jbd2: fix ocfs2 corrupt when updating journal superblock fails
[pandora-kernel.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/system.h>
54
55 EXPORT_SYMBOL(jbd2_journal_extend);
56 EXPORT_SYMBOL(jbd2_journal_stop);
57 EXPORT_SYMBOL(jbd2_journal_lock_updates);
58 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
59 EXPORT_SYMBOL(jbd2_journal_get_write_access);
60 EXPORT_SYMBOL(jbd2_journal_get_create_access);
61 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
62 EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
64 EXPORT_SYMBOL(jbd2_journal_release_buffer);
65 EXPORT_SYMBOL(jbd2_journal_forget);
66 #if 0
67 EXPORT_SYMBOL(journal_sync_buffer);
68 #endif
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_update_format);
75 EXPORT_SYMBOL(jbd2_journal_check_used_features);
76 EXPORT_SYMBOL(jbd2_journal_check_available_features);
77 EXPORT_SYMBOL(jbd2_journal_set_features);
78 EXPORT_SYMBOL(jbd2_journal_load);
79 EXPORT_SYMBOL(jbd2_journal_destroy);
80 EXPORT_SYMBOL(jbd2_journal_abort);
81 EXPORT_SYMBOL(jbd2_journal_errno);
82 EXPORT_SYMBOL(jbd2_journal_ack_err);
83 EXPORT_SYMBOL(jbd2_journal_clear_err);
84 EXPORT_SYMBOL(jbd2_log_wait_commit);
85 EXPORT_SYMBOL(jbd2_log_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_start_commit);
87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
88 EXPORT_SYMBOL(jbd2_journal_wipe);
89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
90 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
92 EXPORT_SYMBOL(jbd2_journal_force_commit);
93 EXPORT_SYMBOL(jbd2_journal_file_inode);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
100 static void __journal_abort_soft (journal_t *journal, int errno);
101 static int jbd2_journal_create_slab(size_t slab_size);
102
103 /*
104  * Helper function used to manage commit timeouts
105  */
106
107 static void commit_timeout(unsigned long __data)
108 {
109         struct task_struct * p = (struct task_struct *) __data;
110
111         wake_up_process(p);
112 }
113
114 /*
115  * kjournald2: The main thread function used to manage a logging device
116  * journal.
117  *
118  * This kernel thread is responsible for two things:
119  *
120  * 1) COMMIT:  Every so often we need to commit the current state of the
121  *    filesystem to disk.  The journal thread is responsible for writing
122  *    all of the metadata buffers to disk.
123  *
124  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
125  *    of the data in that part of the log has been rewritten elsewhere on
126  *    the disk.  Flushing these old buffers to reclaim space in the log is
127  *    known as checkpointing, and this thread is responsible for that job.
128  */
129
130 static int kjournald2(void *arg)
131 {
132         journal_t *journal = arg;
133         transaction_t *transaction;
134
135         /*
136          * Set up an interval timer which can be used to trigger a commit wakeup
137          * after the commit interval expires
138          */
139         setup_timer(&journal->j_commit_timer, commit_timeout,
140                         (unsigned long)current);
141
142         /* Record that the journal thread is running */
143         journal->j_task = current;
144         wake_up(&journal->j_wait_done_commit);
145
146         /*
147          * And now, wait forever for commit wakeup events.
148          */
149         write_lock(&journal->j_state_lock);
150
151 loop:
152         if (journal->j_flags & JBD2_UNMOUNT)
153                 goto end_loop;
154
155         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
156                 journal->j_commit_sequence, journal->j_commit_request);
157
158         if (journal->j_commit_sequence != journal->j_commit_request) {
159                 jbd_debug(1, "OK, requests differ\n");
160                 write_unlock(&journal->j_state_lock);
161                 del_timer_sync(&journal->j_commit_timer);
162                 jbd2_journal_commit_transaction(journal);
163                 write_lock(&journal->j_state_lock);
164                 goto loop;
165         }
166
167         wake_up(&journal->j_wait_done_commit);
168         if (freezing(current)) {
169                 /*
170                  * The simpler the better. Flushing journal isn't a
171                  * good idea, because that depends on threads that may
172                  * be already stopped.
173                  */
174                 jbd_debug(1, "Now suspending kjournald2\n");
175                 write_unlock(&journal->j_state_lock);
176                 refrigerator();
177                 write_lock(&journal->j_state_lock);
178         } else {
179                 /*
180                  * We assume on resume that commits are already there,
181                  * so we don't sleep
182                  */
183                 DEFINE_WAIT(wait);
184                 int should_sleep = 1;
185
186                 prepare_to_wait(&journal->j_wait_commit, &wait,
187                                 TASK_INTERRUPTIBLE);
188                 if (journal->j_commit_sequence != journal->j_commit_request)
189                         should_sleep = 0;
190                 transaction = journal->j_running_transaction;
191                 if (transaction && time_after_eq(jiffies,
192                                                 transaction->t_expires))
193                         should_sleep = 0;
194                 if (journal->j_flags & JBD2_UNMOUNT)
195                         should_sleep = 0;
196                 if (should_sleep) {
197                         write_unlock(&journal->j_state_lock);
198                         schedule();
199                         write_lock(&journal->j_state_lock);
200                 }
201                 finish_wait(&journal->j_wait_commit, &wait);
202         }
203
204         jbd_debug(1, "kjournald2 wakes\n");
205
206         /*
207          * Were we woken up by a commit wakeup event?
208          */
209         transaction = journal->j_running_transaction;
210         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
211                 journal->j_commit_request = transaction->t_tid;
212                 jbd_debug(1, "woke because of timeout\n");
213         }
214         goto loop;
215
216 end_loop:
217         write_unlock(&journal->j_state_lock);
218         del_timer_sync(&journal->j_commit_timer);
219         journal->j_task = NULL;
220         wake_up(&journal->j_wait_done_commit);
221         jbd_debug(1, "Journal thread exiting.\n");
222         return 0;
223 }
224
225 static int jbd2_journal_start_thread(journal_t *journal)
226 {
227         struct task_struct *t;
228
229         t = kthread_run(kjournald2, journal, "jbd2/%s",
230                         journal->j_devname);
231         if (IS_ERR(t))
232                 return PTR_ERR(t);
233
234         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
235         return 0;
236 }
237
238 static void journal_kill_thread(journal_t *journal)
239 {
240         write_lock(&journal->j_state_lock);
241         journal->j_flags |= JBD2_UNMOUNT;
242
243         while (journal->j_task) {
244                 wake_up(&journal->j_wait_commit);
245                 write_unlock(&journal->j_state_lock);
246                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
247                 write_lock(&journal->j_state_lock);
248         }
249         write_unlock(&journal->j_state_lock);
250 }
251
252 /*
253  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
254  *
255  * Writes a metadata buffer to a given disk block.  The actual IO is not
256  * performed but a new buffer_head is constructed which labels the data
257  * to be written with the correct destination disk block.
258  *
259  * Any magic-number escaping which needs to be done will cause a
260  * copy-out here.  If the buffer happens to start with the
261  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
262  * magic number is only written to the log for descripter blocks.  In
263  * this case, we copy the data and replace the first word with 0, and we
264  * return a result code which indicates that this buffer needs to be
265  * marked as an escaped buffer in the corresponding log descriptor
266  * block.  The missing word can then be restored when the block is read
267  * during recovery.
268  *
269  * If the source buffer has already been modified by a new transaction
270  * since we took the last commit snapshot, we use the frozen copy of
271  * that data for IO.  If we end up using the existing buffer_head's data
272  * for the write, then we *have* to lock the buffer to prevent anyone
273  * else from using and possibly modifying it while the IO is in
274  * progress.
275  *
276  * The function returns a pointer to the buffer_heads to be used for IO.
277  *
278  * We assume that the journal has already been locked in this function.
279  *
280  * Return value:
281  *  <0: Error
282  * >=0: Finished OK
283  *
284  * On success:
285  * Bit 0 set == escape performed on the data
286  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
287  */
288
289 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
290                                   struct journal_head  *jh_in,
291                                   struct journal_head **jh_out,
292                                   unsigned long long blocknr)
293 {
294         int need_copy_out = 0;
295         int done_copy_out = 0;
296         int do_escape = 0;
297         char *mapped_data;
298         struct buffer_head *new_bh;
299         struct journal_head *new_jh;
300         struct page *new_page;
301         unsigned int new_offset;
302         struct buffer_head *bh_in = jh2bh(jh_in);
303         journal_t *journal = transaction->t_journal;
304
305         /*
306          * The buffer really shouldn't be locked: only the current committing
307          * transaction is allowed to write it, so nobody else is allowed
308          * to do any IO.
309          *
310          * akpm: except if we're journalling data, and write() output is
311          * also part of a shared mapping, and another thread has
312          * decided to launch a writepage() against this buffer.
313          */
314         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
315
316 retry_alloc:
317         new_bh = alloc_buffer_head(GFP_NOFS);
318         if (!new_bh) {
319                 /*
320                  * Failure is not an option, but __GFP_NOFAIL is going
321                  * away; so we retry ourselves here.
322                  */
323                 congestion_wait(BLK_RW_ASYNC, HZ/50);
324                 goto retry_alloc;
325         }
326
327         /* keep subsequent assertions sane */
328         new_bh->b_state = 0;
329         init_buffer(new_bh, NULL, NULL);
330         atomic_set(&new_bh->b_count, 1);
331         new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
332
333         /*
334          * If a new transaction has already done a buffer copy-out, then
335          * we use that version of the data for the commit.
336          */
337         jbd_lock_bh_state(bh_in);
338 repeat:
339         if (jh_in->b_frozen_data) {
340                 done_copy_out = 1;
341                 new_page = virt_to_page(jh_in->b_frozen_data);
342                 new_offset = offset_in_page(jh_in->b_frozen_data);
343         } else {
344                 new_page = jh2bh(jh_in)->b_page;
345                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
346         }
347
348         mapped_data = kmap_atomic(new_page, KM_USER0);
349         /*
350          * Fire data frozen trigger if data already wasn't frozen.  Do this
351          * before checking for escaping, as the trigger may modify the magic
352          * offset.  If a copy-out happens afterwards, it will have the correct
353          * data in the buffer.
