Merge branch 'stable/bug.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/system.h>
54
55 EXPORT_SYMBOL(jbd2_journal_extend);
56 EXPORT_SYMBOL(jbd2_journal_stop);
57 EXPORT_SYMBOL(jbd2_journal_lock_updates);
58 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
59 EXPORT_SYMBOL(jbd2_journal_get_write_access);
60 EXPORT_SYMBOL(jbd2_journal_get_create_access);
61 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
62 EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
64 EXPORT_SYMBOL(jbd2_journal_release_buffer);
65 EXPORT_SYMBOL(jbd2_journal_forget);
66 #if 0
67 EXPORT_SYMBOL(journal_sync_buffer);
68 #endif
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_update_format);
75 EXPORT_SYMBOL(jbd2_journal_check_used_features);
76 EXPORT_SYMBOL(jbd2_journal_check_available_features);
77 EXPORT_SYMBOL(jbd2_journal_set_features);
78 EXPORT_SYMBOL(jbd2_journal_load);
79 EXPORT_SYMBOL(jbd2_journal_destroy);
80 EXPORT_SYMBOL(jbd2_journal_abort);
81 EXPORT_SYMBOL(jbd2_journal_errno);
82 EXPORT_SYMBOL(jbd2_journal_ack_err);
83 EXPORT_SYMBOL(jbd2_journal_clear_err);
84 EXPORT_SYMBOL(jbd2_log_wait_commit);
85 EXPORT_SYMBOL(jbd2_log_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_start_commit);
87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
88 EXPORT_SYMBOL(jbd2_journal_wipe);
89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
90 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
92 EXPORT_SYMBOL(jbd2_journal_force_commit);
93 EXPORT_SYMBOL(jbd2_journal_file_inode);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
100 static void __journal_abort_soft (journal_t *journal, int errno);
101 static int jbd2_journal_create_slab(size_t slab_size);
102
103 /*
104  * Helper function used to manage commit timeouts
105  */
106
107 static void commit_timeout(unsigned long __data)
108 {
109         struct task_struct * p = (struct task_struct *) __data;
110
111         wake_up_process(p);
112 }
113
114 /*
115  * kjournald2: The main thread function used to manage a logging device
116  * journal.
117  *
118  * This kernel thread is responsible for two things:
119  *
120  * 1) COMMIT:  Every so often we need to commit the current state of the
121  *    filesystem to disk.  The journal thread is responsible for writing
122  *    all of the metadata buffers to disk.
123  *
124  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
125  *    of the data in that part of the log has been rewritten elsewhere on
126  *    the disk.  Flushing these old buffers to reclaim space in the log is
127  *    known as checkpointing, and this thread is responsible for that job.
128  */
129
130 static int kjournald2(void *arg)
131 {
132         journal_t *journal = arg;
133         transaction_t *transaction;
134
135         /*
136          * Set up an interval timer which can be used to trigger a commit wakeup
137          * after the commit interval expires
138          */
139         setup_timer(&journal->j_commit_timer, commit_timeout,
140                         (unsigned long)current);
141
142         /* Record that the journal thread is running */
143         journal->j_task = current;
144         wake_up(&journal->j_wait_done_commit);
145
146         /*
147          * And now, wait forever for commit wakeup events.
148          */
149         write_lock(&journal->j_state_lock);
150
151 loop:
152         if (journal->j_flags & JBD2_UNMOUNT)
153                 goto end_loop;
154
155         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
156                 journal->j_commit_sequence, journal->j_commit_request);
157
158         if (journal->j_commit_sequence != journal->j_commit_request) {
159                 jbd_debug(1, "OK, requests differ\n");
160                 write_unlock(&journal->j_state_lock);
161                 del_timer_sync(&journal->j_commit_timer);
162                 jbd2_journal_commit_transaction(journal);
163                 write_lock(&journal->j_state_lock);
164                 goto loop;
165         }
166
167         wake_up(&journal->j_wait_done_commit);
168         if (freezing(current)) {
169                 /*
170                  * The simpler the better. Flushing journal isn't a
171                  * good idea, because that depends on threads that may
172                  * be already stopped.
173                  */
174                 jbd_debug(1, "Now suspending kjournald2\n");
175                 write_unlock(&journal->j_state_lock);
176                 refrigerator();
177                 write_lock(&journal->j_state_lock);
178         } else {
179                 /*
180                  * We assume on resume that commits are already there,
181                  * so we don't sleep
182                  */
183                 DEFINE_WAIT(wait);
184                 int should_sleep = 1;
185
186                 prepare_to_wait(&journal->j_wait_commit, &wait,
187                                 TASK_INTERRUPTIBLE);
188                 if (journal->j_commit_sequence != journal->j_commit_request)
189                         should_sleep = 0;
190                 transaction = journal->j_running_transaction;
191                 if (transaction && time_after_eq(jiffies,
192                                                 transaction->t_expires))
193                         should_sleep = 0;
194                 if (journal->j_flags & JBD2_UNMOUNT)
195                         should_sleep = 0;
196                 if (should_sleep) {
197                         write_unlock(&journal->j_state_lock);
198                         schedule();
199                         write_lock(&journal->j_state_lock);
200                 }
201                 finish_wait(&journal->j_wait_commit, &wait);
202         }
203
204         jbd_debug(1, "kjournald2 wakes\n");
205
206         /*
207          * Were we woken up by a commit wakeup event?
