Merge branch 'stable/bug.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
34
35 /*
36  * jbd2_get_transaction: obtain a new transaction_t object.
37  *
38  * Simply allocate and initialise a new transaction.  Create it in
39  * RUNNING state and add it to the current journal (which should not
40  * have an existing running transaction: we only make a new transaction
41  * once we have started to commit the old one).
42  *
43  * Preconditions:
44  *      The journal MUST be locked.  We don't perform atomic mallocs on the
45  *      new transaction and we can't block without protecting against other
46  *      processes trying to touch the journal while it is in transition.
47  *
48  */
49
50 static transaction_t *
51 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
52 {
53         transaction->t_journal = journal;
54         transaction->t_state = T_RUNNING;
55         transaction->t_start_time = ktime_get();
56         transaction->t_tid = journal->j_transaction_sequence++;
57         transaction->t_expires = jiffies + journal->j_commit_interval;
58         spin_lock_init(&transaction->t_handle_lock);
59         atomic_set(&transaction->t_updates, 0);
60         atomic_set(&transaction->t_outstanding_credits, 0);
61         atomic_set(&transaction->t_handle_count, 0);
62         INIT_LIST_HEAD(&transaction->t_inode_list);
63         INIT_LIST_HEAD(&transaction->t_private_list);
64
65         /* Set up the commit timer for the new transaction. */
66         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
67         add_timer(&journal->j_commit_timer);
68
69         J_ASSERT(journal->j_running_transaction == NULL);
70         journal->j_running_transaction = transaction;
71         transaction->t_max_wait = 0;
72         transaction->t_start = jiffies;
73
74         return transaction;
75 }
76
77 /*
78  * Handle management.
79  *
80  * A handle_t is an object which represents a single atomic update to a
81  * filesystem, and which tracks all of the modifications which form part
82  * of that one update.
83  */
84
85 /*
86  * Update transaction's maximum wait time, if debugging is enabled.
87  *
88  * In order for t_max_wait to be reliable, it must be protected by a
89  * lock.  But doing so will mean that start_this_handle() can not be
90  * run in parallel on SMP systems, which limits our scalability.  So
91  * unless debugging is enabled, we no longer update t_max_wait, which
92  * means that maximum wait time reported by the jbd2_run_stats
93  * tracepoint will always be zero.
94  */
95 static inline void update_t_max_wait(transaction_t *transaction,
96                                      unsigned long ts)
97 {
98 #ifdef CONFIG_JBD2_DEBUG
99         if (jbd2_journal_enable_debug &&
100             time_after(transaction->t_start, ts)) {
101                 ts = jbd2_time_diff(ts, transaction->t_start);
102                 spin_lock(&transaction->t_handle_lock);
103                 if (ts > transaction->t_max_wait)
104                         transaction->t_max_wait = ts;
105                 spin_unlock(&transaction->t_handle_lock);
106         }
107 #endif
108 }
109
110 /*
111  * start_this_handle: Given a handle, deal with any locking or stalling
112  * needed to make sure that there is enough journal space for the handle
113  * to begin.  Attach the handle to a transaction and set up the
114  * transaction's buffer credits.
115  */
116
117 static int start_this_handle(journal_t *journal, handle_t *handle,
118                              int gfp_mask)
119 {
120         transaction_t   *transaction, *new_transaction = NULL;
121         tid_t           tid;
122         int             needed, need_to_start;
123         int             nblocks = handle->h_buffer_credits;
124         unsigned long ts = jiffies;
125
126         if (nblocks > journal->j_max_transaction_buffers) {
127                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
128                        current->comm, nblocks,
129                        journal->j_max_transaction_buffers);
130                 return -ENOSPC;
131         }
132
133 alloc_transaction:
134         if (!journal->j_running_transaction) {
135                 new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
136                 if (!new_transaction) {
137                         /*
138                          * If __GFP_FS is not present, then we may be
139                          * being called from inside the fs writeback
140                          * layer, so we MUST NOT fail.  Since
141                          * __GFP_NOFAIL is going away, we will arrange
142                          * to retry the allocation ourselves.
143                          */
144                         if ((gfp_mask & __GFP_FS) == 0) {
145                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
146                                 goto alloc_transaction;
147                         }
148                         return -ENOMEM;
149                 }
150         }
151
152         jbd_debug(3, "New handle %p going live.\n", handle);
153
154         /*
155          * We need to hold j_state_lock until t_updates has been incremented,
156          * for proper journal barrier handling
157          */
158 repeat:
159         read_lock(&journal->j_state_lock);
160         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
161         if (is_journal_aborted(journal) ||
162             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
163                 read_unlock(&journal->j_state_lock);
164                 kfree(new_transaction);
165                 return -EROFS;
166         }
167
168         /* Wait on the journal's transaction barrier if necessary */
169         if (journal->j_barrier_count) {
170                 read_unlock(&journal->j_state_lock);
171                 wait_event(journal->j_wait_transaction_locked,
172                                 journal->j_barrier_count == 0);
173                 goto repeat;
174         }
175
176         if (!journal->j_running_transaction) {
177                 read_unlock(&journal->j_state_lock);
178                 if (!new_transaction)
179                         goto alloc_transaction;
180                 write_lock(&journal->j_state_lock);
181                 if (!journal->j_running_transaction) {
182                         jbd2_get_transaction(journal, new_transaction);
183                         new_transaction = NULL;
184                 }
185                 write_unlock(&journal->j_state_lock);
186                 goto repeat;
187         }
188
189         transaction = journal->j_running_transaction;
190
191         /*
192          * If the current transaction is locked down for commit, wait for the
193          * lock to be released.
194          */
195         if (transaction->t_state == T_LOCKED) {
196                 DEFINE_WAIT(wait);
197
198                 prepare_to_wait(&journal->j_wait_transaction_locked,
199                                         &wait, TASK_UNINTERRUPTIBLE);
200                 read_unlock(&journal->j_state_lock);
201                 schedule();
202                 finish_wait(&journal->j_wait_transaction_locked, &wait);
203                 goto repeat;
204         }
205
206         /*
207          * If there is not enough space left in the log to write all potential
208          * buffers requested by this operation, we need to stall pending a log
209          * checkpoint to free some more log space.
210          */
211         needed = atomic_add_return(nblocks,
212                                    &transaction->t_outstanding_credits);
213
214         if (needed > journal->j_max_transaction_buffers) {
215                 /*
216                  * If the current transaction is already too large, then start
217                  * to commit it: we can then go back and attach this handle to
218                  * a new transaction.
219                  */
220                 DEFINE_WAIT(wait);
221
222                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
223                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
224                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
225                                 TASK_UNINTERRUPTIBLE);
226                 tid = transaction->t_tid;
227                 need_to_start = !tid_geq(journal->j_commit_request, tid);
228                 read_unlock(&journal->j_state_lock);
229                 if (need_to_start)
230                         jbd2_log_start_commit(journal, tid);
231                 schedule();
232                 finish_wait(&journal->j_wait_transaction_locked, &wait);
233                 goto repeat;
234         }
235
236         /*
237          * The commit code assumes that it can get enough log space
238          * without forcing a checkpoint.  This is *critical* for
239          * correctness: a checkpoint of a buffer which is also
240          * associated with a committing transaction creates a deadlock,
241          * so commit simply cannot force through checkpoints.
242          *
243          * We must therefore ensure the necessary space in the journal
244          * *before* starting to dirty potentially checkpointed buffers
245          * in the new transaction.
246          *
247          * The worst part is, any transaction currently committing can
248          * reduce the free space arbitrarily.  Be careful to account for
249          * those buffers when checkpointing.
250          */
251
252         /*
253          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
254          * a _lot_ of headroom: 1/4 of the journal plus the size of
255          * the committing transaction.  Really, we only need to give it
256          * committing_transaction->t_outstanding_credits plus "enough" for
257          * the log control blocks.
258          * Also, this test is inconsistent with the matching one in
259          * jbd2_journal_extend().
260          */
261         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
262                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
263                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
264                 read_unlock(&journal->j_state_lock);
265                 write_lock(&journal->j_state_lock);
266                 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
267                         __jbd2_log_wait_for_space(journal);
268                 write_unlock(&journal->j_state_lock);
269                 goto repeat;
270         }
271
272         /* OK, account for the buffers that this operation expects to
273          * use and add the handle to the running transaction. 
274          */
275         update_t_max_wait(transaction, ts);
276         handle->h_transaction = transaction;
277         atomic_inc(&transaction->t_updates);
278         atomic_inc(&transaction->t_handle_count);
279         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
280                   handle, nblocks,
281                   atomic_read(&transaction->t_outstanding_credits),
282                   __jbd2_log_space_left(journal));
283         read_unlock(&journal->j_state_lock);
284
285         lock_map_acquire(&handle->h_lockdep_map);
286         kfree(new_transaction);
287         return 0;
288 }
289
290 static struct lock_class_key jbd2_handle_key;
291
292 /* Allocate a new handle.  This should probably be in a slab... */
293 static handle_t *new_handle(int nblocks)
294 {
295         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
296         if (!handle)
297                 return NULL;
298         memset(handle, 0, sizeof(*handle));
299         handle->h_buffer_credits = nblocks;
300         handle->h_ref = 1;
301
302         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
303                                                 &jbd2_handle_key, 0);
304
305         return handle;
306 }
307
308 /**
309  * handle_t *jbd2_journal_start() - Obtain a new handle.