354          */
355         if (!done_copy_out)
356                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
357                                            jh_in->b_triggers);
358
359         /*
360          * Check for escaping
361          */
362         if (*((__be32 *)(mapped_data + new_offset)) ==
363                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
364                 need_copy_out = 1;
365                 do_escape = 1;
366         }
367         kunmap_atomic(mapped_data, KM_USER0);
368
369         /*
370          * Do we need to do a data copy?
371          */
372         if (need_copy_out && !done_copy_out) {
373                 char *tmp;
374
375                 jbd_unlock_bh_state(bh_in);
376                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
377                 if (!tmp) {
378                         jbd2_journal_put_journal_head(new_jh);
379                         return -ENOMEM;
380                 }
381                 jbd_lock_bh_state(bh_in);
382                 if (jh_in->b_frozen_data) {
383                         jbd2_free(tmp, bh_in->b_size);
384                         goto repeat;
385                 }
386
387                 jh_in->b_frozen_data = tmp;
388                 mapped_data = kmap_atomic(new_page, KM_USER0);
389                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
390                 kunmap_atomic(mapped_data, KM_USER0);
391
392                 new_page = virt_to_page(tmp);
393                 new_offset = offset_in_page(tmp);
394                 done_copy_out = 1;
395
396                 /*
397                  * This isn't strictly necessary, as we're using frozen
398                  * data for the escaping, but it keeps consistency with
399                  * b_frozen_data usage.
400                  */
401                 jh_in->b_frozen_triggers = jh_in->b_triggers;
402         }
403
404         /*
405          * Did we need to do an escaping?  Now we've done all the
406          * copying, we can finally do so.
407          */
408         if (do_escape) {
409                 mapped_data = kmap_atomic(new_page, KM_USER0);
410                 *((unsigned int *)(mapped_data + new_offset)) = 0;
411                 kunmap_atomic(mapped_data, KM_USER0);
412         }
413
414         set_bh_page(new_bh, new_page, new_offset);
415         new_jh->b_transaction = NULL;
416         new_bh->b_size = jh2bh(jh_in)->b_size;
417         new_bh->b_bdev = transaction->t_journal->j_dev;
418         new_bh->b_blocknr = blocknr;
419         set_buffer_mapped(new_bh);
420         set_buffer_dirty(new_bh);
421
422         *jh_out = new_jh;
423
424         /*
425          * The to-be-written buffer needs to get moved to the io queue,
426          * and the original buffer whose contents we are shadowing or
427          * copying is moved to the transaction's shadow queue.
428          */
429         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
430         spin_lock(&journal->j_list_lock);
431         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
432         spin_unlock(&journal->j_list_lock);
433         jbd_unlock_bh_state(bh_in);
434
435         JBUFFER_TRACE(new_jh, "file as BJ_IO");
436         jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
437
438         return do_escape | (done_copy_out << 1);
439 }
440
441 /*
442  * Allocation code for the journal file.  Manage the space left in the
443  * journal, so that we can begin checkpointing when appropriate.
444  */
445
446 /*
447  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
448  *
449  * Called with the journal already locked.
450  *
451  * Called under j_state_lock
452  */
453
454 int __jbd2_log_space_left(journal_t *journal)
455 {
456         int left = journal->j_free;
457
458         /* assert_spin_locked(&journal->j_state_lock); */
459
460         /*
461          * Be pessimistic here about the number of those free blocks which
462          * might be required for log descriptor control blocks.
463          */
464
465 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
466
467         left -= MIN_LOG_RESERVED_BLOCKS;
468
469         if (left <= 0)
470                 return 0;
471         left -= (left >> 3);
472         return left;
473 }
474
475 /*
476  * Called with j_state_lock locked for writing.
477  * Returns true if a transaction commit was started.
478  */
479 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
480 {
481         /*
482          * The only transaction we can possibly wait upon is the
483          * currently running transaction (if it exists).  Otherwise,
484          * the target tid must be an old one.
485          */
486         if (journal->j_running_transaction &&
487             journal->j_running_transaction->t_tid == target) {
488                 /*
489                  * We want a new commit: OK, mark the request and wakeup the
490                  * commit thread.  We do _not_ do the commit ourselves.
491                  */
492
493                 journal->j_commit_request = target;
494                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
495                           journal->j_commit_request,
496                           journal->j_commit_sequence);
497                 wake_up(&journal->j_wait_commit);
498                 return 1;
499         } else if (!tid_geq(journal->j_commit_request, target))
500                 /* This should never happen, but if it does, preserve
501                    the evidence before kjournald goes into a loop and
502                    increments j_commit_sequence beyond all recognition. */
503                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
504                           journal->j_commit_request,
505                           journal->j_commit_sequence,
506                           target, journal->j_running_transaction ? 
507                           journal->j_running_transaction->t_tid : 0);
508         return 0;
509 }
510
511 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
512 {
513         int ret;
514
515         write_lock(&journal->j_state_lock);
516         ret = __jbd2_log_start_commit(journal, tid);
517         write_unlock(&journal->j_state_lock);
518         return ret;
519 }
520
521 /*
522  * Force and wait upon a commit if the calling process is not within
523  * transaction.  This is used for forcing out undo-protected data which contains
524  * bitmaps, when the fs is running out of space.
525  *
526  * We can only force the running transaction if we don't have an active handle;
527  * otherwise, we will deadlock.
528  *
529  * Returns true if a transaction was started.
530  */
531 int jbd2_journal_force_commit_nested(journal_t *journal)
532 {
533         transaction_t *transaction = NULL;
534         tid_t tid;
535         int need_to_start = 0;
536
537         read_lock(&journal->j_state_lock);
538         if (journal->j_running_transaction && !current->journal_info) {
539                 transaction = journal->j_running_transaction;
540                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
541                         need_to_start = 1;
542         } else if (journal->j_committing_transaction)
543                 transaction = journal->j_committing_transaction;
544
545         if (!transaction) {
546                 read_unlock(&journal->j_state_lock);
547                 return 0;       /* Nothing to retry */
548         }
549
550         tid = transaction->t_tid;
551         read_unlock(&journal->j_state_lock);
552         if (need_to_start)
553                 jbd2_log_start_commit(journal, tid);
554         jbd2_log_wait_commit(journal, tid);
555         return 1;
556 }
557
558 /*
559  * Start a commit of the current running transaction (if any).  Returns true
560  * if a transaction is going to be committed (or is currently already
561  * committing), and fills its tid in at *ptid
562  */
563 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
564 {
565         int ret = 0;
566
567         write_lock(&journal->j_state_lock);
568         if (journal->j_running_transaction) {
569                 tid_t tid = journal->j_running_transaction->t_tid;
570
571                 __jbd2_log_start_commit(journal, tid);
572                 /* There's a running transaction and we've just made sure
573                  * it's commit has been scheduled. */
574                 if (ptid)
575                         *ptid = tid;
576                 ret = 1;
577         } else if (journal->j_committing_transaction) {
578                 /*
579                  * If ext3_write_super() recently started a commit, then we
580                  * have to wait for completion of that transaction
581                  */
582                 if (ptid)
583                         *ptid = journal->j_committing_transaction->t_tid;
584                 ret = 1;
585         }
586         write_unlock(&journal->j_state_lock);
587         return ret;
588 }
589
590 /*
591  * Return 1 if a given transaction has not yet sent barrier request
592  * connected with a transaction commit. If 0 is returned, transaction
593  * may or may not have sent the barrier. Used to avoid sending barrier
594  * twice in common cases.
595  */
596 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
597 {
598         int ret = 0;
599         transaction_t *commit_trans;
600
601         if (!(journal->j_flags & JBD2_BARRIER))
602                 return 0;
603         read_lock(&journal->j_state_lock);
604         /* Transaction already committed? */
605         if (tid_geq(journal->j_commit_sequence, tid))
606                 goto out;
607         commit_trans = journal->j_committing_transaction;
608         if (!commit_trans || commit_trans->t_tid != tid) {
609                 ret = 1;
610                 goto out;
611         }
612         /*
613          * Transaction is being committed and we already proceeded to
614          * submitting a flush to fs partition?
615          */
616         if (journal->j_fs_dev != journal->j_dev) {
617                 if (!commit_trans->t_need_data_flush ||
618                     commit_trans->t_state >= T_COMMIT_DFLUSH)
619                         goto out;
620         } else {
621                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
622                         goto out;
623         }
624         ret = 1;
625 out:
626         read_unlock(&journal->j_state_lock);
627         return ret;
628 }
629 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
630
631 /*
632  * Wait for a specified commit to complete.
633  * The caller may not hold the journal lock.
634  */
635 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
636 {
637         int err = 0;
638
639         read_lock(&journal->j_state_lock);
640 #ifdef CONFIG_JBD2_DEBUG
641         if (!tid_geq(journal->j_commit_request, tid)) {
642                 printk(KERN_EMERG
643                        "%s: error: j_commit_request=%d, tid=%d\n",
644                        __func__, journal->j_commit_request, tid);
645         }
646 #endif
647         while (tid_gt(tid, journal->j_commit_sequence)) {
648                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
649                                   tid, journal->j_commit_sequence);
650                 wake_up(&journal->j_wait_commit);
651                 read_unlock(&journal->j_state_lock);
652                 wait_event(journal->j_wait_done_commit,
653                                 !tid_gt(tid, journal->j_commit_sequence));
654                 read_lock(&journal->j_state_lock);
655         }
656         read_unlock(&journal->j_state_lock);
657
658         if (unlikely(is_journal_aborted(journal))) {
659                 printk(KERN_EMERG "journal commit I/O error\n");
660                 err = -EIO;
661         }
662         return err;
663 }
664
665 /*
666  * When this function returns the transaction corresponding to tid
667  * will be completed.  If the transaction has currently running, start
668  * committing that transaction before waiting for it to complete.  If
669  * the transaction id is stale, it is by definition already completed,
670  * so just return SUCCESS.