208          */
209         transaction = journal->j_running_transaction;
210         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
211                 journal->j_commit_request = transaction->t_tid;
212                 jbd_debug(1, "woke because of timeout\n");
213         }
214         goto loop;
215
216 end_loop:
217         write_unlock(&journal->j_state_lock);
218         del_timer_sync(&journal->j_commit_timer);
219         journal->j_task = NULL;
220         wake_up(&journal->j_wait_done_commit);
221         jbd_debug(1, "Journal thread exiting.\n");
222         return 0;
223 }
224
225 static int jbd2_journal_start_thread(journal_t *journal)
226 {
227         struct task_struct *t;
228
229         t = kthread_run(kjournald2, journal, "jbd2/%s",
230                         journal->j_devname);
231         if (IS_ERR(t))
232                 return PTR_ERR(t);
233
234         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
235         return 0;
236 }
237
238 static void journal_kill_thread(journal_t *journal)
239 {
240         write_lock(&journal->j_state_lock);
241         journal->j_flags |= JBD2_UNMOUNT;
242
243         while (journal->j_task) {
244                 wake_up(&journal->j_wait_commit);
245                 write_unlock(&journal->j_state_lock);
246                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
247                 write_lock(&journal->j_state_lock);
248         }
249         write_unlock(&journal->j_state_lock);
250 }
251
252 /*
253  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
254  *
255  * Writes a metadata buffer to a given disk block.  The actual IO is not
256  * performed but a new buffer_head is constructed which labels the data
257  * to be written with the correct destination disk block.
258  *
259  * Any magic-number escaping which needs to be done will cause a
260  * copy-out here.  If the buffer happens to start with the
261  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
262  * magic number is only written to the log for descripter blocks.  In
263  * this case, we copy the data and replace the first word with 0, and we
264  * return a result code which indicates that this buffer needs to be
265  * marked as an escaped buffer in the corresponding log descriptor
266  * block.  The missing word can then be restored when the block is read
267  * during recovery.
268  *
269  * If the source buffer has already been modified by a new transaction
270  * since we took the last commit snapshot, we use the frozen copy of
271  * that data for IO.  If we end up using the existing buffer_head's data
272  * for the write, then we *have* to lock the buffer to prevent anyone
273  * else from using and possibly modifying it while the IO is in
274  * progress.
275  *
276  * The function returns a pointer to the buffer_heads to be used for IO.
277  *
278  * We assume that the journal has already been locked in this function.
279  *
280  * Return value:
281  *  <0: Error
282  * >=0: Finished OK
283  *
284  * On success:
285  * Bit 0 set == escape performed on the data
286  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
287  */
288
289 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
290                                   struct journal_head  *jh_in,
291                                   struct journal_head **jh_out,
292                                   unsigned long long blocknr)
293 {
294         int need_copy_out = 0;
295         int done_copy_out = 0;
296         int do_escape = 0;
297         char *mapped_data;
298         struct buffer_head *new_bh;
299         struct journal_head *new_jh;
300         struct page *new_page;
301         unsigned int new_offset;
302         struct buffer_head *bh_in = jh2bh(jh_in);
303         journal_t *journal = transaction->t_journal;
304
305         /*
306          * The buffer really shouldn't be locked: only the current committing
307          * transaction is allowed to write it, so nobody else is allowed
308          * to do any IO.
309          *
310          * akpm: except if we're journalling data, and write() output is
311          * also part of a shared mapping, and another thread has
312          * decided to launch a writepage() against this buffer.
313          */
314         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
315
316 retry_alloc:
317         new_bh = alloc_buffer_head(GFP_NOFS);
318         if (!new_bh) {
319                 /*
320                  * Failure is not an option, but __GFP_NOFAIL is going
321                  * away; so we retry ourselves here.
322                  */
323                 congestion_wait(BLK_RW_ASYNC, HZ/50);
324                 goto retry_alloc;
325         }
326
327         /* keep subsequent assertions sane */
328         new_bh->b_state = 0;
329         init_buffer(new_bh, NULL, NULL);
330         atomic_set(&new_bh->b_count, 1);
331         new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
332
333         /*
334          * If a new transaction has already done a buffer copy-out, then
335          * we use that version of the data for the commit.
336          */
337         jbd_lock_bh_state(bh_in);
338 repeat:
339         if (jh_in->b_frozen_data) {
340                 done_copy_out = 1;
341                 new_page = virt_to_page(jh_in->b_frozen_data);
342                 new_offset = offset_in_page(jh_in->b_frozen_data);
343         } else {
344                 new_page = jh2bh(jh_in)->b_page;
345                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
346         }
347
348         mapped_data = kmap_atomic(new_page, KM_USER0);
349         /*
350          * Fire data frozen trigger if data already wasn't frozen.  Do this
351          * before checking for escaping, as the trigger may modify the magic
352          * offset.  If a copy-out happens afterwards, it will have the correct
353          * data in the buffer.
354          */
355         if (!done_copy_out)
356                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
357                                            jh_in->b_triggers);
358
359         /*
360          * Check for escaping
361          */
362         if (*((__be32 *)(mapped_data + new_offset)) ==
363                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
364                 need_copy_out = 1;
365                 do_escape = 1;
366         }
367         kunmap_atomic(mapped_data, KM_USER0);
368
369         /*
370          * Do we need to do a data copy?
371          */
372         if (need_copy_out && !done_copy_out) {
373                 char *tmp;
374
375                 jbd_unlock_bh_state(bh_in);
376                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
377                 if (!tmp) {
378                         jbd2_journal_put_journal_head(new_jh);
379                         return -ENOMEM;
380                 }
381                 jbd_lock_bh_state(bh_in);
382                 if (jh_in->b_frozen_data) {
383                         jbd2_free(tmp, bh_in->b_size);
384                         goto repeat;
385                 }
386
387                 jh_in->b_frozen_data = tmp;
388                 mapped_data = kmap_atomic(new_page, KM_USER0);
389                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
390                 kunmap_atomic(mapped_data, KM_USER0);
391
392                 new_page = virt_to_page(tmp);
393                 new_offset = offset_in_page(tmp);
394                 done_copy_out = 1;
395
396                 /*
397                  * This isn't strictly necessary, as we're using frozen
398                  * data for the escaping, but it keeps consistency with
399                  * b_frozen_data usage.
400                  */
401                 jh_in->b_frozen_triggers = jh_in->b_triggers;
402         }
403
404         /*
405          * Did we need to do an escaping?  Now we've done all the
406          * copying, we can finally do so.
