNINTERRUPTIBLE);
652                                 if (jh->b_jlist != BJ_Shadow)
653                                         break;
654                                 schedule();
655                         }
656                         finish_wait(wqh, &wait.wait);
657                         goto repeat;
658                 }
659
660                 /* Only do the copy if the currently-owning transaction
661                  * still needs it.  If it is on the Forget list, the
662                  * committing transaction is past that stage.  The
663                  * buffer had better remain locked during the kmalloc,
664                  * but that should be true --- we hold the journal lock
665                  * still and the buffer is already on the BUF_JOURNAL
666                  * list so won't be flushed.
667                  *
668                  * Subtle point, though: if this is a get_undo_access,
669                  * then we will be relying on the frozen_data to contain
670                  * the new value of the committed_data record after the
671                  * transaction, so we HAVE to force the frozen_data copy
672                  * in that case. */
673
674                 if (jh->b_jlist != BJ_Forget || force_copy) {
675                         JBUFFER_TRACE(jh, "generate frozen data");
676                         if (!frozen_buffer) {
677                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
678                                 jbd_unlock_bh_state(bh);
679                                 frozen_buffer =
680                                         jbd2_alloc(jh2bh(jh)->b_size,
681                                                          GFP_NOFS);
682                                 if (!frozen_buffer) {
683                                         printk(KERN_EMERG
684                                                "%s: OOM for frozen_buffer\n",
685                                                __func__);
686                                         JBUFFER_TRACE(jh, "oom!");
687                                         error = -ENOMEM;
688                                         jbd_lock_bh_state(bh);
689                                         goto done;
690                                 }
691                                 goto repeat;
692                         }
693                         jh->b_frozen_data = frozen_buffer;
694                         frozen_buffer = NULL;
695                         need_copy = 1;
696                 }
697                 jh->b_next_transaction = transaction;
698         }
699
700
701         /*
702          * Finally, if the buffer is not journaled right now, we need to make
703          * sure it doesn't get written to disk before the caller actually
704          * commits the new data
705          */
706         if (!jh->b_transaction) {
707                 JBUFFER_TRACE(jh, "no transaction");
708                 J_ASSERT_JH(jh, !jh->b_next_transaction);
709                 jh->b_transaction = transaction;
710                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
711                 spin_lock(&journal->j_list_lock);
712                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
713                 spin_unlock(&journal->j_list_lock);
714         }
715
716 done:
717         if (need_copy) {
718                 struct page *page;
719                 int offset;
720                 char *source;
721
722                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
723                             "Possible IO failure.\n");
724                 page = jh2bh(jh)->b_page;
725                 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
726                 source = kmap_atomic(page, KM_USER0);
727                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
728                 kunmap_atomic(source, KM_USER0);
729
730                 /*
731                  * Now that the frozen data is saved off, we need to store
732                  * any matching triggers.
733                  */
734                 jh->b_frozen_triggers = jh->b_triggers;
735         }
736         jbd_unlock_bh_state(bh);
737
738         /*
739          * If we are about to journal a buffer, then any revoke pending on it is
740          * no longer valid
741          */
742         jbd2_journal_cancel_revoke(handle, jh);
743
744 out:
745         if (unlikely(frozen_buffer))    /* It's usually NULL */
746                 jbd2_free(frozen_buffer, bh->b_size);
747
748         JBUFFER_TRACE(jh, "exit");
749         return error;
750 }
751
752 /**
753  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
754  * @handle: transaction to add buffer modifications to
755  * @bh:     bh to be used for metadata writes
756  * @credits: variable that will receive credits for the buffer
757  *
758  * Returns an error code or 0 on success.
759  *
760  * In full data journalling mode the buffer may be of type BJ_AsyncData,
761  * because we're write()ing a buffer which is also part of a shared mapping.
762  */
763
764 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
765 {
766         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
767         int rc;
768
769         /* We do not want to get caught playing with fields which the
770          * log thread also manipulates.  Make sure that the buffer
771          * completes any outstanding IO before proceeding. */
772         rc = do_get_write_access(handle, jh, 0);
773         jbd2_journal_put_journal_head(jh);
774         return rc;
775 }
776
777
778 /*
779  * When the user wants to journal a newly created buffer_head
780  * (ie. getblk() returned a new buffer and we are going to populate it
781  * manually rather than reading off disk), then we need to keep the
782  * buffer_head locked until it has been completely filled with new
783  * data.  In this case, we should be able to make the assertion that
784  * the bh is not already part of an existing transaction.
785  *
786  * The buffer should already be locked by the caller by this point.
787  * There is no lock ranking violation: it was a newly created,
788  * unlocked buffer beforehand. */
789
790 /**
791  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
792  * @handle: transaction to new buffer to
793  * @bh: new buffer.
794  *
795  * Call this if you create a new bh.
796  */
797 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
798 {
799         transaction_t *transaction = handle->h_transaction;
800         journal_t *journal = transaction->t_journal;
801         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
802         int err;
803
804         jbd_debug(5, "journal_head %p\n", jh);
805         err = -EROFS;
806         if (is_handle_aborted(handle))
807                 goto out;
808         err = 0;
809
810         JBUFFER_TRACE(jh, "entry");
811         /*
812          * The buffer may already belong to this transaction due to pre-zeroing
813          * in the filesystem's new_block code.  It may also be on the previous,
814          * committing transaction's lists, but it HAS to be in Forget state in
815          * that case: the transaction must have deleted the buffer for it to be
816          * reused here.
817          */
818         jbd_lock_bh_state(bh);
819         spin_lock(&journal->j_list_lock);
820         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
821                 jh->b_transaction == NULL ||
822                 (jh->b_transaction == journal->j_committing_transaction &&
823                           jh->b_jlist == BJ_Forget)));
824
825         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
826         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
827
828         if (jh->b_transaction == NULL) {
829                 /*
830                  * Previous jbd2_journal_forget() could have left the buffer
831                  * with jbddirty bit set because it was being committed. When
832                  * the commit finished, we've filed the buffer for
833                  * checkpointing and marked it dirty. Now we are reallocating
834                  * the buffer so the transaction freeing it must have
835                  * committed and so it's safe to clear the dirty bit.