671  */
672 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
673 {
674         int     need_to_wait = 1;
675
676         read_lock(&journal->j_state_lock);
677         if (journal->j_running_transaction &&
678             journal->j_running_transaction->t_tid == tid) {
679                 if (journal->j_commit_request != tid) {
680                         /* transaction not yet started, so request it */
681                         read_unlock(&journal->j_state_lock);
682                         jbd2_log_start_commit(journal, tid);
683                         goto wait_commit;
684                 }
685         } else if (!(journal->j_committing_transaction &&
686                      journal->j_committing_transaction->t_tid == tid))
687                 need_to_wait = 0;
688         read_unlock(&journal->j_state_lock);
689         if (!need_to_wait)
690                 return 0;
691 wait_commit:
692         return jbd2_log_wait_commit(journal, tid);
693 }
694 EXPORT_SYMBOL(jbd2_complete_transaction);
695
696 /*
697  * Log buffer allocation routines:
698  */
699
700 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
701 {
702         unsigned long blocknr;
703
704         write_lock(&journal->j_state_lock);
705         J_ASSERT(journal->j_free > 1);
706
707         blocknr = journal->j_head;
708         journal->j_head++;
709         journal->j_free--;
710         if (journal->j_head == journal->j_last)
711                 journal->j_head = journal->j_first;
712         write_unlock(&journal->j_state_lock);
713         return jbd2_journal_bmap(journal, blocknr, retp);
714 }
715
716 /*
717  * Conversion of logical to physical block numbers for the journal
718  *
719  * On external journals the journal blocks are identity-mapped, so
720  * this is a no-op.  If needed, we can use j_blk_offset - everything is
721  * ready.
722  */
723 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
724                  unsigned long long *retp)
725 {
726         int err = 0;
727         unsigned long long ret;
728
729         if (journal->j_inode) {
730                 ret = bmap(journal->j_inode, blocknr);
731                 if (ret)
732                         *retp = ret;
733                 else {
734                         printk(KERN_ALERT "%s: journal block not found "
735                                         "at offset %lu on %s\n",
736                                __func__, blocknr, journal->j_devname);
737                         err = -EIO;
738                         __journal_abort_soft(journal, err);
739                 }
740         } else {
741                 *retp = blocknr; /* +journal->j_blk_offset */
742         }
743         return err;
744 }
745
746 /*
747  * We play buffer_head aliasing tricks to write data/metadata blocks to
748  * the journal without copying their contents, but for journal
749  * descriptor blocks we do need to generate bona fide buffers.
750  *
751  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
752  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
753  * But we don't bother doing that, so there will be coherency problems with
754  * mmaps of blockdevs which hold live JBD-controlled filesystems.
755  */
756 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
757 {
758         struct buffer_head *bh;
759         unsigned long long blocknr;
760         int err;
761
762         err = jbd2_journal_next_log_block(journal, &blocknr);
763
764         if (err)
765                 return NULL;
766
767         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
768         if (!bh)
769                 return NULL;
770         lock_buffer(bh);
771         memset(bh->b_data, 0, journal->j_blocksize);
772         set_buffer_uptodate(bh);
773         unlock_buffer(bh);
774         BUFFER_TRACE(bh, "return this buffer");
775         return jbd2_journal_add_journal_head(bh);
776 }
777
778 /*
779  * Return tid of the oldest transaction in the journal and block in the journal
780  * where the transaction starts.
781  *
782  * If the journal is now empty, return which will be the next transaction ID
783  * we will write and where will that transaction start.
784  *
785  * The return value is 0 if journal tail cannot be pushed any further, 1 if
786  * it can.
787  */
788 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
789                               unsigned long *block)
790 {
791         transaction_t *transaction;
792         int ret;
793
794         read_lock(&journal->j_state_lock);
795         spin_lock(&journal->j_list_lock);
796         transaction = journal->j_checkpoint_transactions;
797         if (transaction) {
798                 *tid = transaction->t_tid;
799                 *block = transaction->t_log_start;
800         } else if ((transaction = journal->j_committing_transaction) != NULL) {
801                 *tid = transaction->t_tid;
802                 *block = transaction->t_log_start;
803         } else if ((transaction = journal->j_running_transaction) != NULL) {
804                 *tid = transaction->t_tid;
805                 *block = journal->j_head;
806         } else {
807                 *tid = journal->j_transaction_sequence;
808                 *block = journal->j_head;
809         }
810         ret = tid_gt(*tid, journal->j_tail_sequence);
811         spin_unlock(&journal->j_list_lock);
812         read_unlock(&journal->j_state_lock);
813
814         return ret;
815 }
816
817 /*
818  * Update information in journal structure and in on disk journal superblock
819  * about log tail. This function does not check whether information passed in
820  * really pushes log tail further. It's responsibility of the caller to make
821  * sure provided log tail information is valid (e.g. by holding
822  * j_checkpoint_mutex all the time between computing log tail and calling this
823  * function as is the case with jbd2_cleanup_journal_tail()).
824  *
825  * Requires j_checkpoint_mutex
826  */
827 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
828 {
829         unsigned long freed;
830         int ret;
831
832         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
833
834         /*
835          * We cannot afford for write to remain in drive's caches since as
836          * soon as we update j_tail, next transaction can start reusing journal
837          * space and if we lose sb update during power failure we'd replay
838          * old transaction with possibly newly overwritten data.
839          */
840         ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
841         if (ret)
842                 goto out;
843
844         write_lock(&journal->j_state_lock);
845         freed = block - journal->j_tail;
846         if (block < journal->j_tail)
847                 freed += journal->j_last - journal->j_first;
848
849         trace_jbd2_update_log_tail(journal, tid, block, freed);
850         jbd_debug(1,
851                   "Cleaning journal tail from %d to %d (offset %lu), "
852                   "freeing %lu\n",
853                   journal->j_tail_sequence, tid, block, freed);
854
855         journal->j_free += freed;
856         journal->j_tail_sequence = tid;
857         journal->j_tail = block;
858         write_unlock(&journal->j_state_lock);
859
860 out:
861         return ret;
862 }
863
864 struct jbd2_stats_proc_session {
865         journal_t *journal;
866         struct transaction_stats_s *stats;
867         int start;
868         int max;
869 };
870
871 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
872 {
873         return *pos ? NULL : SEQ_START_TOKEN;
874 }
875
876 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
877 {
878         return NULL;
879 }
880
881 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
882 {
883         struct jbd2_stats_proc_session *s = seq->private;
884
885         if (v != SEQ_START_TOKEN)
886                 return 0;
887         seq_printf(seq, "%lu transaction, each up to %u blocks\n",
888                         s->stats->ts_tid,
889                         s->journal->j_max_transaction_buffers);
890         if (s->stats->ts_tid == 0)
891                 return 0;
892         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
893             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
894         seq_printf(seq, "  %ums running transaction\n",
895             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
896         seq_printf(seq, "  %ums transaction was being locked\n",
897             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
898         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
899             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
900         seq_printf(seq, "  %ums logging transaction\n",
901             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
902         seq_printf(seq, "  %lluus average transaction commit time\n",
903                    div_u64(s->journal->j_average_commit_time, 1000));
904         seq_printf(seq, "  %lu handles per transaction\n",
905             s->stats->run.rs_handle_count / s->stats->ts_tid);
906         seq_printf(seq, "  %lu blocks per transaction\n",
907             s->stats->run.rs_blocks / s->stats->ts_tid);
908         seq_printf(seq, "  %lu logged blocks per transaction\n",
909             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
910         return 0;
911 }
912
913 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
914 {
915 }
916
917 static const struct seq_operations jbd2_seq_info_ops = {
918         .start  = jbd2_seq_info_start,
919         .next   = jbd2_seq_info_next,
920         .stop   = jbd2_seq_info_stop,
921         .show   = jbd2_seq_info_show,
922 };
923
924 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
925 {
926         journal_t *journal = PDE(inode)->data;
927         struct jbd2_stats_proc_session *s;
928         int rc, size;
929
930         s = kmalloc(sizeof(*s), GFP_KERNEL);
931         if (s == NULL)
932                 return -ENOMEM;
933         size = sizeof(struct transaction_stats_s);
934         s->stats = kmalloc(size, GFP_KERNEL);
935         if (s->stats == NULL) {
936                 kfree(s);
937                 return -ENOMEM;
938         }
939         spin_lock(&journal->j_history_lock);
940         memcpy(s->stats, &journal->j_stats, size);
941         s->journal = journal;
942         spin_unlock(&journal->j_history_lock);
943
944         rc = seq_open(file, &jbd2_seq_info_ops);
945         if (rc == 0) {
946                 struct seq_file *m = file->private_data;
947                 m->private = s;
948         } else {
949                 kfree(s->stats);
950                 kfree(s);
951         }
952         return rc;
953
954 }
955
956 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
957 {
958         struct seq_file *seq = file->private_data;
959         struct jbd2_stats_proc_session *s = seq->private;
960         kfree(s->stats);
961         kfree(s);
962         return seq_release(inode, file);
963 }
964
965 static const struct file_operations jbd2_seq_info_fops = {
966         .owner          = THIS_MODULE,
967         .open           = jbd2_seq_info_open,
968         .read           = seq_read,
969         .llseek         = seq_lseek,
970         .release        = jbd2_seq_info_release,
971 };
972
973 static struct proc_dir_entry *proc_jbd2_stats;
974
975 static void jbd2_stats_proc_init(journal_t *journal)
976 {
977         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
978         if (journal->j_proc_entry) {
979                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
980                                  &jbd2_seq_info_fops, journal);
981         }
982 }
983
984 static void jbd2_stats_proc_exit(journal_t *journal)
985 {
986         remove_proc_entry("info", journal->j_proc_entry);
987         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
988 }
989
990 /*
991  * Management for journal control blocks: functions to create and
992  * destroy journal_t structures, and to initialise and read existing
993  * journal blocks from disk.  */
994
995 /* First: create and setup a journal_t object in memory.  We initialise
996  * very few fields yet: that has to wait until we have created the
997  * journal structures from from scratch, or loaded them from disk. */
998
999 static journal_t * journal_init_common (void)
1000 {
1001         journal_t *journal;
1002         int err;
1003
1004         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1005         if (!journal)
1006                 return NULL;
1007
1008         init_waitqueue_head(&journal->j_wait_transaction_locked);
1009         init_waitqueue_head(&journal->j_wait_logspace);
1010         init_waitqueue_head(&journal->j_wait_done_commit);
1011         init_waitqueue_head(&journal->j_wait_checkpoint);
1012         init_waitqueue_head(&journal->j_wait_commit);
1013         init_waitqueue_head(&journal->j_wait_updates);
1014         mutex_init(&journal->j_barrier);
1015         mutex_init(&journal->j_checkpoint_mutex);
1016         spin_lock_init(&journal->j_revoke_lock);
1017         spin_lock_init(&journal->j_list_lock);
1018         rwlock_init(&journal->j_state_lock);
1019
1020         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1021         journal->j_min_batch_time = 0;
1022         journal->j_max_batch_time = 15000; /* 15ms */
1023
1024         /* The journal is marked for error until we succeed with recovery! */
1025         journal->j_flags = JBD2_ABORT;
1026
1027         /* Set up a default-sized revoke table for the new mount. */
1028         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1029         if (err) {
1030                 kfree(journal);
1031                 return NULL;
1032         }
1033
1034         spin_lock_init(&journal->j_history_lock);
1035
1036         return journal;
1037 }
1038
1039 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1040  *
1041  * Create a journal structure assigned some fixed set of disk blocks to
1042  * the journal.  We don't actually touch those disk blocks yet, but we
1043  * need to set up all of the mapping information to tell the journaling
1044  * system where the journal blocks are.