407          */
408         if (do_escape) {
409                 mapped_data = kmap_atomic(new_page, KM_USER0);
410                 *((unsigned int *)(mapped_data + new_offset)) = 0;
411                 kunmap_atomic(mapped_data, KM_USER0);
412         }
413
414         set_bh_page(new_bh, new_page, new_offset);
415         new_jh->b_transaction = NULL;
416         new_bh->b_size = jh2bh(jh_in)->b_size;
417         new_bh->b_bdev = transaction->t_journal->j_dev;
418         new_bh->b_blocknr = blocknr;
419         set_buffer_mapped(new_bh);
420         set_buffer_dirty(new_bh);
421
422         *jh_out = new_jh;
423
424         /*
425          * The to-be-written buffer needs to get moved to the io queue,
426          * and the original buffer whose contents we are shadowing or
427          * copying is moved to the transaction's shadow queue.
428          */
429         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
430         spin_lock(&journal->j_list_lock);
431         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
432         spin_unlock(&journal->j_list_lock);
433         jbd_unlock_bh_state(bh_in);
434
435         JBUFFER_TRACE(new_jh, "file as BJ_IO");
436         jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
437
438         return do_escape | (done_copy_out << 1);
439 }
440
441 /*
442  * Allocation code for the journal file.  Manage the space left in the
443  * journal, so that we can begin checkpointing when appropriate.
444  */
445
446 /*
447  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
448  *
449  * Called with the journal already locked.
450  *
451  * Called under j_state_lock
452  */
453
454 int __jbd2_log_space_left(journal_t *journal)
455 {
456         int left = journal->j_free;
457
458         /* assert_spin_locked(&journal->j_state_lock); */
459
460         /*
461          * Be pessimistic here about the number of those free blocks which
462          * might be required for log descriptor control blocks.
463          */
464
465 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
466
467         left -= MIN_LOG_RESERVED_BLOCKS;
468
469         if (left <= 0)
470                 return 0;
471         left -= (left >> 3);
472         return left;
473 }
474
475 /*
476  * Called with j_state_lock locked for writing.
477  * Returns true if a transaction commit was started.
478  */
479 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
480 {
481         /*
482          * The only transaction we can possibly wait upon is the
483          * currently running transaction (if it exists).  Otherwise,
484          * the target tid must be an old one.
485          */
486         if (journal->j_running_transaction &&
487             journal->j_running_transaction->t_tid == target) {
488                 /*
489                  * We want a new commit: OK, mark the request and wakeup the
490                  * commit thread.  We do _not_ do the commit ourselves.
491                  */
492
493                 journal->j_commit_request = target;
494                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
495                           journal->j_commit_request,
496                           journal->j_commit_sequence);
497                 wake_up(&journal->j_wait_commit);
498                 return 1;
499         } else if (!tid_geq(journal->j_commit_request, target))
500                 /* This should never happen, but if it does, preserve
501                    the evidence before kjournald goes into a loop and
502                    increments j_commit_sequence beyond all recognition. */
503                 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
504                           journal->j_commit_request,
505                           journal->j_commit_sequence,
506                           target, journal->j_running_transaction ? 
507                           journal->j_running_transaction->t_tid : 0);
508         return 0;
509 }
510
511 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
512 {
513         int ret;
514
515         write_lock(&journal->j_state_lock);
516         ret = __jbd2_log_start_commit(journal, tid);
517         write_unlock(&journal->j_state_lock);
518         return ret;
519 }
520
521 /*
522  * Force and wait upon a commit if the calling process is not within
523  * transaction.  This is used for forcing out undo-protected data which contains
524  * bitmaps, when the fs is running out of space.
525  *
526  * We can only force the running transaction if we don't have an active handle;
527  * otherwise, we will deadlock.
528  *
529  * Returns true if a transaction was started.
530  */
531 int jbd2_journal_force_commit_nested(journal_t *journal)
532 {
533         transaction_t *transaction = NULL;
534         tid_t tid;
535         int need_to_start = 0;
536
537         read_lock(&journal->j_state_lock);
538         if (journal->j_running_transaction && !current->journal_info) {
539                 transaction = journal->j_running_transaction;
540                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
541                         need_to_start = 1;
542         } else if (journal->j_committing_transaction)
543                 transaction = journal->j_committing_transaction;
544
545         if (!transaction) {
546                 read_unlock(&journal->j_state_lock);
547                 return 0;       /* Nothing to retry */
548         }
549
550         tid = transaction->t_tid;
551         read_unlock(&journal->j_state_lock);
552         if (need_to_start)
553                 jbd2_log_start_commit(journal, tid);
554         jbd2_log_wait_commit(journal, tid);
555         return 1;
556 }
557
558 /*
559  * Start a commit of the current running transaction (if any).  Returns true
560  * if a transaction is going to be committed (or is currently already
561  * committing), and fills its tid in at *ptid
562  */
563 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
564 {
565         int ret = 0;
566
567         write_lock(&journal->j_state_lock);
568         if (journal->j_running_transaction) {
569                 tid_t tid = journal->j_running_transaction->t_tid;
570
571                 __jbd2_log_start_commit(journal, tid);
572                 /* There's a running transaction and we've just made sure
573                  * it's commit has been scheduled. */
574                 if (ptid)
575                         *ptid = tid;
576                 ret = 1;
577         } else if (journal->j_committing_transaction) {
578                 /*
579                  * If ext3_write_super() recently started a commit, then we
580                  * have to wait for completion of that transaction
581                  */
582                 if (ptid)
583                         *ptid = journal->j_committing_transaction->t_tid;
584                 ret = 1;
585         }
586         write_unlock(&journal->j_state_lock);
587         return ret;
588 }
589
590 /*
591  * Return 1 if a given transaction has not yet sent barrier request
592  * connected with a transaction commit. If 0 is returned, transaction
593  * may or may not have sent the barrier. Used to avoid sending barrier
594  * twice in common cases.
595  */
596 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
597 {
598         int ret = 0;
599         transaction_t *commit_trans;
600
601         if (!(journal->j_flags & JBD2_BARRIER))
602                 return 0;
603         read_lock(&journal->j_state_lock);
604         /* Transaction already committed? */
605         if (tid_geq(journal->j_commit_sequence, tid))
606                 goto out;
607         commit_trans = journal->j_committing_transaction;
608         if (!commit_trans || commit_trans->t_tid != tid) {
609                 ret = 1;
610                 goto out;
611         }
612         /*
613          * Transaction is being committed and we already proceeded to
614          * submitting a flush to fs partition?