310  * @journal: Journal to start transaction on.
311  * @nblocks: number of block buffer we might modify
312  *
313  * We make sure that the transaction can guarantee at least nblocks of
314  * modified buffers in the log.  We block until the log can guarantee
315  * that much space.
316  *
317  * This function is visible to journal users (like ext3fs), so is not
318  * called with the journal already locked.
319  *
320  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
321  * on failure.
322  */
323 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
324 {
325         handle_t *handle = journal_current_handle();
326         int err;
327
328         if (!journal)
329                 return ERR_PTR(-EROFS);
330
331         if (handle) {
332                 J_ASSERT(handle->h_transaction->t_journal == journal);
333                 handle->h_ref++;
334                 return handle;
335         }
336
337         handle = new_handle(nblocks);
338         if (!handle)
339                 return ERR_PTR(-ENOMEM);
340
341         current->journal_info = handle;
342
343         err = start_this_handle(journal, handle, gfp_mask);
344         if (err < 0) {
345                 jbd2_free_handle(handle);
346                 current->journal_info = NULL;
347                 handle = ERR_PTR(err);
348         }
349         return handle;
350 }
351 EXPORT_SYMBOL(jbd2__journal_start);
352
353
354 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
355 {
356         return jbd2__journal_start(journal, nblocks, GFP_NOFS);
357 }
358 EXPORT_SYMBOL(jbd2_journal_start);
359
360
361 /**
362  * int jbd2_journal_extend() - extend buffer credits.
363  * @handle:  handle to 'extend'
364  * @nblocks: nr blocks to try to extend by.
365  *
366  * Some transactions, such as large extends and truncates, can be done
367  * atomically all at once or in several stages.  The operation requests
368  * a credit for a number of buffer modications in advance, but can
369  * extend its credit if it needs more.
370  *
371  * jbd2_journal_extend tries to give the running handle more buffer credits.
372  * It does not guarantee that allocation - this is a best-effort only.
373  * The calling process MUST be able to deal cleanly with a failure to
374  * extend here.
375  *
376  * Return 0 on success, non-zero on failure.
377  *
378  * return code < 0 implies an error
379  * return code > 0 implies normal transaction-full status.
380  */
381 int jbd2_journal_extend(handle_t *handle, int nblocks)
382 {
383         transaction_t *transaction = handle->h_transaction;
384         journal_t *journal = transaction->t_journal;
385         int result;
386         int wanted;
387
388         result = -EIO;
389         if (is_handle_aborted(handle))
390                 goto out;
391
392         result = 1;
393
394         read_lock(&journal->j_state_lock);
395
396         /* Don't extend a locked-down transaction! */
397         if (handle->h_transaction->t_state != T_RUNNING) {
398                 jbd_debug(3, "denied handle %p %d blocks: "
399                           "transaction not running\n", handle, nblocks);
400                 goto error_out;
401         }
402
403         spin_lock(&transaction->t_handle_lock);
404         wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
405
406         if (wanted > journal->j_max_transaction_buffers) {
407                 jbd_debug(3, "denied handle %p %d blocks: "
408                           "transaction too large\n", handle, nblocks);
409                 goto unlock;
410         }
411
412         if (wanted > __jbd2_log_space_left(journal)) {
413                 jbd_debug(3, "denied handle %p %d blocks: "
414                           "insufficient log space\n", handle, nblocks);
415                 goto unlock;
416         }
417
418         handle->h_buffer_credits += nblocks;
419         atomic_add(nblocks, &transaction->t_outstanding_credits);
420         result = 0;
421
422         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
423 unlock:
424         spin_unlock(&transaction->t_handle_lock);
425 error_out:
426         read_unlock(&journal->j_state_lock);
427 out:
428         return result;
429 }
430
431
432 /**
433  * int jbd2_journal_restart() - restart a handle .
434  * @handle:  handle to restart
435  * @nblocks: nr credits requested
436  *
437  * Restart a handle for a multi-transaction filesystem
438  * operation.
439  *
440  * If the jbd2_journal_extend() call above fails to grant new buffer credits
441  * to a running handle, a call to jbd2_journal_restart will commit the
442  * handle's transaction so far and reattach the handle to a new
443  * transaction capabable of guaranteeing the requested number of
444  * credits.
445  */
446 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
447 {
448         transaction_t *transaction = handle->h_transaction;
449         journal_t *journal = transaction->t_journal;
450         tid_t           tid;
451         int             need_to_start, ret;
452
453         /* If we've had an abort of any type, don't even think about
454          * actually doing the restart! */
455         if (is_handle_aborted(handle))
456                 return 0;
457
458         /*
459          * First unlink the handle from its current transaction, and start the
460          * commit on that.
461          */
462         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
463         J_ASSERT(journal_current_handle() == handle);
464
465         read_lock(&journal->j_state_lock);
466         spin_lock(&transaction->t_handle_lock);
467         atomic_sub(handle->h_buffer_credits,
468                    &transaction->t_outstanding_credits);
469         if (atomic_dec_and_test(&transaction->t_updates))
470                 wake_up(&journal->j_wait_updates);
471         spin_unlock(&transaction->t_handle_lock);
472
473         jbd_debug(2, "restarting handle %p\n", handle);
474         tid = transaction->t_tid;
475         need_to_start = !tid_geq(journal->j_commit_request, tid);
476         read_unlock(&journal->j_state_lock);
477         if (need_to_start)
478                 jbd2_log_start_commit(journal, tid);
479
480         lock_map_release(&handle->h_lockdep_map);
481         handle->h_buffer_credits = nblocks;
482         ret = start_this_handle(journal, handle, gfp_mask);
483         return ret;
484 }
485 EXPORT_SYMBOL(jbd2__journal_restart);
486
487
488 int jbd2_journal_restart(handle_t *handle, int nblocks)
489 {
490         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
491 }
492 EXPORT_SYMBOL(jbd2_journal_restart);
493
494 /**
495  * void jbd2_journal_lock_updates () - establish a transaction barrier.
496  * @journal:  Journal to establish a barrier on.
497  *
498  * This locks out any further updates from being started, and blocks
499  * until all existing updates have completed, returning only once the
500  * journal is in a quiescent state with no updates running.
501  *
502  * The journal lock should not be held on entry.
503  */
504 void jbd2_journal_lock_updates(journal_t *journal)
505 {
506         DEFINE_WAIT(wait);
507
508         write_lock(&journal->j_state_lock);
509         ++journal->j_barrier_count;
510
511         /* Wait until there are no running updates */
512         while (1) {
513                 transaction_t *transaction = journal->j_running_transaction;
514
515                 if (!transaction)
516                         break;
517
518                 spin_lock(&transaction->t_handle_lock);
519                 if (!atomic_read(&transaction->t_updates)) {
520                         spin_unlock(&transaction->t_handle_lock);
521                         break;
522                 }
523                 prepare_to_wait(&journal->j_wait_updates, &wait,
524                                 TASK_UNINTERRUPTIBLE);
525                 spin_unlock(&transaction->t_handle_lock);
526                 write_unlock(&journal->j_state_lock);
527                 schedule();
528                 finish_wait(&journal->j_wait_updates, &wait);
529                 write_lock(&journal->j_state_lock);
530         }
531         write_unlock(&journal->j_state_lock);
532
533         /*
534          * We have now established a barrier against other normal updates, but
535          * we also need to barrier against other jbd2_journal_lock_updates() calls
536          * to make sure that we serialise special journal-locked operations
537          * too.
538          */
539         mutex_lock(&journal->j_barrier);
540 }
541
542 /**
543  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
544  * @journal:  Journal to release the barrier on.
545  *
546  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
547  *
548  * Should be called without the journal lock held.
549  */
550 void jbd2_journal_unlock_updates (journal_t *journal)
551 {
552         J_ASSERT(journal->j_barrier_count != 0);
553
554         mutex_unlock(&journal->j_barrier);
555         write_lock(&journal->j_state_lock);
556         --journal->j_barrier_count;
557         write_unlock(&journal->j_state_lock);
558         wake_up(&journal->j_wait_transaction_locked);
559 }
560
561 static void warn_dirty_buffer(struct buffer_head *bh)
562 {
563         char b[BDEVNAME_SIZE];
564
565         printk(KERN_WARNING
566                "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
567                "There's a risk of filesystem corruption in case of system "
568                "crash.\n",
569                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
570 }
571
572 /*
573  * If the buffer is already part of the current transaction, then there
574  * is nothing we need to do.  If it is already part of a prior
575  * transaction which we are still committing to disk, then we need to
576  * make sure that we do not overwrite the old copy: we do copy-out to
577  * preserve the copy going to disk.  We also account the buffer against
578  * the handle's metadata buffer credits (unless the buffer is already
579  * part of the transaction, that is).
580  *
581  */
582 static int
583 do_get_write_access(handle_t *handle, struct journal_head *jh,
584                         int force_copy)
585 {
586         struct buffer_head *bh;
587         transaction_t *transaction;
588         journal_t *journal;
589         int error;
590         char *frozen_buffer = NULL;
591         int need_copy = 0;
592
593         if (is_handle_aborted(handle))
594                 return -EROFS;
595
596         transaction = handle->h_transaction;
597         journal = transaction->t_journal;
598
599         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
600
601         JBUFFER_TRACE(jh, "entry");
602 repeat:
603         bh = jh2bh(jh);
604
605         /* @@@ Need to check for errors here at some point. */
606
607         lock_buffer(bh);
608         jbd_lock_bh_state(bh);
609
610         /* We now hold the buffer lock so it is safe to query the buffer
611          * state.  Is the buffer dirty?