836                  */
837                 clear_buffer_dirty(jh2bh(jh));
838                 jh->b_transaction = transaction;
839
840                 /* first access by this transaction */
841                 jh->b_modified = 0;
842
843                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
844                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
845         } else if (jh->b_transaction == journal->j_committing_transaction) {
846                 /* first access by this transaction */
847                 jh->b_modified = 0;
848
849                 JBUFFER_TRACE(jh, "set next transaction");
850                 jh->b_next_transaction = transaction;
851         }
852         spin_unlock(&journal->j_list_lock);
853         jbd_unlock_bh_state(bh);
854
855         /*
856          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
857          * blocks which contain freed but then revoked metadata.  We need
858          * to cancel the revoke in case we end up freeing it yet again
859          * and the reallocating as data - this would cause a second revoke,
860          * which hits an assertion error.
861          */
862         JBUFFER_TRACE(jh, "cancelling revoke");
863         jbd2_journal_cancel_revoke(handle, jh);
864         jbd2_journal_put_journal_head(jh);
865 out:
866         return err;
867 }
868
869 /**
870  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
871  *     non-rewindable consequences
872  * @handle: transaction
873  * @bh: buffer to undo
874  * @credits: store the number of taken credits here (if not NULL)
875  *
876  * Sometimes there is a need to distinguish between metadata which has
877  * been committed to disk and that which has not.  The ext3fs code uses
878  * this for freeing and allocating space, we have to make sure that we
879  * do not reuse freed space until the deallocation has been committed,
880  * since if we overwrote that space we would make the delete
881  * un-rewindable in case of a crash.
882  *
883  * To deal with that, jbd2_journal_get_undo_access requests write access to a
884  * buffer for parts of non-rewindable operations such as delete
885  * operations on the bitmaps.  The journaling code must keep a copy of
886  * the buffer's contents prior to the undo_access call until such time
887  * as we know that the buffer has definitely been committed to disk.
888  *
889  * We never need to know which transaction the committed data is part
890  * of, buffers touched here are guaranteed to be dirtied later and so
891  * will be committed to a new transaction in due course, at which point
892  * we can discard the old committed data pointer.
893  *
894  * Returns error number or 0 on success.
895  */
896 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
897 {
898         int err;
899         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
900         char *committed_data = NULL;
901
902         JBUFFER_TRACE(jh, "entry");
903
904         /*
905          * Do this first --- it can drop the journal lock, so we want to
906          * make sure that obtaining the committed_data is done
907          * atomically wrt. completion of any outstanding commits.
908          */
909         err = do_get_write_access(handle, jh, 1);
910         if (err)
911                 goto out;
912
913 repeat:
914         if (!jh->b_committed_data) {
915                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
916                 if (!committed_data) {
917                         printk(KERN_EMERG "%s: No memory for committed data\n",
918                                 __func__);
919                         err = -ENOMEM;
920                         goto out;
921                 }
922         }
923
924         jbd_lock_bh_state(bh);
925         if (!jh->b_committed_data) {
926                 /* Copy out the current buffer contents into the
927                  * preserved, committed copy. */
928                 JBUFFER_TRACE(jh, "generate b_committed data");
929                 if (!committed_data) {
930                         jbd_unlock_bh_state(bh);
931                         goto repeat;
932                 }
933
934                 jh->b_committed_data = committed_data;
935                 committed_data = NULL;
936                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
937         }
938         jbd_unlock_bh_state(bh);
939 out:
940         jbd2_journal_put_journal_head(jh);
941         if (unlikely(committed_data))
942                 jbd2_free(committed_data, bh->b_size);
943         return err;
944 }
945
946 /**
947  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
948  * @bh: buffer to trigger on
949  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
950  *
951  * Set any triggers on this journal_head.  This is always safe, because
952  * triggers for a committing buffer will be saved off, and triggers for
953  * a running transaction will match the buffer in that transaction.
954  *
955  * Call with NULL to clear the triggers.
956  */
957 void jbd2_journal_set_triggers(struct buffer_head *bh,
958                                struct jbd2_buffer_trigger_type *type)
959 {
960         struct journal_head *jh = bh2jh(bh);
961
962         jh->b_triggers = type;
963 }
964
965 void jbd2_buffer_commit_trigger(struct journal_head *jh, void *mapped_data,
966                                 struct jbd2_buffer_trigger_type *triggers)
967 {
968         struct buffer_head *bh = jh2bh(jh);
969
970         if (!triggers || !triggers->t_commit)
971                 return;
972
973         triggers->t_commit(triggers, bh, mapped_data, bh->b_size);
974 }
975
976 void jbd2_buffer_abort_trigger(struct journal_head *jh,
977                                struct jbd2_buffer_trigger_type *triggers)
978 {
979         if (!triggers || !triggers->t_abort)
980                 return;
981
982         triggers->t_abort(triggers, jh2bh(jh));
983 }
984
985
986
987 /**
988  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
989  * @handle: transaction to add buffer to.
990  * @bh: buffer to mark
991  *
992  * mark dirty metadata which needs to be journaled as part of the current
993  * transaction.
994  *
995  * The buffer is placed on the transaction's metadata list and is marked
996  * as belonging to the transaction.
997  *
998  * Returns error number or 0 on success.
999  *
1000  * Special care needs to be taken if the buffer already belongs to the
1001  * current committing transaction (in which case we should have frozen
1002  * data present for that commit).  In that case, we don't relink the
1003  * buffer: that only gets done when the old transaction finally
1004  * completes its commit.
1005  */
1006 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1007 {
1008         transaction_t *transaction = handle->h_transaction;
1009         journal_t *journal = transaction->t_journal;
1010         struct journal_head *jh = bh2jh(bh);
1011
1012         jbd_debug(5, "journal_head %p\n", jh);
1013         JBUFFER_TRACE(jh, "entry");
1014         if (is_handle_aborted(handle))
1015                 goto out;
1016
1017         jbd_lock_bh_state(bh);
1018
1019         if (jh->b_modified == 0) {
1020                 /*
1021                  * This buffer's got modified and becoming part
1022                  * of the transaction. This needs to be done
1023                  * once a transaction -bzzz
1024                  */
1025                 jh->b_modified = 1;
1026                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1027                 handle->h_buffer_credits--;
1028         }
1029
1030         /*
1031          * fastpath, to avoid expensive locking.  If this buffer is already
1032          * on the running transaction's metadata list there is nothing to do.
1033          * Nobody can take it off again because there is a handle open.
1034          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1035          * result in this test being false, so we go in and take the locks.