615          */
616         if (journal->j_fs_dev != journal->j_dev) {
617                 if (!commit_trans->t_need_data_flush ||
618                     commit_trans->t_state >= T_COMMIT_DFLUSH)
619                         goto out;
620         } else {
621                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
622                         goto out;
623         }
624         ret = 1;
625 out:
626         read_unlock(&journal->j_state_lock);
627         return ret;
628 }
629 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
630
631 /*
632  * Wait for a specified commit to complete.
633  * The caller may not hold the journal lock.
634  */
635 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
636 {
637         int err = 0;
638
639         read_lock(&journal->j_state_lock);
640 #ifdef CONFIG_JBD2_DEBUG
641         if (!tid_geq(journal->j_commit_request, tid)) {
642                 printk(KERN_EMERG
643                        "%s: error: j_commit_request=%d, tid=%d\n",
644                        __func__, journal->j_commit_request, tid);
645         }
646 #endif
647         while (tid_gt(tid, journal->j_commit_sequence)) {
648                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
649                                   tid, journal->j_commit_sequence);
650                 wake_up(&journal->j_wait_commit);
651                 read_unlock(&journal->j_state_lock);
652                 wait_event(journal->j_wait_done_commit,
653                                 !tid_gt(tid, journal->j_commit_sequence));
654                 read_lock(&journal->j_state_lock);
655         }
656         read_unlock(&journal->j_state_lock);
657
658         if (unlikely(is_journal_aborted(journal))) {
659                 printk(KERN_EMERG "journal commit I/O error\n");
660                 err = -EIO;
661         }
662         return err;
663 }
664
665 /*
666  * Log buffer allocation routines:
667  */
668
669 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
670 {
671         unsigned long blocknr;
672
673         write_lock(&journal->j_state_lock);
674         J_ASSERT(journal->j_free > 1);
675
676         blocknr = journal->j_head;
677         journal->j_head++;
678         journal->j_free--;
679         if (journal->j_head == journal->j_last)
680                 journal->j_head = journal->j_first;
681         write_unlock(&journal->j_state_lock);
682         return jbd2_journal_bmap(journal, blocknr, retp);
683 }
684
685 /*
686  * Conversion of logical to physical block numbers for the journal
687  *
688  * On external journals the journal blocks are identity-mapped, so
689  * this is a no-op.  If needed, we can use j_blk_offset - everything is
690  * ready.
691  */
692 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
693                  unsigned long long *retp)
694 {
695         int err = 0;
696         unsigned long long ret;
697
698         if (journal->j_inode) {
699                 ret = bmap(journal->j_inode, blocknr);
700                 if (ret)
701                         *retp = ret;
702                 else {
703                         printk(KERN_ALERT "%s: journal block not found "
704                                         "at offset %lu on %s\n",
705                                __func__, blocknr, journal->j_devname);
706                         err = -EIO;
707                         __journal_abort_soft(journal, err);
708                 }
709         } else {
710                 *retp = blocknr; /* +journal->j_blk_offset */
711         }
712         return err;
713 }
714
715 /*
716  * We play buffer_head aliasing tricks to write data/metadata blocks to
717  * the journal without copying their contents, but for journal
718  * descriptor blocks we do need to generate bona fide buffers.
719  *
720  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
721  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
722  * But we don't bother doing that, so there will be coherency problems with
723  * mmaps of blockdevs which hold live JBD-controlled filesystems.
724  */
725 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
726 {
727         struct buffer_head *bh;
728         unsigned long long blocknr;
729         int err;
730
731         err = jbd2_journal_next_log_block(journal, &blocknr);
732
733         if (err)
734                 return NULL;
735
736         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
737         if (!bh)
738                 return NULL;
739         lock_buffer(bh);
740         memset(bh->b_data, 0, journal->j_blocksize);
741         set_buffer_uptodate(bh);
742         unlock_buffer(bh);
743         BUFFER_TRACE(bh, "return this buffer");
744         return jbd2_journal_add_journal_head(bh);
745 }
746
747 struct jbd2_stats_proc_session {
748         journal_t *journal;
749         struct transaction_stats_s *stats;
750         int start;
751         int max;
752 };
753
754 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
755 {
756         return *pos ? NULL : SEQ_START_TOKEN;
757 }
758
759 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
760 {
761         return NULL;
762 }
763
764 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
765 {
766         struct jbd2_stats_proc_session *s = seq->private;
767
768         if (v != SEQ_START_TOKEN)
769                 return 0;
770         seq_printf(seq, "%lu transaction, each up to %u blocks\n",
771                         s->stats->ts_tid,
772                         s->journal->j_max_transaction_buffers);
773         if (s->stats->ts_tid == 0)
774                 return 0;
775         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
776             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
777         seq_printf(seq, "  %ums running transaction\n",
778             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
779         seq_printf(seq, "  %ums transaction was being locked\n",
780             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
781         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
782             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
783         seq_printf(seq, "  %ums logging transaction\n",
784             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
785         seq_printf(seq, "  %lluus average transaction commit time\n",
786                    div_u64(s->journal->j_average_commit_time, 1000));
787         seq_printf(seq, "  %lu handles per transaction\n",
788             s->stats->run.rs_handle_count / s->stats->ts_tid);
789         seq_printf(seq, "  %lu blocks per transaction\n",
790             s->stats->run.rs_blocks / s->stats->ts_tid);
791         seq_printf(seq, "  %lu logged blocks per transaction\n",
792             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
793         return 0;
794 }
795
796 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
797 {
798 }
799
800 static const struct seq_operations jbd2_seq_info_ops = {
801         .start  = jbd2_seq_info_start,
802         .next   = jbd2_seq_info_next,
803         .stop   = jbd2_seq_info_stop,
804         .show   = jbd2_seq_info_show,
805 };
806