612          *
613          * If so, there are two possibilities.  The buffer may be
614          * non-journaled, and undergoing a quite legitimate writeback.
615          * Otherwise, it is journaled, and we don't expect dirty buffers
616          * in that state (the buffers should be marked JBD_Dirty
617          * instead.)  So either the IO is being done under our own
618          * control and this is a bug, or it's a third party IO such as
619          * dump(8) (which may leave the buffer scheduled for read ---
620          * ie. locked but not dirty) or tune2fs (which may actually have
621          * the buffer dirtied, ugh.)  */
622
623         if (buffer_dirty(bh)) {
624                 /*
625                  * First question: is this buffer already part of the current
626                  * transaction or the existing committing transaction?
627                  */
628                 if (jh->b_transaction) {
629                         J_ASSERT_JH(jh,
630                                 jh->b_transaction == transaction ||
631                                 jh->b_transaction ==
632                                         journal->j_committing_transaction);
633                         if (jh->b_next_transaction)
634                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
635                                                         transaction);
636                         warn_dirty_buffer(bh);
637                 }
638                 /*
639                  * In any case we need to clean the dirty flag and we must
640                  * do it under the buffer lock to be sure we don't race
641                  * with running write-out.
642                  */
643                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
644                 clear_buffer_dirty(bh);
645                 set_buffer_jbddirty(bh);
646         }
647
648         unlock_buffer(bh);
649
650         error = -EROFS;
651         if (is_handle_aborted(handle)) {
652                 jbd_unlock_bh_state(bh);
653                 goto out;
654         }
655         error = 0;
656
657         /*
658          * The buffer is already part of this transaction if b_transaction or
659          * b_next_transaction points to it
660          */
661         if (jh->b_transaction == transaction ||
662             jh->b_next_transaction == transaction)
663                 goto done;
664
665         /*
666          * this is the first time this transaction is touching this buffer,
667          * reset the modified flag
668          */
669        jh->b_modified = 0;
670
671         /*
672          * If there is already a copy-out version of this buffer, then we don't
673          * need to make another one
674          */
675         if (jh->b_frozen_data) {
676                 JBUFFER_TRACE(jh, "has frozen data");
677                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
678                 jh->b_next_transaction = transaction;
679                 goto done;
680         }
681
682         /* Is there data here we need to preserve? */
683
684         if (jh->b_transaction && jh->b_transaction != transaction) {
685                 JBUFFER_TRACE(jh, "owned by older transaction");
686                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
687                 J_ASSERT_JH(jh, jh->b_transaction ==
688                                         journal->j_committing_transaction);
689
690                 /* There is one case we have to be very careful about.
691                  * If the committing transaction is currently writing
692                  * this buffer out to disk and has NOT made a copy-out,
693                  * then we cannot modify the buffer contents at all
694                  * right now.  The essence of copy-out is that it is the
695                  * extra copy, not the primary copy, which gets
696                  * journaled.  If the primary copy is already going to
697                  * disk then we cannot do copy-out here. */
698
699                 if (jh->b_jlist == BJ_Shadow) {
700                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
701                         wait_queue_head_t *wqh;
702
703                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
704
705                         JBUFFER_TRACE(jh, "on shadow: sleep");
706                         jbd_unlock_bh_state(bh);
707                         /* commit wakes up all shadow buffers after IO */
708                         for ( ; ; ) {
709                                 prepare_to_wait(wqh, &wait.wait,
710                                                 TASK_UNINTERRUPTIBLE);
711                                 if (jh->b_jlist != BJ_Shadow)
712                                         break;
713                                 schedule();
714                         }
715                         finish_wait(wqh, &wait.wait);
716                         goto repeat;
717                 }
718
719                 /* Only do the copy if the currently-owning transaction
720                  * still needs it.  If it is on the Forget list, the
721                  * committing transaction is past that stage.  The
722                  * buffer had better remain locked during the kmalloc,
723                  * but that should be true --- we hold the journal lock
724                  * still and the buffer is already on the BUF_JOURNAL
725                  * list so won't be flushed.
726                  *
727                  * Subtle point, though: if this is a get_undo_access,
728                  * then we will be relying on the frozen_data to contain
729                  * the new value of the committed_data record after the
730                  * transaction, so we HAVE to force the frozen_data copy
731                  * in that case. */
732
733                 if (jh->b_jlist != BJ_Forget || force_copy) {
734                         JBUFFER_TRACE(jh, "generate frozen data");
735                         if (!frozen_buffer) {
736                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
737                                 jbd_unlock_bh_state(bh);
738                                 frozen_buffer =
739                                         jbd2_alloc(jh2bh(jh)->b_size,
740                                                          GFP_NOFS);
741                                 if (!frozen_buffer) {
742                                         printk(KERN_EMERG
743                                                "%s: OOM for frozen_buffer\n",
744                                                __func__);
745                                         JBUFFER_TRACE(jh, "oom!");
746                                         error = -ENOMEM;
747                                         jbd_lock_bh_state(bh);
748                                         goto done;
749                                 }
750                                 goto repeat;
751                         }
752                         jh->b_frozen_data = frozen_buffer;
753                         frozen_buffer = NULL;
754                         need_copy = 1;
755                 }
756                 jh->b_next_transaction = transaction;
757         }
758
759
760         /*
761          * Finally, if the buffer is not journaled right now, we need to make
762          * sure it doesn't get written to disk before the caller actually
763          * commits the new data
764          */
765         if (!jh->b_transaction) {
766                 JBUFFER_TRACE(jh, "no transaction");
767                 J_ASSERT_JH(jh, !jh->b_next_transaction);
768                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
769                 spin_lock(&journal->j_list_lock);
770                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
771                 spin_unlock(&journal->j_list_lock);
772         }
773
774 done:
775         if (need_copy) {
776                 struct page *page;
777                 int offset;
778                 char *source;
779
780                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
781                             "Possible IO failure.\n");
782                 page = jh2bh(jh)->b_page;
783                 offset = offset_in_page(jh2bh(jh)->b_data);
784                 source = kmap_atomic(page, KM_USER0);
785                 /* Fire data frozen trigger just before we copy the data */
786                 jbd2_buffer_frozen_trigger(jh, source + offset,
787                                            jh->b_triggers);
788                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
789                 kunmap_atomic(source, KM_USER0);
790
791                 /*
792                  * Now that the frozen data is saved off, we need to store
793                  * any matching triggers.
794                  */
795                 jh->b_frozen_triggers = jh->b_triggers;
796         }
797         jbd_unlock_bh_state(bh);
798
799         /*
800          * If we are about to journal a buffer, then any revoke pending on it is
801          * no longer valid
802          */
803         jbd2_journal_cancel_revoke(handle, jh);
804
805 out:
806         if (unlikely(frozen_buffer))    /* It's usually NULL */
807                 jbd2_free(frozen_buffer, bh->b_size);
808
809         JBUFFER_TRACE(jh, "exit");
810         return error;
811 }
812
813 /**
814  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
815  * @handle: transaction to add buffer modifications to
816  * @bh:     bh to be used for metadata writes
817  *
818  * Returns an error code or 0 on success.
819  *
820  * In full data journalling mode the buffer may be of type BJ_AsyncData,
821  * because we're write()ing a buffer which is also part of a shared mapping.
822  */
823
824 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
825 {
826         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
827         int rc;
828
829         /* We do not want to get caught playing with fields which the
830          * log thread also manipulates.  Make sure that the buffer
831          * completes any outstanding IO before proceeding. */
832         rc = do_get_write_access(handle, jh, 0);
833         jbd2_journal_put_journal_head(jh);
834         return rc;
835 }
836
837
838 /*
839  * When the user wants to journal a newly created buffer_head
840  * (ie. getblk() returned a new buffer and we are going to populate it
841  * manually rather than reading off disk), then we need to keep the
842  * buffer_head locked until it has been completely filled with new
843  * data.  In this case, we should be able to make the assertion that
844  * the bh is not already part of an existing transaction.
845  *
846  * The buffer should already be locked by the caller by this point.
847  * There is no lock ranking violation: it was a newly created,
848  * unlocked buffer beforehand. */
849
850 /**
851  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
852  * @handle: transaction to new buffer to
853  * @bh: new buffer.
854  *
855  * Call this if you create a new bh.
856  */
857 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
858 {
859         transaction_t *transaction = handle->h_transaction;
860         journal_t *journal = transaction->t_journal;
861         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
862         int err;
863
864         jbd_debug(5, "journal_head %p\n", jh);
865         err = -EROFS;
866         if (is_handle_aborted(handle))
867                 goto out;
868         err = 0;
869
870         JBUFFER_TRACE(jh, "entry");
871         /*
872          * The buffer may already belong to this transaction due to pre-zeroing
873          * in the filesystem's new_block code.  It may also be on the previous,
874          * committing transaction's lists, but it HAS to be in Forget state in
875          * that case: the transaction must have deleted the buffer for it to be
876          * reused here.