1045  *
1046  */
1047
1048 /**
1049  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1050  *  @bdev: Block device on which to create the journal
1051  *  @fs_dev: Device which hold journalled filesystem for this journal.
1052  *  @start: Block nr Start of journal.
1053  *  @len:  Length of the journal in blocks.
1054  *  @blocksize: blocksize of journalling device
1055  *
1056  *  Returns: a newly created journal_t *
1057  *
1058  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1059  *  range of blocks on an arbitrary block device.
1060  *
1061  */
1062 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1063                         struct block_device *fs_dev,
1064                         unsigned long long start, int len, int blocksize)
1065 {
1066         journal_t *journal = journal_init_common();
1067         struct buffer_head *bh;
1068         char *p;
1069         int n;
1070
1071         if (!journal)
1072                 return NULL;
1073
1074         /* journal descriptor can store up to n blocks -bzzz */
1075         journal->j_blocksize = blocksize;
1076         journal->j_dev = bdev;
1077         journal->j_fs_dev = fs_dev;
1078         journal->j_blk_offset = start;
1079         journal->j_maxlen = len;
1080         bdevname(journal->j_dev, journal->j_devname);
1081         p = journal->j_devname;
1082         while ((p = strchr(p, '/')))
1083                 *p = '!';
1084         jbd2_stats_proc_init(journal);
1085         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1086         journal->j_wbufsize = n;
1087         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1088         if (!journal->j_wbuf) {
1089                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1090                         __func__);
1091                 goto out_err;
1092         }
1093
1094         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1095         if (!bh) {
1096                 printk(KERN_ERR
1097                        "%s: Cannot get buffer for journal superblock\n",
1098                        __func__);
1099                 goto out_err;
1100         }
1101         journal->j_sb_buffer = bh;
1102         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1103
1104         return journal;
1105 out_err:
1106         kfree(journal->j_wbuf);
1107         jbd2_stats_proc_exit(journal);
1108         kfree(journal);
1109         return NULL;
1110 }
1111
1112 /**
1113  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1114  *  @inode: An inode to create the journal in
1115  *
1116  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1117  * the journal.  The inode must exist already, must support bmap() and
1118  * must have all data blocks preallocated.
1119  */
1120 journal_t * jbd2_journal_init_inode (struct inode *inode)
1121 {
1122         struct buffer_head *bh;
1123         journal_t *journal = journal_init_common();
1124         char *p;
1125         int err;
1126         int n;
1127         unsigned long long blocknr;
1128
1129         if (!journal)
1130                 return NULL;
1131
1132         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1133         journal->j_inode = inode;
1134         bdevname(journal->j_dev, journal->j_devname);
1135         p = journal->j_devname;
1136         while ((p = strchr(p, '/')))
1137                 *p = '!';
1138         p = journal->j_devname + strlen(journal->j_devname);
1139         sprintf(p, "-%lu", journal->j_inode->i_ino);
1140         jbd_debug(1,
1141                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1142                   journal, inode->i_sb->s_id, inode->i_ino,
1143                   (long long) inode->i_size,
1144                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1145
1146         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1147         journal->j_blocksize = inode->i_sb->s_blocksize;
1148         jbd2_stats_proc_init(journal);
1149
1150         /* journal descriptor can store up to n blocks -bzzz */
1151         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1152         journal->j_wbufsize = n;
1153         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1154         if (!journal->j_wbuf) {
1155                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1156                         __func__);
1157                 goto out_err;
1158         }
1159
1160         err = jbd2_journal_bmap(journal, 0, &blocknr);
1161         /* If that failed, give up */
1162         if (err) {
1163                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1164                        __func__);
1165                 goto out_err;
1166         }
1167
1168         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1169         if (!bh) {
1170                 printk(KERN_ERR
1171                        "%s: Cannot get buffer for journal superblock\n",
1172                        __func__);
1173                 goto out_err;
1174         }
1175         journal->j_sb_buffer = bh;
1176         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1177
1178         return journal;
1179 out_err:
1180         kfree(journal->j_wbuf);
1181         jbd2_stats_proc_exit(journal);
1182         kfree(journal);
1183         return NULL;
1184 }
1185
1186 /*
1187  * If the journal init or create aborts, we need to mark the journal
1188  * superblock as being NULL to prevent the journal destroy from writing
1189  * back a bogus superblock.
1190  */
1191 static void journal_fail_superblock (journal_t *journal)
1192 {
1193         struct buffer_head *bh = journal->j_sb_buffer;
1194         brelse(bh);
1195         journal->j_sb_buffer = NULL;
1196 }
1197
1198 /*
1199  * Given a journal_t structure, initialise the various fields for
1200  * startup of a new journaling session.  We use this both when creating
1201  * a journal, and after recovering an old journal to reset it for
1202  * subsequent use.
1203  */
1204
1205 static int journal_reset(journal_t *journal)
1206 {
1207         journal_superblock_t *sb = journal->j_superblock;
1208         unsigned long long first, last;
1209
1210         first = be32_to_cpu(sb->s_first);
1211         last = be32_to_cpu(sb->s_maxlen);
1212         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1213                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1214                        first, last);
1215                 journal_fail_superblock(journal);
1216                 return -EINVAL;
1217         }
1218
1219         journal->j_first = first;
1220         journal->j_last = last;
1221
1222         journal->j_head = first;
1223         journal->j_tail = first;
1224         journal->j_free = last - first;
1225
1226         journal->j_tail_sequence = journal->j_transaction_sequence;
1227         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1228         journal->j_commit_request = journal->j_commit_sequence;
1229
1230         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1231
1232         /*
1233          * As a special case, if the on-disk copy is already marked as needing
1234          * no recovery (s_start == 0), then we can safely defer the superblock
1235          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1236          * attempting a write to a potential-readonly device.
1237          */
1238         if (sb->s_start == 0) {
1239                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1240                         "(start %ld, seq %d, errno %d)\n",
1241                         journal->j_tail, journal->j_tail_sequence,
1242                         journal->j_errno);
1243                 journal->j_flags |= JBD2_FLUSHED;
1244         } else {
1245                 /*
1246                  * Update log tail information. We use WRITE_FUA since new
1247                  * transaction will start reusing journal space and so we
1248                  * must make sure information about current log tail is on
1249                  * disk before that.
1250                  */
1251                 jbd2_journal_update_sb_log_tail(journal,
1252                                                 journal->j_tail_sequence,
1253                                                 journal->j_tail,
1254                                                 WRITE_FUA);
1255         }
1256         return jbd2_journal_start_thread(journal);
1257 }
1258
1259 static int jbd2_write_superblock(journal_t *journal, int write_op)
1260 {
1261         struct buffer_head *bh = journal->j_sb_buffer;
1262         int ret;
1263
1264         if (!(journal->j_flags & JBD2_BARRIER))
1265                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1266         lock_buffer(bh);
1267         if (buffer_write_io_error(bh)) {
1268                 /*
1269                  * Oh, dear.  A previous attempt to write the journal
1270                  * superblock failed.  This could happen because the
1271                  * USB device was yanked out.  Or it could happen to
1272                  * be a transient write error and maybe the block will
1273                  * be remapped.  Nothing we can do but to retry the
1274                  * write and hope for the best.
1275                  */
1276                 printk(KERN_ERR "JBD2: previous I/O error detected "
1277                        "for journal superblock update for %s.\n",
1278                        journal->j_devname);
1279                 clear_buffer_write_io_error(bh);
1280                 set_buffer_uptodate(bh);
1281         }
1282         get_bh(bh);
1283         bh->b_end_io = end_buffer_write_sync;
1284         ret = submit_bh(write_op, bh);
1285         wait_on_buffer(bh);
1286         if (buffer_write_io_error(bh)) {
1287                 clear_buffer_write_io_error(bh);
1288                 set_buffer_uptodate(bh);
1289                 ret = -EIO;
1290         }
1291         if (ret) {
1292                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1293                        "journal superblock for %s.\n", ret,
1294                        journal->j_devname);
1295                 jbd2_journal_abort(journal, ret);
1296         }
1297
1298         return ret;
1299 }
1300
1301 /**
1302  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1303  * @journal: The journal to update.