807 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
808 {
809         journal_t *journal = PDE(inode)->data;
810         struct jbd2_stats_proc_session *s;
811         int rc, size;
812
813         s = kmalloc(sizeof(*s), GFP_KERNEL);
814         if (s == NULL)
815                 return -ENOMEM;
816         size = sizeof(struct transaction_stats_s);
817         s->stats = kmalloc(size, GFP_KERNEL);
818         if (s->stats == NULL) {
819                 kfree(s);
820                 return -ENOMEM;
821         }
822         spin_lock(&journal->j_history_lock);
823         memcpy(s->stats, &journal->j_stats, size);
824         s->journal = journal;
825         spin_unlock(&journal->j_history_lock);
826
827         rc = seq_open(file, &jbd2_seq_info_ops);
828         if (rc == 0) {
829                 struct seq_file *m = file->private_data;
830                 m->private = s;
831         } else {
832                 kfree(s->stats);
833                 kfree(s);
834         }
835         return rc;
836
837 }
838
839 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
840 {
841         struct seq_file *seq = file->private_data;
842         struct jbd2_stats_proc_session *s = seq->private;
843         kfree(s->stats);
844         kfree(s);
845         return seq_release(inode, file);
846 }
847
848 static const struct file_operations jbd2_seq_info_fops = {
849         .owner          = THIS_MODULE,
850         .open           = jbd2_seq_info_open,
851         .read           = seq_read,
852         .llseek         = seq_lseek,
853         .release        = jbd2_seq_info_release,
854 };
855
856 static struct proc_dir_entry *proc_jbd2_stats;
857
858 static void jbd2_stats_proc_init(journal_t *journal)
859 {
860         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
861         if (journal->j_proc_entry) {
862                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
863                                  &jbd2_seq_info_fops, journal);
864         }
865 }
866
867 static void jbd2_stats_proc_exit(journal_t *journal)
868 {
869         remove_proc_entry("info", journal->j_proc_entry);
870         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
871 }
872
873 /*
874  * Management for journal control blocks: functions to create and
875  * destroy journal_t structures, and to initialise and read existing
876  * journal blocks from disk.  */
877
878 /* First: create and setup a journal_t object in memory.  We initialise
879  * very few fields yet: that has to wait until we have created the
880  * journal structures from from scratch, or loaded them from disk. */
881
882 static journal_t * journal_init_common (void)
883 {
884         journal_t *journal;
885         int err;
886
887         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
888         if (!journal)
889                 return NULL;
890
891         init_waitqueue_head(&journal->j_wait_transaction_locked);
892         init_waitqueue_head(&journal->j_wait_logspace);
893         init_waitqueue_head(&journal->j_wait_done_commit);
894         init_waitqueue_head(&journal->j_wait_checkpoint);
895         init_waitqueue_head(&journal->j_wait_commit);
896         init_waitqueue_head(&journal->j_wait_updates);
897         mutex_init(&journal->j_barrier);
898         mutex_init(&journal->j_checkpoint_mutex);
899         spin_lock_init(&journal->j_revoke_lock);
900         spin_lock_init(&journal->j_list_lock);
901         rwlock_init(&journal->j_state_lock);
902
903         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
904         journal->j_min_batch_time = 0;
905         journal->j_max_batch_time = 15000; /* 15ms */
906
907         /* The journal is marked for error until we succeed with recovery! */
908         journal->j_flags = JBD2_ABORT;
909
910         /* Set up a default-sized revoke table for the new mount. */
911         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
912         if (err) {
913                 kfree(journal);
914                 return NULL;
915         }
916
917         spin_lock_init(&journal->j_history_lock);
918
919         return journal;
920 }
921
922 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
923  *
924  * Create a journal structure assigned some fixed set of disk blocks to
925  * the journal.  We don't actually touch those disk blocks yet, but we
926  * need to set up all of the mapping information to tell the journaling
927  * system where the journal blocks are.
928  *
929  */
930
931 /**
932  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
933  *  @bdev: Block device on which to create the journal
934  *  @fs_dev: Device which hold journalled filesystem for this journal.
935  *  @start: Block nr Start of journal.
936  *  @len:  Length of the journal in blocks.
937  *  @blocksize: blocksize of journalling device
938  *
939  *  Returns: a newly created journal_t *
940  *
941  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
942  *  range of blocks on an arbitrary block device.
943  *
944  */
945 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
946                         struct block_device *fs_dev,
947                         unsigned long long start, int len, int blocksize)
948 {
949         journal_t *journal = journal_init_common();
950         struct buffer_head *bh;
951         char *p;
952         int n;
953
954         if (!journal)
955                 return NULL;
956
957         /* journal descriptor can store up to n blocks -bzzz */
958         journal->j_blocksize = blocksize;
959         journal->j_dev = bdev;
960         journal->j_fs_dev = fs_dev;
961         journal->j_blk_offset = start;
962         journal->j_maxlen = len;
963         bdevname(journal->j_dev, journal->j_devname);
964         p = journal->j_devname;
965         while ((p = strchr(p, '/')))
966                 *p = '!';
967         jbd2_stats_proc_init(journal);
968         n = journal->j_blocksize / sizeof(journal_block_tag_t);
969         journal->j_wbufsize = n;
970         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
971         if (!journal->j_wbuf) {
972                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
973                         __func__);
974                 goto out_err;
975         }
976
977         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
978         if (!bh) {
979                 printk(KERN_ERR
980                        "%s: Cannot get buffer for journal superblock\n",
981                        __func__);
982                 goto out_err;
983         }
984         journal->j_sb_buffer = bh;
985         journal->j_superblock = (journal_superblock_t *)bh->b_data;
986
987         return journal;
988 out_err:
989         kfree(journal->j_wbuf);
990         jbd2_stats_proc_exit(journal);
991         kfree(journal);
992         return NULL;
993 }
994
995 /**
996  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
997  *  @inode: An inode to create the journal in
998  *
999  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1000  * the journal.  The inode must exist already, must support bmap() and
1001  * must have all data blocks preallocated.