877          */
878         jbd_lock_bh_state(bh);
879         spin_lock(&journal->j_list_lock);
880         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
881                 jh->b_transaction == NULL ||
882                 (jh->b_transaction == journal->j_committing_transaction &&
883                           jh->b_jlist == BJ_Forget)));
884
885         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
886         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
887
888         if (jh->b_transaction == NULL) {
889                 /*
890                  * Previous jbd2_journal_forget() could have left the buffer
891                  * with jbddirty bit set because it was being committed. When
892                  * the commit finished, we've filed the buffer for
893                  * checkpointing and marked it dirty. Now we are reallocating
894                  * the buffer so the transaction freeing it must have
895                  * committed and so it's safe to clear the dirty bit.
896                  */
897                 clear_buffer_dirty(jh2bh(jh));
898                 /* first access by this transaction */
899                 jh->b_modified = 0;
900
901                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
902                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
903         } else if (jh->b_transaction == journal->j_committing_transaction) {
904                 /* first access by this transaction */
905                 jh->b_modified = 0;
906
907                 JBUFFER_TRACE(jh, "set next transaction");
908                 jh->b_next_transaction = transaction;
909         }
910         spin_unlock(&journal->j_list_lock);
911         jbd_unlock_bh_state(bh);
912
913         /*
914          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
915          * blocks which contain freed but then revoked metadata.  We need
916          * to cancel the revoke in case we end up freeing it yet again
917          * and the reallocating as data - this would cause a second revoke,
918          * which hits an assertion error.
919          */
920         JBUFFER_TRACE(jh, "cancelling revoke");
921         jbd2_journal_cancel_revoke(handle, jh);
922 out:
923         jbd2_journal_put_journal_head(jh);
924         return err;
925 }
926
927 /**
928  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
929  *     non-rewindable consequences
930  * @handle: transaction
931  * @bh: buffer to undo
932  *
933  * Sometimes there is a need to distinguish between metadata which has
934  * been committed to disk and that which has not.  The ext3fs code uses
935  * this for freeing and allocating space, we have to make sure that we
936  * do not reuse freed space until the deallocation has been committed,
937  * since if we overwrote that space we would make the delete
938  * un-rewindable in case of a crash.
939  *
940  * To deal with that, jbd2_journal_get_undo_access requests write access to a
941  * buffer for parts of non-rewindable operations such as delete
942  * operations on the bitmaps.  The journaling code must keep a copy of
943  * the buffer's contents prior to the undo_access call until such time
944  * as we know that the buffer has definitely been committed to disk.
945  *
946  * We never need to know which transaction the committed data is part
947  * of, buffers touched here are guaranteed to be dirtied later and so
948  * will be committed to a new transaction in due course, at which point
949  * we can discard the old committed data pointer.
950  *
951  * Returns error number or 0 on success.
952  */
953 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
954 {
955         int err;
956         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
957         char *committed_data = NULL;
958
959         JBUFFER_TRACE(jh, "entry");
960
961         /*
962          * Do this first --- it can drop the journal lock, so we want to
963          * make sure that obtaining the committed_data is done
964          * atomically wrt. completion of any outstanding commits.
965          */
966         err = do_get_write_access(handle, jh, 1);
967         if (err)
968                 goto out;
969
970 repeat:
971         if (!jh->b_committed_data) {
972                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
973                 if (!committed_data) {
974                         printk(KERN_EMERG "%s: No memory for committed data\n",
975                                 __func__);
976                         err = -ENOMEM;
977                         goto out;
978                 }
979         }
980
981         jbd_lock_bh_state(bh);
982         if (!jh->b_committed_data) {
983                 /* Copy out the current buffer contents into the
984                  * preserved, committed copy. */
985                 JBUFFER_TRACE(jh, "generate b_committed data");
986                 if (!committed_data) {
987                         jbd_unlock_bh_state(bh);
988                         goto repeat;
989                 }
990
991                 jh->b_committed_data = committed_data;
992                 committed_data = NULL;
993                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
994         }
995         jbd_unlock_bh_state(bh);
996 out:
997         jbd2_journal_put_journal_head(jh);
998         if (unlikely(committed_data))
999                 jbd2_free(committed_data, bh->b_size);
1000         return err;
1001 }
1002
1003 /**
1004  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1005  * @bh: buffer to trigger on
1006  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1007  *
1008  * Set any triggers on this journal_head.  This is always safe, because
1009  * triggers for a committing buffer will be saved off, and triggers for
1010  * a running transaction will match the buffer in that transaction.
1011  *
1012  * Call with NULL to clear the triggers.
1013  */
1014 void jbd2_journal_set_triggers(struct buffer_head *bh,
1015                                struct jbd2_buffer_trigger_type *type)
1016 {
1017         struct journal_head *jh = bh2jh(bh);
1018
1019         jh->b_triggers = type;
1020 }
1021
1022 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1023                                 struct jbd2_buffer_trigger_type *triggers)
1024 {
1025         struct buffer_head *bh = jh2bh(jh);
1026
1027         if (!triggers || !triggers->t_frozen)
1028                 return;
1029
1030         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1031 }
1032
1033 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1034                                struct jbd2_buffer_trigger_type *triggers)
1035 {
1036         if (!triggers || !triggers->t_abort)
1037                 return;
1038
1039         triggers->t_abort(triggers, jh2bh(jh));
1040 }
1041
1042
1043
1044 /**
1045  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1046  * @handle: transaction to add buffer to.
1047  * @bh: buffer to mark
1048  *
1049  * mark dirty metadata which needs to be journaled as part of the current
1050  * transaction.
1051  *
1052  * The buffer is placed on the transaction's metadata list and is marked
1053  * as belonging to the transaction.
1054  *
1055  * Returns error number or 0 on success.
1056  *
1057  * Special care needs to be taken if the buffer already belongs to the
1058  * current committing transaction (in which case we should have frozen
1059  * data present for that commit).  In that case, we don't relink the
1060  * buffer: that only gets done when the old transaction finally
1061  * completes its commit.
1062  */
1063 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1064 {
1065         transaction_t *transaction = handle->h_transaction;
1066         journal_t *journal = transaction->t_journal;
1067         struct journal_head *jh = bh2jh(bh);
1068
1069         jbd_debug(5, "journal_head %p\n", jh);
1070         JBUFFER_TRACE(jh, "entry");
1071         if (is_handle_aborted(handle))
1072                 goto out;
1073
1074         jbd_lock_bh_state(bh);
1075
1076         if (jh->b_modified == 0) {
1077                 /*
1078                  * This buffer's got modified and becoming part
1079                  * of the transaction. This needs to be done
1080                  * once a transaction -bzzz
1081                  */
1082                 jh->b_modified = 1;
1083                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1084                 handle->h_buffer_credits--;
1085         }
1086
1087         /*
1088          * fastpath, to avoid expensive locking.  If this buffer is already
1089          * on the running transaction's metadata list there is nothing to do.
1090          * Nobody can take it off again because there is a handle open.
1091          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1092          * result in this test being false, so we go in and take the locks.
1093          */
1094         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1095                 JBUFFER_TRACE(jh, "fastpath");
1096                 J_ASSERT_JH(jh, jh->b_transaction ==
1097                                         journal->j_running_transaction);
1098                 goto out_unlock_bh;
1099         }
1100
1101         set_buffer_jbddirty(bh);
1102
1103         /*
1104          * Metadata already on the current transaction list doesn't
1105          * need to be filed.  Metadata on another transaction's list must
1106          * be committing, and will be refiled once the commit completes:
1107          * leave it alone for now.
1108          */
1109         if (jh->b_transaction != transaction) {
1110                 JBUFFER_TRACE(jh, "already on other transaction");
1111                 J_ASSERT_JH(jh, jh->b_transaction ==
1112                                         journal->j_committing_transaction);
1113                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1114                 /* And this case is illegal: we can't reuse another
1115                  * transaction's data buffer, ever. */
1116                 goto out_unlock_bh;
1117         }
1118
1119         /* That test should have eliminated the following case: */
1120         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1121
1122         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1123         spin_lock(&journal->j_list_lock);
1124         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1125         spin_unlock(&journal->j_list_lock);
1126 out_unlock_bh:
1127         jbd_unlock_bh_state(bh);
1128 out:
1129         JBUFFER_TRACE(jh, "exit");
1130         return 0;
1131 }
1132
1133 /*
1134  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1135  * updates, if the update decided in the end that it didn't need access.
1136  *
1137  */
1138 void
1139 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1140 {
1141         BUFFER_TRACE(bh, "entry");
1142 }
1143
1144 /**
1145  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1146  * @handle: transaction handle
1147  * @bh:     bh to 'forget'
1148  *
1149  * We can only do the bforget if there are no commits pending against the
1150  * buffer.  If the buffer is dirty in the current running transaction we
1151  * can safely unlink it.
1152  *
1153  * bh may not be a journalled buffer at all - it may be a non-JBD
1154  * buffer which came off the hashtable.  Check for this.
1155  *
1156  * Decrements bh->b_count by one.
1157  *
1158  * Allow this call even if the handle has aborted --- it may be part of
1159  * the caller's cleanup after an abort.