1036          */
1037         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1038                 JBUFFER_TRACE(jh, "fastpath");
1039                 J_ASSERT_JH(jh, jh->b_transaction ==
1040                                         journal->j_running_transaction);
1041                 goto out_unlock_bh;
1042         }
1043
1044         set_buffer_jbddirty(bh);
1045
1046         /*
1047          * Metadata already on the current transaction list doesn't
1048          * need to be filed.  Metadata on another transaction's list must
1049          * be committing, and will be refiled once the commit completes:
1050          * leave it alone for now.
1051          */
1052         if (jh->b_transaction != transaction) {
1053                 JBUFFER_TRACE(jh, "already on other transaction");
1054                 J_ASSERT_JH(jh, jh->b_transaction ==
1055                                         journal->j_committing_transaction);
1056                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1057                 /* And this case is illegal: we can't reuse another
1058                  * transaction's data buffer, ever. */
1059                 goto out_unlock_bh;
1060         }
1061
1062         /* That test should have eliminated the following case: */
1063         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1064
1065         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1066         spin_lock(&journal->j_list_lock);
1067         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1068         spin_unlock(&journal->j_list_lock);
1069 out_unlock_bh:
1070         jbd_unlock_bh_state(bh);
1071 out:
1072         JBUFFER_TRACE(jh, "exit");
1073         return 0;
1074 }
1075
1076 /*
1077  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1078  * updates, if the update decided in the end that it didn't need access.
1079  *
1080  */
1081 void
1082 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1083 {
1084         BUFFER_TRACE(bh, "entry");
1085 }
1086
1087 /**
1088  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1089  * @handle: transaction handle
1090  * @bh:     bh to 'forget'
1091  *
1092  * We can only do the bforget if there are no commits pending against the
1093  * buffer.  If the buffer is dirty in the current running transaction we
1094  * can safely unlink it.
1095  *
1096  * bh may not be a journalled buffer at all - it may be a non-JBD
1097  * buffer which came off the hashtable.  Check for this.
1098  *
1099  * Decrements bh->b_count by one.
1100  *
1101  * Allow this call even if the handle has aborted --- it may be part of
1102  * the caller's cleanup after an abort.
1103  */
1104 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1105 {
1106         transaction_t *transaction = handle->h_transaction;
1107         journal_t *journal = transaction->t_journal;
1108         struct journal_head *jh;
1109         int drop_reserve = 0;
1110         int err = 0;
1111         int was_modified = 0;
1112
1113         BUFFER_TRACE(bh, "entry");
1114
1115         jbd_lock_bh_state(bh);
1116         spin_lock(&journal->j_list_lock);
1117
1118         if (!buffer_jbd(bh))
1119                 goto not_jbd;
1120         jh = bh2jh(bh);
1121
1122         /* Critical error: attempting to delete a bitmap buffer, maybe?
1123          * Don't do any jbd operations, and return an error. */
1124         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1125                          "inconsistent data on disk")) {
1126                 err = -EIO;
1127                 goto not_jbd;
1128         }
1129
1130         /* keep track of wether or not this transaction modified us */
1131         was_modified = jh->b_modified;
1132
1133         /*
1134          * The buffer's going from the transaction, we must drop
1135          * all references -bzzz
1136          */
1137         jh->b_modified = 0;
1138
1139         if (jh->b_transaction == handle->h_transaction) {
1140                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1141
1142                 /* If we are forgetting a buffer which is already part
1143                  * of this transaction, then we can just drop it from
1144                  * the transaction immediately. */
1145                 clear_buffer_dirty(bh);
1146                 clear_buffer_jbddirty(bh);
1147
1148                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1149
1150                 /*
1151                  * we only want to drop a reference if this transaction
1152                  * modified the buffer
1153                  */
1154                 if (was_modified)
1155                         drop_reserve = 1;
1156
1157                 /*
1158                  * We are no longer going to journal this buffer.
1159                  * However, the commit of this transaction is still
1160                  * important to the buffer: the delete that we are now
1161                  * processing might obsolete an old log entry, so by
1162                  * committing, we can satisfy the buffer's checkpoint.
1163                  *
1164                  * So, if we have a checkpoint on the buffer, we should
1165                  * now refile the buffer on our BJ_Forget list so that
1166                  * we know to remove the checkpoint after we commit.
1167                  */
1168
1169                 if (jh->b_cp_transaction) {
1170                         __jbd2_journal_temp_unlink_buffer(jh);
1171                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1172                 } else {
1173                         __jbd2_journal_unfile_buffer(jh);
1174                         jbd2_journal_remove_journal_head(bh);
1175                         __brelse(bh);
1176                         if (!buffer_jbd(bh)) {
1177                                 spin_unlock(&journal->j_list_lock);
1178                                 jbd_unlock_bh_state(bh);
1179                                 __bforget(bh);
1180                                 goto drop;
1181                         }
1182                 }
1183         } else if (jh->b_transaction) {
1184                 J_ASSERT_JH(jh, (jh->b_transaction ==
1185                                  journal->j_committing_transaction));
1186                 /* However, if the buffer is still owned by a prior
1187                  * (committing) transaction, we can't drop it yet... */
1188                 JBUFFER_TRACE(jh, "belongs to older transaction");
1189                 /* ... but we CAN drop it from the new transaction if we
1190                  * have also modified it since the original commit. */
1191
1192                 if (jh->b_next_transaction) {
1193                         J_ASSERT(jh->b_next_transaction == transaction);
1194                         jh->b_next_transaction = NULL;
1195
1196                         /*
1197                          * only drop a reference if this transaction modified
1198                          * the buffer
1199                          */
1200                         if (was_modified)
1201                                 drop_reserve = 1;
1202                 }
1203         }
1204
1205 not_jbd:
1206         spin_unlock(&journal->j_list_lock);
1207         jbd_unlock_bh_state(bh);
1208         __brelse(bh);
1209 drop:
1210         if (drop_reserve) {
1211                 /* no need to reserve log space for this block -bzzz */
1212                 handle->h_buffer_credits++;
1213         }
1214         return err;
1215 }
1216
1217 /**
1218  * int jbd2_journal_stop() - complete a transaction
1219  * @handle: tranaction to complete.
1220  *
1221  * All done for a particular handle.
1222  *
1223  * There is not much action needed here.  We just return any remaining
1224  * buffer credits to the transaction and remove the handle.  The only
1225  * complication is that we need to start a commit operation if the
1226  * filesystem is marked for synchronous update.
1227  *
1228  * jbd2_journal_stop itself will not usually return an error, but it may
1229  * do so in unusual circumstances.  In particular, expect it to
1230  * return -EIO if a jbd2_journal_abort has been executed since the
1231  * transaction began.