1002  */
1003 journal_t * jbd2_journal_init_inode (struct inode *inode)
1004 {
1005         struct buffer_head *bh;
1006         journal_t *journal = journal_init_common();
1007         char *p;
1008         int err;
1009         int n;
1010         unsigned long long blocknr;
1011
1012         if (!journal)
1013                 return NULL;
1014
1015         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1016         journal->j_inode = inode;
1017         bdevname(journal->j_dev, journal->j_devname);
1018         p = journal->j_devname;
1019         while ((p = strchr(p, '/')))
1020                 *p = '!';
1021         p = journal->j_devname + strlen(journal->j_devname);
1022         sprintf(p, "-%lu", journal->j_inode->i_ino);
1023         jbd_debug(1,
1024                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1025                   journal, inode->i_sb->s_id, inode->i_ino,
1026                   (long long) inode->i_size,
1027                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1028
1029         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1030         journal->j_blocksize = inode->i_sb->s_blocksize;
1031         jbd2_stats_proc_init(journal);
1032
1033         /* journal descriptor can store up to n blocks -bzzz */
1034         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1035         journal->j_wbufsize = n;
1036         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1037         if (!journal->j_wbuf) {
1038                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1039                         __func__);
1040                 goto out_err;
1041         }
1042
1043         err = jbd2_journal_bmap(journal, 0, &blocknr);
1044         /* If that failed, give up */
1045         if (err) {
1046                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1047                        __func__);
1048                 goto out_err;
1049         }
1050
1051         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1052         if (!bh) {
1053                 printk(KERN_ERR
1054                        "%s: Cannot get buffer for journal superblock\n",
1055                        __func__);
1056                 goto out_err;
1057         }
1058         journal->j_sb_buffer = bh;
1059         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1060
1061         return journal;
1062 out_err:
1063         kfree(journal->j_wbuf);
1064         jbd2_stats_proc_exit(journal);
1065         kfree(journal);
1066         return NULL;
1067 }
1068
1069 /*
1070  * If the journal init or create aborts, we need to mark the journal
1071  * superblock as being NULL to prevent the journal destroy from writing
1072  * back a bogus superblock.
1073  */
1074 static void journal_fail_superblock (journal_t *journal)
1075 {
1076         struct buffer_head *bh = journal->j_sb_buffer;
1077         brelse(bh);
1078         journal->j_sb_buffer = NULL;
1079 }
1080
1081 /*
1082  * Given a journal_t structure, initialise the various fields for
1083  * startup of a new journaling session.  We use this both when creating
1084  * a journal, and after recovering an old journal to reset it for
1085  * subsequent use.
1086  */
1087
1088 static int journal_reset(journal_t *journal)
1089 {
1090         journal_superblock_t *sb = journal->j_superblock;
1091         unsigned long long first, last;
1092
1093         first = be32_to_cpu(sb->s_first);
1094         last = be32_to_cpu(sb->s_maxlen);
1095         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1096                 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1097                        first, last);
1098                 journal_fail_superblock(journal);
1099                 return -EINVAL;
1100         }
1101
1102         journal->j_first = first;
1103         journal->j_last = last;
1104
1105         journal->j_head = first;
1106         journal->j_tail = first;
1107         journal->j_free = last - first;
1108
1109         journal->j_tail_sequence = journal->j_transaction_sequence;
1110         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1111         journal->j_commit_request = journal->j_commit_sequence;
1112
1113         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1114
1115         /* Add the dynamic fields and write it to disk. */
1116         jbd2_journal_update_superblock(journal, 1);
1117         return jbd2_journal_start_thread(journal);
1118 }
1119
1120 /**
1121  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1122  * @journal: The journal to update.
1123  * @wait: Set to '0' if you don't want to wait for IO completion.
1124  *
1125  * Update a journal's dynamic superblock fields and write it to disk,
1126  * optionally waiting for the IO to complete.
1127  */
1128 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1129 {
1130         journal_superblock_t *sb = journal->j_superblock;
1131         struct buffer_head *bh = journal->j_sb_buffer;
1132
1133         /*
1134          * As a special case, if the on-disk copy is already marked as needing
1135          * no recovery (s_start == 0) and there are no outstanding transactions
1136          * in the filesystem, then we can safely defer the superblock update
1137          * until the next commit by setting JBD2_FLUSHED.  This avoids
1138          * attempting a write to a potential-readonly device.
1139          */
1140         if (sb->s_start == 0 && journal->j_tail_sequence ==
1141                                 journal->j_transaction_sequence) {
1142                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1143                         "(start %ld, seq %d, errno %d)\n",
1144                         journal->j_tail, journal->j_tail_sequence,
1145                         journal->j_errno);
1146                 goto out;
1147         }
1148
1149         if (buffer_write_io_error(bh)) {
1150                 /*
1151                  * Oh, dear.  A previous attempt to write the journal
1152                  * superblock failed.  This could happen because the
1153                  * USB device was yanked out.  Or it could happen to
1154                  * be a transient write error and maybe the block will
1155                  * be remapped.  Nothing we can do but to retry the
1156                  * write and hope for the best.
1157                  */
1158                 printk(KERN_ERR "JBD2: previous I/O error detected "
1159                        "for journal superblock update for %s.\n",
1160                        journal->j_devname);
1161                 clear_buffer_write_io_error(bh);
1162                 set_buffer_uptodate(bh);
1163         }
1164
1165         read_lock(&journal->j_state_lock);
1166         jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1167                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1168
1169         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1170         sb->s_start    = cpu_to_be32(journal->j_tail);
1171         sb->s_errno    = cpu_to_be32(journal->j_errno);
1172         read_unlock(&journal->j_state_lock);
1173
1174         BUFFER_TRACE(bh, "marking dirty");
1175         mark_buffer_dirty(bh);
1176         if (wait) {
1177                 sync_dirty_buffer(bh);
1178                 if (buffer_write_io_error(bh)) {
1179                         printk(KERN_ERR "JBD2: I/O error detected "
1180                                "when updating journal superblock for %s.\n",
1181                                journal->j_devname);
1182                         clear_buffer_write_io_error(bh);
1183                         set_buffer_uptodate(bh);
1184                 }
1185         } else
1186                 write_dirty_buffer(bh, WRITE);
1187
1188 out:
1189         /* If we have just flushed the log (by marking s_start==0), then
1190          * any future commit will have to be careful to update the
1191          * superblock again to re-record the true start of the log. */
1192
1193         write_lock(&journal->j_state_lock);
1194         if (sb->s_start)
1195                 journal->j_flags &= ~JBD2_FLUSHED;
1196         else
1197                 journal->j_flags |= JBD2_FLUSHED;
1198         write_unlock(&journal->j_state_lock);
1199 }
1200
1201 /*
1202  * Read the superblock for a given journal, performing initial
1203  * validation of the format.