1160  */
1161 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1162 {
1163         transaction_t *transaction = handle->h_transaction;
1164         journal_t *journal = transaction->t_journal;
1165         struct journal_head *jh;
1166         int drop_reserve = 0;
1167         int err = 0;
1168         int was_modified = 0;
1169
1170         BUFFER_TRACE(bh, "entry");
1171
1172         jbd_lock_bh_state(bh);
1173         spin_lock(&journal->j_list_lock);
1174
1175         if (!buffer_jbd(bh))
1176                 goto not_jbd;
1177         jh = bh2jh(bh);
1178
1179         /* Critical error: attempting to delete a bitmap buffer, maybe?
1180          * Don't do any jbd operations, and return an error. */
1181         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1182                          "inconsistent data on disk")) {
1183                 err = -EIO;
1184                 goto not_jbd;
1185         }
1186
1187         /* keep track of wether or not this transaction modified us */
1188         was_modified = jh->b_modified;
1189
1190         /*
1191          * The buffer's going from the transaction, we must drop
1192          * all references -bzzz
1193          */
1194         jh->b_modified = 0;
1195
1196         if (jh->b_transaction == handle->h_transaction) {
1197                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1198
1199                 /* If we are forgetting a buffer which is already part
1200                  * of this transaction, then we can just drop it from
1201                  * the transaction immediately. */
1202                 clear_buffer_dirty(bh);
1203                 clear_buffer_jbddirty(bh);
1204
1205                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1206
1207                 /*
1208                  * we only want to drop a reference if this transaction
1209                  * modified the buffer
1210                  */
1211                 if (was_modified)
1212                         drop_reserve = 1;
1213
1214                 /*
1215                  * We are no longer going to journal this buffer.
1216                  * However, the commit of this transaction is still
1217                  * important to the buffer: the delete that we are now
1218                  * processing might obsolete an old log entry, so by
1219                  * committing, we can satisfy the buffer's checkpoint.
1220                  *
1221                  * So, if we have a checkpoint on the buffer, we should
1222                  * now refile the buffer on our BJ_Forget list so that
1223                  * we know to remove the checkpoint after we commit.
1224                  */
1225
1226                 if (jh->b_cp_transaction) {
1227                         __jbd2_journal_temp_unlink_buffer(jh);
1228                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1229                 } else {
1230                         __jbd2_journal_unfile_buffer(jh);
1231                         if (!buffer_jbd(bh)) {
1232                                 spin_unlock(&journal->j_list_lock);
1233                                 jbd_unlock_bh_state(bh);
1234                                 __bforget(bh);
1235                                 goto drop;
1236                         }
1237                 }
1238         } else if (jh->b_transaction) {
1239                 J_ASSERT_JH(jh, (jh->b_transaction ==
1240                                  journal->j_committing_transaction));
1241                 /* However, if the buffer is still owned by a prior
1242                  * (committing) transaction, we can't drop it yet... */
1243                 JBUFFER_TRACE(jh, "belongs to older transaction");
1244                 /* ... but we CAN drop it from the new transaction if we
1245                  * have also modified it since the original commit. */
1246
1247                 if (jh->b_next_transaction) {
1248                         J_ASSERT(jh->b_next_transaction == transaction);
1249                         jh->b_next_transaction = NULL;
1250
1251                         /*
1252                          * only drop a reference if this transaction modified
1253                          * the buffer
1254                          */
1255                         if (was_modified)
1256                                 drop_reserve = 1;
1257                 }
1258         }
1259
1260 not_jbd:
1261         spin_unlock(&journal->j_list_lock);
1262         jbd_unlock_bh_state(bh);
1263         __brelse(bh);
1264 drop:
1265         if (drop_reserve) {
1266                 /* no need to reserve log space for this block -bzzz */
1267                 handle->h_buffer_credits++;
1268         }
1269         return err;
1270 }
1271
1272 /**
1273  * int jbd2_journal_stop() - complete a transaction
1274  * @handle: tranaction to complete.
1275  *
1276  * All done for a particular handle.
1277  *
1278  * There is not much action needed here.  We just return any remaining
1279  * buffer credits to the transaction and remove the handle.  The only
1280  * complication is that we need to start a commit operation if the
1281  * filesystem is marked for synchronous update.
1282  *
1283  * jbd2_journal_stop itself will not usually return an error, but it may
1284  * do so in unusual circumstances.  In particular, expect it to
1285  * return -EIO if a jbd2_journal_abort has been executed since the
1286  * transaction began.
1287  */
1288 int jbd2_journal_stop(handle_t *handle)
1289 {
1290         transaction_t *transaction = handle->h_transaction;
1291         journal_t *journal = transaction->t_journal;
1292         int err, wait_for_commit = 0;
1293         tid_t tid;
1294         pid_t pid;
1295
1296         J_ASSERT(journal_current_handle() == handle);
1297
1298         if (is_handle_aborted(handle))
1299                 err = -EIO;
1300         else {
1301                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1302                 err = 0;
1303         }
1304
1305         if (--handle->h_ref > 0) {
1306                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1307                           handle->h_ref);
1308                 return err;
1309         }
1310
1311         jbd_debug(4, "Handle %p going down\n", handle);
1312
1313         /*
1314          * Implement synchronous transaction batching.  If the handle
1315          * was synchronous, don't force a commit immediately.  Let's
1316          * yield and let another thread piggyback onto this
1317          * transaction.  Keep doing that while new threads continue to
1318          * arrive.  It doesn't cost much - we're about to run a commit
1319          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1320          * operations by 30x or more...
1321          *
1322          * We try and optimize the sleep time against what the
1323          * underlying disk can do, instead of having a static sleep
1324          * time.  This is useful for the case where our storage is so
1325          * fast that it is more optimal to go ahead and force a flush
1326          * and wait for the transaction to be committed than it is to
1327          * wait for an arbitrary amount of time for new writers to
1328          * join the transaction.  We achieve this by measuring how
1329          * long it takes to commit a transaction, and compare it with
1330          * how long this transaction has been running, and if run time
1331          * < commit time then we sleep for the delta and commit.  This
1332          * greatly helps super fast disks that would see slowdowns as
1333          * more threads started doing fsyncs.
1334          *
1335          * But don't do this if this process was the most recent one
1336          * to perform a synchronous write.  We do this to detect the
1337          * case where a single process is doing a stream of sync
1338          * writes.  No point in waiting for joiners in that case.
1339          */
1340         pid = current->pid;
1341         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1342                 u64 commit_time, trans_time;
1343
1344                 journal->j_last_sync_writer = pid;
1345
1346                 read_lock(&journal->j_state_lock);
1347                 commit_time = journal->j_average_commit_time;
1348                 read_unlock(&journal->j_state_lock);
1349
1350                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1351                                                    transaction->t_start_time));
1352
1353                 commit_time = max_t(u64, commit_time,
1354                                     1000*journal->j_min_batch_time);
1355                 commit_time = min_t(u64, commit_time,
1356                                     1000*journal->j_max_batch_time);
1357
1358                 if (trans_time < commit_time) {
1359                         ktime_t expires = ktime_add_ns(ktime_get(),
1360                                                        commit_time);
1361                         set_current_state(TASK_UNINTERRUPTIBLE);
1362                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1363                 }
1364         }
1365
1366         if (handle->h_sync)
1367                 transaction->t_synchronous_commit = 1;
1368         current->journal_info = NULL;
1369         atomic_sub(handle->h_buffer_credits,
1370                    &transaction->t_outstanding_credits);
1371
1372         /*
1373          * If the handle is marked SYNC, we need to set another commit
1374          * going!  We also want to force a commit if the current
1375          * transaction is occupying too much of the log, or if the
1376          * transaction is too old now.
1377          */
1378         if (handle->h_sync ||
1379             (atomic_read(&transaction->t_outstanding_credits) >
1380              journal->j_max_transaction_buffers) ||
1381             time_after_eq(jiffies, transaction->t_expires)) {
1382                 /* Do this even for aborted journals: an abort still
1383                  * completes the commit thread, it just doesn't write
1384                  * anything to disk. */
1385
1386                 jbd_debug(2, "transaction too old, requesting commit for "
1387                                         "handle %p\n", handle);
1388                 /* This is non-blocking */
1389                 jbd2_log_start_commit(journal, transaction->t_tid);
1390
1391                 /*
1392                  * Special case: JBD2_SYNC synchronous updates require us
1393                  * to wait for the commit to complete.
1394                  */
1395                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1396                         wait_for_commit = 1;
1397         }
1398
1399         /*
1400          * Once we drop t_updates, if it goes to zero the transaction
1401          * could start committing on us and eventually disappear.  So
1402          * once we do this, we must not dereference transaction
1403          * pointer again.
1404          */
1405         tid = transaction->t_tid;
1406         if (atomic_dec_and_test(&transaction->t_updates)) {
1407                 wake_up(&journal->j_wait_updates);
1408                 if (journal->j_barrier_count)
1409                         wake_up(&journal->j_wait_transaction_locked);
1410         }
1411
1412         if (wait_for_commit)
1413                 err = jbd2_log_wait_commit(journal, tid);
1414
1415         lock_map_release(&handle->h_lockdep_map);
1416
1417         jbd2_free_handle(handle);
1418         return err;
1419 }
1420
1421 /**
1422  * int jbd2_journal_force_commit() - force any uncommitted transactions
1423  * @journal: journal to force
1424  *
1425  * For synchronous operations: force any uncommitted transactions
1426  * to disk.  May seem kludgy, but it reuses all the handle batching
1427  * code in a very simple manner.