1232  */
1233 int jbd2_journal_stop(handle_t *handle)
1234 {
1235         transaction_t *transaction = handle->h_transaction;
1236         journal_t *journal = transaction->t_journal;
1237         int err;
1238         pid_t pid;
1239
1240         J_ASSERT(journal_current_handle() == handle);
1241
1242         if (is_handle_aborted(handle))
1243                 err = -EIO;
1244         else {
1245                 J_ASSERT(transaction->t_updates > 0);
1246                 err = 0;
1247         }
1248
1249         if (--handle->h_ref > 0) {
1250                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1251                           handle->h_ref);
1252                 return err;
1253         }
1254
1255         jbd_debug(4, "Handle %p going down\n", handle);
1256
1257         /*
1258          * Implement synchronous transaction batching.  If the handle
1259          * was synchronous, don't force a commit immediately.  Let's
1260          * yield and let another thread piggyback onto this
1261          * transaction.  Keep doing that while new threads continue to
1262          * arrive.  It doesn't cost much - we're about to run a commit
1263          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1264          * operations by 30x or more...
1265          *
1266          * We try and optimize the sleep time against what the
1267          * underlying disk can do, instead of having a static sleep
1268          * time.  This is useful for the case where our storage is so
1269          * fast that it is more optimal to go ahead and force a flush
1270          * and wait for the transaction to be committed than it is to
1271          * wait for an arbitrary amount of time for new writers to
1272          * join the transaction.  We achieve this by measuring how
1273          * long it takes to commit a transaction, and compare it with
1274          * how long this transaction has been running, and if run time
1275          * < commit time then we sleep for the delta and commit.  This
1276          * greatly helps super fast disks that would see slowdowns as
1277          * more threads started doing fsyncs.
1278          *
1279          * But don't do this if this process was the most recent one
1280          * to perform a synchronous write.  We do this to detect the
1281          * case where a single process is doing a stream of sync
1282          * writes.  No point in waiting for joiners in that case.
1283          */
1284         pid = current->pid;
1285         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1286                 u64 commit_time, trans_time;
1287
1288                 journal->j_last_sync_writer = pid;
1289
1290                 spin_lock(&journal->j_state_lock);
1291                 commit_time = journal->j_average_commit_time;
1292                 spin_unlock(&journal->j_state_lock);
1293
1294                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1295                                                    transaction->t_start_time));
1296
1297                 commit_time = max_t(u64, commit_time,
1298                                     1000*journal->j_min_batch_time);
1299                 commit_time = min_t(u64, commit_time,
1300                                     1000*journal->j_max_batch_time);
1301
1302                 if (trans_time < commit_time) {
1303                         ktime_t expires = ktime_add_ns(ktime_get(),
1304                                                        commit_time);
1305                         set_current_state(TASK_UNINTERRUPTIBLE);
1306                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1307                 }
1308         }
1309
1310         if (handle->h_sync)
1311                 transaction->t_synchronous_commit = 1;
1312         current->journal_info = NULL;
1313         spin_lock(&journal->j_state_lock);
1314         spin_lock(&transaction->t_handle_lock);
1315         transaction->t_outstanding_credits -= handle->h_buffer_credits;
1316         transaction->t_updates--;
1317         if (!transaction->t_updates) {
1318                 wake_up(&journal->j_wait_updates);
1319                 if (journal->j_barrier_count)
1320                         wake_up(&journal->j_wait_transaction_locked);
1321         }
1322
1323         /*
1324          * If the handle is marked SYNC, we need to set another commit
1325          * going!  We also want to force a commit if the current
1326          * transaction is occupying too much of the log, or if the
1327          * transaction is too old now.
1328          */
1329         if (handle->h_sync ||
1330                         transaction->t_outstanding_credits >
1331                                 journal->j_max_transaction_buffers ||
1332                         time_after_eq(jiffies, transaction->t_expires)) {
1333                 /* Do this even for aborted journals: an abort still
1334                  * completes the commit thread, it just doesn't write
1335                  * anything to disk. */
1336                 tid_t tid = transaction->t_tid;
1337
1338                 spin_unlock(&transaction->t_handle_lock);
1339                 jbd_debug(2, "transaction too old, requesting commit for "
1340                                         "handle %p\n", handle);
1341                 /* This is non-blocking */
1342                 __jbd2_log_start_commit(journal, transaction->t_tid);
1343                 spin_unlock(&journal->j_state_lock);
1344
1345                 /*
1346                  * Special case: JBD2_SYNC synchronous updates require us
1347                  * to wait for the commit to complete.
1348                  */
1349                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1350                         err = jbd2_log_wait_commit(journal, tid);
1351         } else {
1352                 spin_unlock(&transaction->t_handle_lock);
1353                 spin_unlock(&journal->j_state_lock);
1354         }
1355
1356         lock_map_release(&handle->h_lockdep_map);
1357
1358         jbd2_free_handle(handle);
1359         return err;
1360 }
1361
1362 /**
1363  * int jbd2_journal_force_commit() - force any uncommitted transactions
1364  * @journal: journal to force
1365  *
1366  * For synchronous operations: force any uncommitted transactions
1367  * to disk.  May seem kludgy, but it reuses all the handle batching
1368  * code in a very simple manner.
1369  */
1370 int jbd2_journal_force_commit(journal_t *journal)
1371 {
1372         handle_t *handle;
1373         int ret;
1374
1375         handle = jbd2_journal_start(journal, 1);
1376         if (IS_ERR(handle)) {
1377                 ret = PTR_ERR(handle);
1378         } else {
1379                 handle->h_sync = 1;
1380                 ret = jbd2_journal_stop(handle);
1381         }
1382         return ret;
1383 }
1384
1385 /*
1386  *
1387  * List management code snippets: various functions for manipulating the
1388  * transaction buffer lists.
1389  *
1390  */
1391
1392 /*
1393  * Append a buffer to a transaction list, given the transaction's list head
1394  * pointer.
1395  *
1396  * j_list_lock is held.
1397  *
1398  * jbd_lock_bh_state(jh2bh(jh)) is held.
1399  */
1400
1401 static inline void
1402 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1403 {
1404         if (!*list) {
1405                 jh->b_tnext = jh->b_tprev = jh;
1406                 *list = jh;
1407         } else {
1408                 /* Insert at the tail of the list to preserve order */
1409                 struct journal_head *first = *list, *last = first->b_tprev;
1410                 jh->b_tprev = last;
1411                 jh->b_tnext = first;
1412                 last->b_tnext = first->b_tprev = jh;
1413         }
1414 }
1415
1416 /*
1417  * Remove a buffer from a transaction list, given the transaction's list
1418  * head pointer.