1304  * @tail_tid: TID of the new transaction at the tail of the log
1305  * @tail_block: The first block of the transaction at the tail of the log
1306  * @write_op: With which operation should we write the journal sb
1307  *
1308  * Update a journal's superblock information about log tail and write it to
1309  * disk, waiting for the IO to complete.
1310  */
1311 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1312                                      unsigned long tail_block, int write_op)
1313 {
1314         journal_superblock_t *sb = journal->j_superblock;
1315         int ret;
1316
1317         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1318                   tail_block, tail_tid);
1319
1320         sb->s_sequence = cpu_to_be32(tail_tid);
1321         sb->s_start    = cpu_to_be32(tail_block);
1322
1323         ret = jbd2_write_superblock(journal, write_op);
1324         if (ret)
1325                 goto out;
1326         /* Log is no longer empty */
1327         write_lock(&journal->j_state_lock);
1328         WARN_ON(!sb->s_sequence);
1329         journal->j_flags &= ~JBD2_FLUSHED;
1330         write_unlock(&journal->j_state_lock);
1331
1332 out:
1333         return ret;
1334 }
1335
1336 /**
1337  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1338  * @journal: The journal to update.
1339  *
1340  * Update a journal's dynamic superblock fields to show that journal is empty.
1341  * Write updated superblock to disk waiting for IO to complete.
1342  */
1343 static void jbd2_mark_journal_empty(journal_t *journal)
1344 {
1345         journal_superblock_t *sb = journal->j_superblock;
1346
1347         read_lock(&journal->j_state_lock);
1348         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1349                   journal->j_tail_sequence);
1350
1351         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1352         sb->s_start    = cpu_to_be32(0);
1353         read_unlock(&journal->j_state_lock);
1354
1355         jbd2_write_superblock(journal, WRITE_FUA);
1356
1357         /* Log is no longer empty */
1358         write_lock(&journal->j_state_lock);
1359         journal->j_flags |= JBD2_FLUSHED;
1360         write_unlock(&journal->j_state_lock);
1361 }
1362
1363
1364 /**
1365  * jbd2_journal_update_sb_errno() - Update error in the journal.
1366  * @journal: The journal to update.
1367  *
1368  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1369  * to complete.
1370  */
1371 static void jbd2_journal_update_sb_errno(journal_t *journal)
1372 {
1373         journal_superblock_t *sb = journal->j_superblock;
1374
1375         read_lock(&journal->j_state_lock);
1376         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1377                   journal->j_errno);
1378         sb->s_errno    = cpu_to_be32(journal->j_errno);
1379         read_unlock(&journal->j_state_lock);
1380
1381         jbd2_write_superblock(journal, WRITE_SYNC);
1382 }
1383
1384 /*
1385  * Read the superblock for a given journal, performing initial
1386  * validation of the format.
1387  */
1388 static int journal_get_superblock(journal_t *journal)
1389 {
1390         struct buffer_head *bh;
1391         journal_superblock_t *sb;
1392         int err = -EIO;
1393
1394         bh = journal->j_sb_buffer;
1395
1396         J_ASSERT(bh != NULL);
1397         if (!buffer_uptodate(bh)) {
1398                 ll_rw_block(READ, 1, &bh);
1399                 wait_on_buffer(bh);
1400                 if (!buffer_uptodate(bh)) {
1401                         printk(KERN_ERR
1402                                 "JBD2: IO error reading journal superblock\n");
1403                         goto out;
1404                 }
1405         }
1406
1407         sb = journal->j_superblock;
1408
1409         err = -EINVAL;
1410
1411         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1412             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1413                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1414                 goto out;
1415         }
1416
1417         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1418         case JBD2_SUPERBLOCK_V1:
1419                 journal->j_format_version = 1;
1420                 break;
1421         case JBD2_SUPERBLOCK_V2:
1422                 journal->j_format_version = 2;
1423                 break;
1424         default:
1425                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1426                 goto out;
1427         }
1428
1429         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1430                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1431         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1432                 printk(KERN_WARNING "JBD2: journal file too short\n");
1433                 goto out;
1434         }
1435
1436         if (be32_to_cpu(sb->s_first) == 0 ||
1437             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1438                 printk(KERN_WARNING
1439                         "JBD2: Invalid start block of journal: %u\n",
1440                         be32_to_cpu(sb->s_first));
1441                 goto out;
1442         }
1443
1444         return 0;
1445
1446 out:
1447         journal_fail_superblock(journal);
1448         return err;
1449 }
1450
1451 /*
1452  * Load the on-disk journal superblock and read the key fields into the
1453  * journal_t.
1454  */
1455
1456 static int load_superblock(journal_t *journal)
1457 {
1458         int err;
1459         journal_superblock_t *sb;
1460
1461         err = journal_get_superblock(journal);
1462         if (err)
1463                 return err;
1464
1465         sb = journal->j_superblock;
1466
1467         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1468         journal->j_tail = be32_to_cpu(sb->s_start);
1469         journal->j_first = be32_to_cpu(sb->s_first);
1470         journal->j_last = be32_to_cpu(sb->s_maxlen);
1471         journal->j_errno = be32_to_cpu(sb->s_errno);
1472
1473         return 0;
1474 }
1475
1476
1477 /**
1478  * int jbd2_journal_load() - Read journal from disk.
1479  * @journal: Journal to act on.
1480  *
1481  * Given a journal_t structure which tells us which disk blocks contain
1482  * a journal, read the journal from disk to initialise the in-memory
1483  * structures.
1484  */
1485 int jbd2_journal_load(journal_t *journal)
1486 {
1487         int err;
1488         journal_superblock_t *sb;
1489
1490         err = load_superblock(journal);
1491         if (err)
1492                 return err;
1493
1494         sb = journal->j_superblock;
1495         /* If this is a V2 superblock, then we have to check the
1496          * features flags on it. */
1497
1498         if (journal->j_format_version >= 2) {
1499                 if ((sb->s_feature_ro_compat &
1500                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1501                     (sb->s_feature_incompat &
1502                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1503                         printk(KERN_WARNING
1504                                 "JBD2: Unrecognised features on journal\n");
1505                         return -EINVAL;
1506                 }
1507         }
1508
1509         /*
1510          * Create a slab for this blocksize
1511          */
1512         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1513         if (err)
1514                 return err;
1515
1516         /* Let the recovery code check whether it needs to recover any
1517          * data from the journal. */
1518         if (jbd2_journal_recover(journal))
1519                 goto recovery_error;
1520
1521         if (journal->j_failed_commit) {
1522                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1523                        "is corrupt.\n", journal->j_failed_commit,
1524                        journal->j_devname);
1525                 return -EIO;
1526         }
1527
1528         /* OK, we've finished with the dynamic journal bits:
1529          * reinitialise the dynamic contents of the superblock in memory
1530          * and reset them on disk. */
1531         if (journal_reset(journal))
1532                 goto recovery_error;
1533
1534         journal->j_flags &= ~JBD2_ABORT;
1535         journal->j_flags |= JBD2_LOADED;
1536         return 0;
1537
1538 recovery_error:
1539         printk(KERN_WARNING "JBD2: recovery failed\n");
1540         return -EIO;
1541 }
1542
1543 /**
1544  * void jbd2_journal_destroy() - Release a journal_t structure.
1545  * @journal: Journal to act on.
1546  *
1547  * Release a journal_t structure once it is no longer in use by the
1548  * journaled object.
1549  * Return <0 if we couldn't clean up the journal.
1550  */
1551 int jbd2_journal_destroy(journal_t *journal)
1552 {
1553         int err = 0;
1554
1555         /* Wait for the commit thread to wake up and die. */
1556         journal_kill_thread(journal);
1557
1558         /* Force a final log commit */
1559         if (journal->j_running_transaction)
1560                 jbd2_journal_commit_transaction(journal);
1561
1562         /* Force any old transactions to disk */
1563
1564         /* Totally anal locking here... */
1565         spin_lock(&journal->j_list_lock);
1566         while (journal->j_checkpoint_transactions != NULL) {
1567                 spin_unlock(&journal->j_list_lock);
1568                 mutex_lock(&journal->j_checkpoint_mutex);
1569                 jbd2_log_do_checkpoint(journal);
1570                 mutex_unlock(&journal->j_checkpoint_mutex);
1571                 spin_lock(&journal->j_list_lock);
1572         }
1573
1574         J_ASSERT(journal->j_running_transaction == NULL);
1575         J_ASSERT(journal->j_committing_transaction == NULL);
1576         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1577         spin_unlock(&journal->j_list_lock);
1578
1579         if (journal->j_sb_buffer) {
1580                 if (!is_journal_aborted(journal))
1581                         jbd2_mark_journal_empty(journal);
1582                 else
1583                         err = -EIO;
1584                 brelse(journal->j_sb_buffer);
1585         }
1586
1587         if (journal->j_proc_entry)
1588                 jbd2_stats_proc_exit(journal);
1589         if (journal->j_inode)
1590                 iput(journal->j_inode);
1591         if (journal->j_revoke)
1592                 jbd2_journal_destroy_revoke(journal);
1593         kfree(journal->j_wbuf);
1594         kfree(journal);
1595
1596         return err;
1597 }
1598
1599
1600 /**
1601  *int jbd2_journal_check_used_features () - Check if features specified are used.
1602  * @journal: Journal to check.
1603  * @compat: bitmask of compatible features
1604  * @ro: bitmask of features that force read-only mount
1605  * @incompat: bitmask of incompatible features
1606  *
1607  * Check whether the journal uses all of a given set of
1608  * features.  Return true (non-zero) if it does.