1428  */
1429 int jbd2_journal_force_commit(journal_t *journal)
1430 {
1431         handle_t *handle;
1432         int ret;
1433
1434         handle = jbd2_journal_start(journal, 1);
1435         if (IS_ERR(handle)) {
1436                 ret = PTR_ERR(handle);
1437         } else {
1438                 handle->h_sync = 1;
1439                 ret = jbd2_journal_stop(handle);
1440         }
1441         return ret;
1442 }
1443
1444 /*
1445  *
1446  * List management code snippets: various functions for manipulating the
1447  * transaction buffer lists.
1448  *
1449  */
1450
1451 /*
1452  * Append a buffer to a transaction list, given the transaction's list head
1453  * pointer.
1454  *
1455  * j_list_lock is held.
1456  *
1457  * jbd_lock_bh_state(jh2bh(jh)) is held.
1458  */
1459
1460 static inline void
1461 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1462 {
1463         if (!*list) {
1464                 jh->b_tnext = jh->b_tprev = jh;
1465                 *list = jh;
1466         } else {
1467                 /* Insert at the tail of the list to preserve order */
1468                 struct journal_head *first = *list, *last = first->b_tprev;
1469                 jh->b_tprev = last;
1470                 jh->b_tnext = first;
1471                 last->b_tnext = first->b_tprev = jh;
1472         }
1473 }
1474
1475 /*
1476  * Remove a buffer from a transaction list, given the transaction's list
1477  * head pointer.
1478  *
1479  * Called with j_list_lock held, and the journal may not be locked.
1480  *
1481  * jbd_lock_bh_state(jh2bh(jh)) is held.
1482  */
1483
1484 static inline void
1485 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1486 {
1487         if (*list == jh) {
1488                 *list = jh->b_tnext;
1489                 if (*list == jh)
1490                         *list = NULL;
1491         }
1492         jh->b_tprev->b_tnext = jh->b_tnext;
1493         jh->b_tnext->b_tprev = jh->b_tprev;
1494 }
1495
1496 /*
1497  * Remove a buffer from the appropriate transaction list.
1498  *
1499  * Note that this function can *change* the value of
1500  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1501  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1502  * of these pointers, it could go bad.  Generally the caller needs to re-read
1503  * the pointer from the transaction_t.
1504  *
1505  * Called under j_list_lock.  The journal may not be locked.
1506  */
1507 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1508 {
1509         struct journal_head **list = NULL;
1510         transaction_t *transaction;
1511         struct buffer_head *bh = jh2bh(jh);
1512
1513         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1514         transaction = jh->b_transaction;
1515         if (transaction)
1516                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1517
1518         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1519         if (jh->b_jlist != BJ_None)
1520                 J_ASSERT_JH(jh, transaction != NULL);
1521
1522         switch (jh->b_jlist) {
1523         case BJ_None:
1524                 return;
1525         case BJ_Metadata:
1526                 transaction->t_nr_buffers--;
1527                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1528                 list = &transaction->t_buffers;
1529                 break;
1530         case BJ_Forget:
1531                 list = &transaction->t_forget;
1532                 break;
1533         case BJ_IO:
1534                 list = &transaction->t_iobuf_list;
1535                 break;
1536         case BJ_Shadow:
1537                 list = &transaction->t_shadow_list;
1538                 break;
1539         case BJ_LogCtl:
1540                 list = &transaction->t_log_list;
1541                 break;
1542         case BJ_Reserved:
1543                 list = &transaction->t_reserved_list;
1544                 break;
1545         }
1546
1547         __blist_del_buffer(list, jh);
1548         jh->b_jlist = BJ_None;
1549         if (test_clear_buffer_jbddirty(bh))
1550                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1551 }
1552
1553 /*
1554  * Remove buffer from all transactions.
1555  *
1556  * Called with bh_state lock and j_list_lock
1557  *
1558  * jh and bh may be already freed when this function returns.
1559  */
1560 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1561 {
1562         __jbd2_journal_temp_unlink_buffer(jh);
1563         jh->b_transaction = NULL;
1564         jbd2_journal_put_journal_head(jh);
1565 }
1566
1567 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1568 {
1569         struct buffer_head *bh = jh2bh(jh);
1570
1571         /* Get reference so that buffer cannot be freed before we unlock it */
1572         get_bh(bh);
1573         jbd_lock_bh_state(bh);
1574         spin_lock(&journal->j_list_lock);
1575         __jbd2_journal_unfile_buffer(jh);
1576         spin_unlock(&journal->j_list_lock);
1577         jbd_unlock_bh_state(bh);
1578         __brelse(bh);
1579 }
1580
1581 /*
1582  * Called from jbd2_journal_try_to_free_buffers().
1583  *
1584  * Called under jbd_lock_bh_state(bh)
1585  */
1586 static void
1587 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1588 {
1589         struct journal_head *jh;
1590
1591         jh = bh2jh(bh);
1592
1593         if (buffer_locked(bh) || buffer_dirty(bh))
1594                 goto out;
1595
1596         if (jh->b_next_transaction != NULL)
1597                 goto out;
1598
1599         spin_lock(&journal->j_list_lock);
1600         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1601                 /* written-back checkpointed metadata buffer */
1602                 if (jh->b_jlist == BJ_None) {
1603                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1604                         __jbd2_journal_remove_checkpoint(jh);
1605                 }
1606         }
1607         spin_unlock(&journal->j_list_lock);
1608 out:
1609         return;
1610 }
1611
1612 /**
1613  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1614  * @journal: journal for operation
1615  * @page: to try and free
1616  * @gfp_mask: we use the mask to detect how hard should we try to release
1617  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1618  * release the buffers.
1619  *
1620  *
1621  * For all the buffers on this page,
1622  * if they are fully written out ordered data, move them onto BUF_CLEAN
1623  * so try_to_free_buffers() can reap them.
1624  *
1625  * This function returns non-zero if we wish try_to_free_buffers()
1626  * to be called. We do this if the page is releasable by try_to_free_buffers().
1627  * We also do it if the page has locked or dirty buffers and the caller wants
1628  * us to perform sync or async writeout.
1629  *
1630  * This complicates JBD locking somewhat.  We aren't protected by the
1631  * BKL here.  We wish to remove the buffer from its committing or
1632  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1633  *
1634  * This may *change* the value of transaction_t->t_datalist, so anyone
1635  * who looks at t_datalist needs to lock against this function.
1636  *
1637  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1638  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1639  * will come out of the lock with the buffer dirty, which makes it
1640  * ineligible for release here.
1641  *
1642  * Who else is affected by this?  hmm...  Really the only contender
1643  * is do_get_write_access() - it could be looking at the buffer while
1644  * journal_try_to_free_buffer() is changing its state.  But that
1645  * cannot happen because we never reallocate freed data as metadata
1646  * while the data is part of a transaction.  Yes?
1647  *
1648  * Return 0 on failure, 1 on success
1649  */
1650 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1651                                 struct page *page, gfp_t gfp_mask)
1652 {
1653         struct buffer_head *head;
1654         struct buffer_head *bh;
1655         int ret = 0;
1656
1657         J_ASSERT(PageLocked(page));
1658
1659         head = page_buffers(page);
1660         bh = head;
1661         do {
1662                 struct journal_head *jh;
1663
1664                 /*
1665                  * We take our own ref against the journal_head here to avoid
1666                  * having to add tons of locking around each instance of
1667                  * jbd2_journal_put_journal_head().
1668                  */
1669                 jh = jbd2_journal_grab_journal_head(bh);
1670                 if (!jh)
1671                         continue;
1672
1673                 jbd_lock_bh_state(bh);
1674                 __journal_try_to_free_buffer(journal, bh);
1675                 jbd2_journal_put_journal_head(jh);
1676                 jbd_unlock_bh_state(bh);
1677                 if (buffer_jbd(bh))
1678                         goto busy;
1679         } while ((bh = bh->b_this_page) != head);
1680
1681         ret = try_to_free_buffers(page);
1682
1683 busy:
1684         return ret;
1685 }
1686
1687 /*
1688  * This buffer is no longer needed.  If it is on an older transaction's
1689  * checkpoint list we need to record it on this transaction's forget list
1690  * to pin this buffer (and hence its checkpointing transaction) down until
1691  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1692  * release it.
1693  * Returns non-zero if JBD no longer has an interest in the buffer.
1694  *
1695  * Called under j_list_lock.
1696  *
1697  * Called under jbd_lock_bh_state(bh).
1698  */
1699 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1700 {
1701         int may_free = 1;
1702         struct buffer_head *bh = jh2bh(jh);
1703
1704         if (jh->b_cp_transaction) {
1705                 JBUFFER_TRACE(jh, "on running+cp transaction");
1706                 __jbd2_journal_temp_unlink_buffer(jh);
1707                 /*
1708                  * We don't want to write the buffer anymore, clear the
1709                  * bit so that we don't confuse checks in
1710                  * __journal_file_buffer
1711                  */
1712                 clear_buffer_dirty(bh);
1713                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1714                 may_free = 0;
1715         } else {
1716                 JBUFFER_TRACE(jh, "on running transaction");
1717                 __jbd2_journal_unfile_buffer(jh);
1718         }
1719         return may_free;
1720 }
1721
1722 /*
1723  * jbd2_journal_invalidatepage
1724  *
1725  * This code is tricky.  It has a number of cases to deal with.