1419  *
1420  * Called with j_list_lock held, and the journal may not be locked.
1421  *
1422  * jbd_lock_bh_state(jh2bh(jh)) is held.
1423  */
1424
1425 static inline void
1426 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1427 {
1428         if (*list == jh) {
1429                 *list = jh->b_tnext;
1430                 if (*list == jh)
1431                         *list = NULL;
1432         }
1433         jh->b_tprev->b_tnext = jh->b_tnext;
1434         jh->b_tnext->b_tprev = jh->b_tprev;
1435 }
1436
1437 /*
1438  * Remove a buffer from the appropriate transaction list.
1439  *
1440  * Note that this function can *change* the value of
1441  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1442  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1443  * of these pointers, it could go bad.  Generally the caller needs to re-read
1444  * the pointer from the transaction_t.
1445  *
1446  * Called under j_list_lock.  The journal may not be locked.
1447  */
1448 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1449 {
1450         struct journal_head **list = NULL;
1451         transaction_t *transaction;
1452         struct buffer_head *bh = jh2bh(jh);
1453
1454         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1455         transaction = jh->b_transaction;
1456         if (transaction)
1457                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1458
1459         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1460         if (jh->b_jlist != BJ_None)
1461                 J_ASSERT_JH(jh, transaction != NULL);
1462
1463         switch (jh->b_jlist) {
1464         case BJ_None:
1465                 return;
1466         case BJ_Metadata:
1467                 transaction->t_nr_buffers--;
1468                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1469                 list = &transaction->t_buffers;
1470                 break;
1471         case BJ_Forget:
1472                 list = &transaction->t_forget;
1473                 break;
1474         case BJ_IO:
1475                 list = &transaction->t_iobuf_list;
1476                 break;
1477         case BJ_Shadow:
1478                 list = &transaction->t_shadow_list;
1479                 break;
1480         case BJ_LogCtl:
1481                 list = &transaction->t_log_list;
1482                 break;
1483         case BJ_Reserved:
1484                 list = &transaction->t_reserved_list;
1485                 break;
1486         }
1487
1488         __blist_del_buffer(list, jh);
1489         jh->b_jlist = BJ_None;
1490         if (test_clear_buffer_jbddirty(bh))
1491                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1492 }
1493
1494 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1495 {
1496         __jbd2_journal_temp_unlink_buffer(jh);
1497         jh->b_transaction = NULL;
1498 }
1499
1500 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1501 {
1502         jbd_lock_bh_state(jh2bh(jh));
1503         spin_lock(&journal->j_list_lock);
1504         __jbd2_journal_unfile_buffer(jh);
1505         spin_unlock(&journal->j_list_lock);
1506         jbd_unlock_bh_state(jh2bh(jh));
1507 }
1508
1509 /*
1510  * Called from jbd2_journal_try_to_free_buffers().
1511  *
1512  * Called under jbd_lock_bh_state(bh)
1513  */
1514 static void
1515 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1516 {
1517         struct journal_head *jh;
1518
1519         jh = bh2jh(bh);
1520
1521         if (buffer_locked(bh) || buffer_dirty(bh))
1522                 goto out;
1523
1524         if (jh->b_next_transaction != NULL)
1525                 goto out;
1526
1527         spin_lock(&journal->j_list_lock);
1528         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1529                 /* written-back checkpointed metadata buffer */
1530                 if (jh->b_jlist == BJ_None) {
1531                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1532                         __jbd2_journal_remove_checkpoint(jh);
1533                         jbd2_journal_remove_journal_head(bh);
1534                         __brelse(bh);
1535                 }
1536         }
1537         spin_unlock(&journal->j_list_lock);
1538 out:
1539         return;
1540 }
1541
1542 /**
1543  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1544  * @journal: journal for operation
1545  * @page: to try and free
1546  * @gfp_mask: we use the mask to detect how hard should we try to release
1547  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1548  * release the buffers.
1549  *
1550  *
1551  * For all the buffers on this page,
1552  * if they are fully written out ordered data, move them onto BUF_CLEAN
1553  * so try_to_free_buffers() can reap them.
1554  *
1555  * This function returns non-zero if we wish try_to_free_buffers()
1556  * to be called. We do this if the page is releasable by try_to_free_buffers().
1557  * We also do it if the page has locked or dirty buffers and the caller wants
1558  * us to perform sync or async writeout.
1559  *
1560  * This complicates JBD locking somewhat.  We aren't protected by the
1561  * BKL here.  We wish to remove the buffer from its committing or
1562  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1563  *
1564  * This may *change* the value of transaction_t->t_datalist, so anyone
1565  * who looks at t_datalist needs to lock against this function.
1566  *
1567  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1568  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1569  * will come out of the lock with the buffer dirty, which makes it
1570  * ineligible for release here.
1571  *
1572  * Who else is affected by this?  hmm...  Really the only contender
1573  * is do_get_write_access() - it could be looking at the buffer while
1574  * journal_try_to_free_buffer() is changing its state.  But that
1575  * cannot happen because we never reallocate freed data as metadata
1576  * while the data is part of a transaction.  Yes?
1577  *
1578  * Return 0 on failure, 1 on success
1579  */
1580 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1581                                 struct page *page, gfp_t gfp_mask)
1582 {
1583         struct buffer_head *head;
1584         struct buffer_head *bh;
1585         int ret = 0;
1586
1587         J_ASSERT(PageLocked(page));
1588
1589         head = page_buffers(page);
1590         bh = head;
1591         do {
1592                 struct journal_head *jh;
1593
1594                 /*
1595                  * We take our own ref against the journal_head here to avoid
1596                  * having to add tons of locking around each instance of
1597                  * jbd2_journal_remove_journal_head() and
1598                  * jbd2_journal_put_journal_head().
1599                  */
1600                 jh = jbd2_journal_grab_journal_head(bh);
1601                 if (!jh)
1602                         continue;
1603
1604                 jbd_lock_bh_state(bh);
1605                 __journal_try_to_free_buffer(journal, bh);
1606                 jbd2_journal_put_journal_head(jh);
1607                 jbd_unlock_bh_state(bh);
1608                 if (buffer_jbd(bh))
1609                         goto busy;
1610         } while ((bh = bh->b_this_page) != head);
1611
1612         ret = try_to_free_buffers(page);
1613
1614 busy:
1615         return ret;
1616 }
1617
1618 /*
1619  * This buffer is no longer needed.  If it is on an older transaction's
1620  * checkpoint list we need to record it on this transaction's forget list
1621  * to pin this buffer (and hence its checkpointing transaction) down until
1622  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1623  * release it.