1609  **/
1610
1611 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1612                                  unsigned long ro, unsigned long incompat)
1613 {
1614         journal_superblock_t *sb;
1615
1616         if (!compat && !ro && !incompat)
1617                 return 1;
1618         /* Load journal superblock if it is not loaded yet. */
1619         if (journal->j_format_version == 0 &&
1620             journal_get_superblock(journal) != 0)
1621                 return 0;
1622         if (journal->j_format_version == 1)
1623                 return 0;
1624
1625         sb = journal->j_superblock;
1626
1627         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1628             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1629             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1630                 return 1;
1631
1632         return 0;
1633 }
1634
1635 /**
1636  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1637  * @journal: Journal to check.
1638  * @compat: bitmask of compatible features
1639  * @ro: bitmask of features that force read-only mount
1640  * @incompat: bitmask of incompatible features
1641  *
1642  * Check whether the journaling code supports the use of
1643  * all of a given set of features on this journal.  Return true
1644  * (non-zero) if it can. */
1645
1646 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1647                                       unsigned long ro, unsigned long incompat)
1648 {
1649         if (!compat && !ro && !incompat)
1650                 return 1;
1651
1652         /* We can support any known requested features iff the
1653          * superblock is in version 2.  Otherwise we fail to support any
1654          * extended sb features. */
1655
1656         if (journal->j_format_version != 2)
1657                 return 0;
1658
1659         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1660             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1661             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1662                 return 1;
1663
1664         return 0;
1665 }
1666
1667 /**
1668  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1669  * @journal: Journal to act on.
1670  * @compat: bitmask of compatible features
1671  * @ro: bitmask of features that force read-only mount
1672  * @incompat: bitmask of incompatible features
1673  *
1674  * Mark a given journal feature as present on the
1675  * superblock.  Returns true if the requested features could be set.
1676  *
1677  */
1678
1679 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1680                           unsigned long ro, unsigned long incompat)
1681 {
1682         journal_superblock_t *sb;
1683
1684         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1685                 return 1;
1686
1687         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1688                 return 0;
1689
1690         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1691                   compat, ro, incompat);
1692
1693         sb = journal->j_superblock;
1694
1695         sb->s_feature_compat    |= cpu_to_be32(compat);
1696         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1697         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1698
1699         return 1;
1700 }
1701
1702 /*
1703  * jbd2_journal_clear_features () - Clear a given journal feature in the
1704  *                                  superblock
1705  * @journal: Journal to act on.
1706  * @compat: bitmask of compatible features
1707  * @ro: bitmask of features that force read-only mount
1708  * @incompat: bitmask of incompatible features
1709  *
1710  * Clear a given journal feature as present on the
1711  * superblock.
1712  */
1713 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1714                                 unsigned long ro, unsigned long incompat)
1715 {
1716         journal_superblock_t *sb;
1717
1718         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1719                   compat, ro, incompat);
1720
1721         sb = journal->j_superblock;
1722
1723         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1724         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1725         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1726 }
1727 EXPORT_SYMBOL(jbd2_journal_clear_features);
1728
1729 /**
1730  * int jbd2_journal_update_format () - Update on-disk journal structure.
1731  * @journal: Journal to act on.
1732  *
1733  * Given an initialised but unloaded journal struct, poke about in the
1734  * on-disk structure to update it to the most recent supported version.
1735  */
1736 int jbd2_journal_update_format (journal_t *journal)
1737 {
1738         journal_superblock_t *sb;
1739         int err;
1740
1741         err = journal_get_superblock(journal);
1742         if (err)
1743                 return err;
1744
1745         sb = journal->j_superblock;
1746
1747         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1748         case JBD2_SUPERBLOCK_V2:
1749                 return 0;
1750         case JBD2_SUPERBLOCK_V1:
1751                 return journal_convert_superblock_v1(journal, sb);
1752         default:
1753                 break;
1754         }
1755         return -EINVAL;
1756 }
1757
1758 static int journal_convert_superblock_v1(journal_t *journal,
1759                                          journal_superblock_t *sb)
1760 {
1761         int offset, blocksize;
1762         struct buffer_head *bh;
1763
1764         printk(KERN_WARNING
1765                 "JBD2: Converting superblock from version 1 to 2.\n");
1766
1767         /* Pre-initialise new fields to zero */
1768         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1769         blocksize = be32_to_cpu(sb->s_blocksize);
1770         memset(&sb->s_feature_compat, 0, blocksize-offset);
1771
1772         sb->s_nr_users = cpu_to_be32(1);
1773         sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1774         journal->j_format_version = 2;
1775
1776         bh = journal->j_sb_buffer;
1777         BUFFER_TRACE(bh, "marking dirty");
1778         mark_buffer_dirty(bh);
1779         sync_dirty_buffer(bh);
1780         return 0;
1781 }
1782
1783
1784 /**
1785  * int jbd2_journal_flush () - Flush journal
1786  * @journal: Journal to act on.
1787  *
1788  * Flush all data for a given journal to disk and empty the journal.
1789  * Filesystems can use this when remounting readonly to ensure that
1790  * recovery does not need to happen on remount.
1791  */
1792
1793 int jbd2_journal_flush(journal_t *journal)
1794 {
1795         int err = 0;
1796         transaction_t *transaction = NULL;
1797
1798         write_lock(&journal->j_state_lock);
1799
1800         /* Force everything buffered to the log... */
1801         if (journal->j_running_transaction) {
1802                 transaction = journal->j_running_transaction;
1803                 __jbd2_log_start_commit(journal, transaction->t_tid);
1804         } else if (journal->j_committing_transaction)
1805                 transaction = journal->j_committing_transaction;
1806
1807         /* Wait for the log commit to complete... */
1808         if (transaction) {
1809                 tid_t tid = transaction->t_tid;
1810
1811                 write_unlock(&journal->j_state_lock);
1812                 jbd2_log_wait_commit(journal, tid);
1813         } else {
1814                 write_unlock(&journal->j_state_lock);
1815         }
1816
1817         /* ...and flush everything in the log out to disk. */
1818         spin_lock(&journal->j_list_lock);
1819         while (!err && journal->j_checkpoint_transactions != NULL) {
1820                 spin_unlock(&journal->j_list_lock);
1821                 mutex_lock(&journal->j_checkpoint_mutex);
1822                 err = jbd2_log_do_checkpoint(journal);
1823                 mutex_unlock(&journal->j_checkpoint_mutex);
1824                 spin_lock(&journal->j_list_lock);
1825         }
1826         spin_unlock(&journal->j_list_lock);
1827
1828         if (is_journal_aborted(journal))
1829                 return -EIO;
1830
1831         if (!err) {
1832                 err = jbd2_cleanup_journal_tail(journal);
1833                 if (err < 0)
1834                         goto out;
1835                 err = 0;
1836         }
1837
1838         /* Finally, mark the journal as really needing no recovery.
1839          * This sets s_start==0 in the underlying superblock, which is
1840          * the magic code for a fully-recovered superblock.  Any future
1841          * commits of data to the journal will restore the current
1842          * s_start value. */
1843         jbd2_mark_journal_empty(journal);
1844         write_lock(&journal->j_state_lock);
1845         J_ASSERT(!journal->j_running_transaction);
1846         J_ASSERT(!journal->j_committing_transaction);
1847         J_ASSERT(!journal->j_checkpoint_transactions);
1848         J_ASSERT(journal->j_head == journal->j_tail);
1849         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1850         write_unlock(&journal->j_state_lock);
1851 out:
1852         return err;
1853 }
1854
1855 /**
1856  * int jbd2_journal_wipe() - Wipe journal contents
1857  * @journal: Journal to act on.
1858  * @write: flag (see below)
1859  *
1860  * Wipe out all of the contents of a journal, safely.  This will produce
1861  * a warning if the journal contains any valid recovery information.
1862  * Must be called between journal_init_*() and jbd2_journal_load().
1863  *
1864  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1865  * we merely suppress recovery.
1866  */
1867
1868 int jbd2_journal_wipe(journal_t *journal, int write)
1869 {
1870         int err = 0;
1871
1872         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1873
1874         err = load_superblock(journal);
1875         if (err)
1876                 return err;
1877
1878         if (!journal->j_tail)
1879                 goto no_recovery;
1880
1881         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1882                 write ? "Clearing" : "Ignoring");
1883
1884         err = jbd2_journal_skip_recovery(journal);
1885         if (write)
1886                 jbd2_mark_journal_empty(journal);
1887
1888  no_recovery:
1889         return err;
1890 }
1891
1892 /*
1893  * Journal abort has very specific semantics, which we describe
1894  * for journal abort.
1895  *
1896  * Two internal functions, which provide abort to the jbd layer
1897  * itself are here.
1898  */
1899
1900 /*
1901  * Quick version for internal journal use (doesn't lock the journal).
1902  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1903  * and don't attempt to make any other journal updates.
1904  */
1905 void __jbd2_journal_abort_hard(journal_t *journal)
1906 {
1907         transaction_t *transaction;
1908
1909         if (journal->j_flags & JBD2_ABORT)
1910                 return;
1911
1912         printk(KERN_ERR "Aborting journal on device %s.\n",
1913                journal->j_devname);
1914
1915         write_lock(&journal->j_state_lock);
1916         journal->j_flags |= JBD2_ABORT;
1917         transaction = journal->j_running_transaction;
1918         if (transaction)
1919                 __jbd2_log_start_commit(journal, transaction->t_tid);
1920         write_unlock(&journal->j_state_lock);
1921 }
1922
1923 /* Soft abort: record the abort error status in the journal superblock,
1924  * but don't do any other IO. */
1925 static void __journal_abort_soft (journal_t *journal, int errno)
1926 {
1927         if (journal->j_flags & JBD2_ABORT)
1928                 return;
1929
1930         if (!journal->j_errno)
1931                 journal->j_errno = errno;
1932
1933         __jbd2_journal_abort_hard(journal);
1934
1935         if (errno)
1936                 jbd2_journal_update_sb_errno(journal);
1937 }
1938
1939 /**
1940  * void jbd2_journal_abort () - Shutdown the journal immediately.
1941  * @journal: the journal to shutdown.