1204  */
1205
1206 static int journal_get_superblock(journal_t *journal)
1207 {
1208         struct buffer_head *bh;
1209         journal_superblock_t *sb;
1210         int err = -EIO;
1211
1212         bh = journal->j_sb_buffer;
1213
1214         J_ASSERT(bh != NULL);
1215         if (!buffer_uptodate(bh)) {
1216                 ll_rw_block(READ, 1, &bh);
1217                 wait_on_buffer(bh);
1218                 if (!buffer_uptodate(bh)) {
1219                         printk (KERN_ERR
1220                                 "JBD: IO error reading journal superblock\n");
1221                         goto out;
1222                 }
1223         }
1224
1225         sb = journal->j_superblock;
1226
1227         err = -EINVAL;
1228
1229         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1230             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1231                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1232                 goto out;
1233         }
1234
1235         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1236         case JBD2_SUPERBLOCK_V1:
1237                 journal->j_format_version = 1;
1238                 break;
1239         case JBD2_SUPERBLOCK_V2:
1240                 journal->j_format_version = 2;
1241                 break;
1242         default:
1243                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1244                 goto out;
1245         }
1246
1247         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1248                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1249         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1250                 printk (KERN_WARNING "JBD: journal file too short\n");
1251                 goto out;
1252         }
1253
1254         return 0;
1255
1256 out:
1257         journal_fail_superblock(journal);
1258         return err;
1259 }
1260
1261 /*
1262  * Load the on-disk journal superblock and read the key fields into the
1263  * journal_t.
1264  */
1265
1266 static int load_superblock(journal_t *journal)
1267 {
1268         int err;
1269         journal_superblock_t *sb;
1270
1271         err = journal_get_superblock(journal);
1272         if (err)
1273                 return err;
1274
1275         sb = journal->j_superblock;
1276
1277         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1278         journal->j_tail = be32_to_cpu(sb->s_start);
1279         journal->j_first = be32_to_cpu(sb->s_first);
1280         journal->j_last = be32_to_cpu(sb->s_maxlen);
1281         journal->j_errno = be32_to_cpu(sb->s_errno);
1282
1283         return 0;
1284 }
1285
1286
1287 /**
1288  * int jbd2_journal_load() - Read journal from disk.
1289  * @journal: Journal to act on.
1290  *
1291  * Given a journal_t structure which tells us which disk blocks contain
1292  * a journal, read the journal from disk to initialise the in-memory
1293  * structures.
1294  */
1295 int jbd2_journal_load(journal_t *journal)
1296 {
1297         int err;
1298         journal_superblock_t *sb;
1299
1300         err = load_superblock(journal);
1301         if (err)
1302                 return err;
1303
1304         sb = journal->j_superblock;
1305         /* If this is a V2 superblock, then we have to check the
1306          * features flags on it. */
1307
1308         if (journal->j_format_version >= 2) {
1309                 if ((sb->s_feature_ro_compat &
1310                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1311                     (sb->s_feature_incompat &
1312                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1313                         printk (KERN_WARNING
1314                                 "JBD: Unrecognised features on journal\n");
1315                         return -EINVAL;
1316                 }
1317         }
1318
1319         /*
1320          * Create a slab for this blocksize
1321          */
1322         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1323         if (err)
1324                 return err;
1325
1326         /* Let the recovery code check whether it needs to recover any
1327          * data from the journal. */
1328         if (jbd2_journal_recover(journal))
1329                 goto recovery_error;
1330
1331         if (journal->j_failed_commit) {
1332                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1333                        "is corrupt.\n", journal->j_failed_commit,
1334                        journal->j_devname);
1335                 return -EIO;
1336         }
1337
1338         /* OK, we've finished with the dynamic journal bits:
1339          * reinitialise the dynamic contents of the superblock in memory
1340          * and reset them on disk. */
1341         if (journal_reset(journal))
1342                 goto recovery_error;
1343
1344         journal->j_flags &= ~JBD2_ABORT;
1345         journal->j_flags |= JBD2_LOADED;
1346         return 0;
1347
1348 recovery_error:
1349         printk (KERN_WARNING "JBD: recovery failed\n");
1350         return -EIO;
1351 }
1352
1353 /**
1354  * void jbd2_journal_destroy() - Release a journal_t structure.
1355  * @journal: Journal to act on.
1356  *
1357  * Release a journal_t structure once it is no longer in use by the
1358  * journaled object.
1359  * Return <0 if we couldn't clean up the journal.
1360  */
1361 int jbd2_journal_destroy(journal_t *journal)
1362 {
1363         int err = 0;
1364
1365         /* Wait for the commit thread to wake up and die. */
1366         journal_kill_thread(journal);
1367
1368         /* Force a final log commit */
1369         if (journal->j_running_transaction)
1370                 jbd2_journal_commit_transaction(journal);
1371
1372         /* Force any old transactions to disk */
1373
1374         /* Totally anal locking here... */
1375         spin_lock(&journal->j_list_lock);
1376         while (journal->j_checkpoint_transactions != NULL) {
1377                 spin_unlock(&journal->j_list_lock);
1378                 mutex_lock(&journal->j_checkpoint_mutex);
1379                 jbd2_log_do_checkpoint(journal);
1380                 mutex_unlock(&journal->j_checkpoint_mutex);
1381                 spin_lock(&journal->j_list_lock);
1382         }
1383
1384         J_ASSERT(journal->j_running_transaction == NULL);
1385         J_ASSERT(journal->j_committing_transaction == NULL);
1386         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1387         spin_unlock(&journal->j_list_lock);
1388
1389         if (journal->j_sb_buffer) {
1390                 if (!is_journal_aborted(journal)) {
1391                         /* We can now mark the journal as empty. */
1392                         journal->j_tail = 0;
1393                         journal->j_tail_sequence =
1394                                 ++journal->j_transaction_sequence;
1395                         jbd2_journal_update_superblock(journal, 1);
1396                 } else {
1397                         err = -EIO;
1398                 }
1399                 brelse(journal->j_sb_buffer);
1400         }
1401
1402         if (journal->j_proc_entry)
1403                 jbd2_stats_proc_exit(journal);
1404         if (journal->j_inode)
1405                 iput(journal->j_inode);
1406         if (journal->j_revoke)
1407                 jbd2_journal_destroy_revoke(journal);
1408         kfree(journal->j_wbuf);
1409         kfree(journal);
1410
1411         return err;
1412 }
1413
1414
1415 /**
1416  *int jbd2_journal_check_used_features () - Check if features specified are used.