1624  * Returns non-zero if JBD no longer has an interest in the buffer.
1625  *
1626  * Called under j_list_lock.
1627  *
1628  * Called under jbd_lock_bh_state(bh).
1629  */
1630 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1631 {
1632         int may_free = 1;
1633         struct buffer_head *bh = jh2bh(jh);
1634
1635         __jbd2_journal_unfile_buffer(jh);
1636
1637         if (jh->b_cp_transaction) {
1638                 JBUFFER_TRACE(jh, "on running+cp transaction");
1639                 /*
1640                  * We don't want to write the buffer anymore, clear the
1641                  * bit so that we don't confuse checks in
1642                  * __journal_file_buffer
1643                  */
1644                 clear_buffer_dirty(bh);
1645                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1646                 may_free = 0;
1647         } else {
1648                 JBUFFER_TRACE(jh, "on running transaction");
1649                 jbd2_journal_remove_journal_head(bh);
1650                 __brelse(bh);
1651         }
1652         return may_free;
1653 }
1654
1655 /*
1656  * jbd2_journal_invalidatepage
1657  *
1658  * This code is tricky.  It has a number of cases to deal with.
1659  *
1660  * There are two invariants which this code relies on:
1661  *
1662  * i_size must be updated on disk before we start calling invalidatepage on the
1663  * data.
1664  *
1665  *  This is done in ext3 by defining an ext3_setattr method which
1666  *  updates i_size before truncate gets going.  By maintaining this
1667  *  invariant, we can be sure that it is safe to throw away any buffers
1668  *  attached to the current transaction: once the transaction commits,
1669  *  we know that the data will not be needed.
1670  *
1671  *  Note however that we can *not* throw away data belonging to the
1672  *  previous, committing transaction!
1673  *
1674  * Any disk blocks which *are* part of the previous, committing
1675  * transaction (and which therefore cannot be discarded immediately) are
1676  * not going to be reused in the new running transaction
1677  *
1678  *  The bitmap committed_data images guarantee this: any block which is
1679  *  allocated in one transaction and removed in the next will be marked
1680  *  as in-use in the committed_data bitmap, so cannot be reused until
1681  *  the next transaction to delete the block commits.  This means that
1682  *  leaving committing buffers dirty is quite safe: the disk blocks
1683  *  cannot be reallocated to a different file and so buffer aliasing is
1684  *  not possible.
1685  *
1686  *
1687  * The above applies mainly to ordered data mode.  In writeback mode we
1688  * don't make guarantees about the order in which data hits disk --- in
1689  * particular we don't guarantee that new dirty data is flushed before
1690  * transaction commit --- so it is always safe just to discard data
1691  * immediately in that mode.  --sct
1692  */
1693
1694 /*
1695  * The journal_unmap_buffer helper function returns zero if the buffer
1696  * concerned remains pinned as an anonymous buffer belonging to an older
1697  * transaction.
1698  *
1699  * We're outside-transaction here.  Either or both of j_running_transaction
1700  * and j_committing_transaction may be NULL.
1701  */
1702 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1703 {
1704         transaction_t *transaction;
1705         struct journal_head *jh;
1706         int may_free = 1;
1707         int ret;
1708
1709         BUFFER_TRACE(bh, "entry");
1710
1711         /*
1712          * It is safe to proceed here without the j_list_lock because the
1713          * buffers cannot be stolen by try_to_free_buffers as long as we are
1714          * holding the page lock. --sct
1715          */
1716
1717         if (!buffer_jbd(bh))
1718                 goto zap_buffer_unlocked;
1719
1720         /* OK, we have data buffer in journaled mode */
1721         spin_lock(&journal->j_state_lock);
1722         jbd_lock_bh_state(bh);
1723         spin_lock(&journal->j_list_lock);
1724
1725         jh = jbd2_journal_grab_journal_head(bh);
1726         if (!jh)
1727                 goto zap_buffer_no_jh;
1728
1729         transaction = jh->b_transaction;
1730         if (transaction == NULL) {
1731                 /* First case: not on any transaction.  If it
1732                  * has no checkpoint link, then we can zap it:
1733                  * it's a writeback-mode buffer so we don't care
1734                  * if it hits disk safely. */
1735                 if (!jh->b_cp_transaction) {
1736                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1737                         goto zap_buffer;
1738                 }
1739
1740                 if (!buffer_dirty(bh)) {
1741                         /* bdflush has written it.  We can drop it now */
1742                         goto zap_buffer;
1743                 }
1744
1745                 /* OK, it must be in the journal but still not
1746                  * written fully to disk: it's metadata or
1747                  * journaled data... */
1748
1749                 if (journal->j_running_transaction) {
1750                         /* ... and once the current transaction has
1751                          * committed, the buffer won't be needed any
1752                          * longer. */
1753                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1754                         ret = __dispose_buffer(jh,
1755                                         journal->j_running_transaction);
1756                         jbd2_journal_put_journal_head(jh);
1757                         spin_unlock(&journal->j_list_lock);
1758                         jbd_unlock_bh_state(bh);
1759                         spin_unlock(&journal->j_state_lock);
1760                         return ret;
1761                 } else {
1762                         /* There is no currently-running transaction. So the
1763                          * orphan record which we wrote for this file must have
1764                          * passed into commit.  We must attach this buffer to
1765                          * the committing transaction, if it exists. */
1766                         if (journal->j_committing_transaction) {
1767                                 JBUFFER_TRACE(jh, "give to committing trans");
1768                                 ret = __dispose_buffer(jh,
1769                                         journal->j_committing_transaction);
1770                                 jbd2_journal_put_journal_head(jh);
1771                                 spin_unlock(&journal->j_list_lock);
1772                                 jbd_unlock_bh_state(bh);
1773                                 spin_unlock(&journal->j_state_lock);
1774                                 return ret;
1775                         } else {
1776                                 /* The orphan record's transaction has
1777                                  * committed.  We can cleanse this buffer */
1778                                 clear_buffer_jbddirty(bh);
1779                                 goto zap_buffer;
1780                         }
1781                 }
1782         } else if (transaction == journal->j_committing_transaction) {
1783                 JBUFFER_TRACE(jh, "on committing transaction");
1784                 /*
1785                  * If it is committing, we simply cannot touch it.  We
1786                  * can remove it's next_transaction pointer from the
1787                  * running transaction if that is set, but nothing
1788                  * else. */
1789                 set_buffer_freed(bh);
1790                 if (jh->b_next_transaction) {
1791                         J_ASSERT(jh->b_next_transaction ==
1792                                         journal->j_running_transaction);
1793                         jh->b_next_transaction = NULL;
1794                 }
1795                 jbd2_journal_put_journal_head(jh);
1796                 spin_unlock(&journal->j_list_lock);
1797                 jbd_unlock_bh_state(bh);
1798                 spin_unlock(&journal->j_state_lock);
1799                 return 0;
1800         } else {
1801                 /* Good, the buffer belongs to the running transaction.