1942  * @errno:   an error number to record in the journal indicating
1943  *           the reason for the shutdown.
1944  *
1945  * Perform a complete, immediate shutdown of the ENTIRE
1946  * journal (not of a single transaction).  This operation cannot be
1947  * undone without closing and reopening the journal.
1948  *
1949  * The jbd2_journal_abort function is intended to support higher level error
1950  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1951  * mode.
1952  *
1953  * Journal abort has very specific semantics.  Any existing dirty,
1954  * unjournaled buffers in the main filesystem will still be written to
1955  * disk by bdflush, but the journaling mechanism will be suspended
1956  * immediately and no further transaction commits will be honoured.
1957  *
1958  * Any dirty, journaled buffers will be written back to disk without
1959  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1960  * filesystem, but we _do_ attempt to leave as much data as possible
1961  * behind for fsck to use for cleanup.
1962  *
1963  * Any attempt to get a new transaction handle on a journal which is in
1964  * ABORT state will just result in an -EROFS error return.  A
1965  * jbd2_journal_stop on an existing handle will return -EIO if we have
1966  * entered abort state during the update.
1967  *
1968  * Recursive transactions are not disturbed by journal abort until the
1969  * final jbd2_journal_stop, which will receive the -EIO error.
1970  *
1971  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1972  * which will be recorded (if possible) in the journal superblock.  This
1973  * allows a client to record failure conditions in the middle of a
1974  * transaction without having to complete the transaction to record the
1975  * failure to disk.  ext3_error, for example, now uses this
1976  * functionality.
1977  *
1978  * Errors which originate from within the journaling layer will NOT
1979  * supply an errno; a null errno implies that absolutely no further
1980  * writes are done to the journal (unless there are any already in
1981  * progress).
1982  *
1983  */
1984
1985 void jbd2_journal_abort(journal_t *journal, int errno)
1986 {
1987         __journal_abort_soft(journal, errno);
1988 }
1989
1990 /**
1991  * int jbd2_journal_errno () - returns the journal's error state.
1992  * @journal: journal to examine.
1993  *
1994  * This is the errno number set with jbd2_journal_abort(), the last
1995  * time the journal was mounted - if the journal was stopped
1996  * without calling abort this will be 0.
1997  *
1998  * If the journal has been aborted on this mount time -EROFS will
1999  * be returned.
2000  */
2001 int jbd2_journal_errno(journal_t *journal)
2002 {
2003         int err;
2004
2005         read_lock(&journal->j_state_lock);
2006         if (journal->j_flags & JBD2_ABORT)
2007                 err = -EROFS;
2008         else
2009                 err = journal->j_errno;
2010         read_unlock(&journal->j_state_lock);
2011         return err;
2012 }
2013
2014 /**
2015  * int jbd2_journal_clear_err () - clears the journal's error state
2016  * @journal: journal to act on.
2017  *
2018  * An error must be cleared or acked to take a FS out of readonly
2019  * mode.
2020  */
2021 int jbd2_journal_clear_err(journal_t *journal)
2022 {
2023         int err = 0;
2024
2025         write_lock(&journal->j_state_lock);
2026         if (journal->j_flags & JBD2_ABORT)
2027                 err = -EROFS;
2028         else
2029                 journal->j_errno = 0;
2030         write_unlock(&journal->j_state_lock);
2031         return err;
2032 }
2033
2034 /**
2035  * void jbd2_journal_ack_err() - Ack journal err.
2036  * @journal: journal to act on.
2037  *
2038  * An error must be cleared or acked to take a FS out of readonly
2039  * mode.
2040  */
2041 void jbd2_journal_ack_err(journal_t *journal)
2042 {
2043         write_lock(&journal->j_state_lock);
2044         if (journal->j_errno)
2045                 journal->j_flags |= JBD2_ACK_ERR;
2046         write_unlock(&journal->j_state_lock);
2047 }
2048
2049 int jbd2_journal_blocks_per_page(struct inode *inode)
2050 {
2051         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2052 }
2053
2054 /*
2055  * helper functions to deal with 32 or 64bit block numbers.
2056  */
2057 size_t journal_tag_bytes(journal_t *journal)
2058 {
2059         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2060                 return JBD2_TAG_SIZE64;
2061         else
2062                 return JBD2_TAG_SIZE32;
2063 }
2064
2065 /*
2066  * JBD memory management
2067  *
2068  * These functions are used to allocate block-sized chunks of memory
2069  * used for making copies of buffer_head data.  Very often it will be
2070  * page-sized chunks of data, but sometimes it will be in
2071  * sub-page-size chunks.  (For example, 16k pages on Power systems
2072  * with a 4k block file system.)  For blocks smaller than a page, we
2073  * use a SLAB allocator.  There are slab caches for each block size,
2074  * which are allocated at mount time, if necessary, and we only free
2075  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2076  * this reason we don't need to a mutex to protect access to
2077  * jbd2_slab[] allocating or releasing memory; only in
2078  * jbd2_journal_create_slab().
2079  */
2080 #define JBD2_MAX_SLABS 8
2081 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2082
2083 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2084         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2085         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2086 };
2087
2088
2089 static void jbd2_journal_destroy_slabs(void)
2090 {
2091         int i;
2092
2093         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2094                 if (jbd2_slab[i])
2095                         kmem_cache_destroy(jbd2_slab[i]);
2096                 jbd2_slab[i] = NULL;
2097         }
2098 }
2099
2100 static int jbd2_journal_create_slab(size_t size)
2101 {
2102         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2103         int i = order_base_2(size) - 10;
2104         size_t slab_size;
2105
2106         if (size == PAGE_SIZE)
2107                 return 0;
2108
2109         if (i >= JBD2_MAX_SLABS)
2110                 return -EINVAL;
2111
2112         if (unlikely(i < 0))
2113                 i = 0;
2114         mutex_lock(&jbd2_slab_create_mutex);
2115         if (jbd2_slab[i]) {
2116                 mutex_unlock(&jbd2_slab_create_mutex);
2117                 return 0;       /* Already created */
2118         }
2119
2120         slab_size = 1 << (i+10);
2121         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2122                                          slab_size, 0, NULL);
2123         mutex_unlock(&jbd2_slab_create_mutex);
2124         if (!jbd2_slab[i]) {
2125                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2126                 return -ENOMEM;
2127         }
2128         return 0;
2129 }
2130
2131 static struct kmem_cache *get_slab(size_t size)
2132 {
2133         int i = order_base_2(size) - 10;
2134
2135         BUG_ON(i >= JBD2_MAX_SLABS);
2136         if (unlikely(i < 0))
2137                 i = 0;
2138         BUG_ON(jbd2_slab[i] == NULL);
2139         return jbd2_slab[i];
2140 }
2141
2142 void *jbd2_alloc(size_t size, gfp_t flags)
2143 {
2144         void *ptr;
2145
2146         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2147
2148         flags |= __GFP_REPEAT;
2149         if (size == PAGE_SIZE)
2150                 ptr = (void *)__get_free_pages(flags, 0);
2151         else if (size > PAGE_SIZE) {
2152                 int order = get_order(size);
2153
2154                 if (order < 3)
2155                         ptr = (void *)__get_free_pages(flags, order);
2156                 else
2157                         ptr = vmalloc(size);
2158         } else
2159                 ptr = kmem_cache_alloc(get_slab(size), flags);
2160
2161         /* Check alignment; SLUB has gotten this wrong in the past,
2162          * and this can lead to user data corruption! */
2163         BUG_ON(((unsigned long) ptr) & (size-1));
2164
2165         return ptr;
2166 }
2167
2168 void jbd2_free(void *ptr, size_t size)
2169 {
2170         if (size == PAGE_SIZE) {
2171                 free_pages((unsigned long)ptr, 0);
2172                 return;
2173         }
2174         if (size > PAGE_SIZE) {
2175                 int order = get_order(size);
2176
2177                 if (order < 3)
2178                         free_pages((unsigned long)ptr, order);
2179                 else
2180                         vfree(ptr);
2181                 return;
2182         }
2183         kmem_cache_free(get_slab(size), ptr);
2184 };
2185
2186 /*
2187  * Journal_head storage management
2188  */
2189 static struct kmem_cache *jbd2_journal_head_cache;
2190 #ifdef CONFIG_JBD2_DEBUG
2191 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2192 #endif
2193
2194 static int journal_init_jbd2_journal_head_cache(void)
2195 {
2196         int retval;
2197
2198         J_ASSERT(jbd2_journal_head_cache == NULL);
2199         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2200                                 sizeof(struct journal_head),
2201                                 0,              /* offset */
2202                                 SLAB_TEMPORARY, /* flags */
2203                                 NULL);          /* ctor */
2204         retval = 0;
2205         if (!jbd2_journal_head_cache) {
2206                 retval = -ENOMEM;
2207                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2208         }
2209         return retval;
2210 }
2211
2212 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
2213 {
2214         if (jbd2_journal_head_cache) {
2215                 kmem_cache_destroy(jbd2_journal_head_cache);
2216                 jbd2_journal_head_cache = NULL;
2217         }
2218 }
2219
2220 /*
2221  * journal_head splicing and dicing
2222  */
2223 static struct journal_head *journal_alloc_journal_head(void)
2224 {
2225         struct journal_head *ret;
2226
2227 #ifdef CONFIG_JBD2_DEBUG
2228         atomic_inc(&nr_journal_heads);
2229 #endif
2230         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2231         if (!ret) {
2232                 jbd_debug(1, "out of memory for journal_head\n");
2233                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2234                 while (!ret) {
2235                         yield();
2236                         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2237                 }
2238         }
2239         return ret;
2240 }
2241
2242 static void journal_free_journal_head(struct journal_head *jh)
2243 {
2244 #ifdef CONFIG_JBD2_DEBUG
2245         atomic_dec(&nr_journal_heads);
2246         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2247 #endif
2248         kmem_cache_free(jbd2_journal_head_cache, jh);
2249 }
2250
2251 /*
2252  * A journal_head is attached to a buffer_head whenever JBD has an
2253  * interest in the buffer.