1726  *
1727  * There are two invariants which this code relies on:
1728  *
1729  * i_size must be updated on disk before we start calling invalidatepage on the
1730  * data.
1731  *
1732  *  This is done in ext3 by defining an ext3_setattr method which
1733  *  updates i_size before truncate gets going.  By maintaining this
1734  *  invariant, we can be sure that it is safe to throw away any buffers
1735  *  attached to the current transaction: once the transaction commits,
1736  *  we know that the data will not be needed.
1737  *
1738  *  Note however that we can *not* throw away data belonging to the
1739  *  previous, committing transaction!
1740  *
1741  * Any disk blocks which *are* part of the previous, committing
1742  * transaction (and which therefore cannot be discarded immediately) are
1743  * not going to be reused in the new running transaction
1744  *
1745  *  The bitmap committed_data images guarantee this: any block which is
1746  *  allocated in one transaction and removed in the next will be marked
1747  *  as in-use in the committed_data bitmap, so cannot be reused until
1748  *  the next transaction to delete the block commits.  This means that
1749  *  leaving committing buffers dirty is quite safe: the disk blocks
1750  *  cannot be reallocated to a different file and so buffer aliasing is
1751  *  not possible.
1752  *
1753  *
1754  * The above applies mainly to ordered data mode.  In writeback mode we
1755  * don't make guarantees about the order in which data hits disk --- in
1756  * particular we don't guarantee that new dirty data is flushed before
1757  * transaction commit --- so it is always safe just to discard data
1758  * immediately in that mode.  --sct
1759  */
1760
1761 /*
1762  * The journal_unmap_buffer helper function returns zero if the buffer
1763  * concerned remains pinned as an anonymous buffer belonging to an older
1764  * transaction.
1765  *
1766  * We're outside-transaction here.  Either or both of j_running_transaction
1767  * and j_committing_transaction may be NULL.
1768  */
1769 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1770 {
1771         transaction_t *transaction;
1772         struct journal_head *jh;
1773         int may_free = 1;
1774         int ret;
1775
1776         BUFFER_TRACE(bh, "entry");
1777
1778         /*
1779          * It is safe to proceed here without the j_list_lock because the
1780          * buffers cannot be stolen by try_to_free_buffers as long as we are
1781          * holding the page lock. --sct
1782          */
1783
1784         if (!buffer_jbd(bh))
1785                 goto zap_buffer_unlocked;
1786
1787         /* OK, we have data buffer in journaled mode */
1788         write_lock(&journal->j_state_lock);
1789         jbd_lock_bh_state(bh);
1790         spin_lock(&journal->j_list_lock);
1791
1792         jh = jbd2_journal_grab_journal_head(bh);
1793         if (!jh)
1794                 goto zap_buffer_no_jh;
1795
1796         /*
1797          * We cannot remove the buffer from checkpoint lists until the
1798          * transaction adding inode to orphan list (let's call it T)
1799          * is committed.  Otherwise if the transaction changing the
1800          * buffer would be cleaned from the journal before T is
1801          * committed, a crash will cause that the correct contents of
1802          * the buffer will be lost.  On the other hand we have to
1803          * clear the buffer dirty bit at latest at the moment when the
1804          * transaction marking the buffer as freed in the filesystem
1805          * structures is committed because from that moment on the
1806          * buffer can be reallocated and used by a different page.
1807          * Since the block hasn't been freed yet but the inode has
1808          * already been added to orphan list, it is safe for us to add
1809          * the buffer to BJ_Forget list of the newest transaction.
1810          */
1811         transaction = jh->b_transaction;
1812         if (transaction == NULL) {
1813                 /* First case: not on any transaction.  If it
1814                  * has no checkpoint link, then we can zap it:
1815                  * it's a writeback-mode buffer so we don't care
1816                  * if it hits disk safely. */
1817                 if (!jh->b_cp_transaction) {
1818                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1819                         goto zap_buffer;
1820                 }
1821
1822                 if (!buffer_dirty(bh)) {
1823                         /* bdflush has written it.  We can drop it now */
1824                         goto zap_buffer;
1825                 }
1826
1827                 /* OK, it must be in the journal but still not
1828                  * written fully to disk: it's metadata or
1829                  * journaled data... */
1830
1831                 if (journal->j_running_transaction) {
1832                         /* ... and once the current transaction has
1833                          * committed, the buffer won't be needed any
1834                          * longer. */
1835                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1836                         ret = __dispose_buffer(jh,
1837                                         journal->j_running_transaction);
1838                         jbd2_journal_put_journal_head(jh);
1839                         spin_unlock(&journal->j_list_lock);
1840                         jbd_unlock_bh_state(bh);
1841                         write_unlock(&journal->j_state_lock);
1842                         return ret;
1843                 } else {
1844                         /* There is no currently-running transaction. So the
1845                          * orphan record which we wrote for this file must have
1846                          * passed into commit.  We must attach this buffer to
1847                          * the committing transaction, if it exists. */
1848                         if (journal->j_committing_transaction) {
1849                                 JBUFFER_TRACE(jh, "give to committing trans");
1850                                 ret = __dispose_buffer(jh,
1851                                         journal->j_committing_transaction);
1852                                 jbd2_journal_put_journal_head(jh);
1853                                 spin_unlock(&journal->j_list_lock);
1854                                 jbd_unlock_bh_state(bh);
1855                                 write_unlock(&journal->j_state_lock);
1856                                 return ret;
1857                         } else {
1858                                 /* The orphan record's transaction has
1859                                  * committed.  We can cleanse this buffer */
1860                                 clear_buffer_jbddirty(bh);
1861                                 goto zap_buffer;
1862                         }
1863                 }
1864         } else if (transaction == journal->j_committing_transaction) {
1865                 JBUFFER_TRACE(jh, "on committing transaction");
1866                 /*
1867                  * The buffer is committing, we simply cannot touch
1868                  * it. So we just set j_next_transaction to the
1869                  * running transaction (if there is one) and mark
1870                  * buffer as freed so that commit code knows it should
1871                  * clear dirty bits when it is done with the buffer.
1872                  */
1873                 set_buffer_freed(bh);
1874                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1875                         jh->b_next_transaction = journal->j_running_transaction;
1876                 jbd2_journal_put_journal_head(jh);
1877                 spin_unlock(&journal->j_list_lock);
1878                 jbd_unlock_bh_state(bh);
1879                 write_unlock(&journal->j_state_lock);
1880                 return 0;
1881         } else {
1882                 /* Good, the buffer belongs to the running transaction.
1883                  * We are writing our own transaction's data, not any
1884                  * previous one's, so it is safe to throw it away
1885                  * (remember that we expect the filesystem to have set
1886                  * i_size already for this truncate so recovery will not
1887                  * expose the disk blocks we are discarding here.) */
1888                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1889                 JBUFFER_TRACE(jh, "on running transaction");
1890                 may_free = __dispose_buffer(jh, transaction);
1891         }
1892
1893 zap_buffer:
1894         jbd2_journal_put_journal_head(jh);
1895 zap_buffer_no_jh:
1896         spin_unlock(&journal->j_list_lock);
1897         jbd_unlock_bh_state(bh);
1898         write_unlock(&journal->j_state_lock);
1899 zap_buffer_unlocked:
1900         clear_buffer_dirty(bh);
1901         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1902         clear_buffer_mapped(bh);
1903         clear_buffer_req(bh);
1904         clear_buffer_new(bh);
1905         bh->b_bdev = NULL;
1906         return may_free;
1907 }
1908
1909 /**
1910  * void jbd2_journal_invalidatepage()
1911  * @journal: journal to use for flush...
1912  * @page:    page to flush
1913  * @offset:  length of page to invalidate.
1914  *
1915  * Reap page buffers containing data after offset in page.
1916  *
1917  */
1918 void jbd2_journal_invalidatepage(journal_t *journal,
1919                       struct page *page,
1920                       unsigned long offset)
1921 {
1922         struct buffer_head *head, *bh, *next;
1923         unsigned int curr_off = 0;
1924         int may_free = 1;
1925
1926         if (!PageLocked(page))
1927                 BUG();
1928         if (!page_has_buffers(page))
1929                 return;
1930
1931         /* We will potentially be playing with lists other than just the
1932          * data lists (especially for journaled data mode), so be
1933          * cautious in our locking. */
1934
1935         head = bh = page_buffers(page);
1936         do {
1937                 unsigned int next_off = curr_off + bh->b_size;
1938                 next = bh->b_this_page;
1939
1940                 if (offset <= curr_off) {
1941                         /* This block is wholly outside the truncation point */
1942                         lock_buffer(bh);
1943                         may_free &= journal_unmap_buffer(journal, bh);
1944                         unlock_buffer(bh);
1945                 }
1946                 curr_off = next_off;
1947                 bh = next;
1948
1949         } while (bh != head);
1950
1951         if (!offset) {
1952                 if (may_free && try_to_free_buffers(page))
1953                         J_ASSERT(!page_has_buffers(page));
1954         }
1955 }
1956
1957 /*
1958  * File a buffer on the given transaction list.