1802                  * We are writing our own transaction's data, not any
1803                  * previous one's, so it is safe to throw it away
1804                  * (remember that we expect the filesystem to have set
1805                  * i_size already for this truncate so recovery will not
1806                  * expose the disk blocks we are discarding here.) */
1807                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1808                 JBUFFER_TRACE(jh, "on running transaction");
1809                 may_free = __dispose_buffer(jh, transaction);
1810         }
1811
1812 zap_buffer:
1813         jbd2_journal_put_journal_head(jh);
1814 zap_buffer_no_jh:
1815         spin_unlock(&journal->j_list_lock);
1816         jbd_unlock_bh_state(bh);
1817         spin_unlock(&journal->j_state_lock);
1818 zap_buffer_unlocked:
1819         clear_buffer_dirty(bh);
1820         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1821         clear_buffer_mapped(bh);
1822         clear_buffer_req(bh);
1823         clear_buffer_new(bh);
1824         bh->b_bdev = NULL;
1825         return may_free;
1826 }
1827
1828 /**
1829  * void jbd2_journal_invalidatepage()
1830  * @journal: journal to use for flush...
1831  * @page:    page to flush
1832  * @offset:  length of page to invalidate.
1833  *
1834  * Reap page buffers containing data after offset in page.
1835  *
1836  */
1837 void jbd2_journal_invalidatepage(journal_t *journal,
1838                       struct page *page,
1839                       unsigned long offset)
1840 {
1841         struct buffer_head *head, *bh, *next;
1842         unsigned int curr_off = 0;
1843         int may_free = 1;
1844
1845         if (!PageLocked(page))
1846                 BUG();
1847         if (!page_has_buffers(page))
1848                 return;
1849
1850         /* We will potentially be playing with lists other than just the
1851          * data lists (especially for journaled data mode), so be
1852          * cautious in our locking. */
1853
1854         head = bh = page_buffers(page);
1855         do {
1856                 unsigned int next_off = curr_off + bh->b_size;
1857                 next = bh->b_this_page;
1858
1859                 if (offset <= curr_off) {
1860                         /* This block is wholly outside the truncation point */
1861                         lock_buffer(bh);
1862                         may_free &= journal_unmap_buffer(journal, bh);
1863                         unlock_buffer(bh);
1864                 }
1865                 curr_off = next_off;
1866                 bh = next;
1867
1868         } while (bh != head);
1869
1870         if (!offset) {
1871                 if (may_free && try_to_free_buffers(page))
1872                         J_ASSERT(!page_has_buffers(page));
1873         }
1874 }
1875
1876 /*
1877  * File a buffer on the given transaction list.
1878  */
1879 void __jbd2_journal_file_buffer(struct journal_head *jh,
1880                         transaction_t *transaction, int jlist)
1881 {
1882         struct journal_head **list = NULL;
1883         int was_dirty = 0;
1884         struct buffer_head *bh = jh2bh(jh);
1885
1886         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1887         assert_spin_locked(&transaction->t_journal->j_list_lock);
1888
1889         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1890         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1891                                 jh->b_transaction == NULL);
1892
1893         if (jh->b_transaction && jh->b_jlist == jlist)
1894                 return;
1895
1896         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1897             jlist == BJ_Shadow || jlist == BJ_Forget) {
1898                 /*
1899                  * For metadata buffers, we track dirty bit in buffer_jbddirty
1900                  * instead of buffer_dirty. We should not see a dirty bit set
1901                  * here because we clear it in do_get_write_access but e.g.
1902                  * tune2fs can modify the sb and set the dirty bit at any time
1903                  * so we try to gracefully handle that.
1904                  */
1905                 if (buffer_dirty(bh))
1906                         warn_dirty_buffer(bh);
1907                 if (test_clear_buffer_dirty(bh) ||
1908                     test_clear_buffer_jbddirty(bh))
1909                         was_dirty = 1;
1910         }
1911
1912         if (jh->b_transaction)
1913                 __jbd2_journal_temp_unlink_buffer(jh);
1914         jh->b_transaction = transaction;
1915
1916         switch (jlist) {
1917         case BJ_None:
1918                 J_ASSERT_JH(jh, !jh->b_committed_data);
1919                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1920                 return;
1921         case BJ_Metadata:
1922                 transaction->t_nr_buffers++;
1923                 list = &transaction->t_buffers;
1924                 break;
1925         case BJ_Forget:
1926                 list = &transaction->t_forget;
1927                 break;
1928         case BJ_IO:
1929                 list = &transaction->t_iobuf_list;
1930                 break;
1931         case BJ_Shadow:
1932                 list = &transaction->t_shadow_list;
1933                 break;
1934         case BJ_LogCtl:
1935                 list = &transaction->t_log_list;
1936                 break;
1937         case BJ_Reserved:
1938                 list = &transaction->t_reserved_list;
1939                 break;
1940         }
1941
1942         __blist_add_buffer(list, jh);
1943         jh->b_jlist = jlist;
1944
1945         if (was_dirty)
1946                 set_buffer_jbddirty(bh);
1947 }
1948
1949 void jbd2_journal_file_buffer(struct journal_head *jh,
1950                                 transaction_t *transaction, int jlist)
1951 {
1952         jbd_lock_bh_state(jh2bh(jh));
1953         spin_lock(&transaction->t_journal->j_list_lock);
1954         __jbd2_journal_file_buffer(jh, transaction, jlist);
1955         spin_unlock(&transaction->t_journal->j_list_lock);
1956         jbd_unlock_bh_state(jh2bh(jh));
1957 }
1958
1959 /*
1960  * Remove a buffer from its current buffer list in preparation for
1961  * dropping it from its current transaction entirely.  If the buffer has
1962  * already started to be used by a subsequent transaction, refile the
1963  * buffer on that transaction's metadata list.