2254  *
2255  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2256  * is set.  This bit is tested in core kernel code where we need to take
2257  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2258  * there.
2259  *
2260  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2261  *
2262  * When a buffer has its BH_JBD bit set it is immune from being released by
2263  * core kernel code, mainly via ->b_count.
2264  *
2265  * A journal_head is detached from its buffer_head when the journal_head's
2266  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2267  * transaction (b_cp_transaction) hold their references to b_jcount.
2268  *
2269  * Various places in the kernel want to attach a journal_head to a buffer_head
2270  * _before_ attaching the journal_head to a transaction.  To protect the
2271  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2272  * journal_head's b_jcount refcount by one.  The caller must call
2273  * jbd2_journal_put_journal_head() to undo this.
2274  *
2275  * So the typical usage would be:
2276  *
2277  *      (Attach a journal_head if needed.  Increments b_jcount)
2278  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2279  *      ...
2280  *      (Get another reference for transaction)
2281  *      jbd2_journal_grab_journal_head(bh);
2282  *      jh->b_transaction = xxx;
2283  *      (Put original reference)
2284  *      jbd2_journal_put_journal_head(jh);
2285  */
2286
2287 /*
2288  * Give a buffer_head a journal_head.
2289  *
2290  * May sleep.
2291  */
2292 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2293 {
2294         struct journal_head *jh;
2295         struct journal_head *new_jh = NULL;
2296
2297 repeat:
2298         if (!buffer_jbd(bh)) {
2299                 new_jh = journal_alloc_journal_head();
2300                 memset(new_jh, 0, sizeof(*new_jh));
2301         }
2302
2303         jbd_lock_bh_journal_head(bh);
2304         if (buffer_jbd(bh)) {
2305                 jh = bh2jh(bh);
2306         } else {
2307                 J_ASSERT_BH(bh,
2308                         (atomic_read(&bh->b_count) > 0) ||
2309                         (bh->b_page && bh->b_page->mapping));
2310
2311                 if (!new_jh) {
2312                         jbd_unlock_bh_journal_head(bh);
2313                         goto repeat;
2314                 }
2315
2316                 jh = new_jh;
2317                 new_jh = NULL;          /* We consumed it */
2318                 set_buffer_jbd(bh);
2319                 bh->b_private = jh;
2320                 jh->b_bh = bh;
2321                 get_bh(bh);
2322                 BUFFER_TRACE(bh, "added journal_head");
2323         }
2324         jh->b_jcount++;
2325         jbd_unlock_bh_journal_head(bh);
2326         if (new_jh)
2327                 journal_free_journal_head(new_jh);
2328         return bh->b_private;
2329 }
2330
2331 /*
2332  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2333  * having a journal_head, return NULL
2334  */
2335 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2336 {
2337         struct journal_head *jh = NULL;
2338
2339         jbd_lock_bh_journal_head(bh);
2340         if (buffer_jbd(bh)) {
2341                 jh = bh2jh(bh);
2342                 jh->b_jcount++;
2343         }
2344         jbd_unlock_bh_journal_head(bh);
2345         return jh;
2346 }
2347
2348 static void __journal_remove_journal_head(struct buffer_head *bh)
2349 {
2350         struct journal_head *jh = bh2jh(bh);
2351
2352         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2353         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2354         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2355         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2356         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2357         J_ASSERT_BH(bh, buffer_jbd(bh));
2358         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2359         BUFFER_TRACE(bh, "remove journal_head");
2360         if (jh->b_frozen_data) {
2361                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2362                 jbd2_free(jh->b_frozen_data, bh->b_size);
2363         }
2364         if (jh->b_committed_data) {
2365                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2366                 jbd2_free(jh->b_committed_data, bh->b_size);
2367         }
2368         bh->b_private = NULL;
2369         jh->b_bh = NULL;        /* debug, really */
2370         clear_buffer_jbd(bh);
2371         journal_free_journal_head(jh);
2372 }
2373
2374 /*
2375  * Drop a reference on the passed journal_head.  If it fell to zero then
2376  * release the journal_head from the buffer_head.
2377  */
2378 void jbd2_journal_put_journal_head(struct journal_head *jh)
2379 {
2380         struct buffer_head *bh = jh2bh(jh);
2381
2382         jbd_lock_bh_journal_head(bh);
2383         J_ASSERT_JH(jh, jh->b_jcount > 0);
2384         --jh->b_jcount;
2385         if (!jh->b_jcount) {
2386                 __journal_remove_journal_head(bh);
2387                 jbd_unlock_bh_journal_head(bh);
2388                 __brelse(bh);
2389         } else
2390                 jbd_unlock_bh_journal_head(bh);
2391 }
2392
2393 /*
2394  * Initialize jbd inode head
2395  */
2396 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2397 {
2398         jinode->i_transaction = NULL;
2399         jinode->i_next_transaction = NULL;
2400         jinode->i_vfs_inode = inode;
2401         jinode->i_flags = 0;
2402         INIT_LIST_HEAD(&jinode->i_list);
2403 }
2404
2405 /*
2406  * Function to be called before we start removing inode from memory (i.e.,
2407  * clear_inode() is a fine place to be called from). It removes inode from
2408  * transaction's lists.
2409  */
2410 void jbd2_journal_release_jbd_inode(journal_t *journal,
2411                                     struct jbd2_inode *jinode)
2412 {
2413         if (!journal)
2414                 return;
2415 restart:
2416         spin_lock(&journal->j_list_lock);
2417         /* Is commit writing out inode - we have to wait */
2418         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2419                 wait_queue_head_t *wq;
2420                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2421                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2422                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2423                 spin_unlock(&journal->j_list_lock);
2424                 schedule();
2425                 finish_wait(wq, &wait.wait);
2426                 goto restart;
2427         }
2428
2429         if (jinode->i_transaction) {
2430                 list_del(&jinode->i_list);
2431                 jinode->i_transaction = NULL;
2432         }
2433         spin_unlock(&journal->j_list_lock);
2434 }
2435
2436 /*
2437  * debugfs tunables
2438  */
2439 #ifdef CONFIG_JBD2_DEBUG
2440 u8 jbd2_journal_enable_debug __read_mostly;
2441 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2442
2443 #define JBD2_DEBUG_NAME "jbd2-debug"
2444
2445 static struct dentry *jbd2_debugfs_dir;
2446 static struct dentry *jbd2_debug;
2447
2448 static void __init jbd2_create_debugfs_entry(void)
2449 {
2450         jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2451         if (jbd2_debugfs_dir)
2452                 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2453                                                S_IRUGO | S_IWUSR,
2454                                                jbd2_debugfs_dir,
2455                                                &jbd2_journal_enable_debug);
2456 }
2457
2458 static void __exit jbd2_remove_debugfs_entry(void)
2459 {
2460         debugfs_remove(jbd2_debug);
2461         debugfs_remove(jbd2_debugfs_dir);
2462 }
2463
2464 #else
2465
2466 static void __init jbd2_create_debugfs_entry(void)
2467 {
2468 }
2469
2470 static void __exit jbd2_remove_debugfs_entry(void)
2471 {
2472 }
2473
2474 #endif
2475
2476 #ifdef CONFIG_PROC_FS
2477
2478 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2479
2480 static void __init jbd2_create_jbd_stats_proc_entry(void)
2481 {
2482         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2483 }
2484
2485 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2486 {
2487         if (proc_jbd2_stats)
2488                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2489 }
2490
2491 #else
2492
2493 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2494 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2495
2496 #endif
2497
2498 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2499
2500 static int __init journal_init_handle_cache(void)
2501 {
2502         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2503         if (jbd2_handle_cache == NULL) {
2504                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2505                 return -ENOMEM;
2506         }
2507         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2508         if (jbd2_inode_cache == NULL) {
2509                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2510                 kmem_cache_destroy(jbd2_handle_cache);
2511                 return -ENOMEM;
2512         }
2513         return 0;
2514 }
2515
2516 static void jbd2_journal_destroy_handle_cache(void)
2517 {
2518         if (jbd2_handle_cache)
2519                 kmem_cache_destroy(jbd2_handle_cache);
2520         if (jbd2_inode_cache)
2521                 kmem_cache_destroy(jbd2_inode_cache);
2522
2523 }
2524
2525 /*
2526  * Module startup and shutdown
2527  */
2528
2529 static int __init journal_init_caches(void)
2530 {
2531         int ret;
2532
2533         ret = jbd2_journal_init_revoke_caches();
2534         if (ret == 0)
2535                 ret = journal_init_jbd2_journal_head_cache();
2536         if (ret == 0)
2537                 ret = journal_init_handle_cache();
2538         return ret;
2539 }
2540
2541 static void jbd2_journal_destroy_caches(void)
2542 {
2543         jbd2_journal_destroy_revoke_caches();
2544         jbd2_journal_destroy_jbd2_journal_head_cache();
2545         jbd2_journal_destroy_handle_cache();
2546         jbd2_journal_destroy_slabs();
2547 }
2548
2549 static int __init journal_init(void)
2550 {
2551         int ret;
2552
2553         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2554
2555         ret = journal_init_caches();
2556         if (ret == 0) {
2557                 jbd2_create_debugfs_entry();
2558                 jbd2_create_jbd_stats_proc_entry();
2559         } else {
2560                 jbd2_journal_destroy_caches();
2561         }
2562         return ret;
2563 }
2564
2565 static void __exit journal_exit(void)
2566 {
2567 #ifdef CONFIG_JBD2_DEBUG
2568         int n = atomic_read(&nr_journal_heads);
2569         if (n)
2570                 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2571 #endif
2572         jbd2_remove_debugfs_entry();
2573         jbd2_remove_jbd_stats_proc_entry();
2574         jbd2_journal_destroy_caches();
2575 }
2576
2577 MODULE_LICENSE("GPL");
2578 module_init(journal_init);
2579 module_exit(journal_exit);
2580