1959  */
1960 void __jbd2_journal_file_buffer(struct journal_head *jh,
1961                         transaction_t *transaction, int jlist)
1962 {
1963         struct journal_head **list = NULL;
1964         int was_dirty = 0;
1965         struct buffer_head *bh = jh2bh(jh);
1966
1967         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1968         assert_spin_locked(&transaction->t_journal->j_list_lock);
1969
1970         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1971         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1972                                 jh->b_transaction == NULL);
1973
1974         if (jh->b_transaction && jh->b_jlist == jlist)
1975                 return;
1976
1977         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1978             jlist == BJ_Shadow || jlist == BJ_Forget) {
1979                 /*
1980                  * For metadata buffers, we track dirty bit in buffer_jbddirty
1981                  * instead of buffer_dirty. We should not see a dirty bit set
1982                  * here because we clear it in do_get_write_access but e.g.
1983                  * tune2fs can modify the sb and set the dirty bit at any time
1984                  * so we try to gracefully handle that.
1985                  */
1986                 if (buffer_dirty(bh))
1987                         warn_dirty_buffer(bh);
1988                 if (test_clear_buffer_dirty(bh) ||
1989                     test_clear_buffer_jbddirty(bh))
1990                         was_dirty = 1;
1991         }
1992
1993         if (jh->b_transaction)
1994                 __jbd2_journal_temp_unlink_buffer(jh);
1995         else
1996                 jbd2_journal_grab_journal_head(bh);
1997         jh->b_transaction = transaction;
1998
1999         switch (jlist) {
2000         case BJ_None:
2001                 J_ASSERT_JH(jh, !jh->b_committed_data);
2002                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2003                 return;
2004         case BJ_Metadata:
2005                 transaction->t_nr_buffers++;
2006                 list = &transaction->t_buffers;
2007                 break;
2008         case BJ_Forget:
2009                 list = &transaction->t_forget;
2010                 break;
2011         case BJ_IO:
2012                 list = &transaction->t_iobuf_list;
2013                 break;
2014         case BJ_Shadow:
2015                 list = &transaction->t_shadow_list;
2016                 break;
2017         case BJ_LogCtl:
2018                 list = &transaction->t_log_list;
2019                 break;
2020         case BJ_Reserved:
2021                 list = &transaction->t_reserved_list;
2022                 break;
2023         }
2024
2025         __blist_add_buffer(list, jh);
2026         jh->b_jlist = jlist;
2027
2028         if (was_dirty)
2029                 set_buffer_jbddirty(bh);
2030 }
2031
2032 void jbd2_journal_file_buffer(struct journal_head *jh,
2033                                 transaction_t *transaction, int jlist)
2034 {
2035         jbd_lock_bh_state(jh2bh(jh));
2036         spin_lock(&transaction->t_journal->j_list_lock);
2037         __jbd2_journal_file_buffer(jh, transaction, jlist);
2038         spin_unlock(&transaction->t_journal->j_list_lock);
2039         jbd_unlock_bh_state(jh2bh(jh));
2040 }
2041
2042 /*
2043  * Remove a buffer from its current buffer list in preparation for
2044  * dropping it from its current transaction entirely.  If the buffer has
2045  * already started to be used by a subsequent transaction, refile the
2046  * buffer on that transaction's metadata list.
2047  *
2048  * Called under j_list_lock
2049  * Called under jbd_lock_bh_state(jh2bh(jh))
2050  *
2051  * jh and bh may be already free when this function returns
2052  */
2053 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2054 {
2055         int was_dirty, jlist;
2056         struct buffer_head *bh = jh2bh(jh);
2057
2058         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2059         if (jh->b_transaction)
2060                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2061
2062         /* If the buffer is now unused, just drop it. */
2063         if (jh->b_next_transaction == NULL) {
2064                 __jbd2_journal_unfile_buffer(jh);
2065                 return;
2066         }
2067
2068         /*
2069          * It has been modified by a later transaction: add it to the new
2070          * transaction's metadata list.
2071          */
2072
2073         was_dirty = test_clear_buffer_jbddirty(bh);
2074         __jbd2_journal_temp_unlink_buffer(jh);
2075         /*
2076          * We set b_transaction here because b_next_transaction will inherit
2077          * our jh reference and thus __jbd2_journal_file_buffer() must not
2078          * take a new one.
2079          */
2080         jh->b_transaction = jh->b_next_transaction;
2081         jh->b_next_transaction = NULL;
2082         if (buffer_freed(bh))
2083                 jlist = BJ_Forget;
2084         else if (jh->b_modified)
2085                 jlist = BJ_Metadata;
2086         else
2087                 jlist = BJ_Reserved;
2088         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2089         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2090
2091         if (was_dirty)
2092                 set_buffer_jbddirty(bh);
2093 }
2094
2095 /*
2096  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2097  * bh reference so that we can safely unlock bh.
2098  *
2099  * The jh and bh may be freed by this call.
2100  */
2101 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2102 {
2103         struct buffer_head *bh = jh2bh(jh);
2104
2105         /* Get reference so that buffer cannot be freed before we unlock it */
2106         get_bh(bh);
2107         jbd_lock_bh_state(bh);
2108         spin_lock(&journal->j_list_lock);
2109         __jbd2_journal_refile_buffer(jh);
2110         jbd_unlock_bh_state(bh);
2111         spin_unlock(&journal->j_list_lock);
2112         __brelse(bh);
2113 }
2114
2115 /*
2116  * File inode in the inode list of the handle's transaction
2117  */
2118 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2119 {
2120         transaction_t *transaction = handle->h_transaction;
2121         journal_t *journal = transaction->t_journal;
2122
2123         if (is_handle_aborted(handle))
2124                 return -EIO;
2125
2126         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2127                         transaction->t_tid);
2128
2129         /*
2130          * First check whether inode isn't already on the transaction's
2131          * lists without taking the lock. Note that this check is safe
2132          * without the lock as we cannot race with somebody removing inode
2133          * from the transaction. The reason is that we remove inode from the
2134          * transaction only in journal_release_jbd_inode() and when we commit
2135          * the transaction. We are guarded from the first case by holding
2136          * a reference to the inode. We are safe against the second case
2137          * because if jinode->i_transaction == transaction, commit code
2138          * cannot touch the transaction because we hold reference to it,
2139          * and if jinode->i_next_transaction == transaction, commit code
2140          * will only file the inode where we want it.
2141          */
2142         if (jinode->i_transaction == transaction ||
2143             jinode->i_next_transaction == transaction)
2144                 return 0;
2145
2146         spin_lock(&journal->j_list_lock);
2147
2148         if (jinode->i_transaction == transaction ||
2149             jinode->i_next_transaction == transaction)
2150                 goto done;
2151
2152         /*
2153          * We only ever set this variable to 1 so the test is safe. Since
2154          * t_need_data_flush is likely to be set, we do the test to save some
2155          * cacheline bouncing
2156          */
2157         if (!transaction->t_need_data_flush)
2158                 transaction->t_need_data_flush = 1;
2159         /* On some different transaction's list - should be
2160          * the committing one */
2161         if (jinode->i_transaction) {
2162                 J_ASSERT(jinode->i_next_transaction == NULL);
2163                 J_ASSERT(jinode->i_transaction ==
2164                                         journal->j_committing_transaction);
2165                 jinode->i_next_transaction = transaction;
2166                 goto done;
2167         }
2168         /* Not on any transaction list... */
2169         J_ASSERT(!jinode->i_next_transaction);
2170         jinode->i_transaction = transaction;
2171         list_add(&jinode->i_list, &transaction->t_inode_list);
2172 done:
2173         spin_unlock(&journal->j_list_lock);
2174
2175         return 0;
2176 }
2177
2178 /*
2179  * File truncate and transaction commit interact with each other in a
2180  * non-trivial way.  If a transaction writing data block A is
2181  * committing, we cannot discard the data by truncate until we have
2182  * written them.  Otherwise if we crashed after the transaction with
2183  * write has committed but before the transaction with truncate has
2184  * committed, we could see stale data in block A.  This function is a
2185  * helper to solve this problem.  It starts writeout of the truncated
2186  * part in case it is in the committing transaction.
2187  *
2188  * Filesystem code must call this function when inode is journaled in
2189  * ordered mode before truncation happens and after the inode has been
2190  * placed on orphan list with the new inode size. The second condition
2191  * avoids the race that someone writes new data and we start
2192  * committing the transaction after this function has been called but
2193  * before a transaction for truncate is started (and furthermore it
2194  * allows us to optimize the case where the addition to orphan list
2195  * happens in the same transaction as write --- we don't have to write
2196  * any data in such case).
2197  */
2198 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2199                                         struct jbd2_inode *jinode,
2200                                         loff_t new_size)
2201 {
2202         transaction_t *inode_trans, *commit_trans;
2203         int ret = 0;
2204
2205         /* This is a quick check to avoid locking if not necessary */
2206         if (!jinode->i_transaction)
2207                 goto out;
2208         /* Locks are here just to force reading of recent values, it is
2209          * enough that the transaction was not committing before we started
2210          * a transaction adding the inode to orphan list */
2211         read_lock(&journal->j_state_lock);
2212         commit_trans = journal->j_committing_transaction;
2213         read_unlock(&journal->j_state_lock);
2214         spin_lock(&journal->j_list_lock);
2215         inode_trans = jinode->i_transaction;
2216         spin_unlock(&journal->j_list_lock);
2217         if (inode_trans == commit_trans) {
2218                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2219                         new_size, LLONG_MAX);
2220                 if (ret)
2221                         jbd2_journal_abort(journal, ret);
2222         }
2223 out:
2224         return ret;
2225 }