1964  *
1965  * Called under journal->j_list_lock
1966  *
1967  * Called under jbd_lock_bh_state(jh2bh(jh))
1968  */
1969 void __jbd2_journal_refile_buffer(struct journal_head *jh)
1970 {
1971         int was_dirty;
1972         struct buffer_head *bh = jh2bh(jh);
1973
1974         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1975         if (jh->b_transaction)
1976                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
1977
1978         /* If the buffer is now unused, just drop it. */
1979         if (jh->b_next_transaction == NULL) {
1980                 __jbd2_journal_unfile_buffer(jh);
1981                 return;
1982         }
1983
1984         /*
1985          * It has been modified by a later transaction: add it to the new
1986          * transaction's metadata list.
1987          */
1988
1989         was_dirty = test_clear_buffer_jbddirty(bh);
1990         __jbd2_journal_temp_unlink_buffer(jh);
1991         jh->b_transaction = jh->b_next_transaction;
1992         jh->b_next_transaction = NULL;
1993         __jbd2_journal_file_buffer(jh, jh->b_transaction,
1994                                 jh->b_modified ? BJ_Metadata : BJ_Reserved);
1995         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
1996
1997         if (was_dirty)
1998                 set_buffer_jbddirty(bh);
1999 }
2000
2001 /*
2002  * For the unlocked version of this call, also make sure that any
2003  * hanging journal_head is cleaned up if necessary.
2004  *
2005  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2006  * operation on a buffer_head, in which the caller is probably going to
2007  * be hooking the journal_head onto other lists.  In that case it is up
2008  * to the caller to remove the journal_head if necessary.  For the
2009  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2010  * doing anything else to the buffer so we need to do the cleanup
2011  * ourselves to avoid a jh leak.
2012  *
2013  * *** The journal_head may be freed by this call! ***
2014  */
2015 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2016 {
2017         struct buffer_head *bh = jh2bh(jh);
2018
2019         jbd_lock_bh_state(bh);
2020         spin_lock(&journal->j_list_lock);
2021
2022         __jbd2_journal_refile_buffer(jh);
2023         jbd_unlock_bh_state(bh);
2024         jbd2_journal_remove_journal_head(bh);
2025
2026         spin_unlock(&journal->j_list_lock);
2027         __brelse(bh);
2028 }
2029
2030 /*
2031  * File inode in the inode list of the handle's transaction
2032  */
2033 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2034 {
2035         transaction_t *transaction = handle->h_transaction;
2036         journal_t *journal = transaction->t_journal;
2037
2038         if (is_handle_aborted(handle))
2039                 return -EIO;
2040
2041         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2042                         transaction->t_tid);
2043
2044         /*
2045          * First check whether inode isn't already on the transaction's
2046          * lists without taking the lock. Note that this check is safe
2047          * without the lock as we cannot race with somebody removing inode
2048          * from the transaction. The reason is that we remove inode from the
2049          * transaction only in journal_release_jbd_inode() and when we commit
2050          * the transaction. We are guarded from the first case by holding
2051          * a reference to the inode. We are safe against the second case
2052          * because if jinode->i_transaction == transaction, commit code
2053          * cannot touch the transaction because we hold reference to it,
2054          * and if jinode->i_next_transaction == transaction, commit code
2055          * will only file the inode where we want it.
2056          */
2057         if (jinode->i_transaction == transaction ||
2058             jinode->i_next_transaction == transaction)
2059                 return 0;
2060
2061         spin_lock(&journal->j_list_lock);
2062
2063         if (jinode->i_transaction == transaction ||
2064             jinode->i_next_transaction == transaction)
2065                 goto done;
2066
2067         /* On some different transaction's list - should be
2068          * the committing one */
2069         if (jinode->i_transaction) {
2070                 J_ASSERT(jinode->i_next_transaction == NULL);
2071                 J_ASSERT(jinode->i_transaction ==
2072                                         journal->j_committing_transaction);
2073                 jinode->i_next_transaction = transaction;
2074                 goto done;
2075         }
2076         /* Not on any transaction list... */
2077         J_ASSERT(!jinode->i_next_transaction);
2078         jinode->i_transaction = transaction;
2079         list_add(&jinode->i_list, &transaction->t_inode_list);
2080 done:
2081         spin_unlock(&journal->j_list_lock);
2082
2083         return 0;
2084 }
2085
2086 /*
2087  * File truncate and transaction commit interact with each other in a
2088  * non-trivial way.  If a transaction writing data block A is
2089  * committing, we cannot discard the data by truncate until we have
2090  * written them.  Otherwise if we crashed after the transaction with
2091  * write has committed but before the transaction with truncate has
2092  * committed, we could see stale data in block A.  This function is a
2093  * helper to solve this problem.  It starts writeout of the truncated
2094  * part in case it is in the committing transaction.
2095  *
2096  * Filesystem code must call this function when inode is journaled in
2097  * ordered mode before truncation happens and after the inode has been
2098  * placed on orphan list with the new inode size. The second condition
2099  * avoids the race that someone writes new data and we start
2100  * committing the transaction after this function has been called but
2101  * before a transaction for truncate is started (and furthermore it
2102  * allows us to optimize the case where the addition to orphan list
2103  * happens in the same transaction as write --- we don't have to write
2104  * any data in such case).
2105  */
2106 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2107                                         struct jbd2_inode *jinode,
2108                                         loff_t new_size)
2109 {
2110         transaction_t *inode_trans, *commit_trans;
2111         int ret = 0;
2112
2113         /* This is a quick check to avoid locking if not necessary */
2114         if (!jinode->i_transaction)
2115                 goto out;
2116         /* Locks are here just to force reading of recent values, it is
2117          * enough that the transaction was not committing before we started
2118          * a transaction adding the inode to orphan list */
2119         spin_lock(&journal->j_state_lock);
2120         commit_trans = journal->j_committing_transaction;
2121         spin_unlock(&journal->j_state_lock);
2122         spin_lock(&journal->j_list_lock);
2123         inode_trans = jinode->i_transaction;
2124         spin_unlock(&journal->j_list_lock);
2125         if (inode_trans == commit_trans) {
2126                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2127                         new_size, LLONG_MAX);
2128                 if (ret)
2129                         jbd2_journal_abort(journal, ret);
2130         }
2131 out:
2132         return ret;
2133 }