1417  * @journal: Journal to check.
1418  * @compat: bitmask of compatible features
1419  * @ro: bitmask of features that force read-only mount
1420  * @incompat: bitmask of incompatible features
1421  *
1422  * Check whether the journal uses all of a given set of
1423  * features.  Return true (non-zero) if it does.
1424  **/
1425
1426 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1427                                  unsigned long ro, unsigned long incompat)
1428 {
1429         journal_superblock_t *sb;
1430
1431         if (!compat && !ro && !incompat)
1432                 return 1;
1433         /* Load journal superblock if it is not loaded yet. */
1434         if (journal->j_format_version == 0 &&
1435             journal_get_superblock(journal) != 0)
1436                 return 0;
1437         if (journal->j_format_version == 1)
1438                 return 0;
1439
1440         sb = journal->j_superblock;
1441
1442         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1443             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1444             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1445                 return 1;
1446
1447         return 0;
1448 }
1449
1450 /**
1451  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1452  * @journal: Journal to check.
1453  * @compat: bitmask of compatible features
1454  * @ro: bitmask of features that force read-only mount
1455  * @incompat: bitmask of incompatible features
1456  *
1457  * Check whether the journaling code supports the use of
1458  * all of a given set of features on this journal.  Return true
1459  * (non-zero) if it can. */
1460
1461 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1462                                       unsigned long ro, unsigned long incompat)
1463 {
1464         if (!compat && !ro && !incompat)
1465                 return 1;
1466
1467         /* We can support any known requested features iff the
1468          * superblock is in version 2.  Otherwise we fail to support any
1469          * extended sb features. */
1470
1471         if (journal->j_format_version != 2)
1472                 return 0;
1473
1474         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1475             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1476             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1477                 return 1;
1478
1479         return 0;
1480 }
1481
1482 /**
1483  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1484  * @journal: Journal to act on.
1485  * @compat: bitmask of compatible features
1486  * @ro: bitmask of features that force read-only mount
1487  * @incompat: bitmask of incompatible features
1488  *
1489  * Mark a given journal feature as present on the
1490  * superblock.  Returns true if the requested features could be set.
1491  *
1492  */
1493
1494 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1495                           unsigned long ro, unsigned long incompat)
1496 {
1497         journal_superblock_t *sb;
1498
1499         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1500                 return 1;
1501
1502         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1503                 return 0;
1504
1505         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1506                   compat, ro, incompat);
1507
1508         sb = journal->j_superblock;
1509
1510         sb->s_feature_compat    |= cpu_to_be32(compat);
1511         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1512         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1513
1514         return 1;
1515 }
1516
1517 /*
1518  * jbd2_journal_clear_features () - Clear a given journal feature in the
1519  *                                  superblock
1520  * @journal: Journal to act on.
1521  * @compat: bitmask of compatible features
1522  * @ro: bitmask of features that force read-only mount
1523  * @incompat: bitmask of incompatible features
1524  *
1525  * Clear a given journal feature as present on the
1526  * superblock.
1527  */
1528 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1529                                 unsigned long ro, unsigned long incompat)
1530 {
1531         journal_superblock_t *sb;
1532
1533         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1534                   compat, ro, incompat);
1535
1536         sb = journal->j_superblock;
1537
1538         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1539         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1540         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1541 }
1542 EXPORT_SYMBOL(jbd2_journal_clear_features);
1543
1544 /**
1545  * int jbd2_journal_update_format () - Update on-disk journal structure.
1546  * @journal: Journal to act on.
1547  *
1548  * Given an initialised but unloaded journal struct, poke about in the
1549  * on-disk structure to update it to the most recent supported version.
1550  */
1551 int jbd2_journal_update_format (journal_t *journal)
1552 {
1553         journal_superblock_t *sb;
1554         int err;
1555
1556         err = journal_get_superblock(journal);
1557         if (err)
1558                 return err;
1559
1560         sb = journal->j_superblock;
1561
1562         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1563         case JBD2_SUPERBLOCK_V2:
1564                 return 0;
1565         case JBD2_SUPERBLOCK_V1:
1566                 return journal_convert_superblock_v1(journal, sb);
1567         default:
1568                 break;
1569         }
1570         return -EINVAL;
1571 }
1572
1573 static int journal_convert_superblock_v1(journal_t *journal,
1574                                          journal_superblock_t *sb)
1575 {
1576         int offset, blocksize;
1577         struct buffer_head *bh;
1578
1579         printk(KERN_WARNING
1580                 "JBD: Converting superblock from version 1 to 2.\n");
1581
1582         /* Pre-initialise new fields to zero */
1583         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1584         blocksize = be32_to_cpu(sb->s_blocksize);
1585         memset(&sb->s_feature_compat, 0, blocksize-offset);
1586
1587         sb->s_nr_users = cpu_to_be32(1);
1588         sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1589         journal->j_format_version = 2;
1590
1591         bh = journal->j_sb_buffer;
1592         BUFFER_TRACE(bh, "marking dirty");
1593         mark_buffer_dirty(bh);
1594         sync_dirty_buffer(bh);
1595         return 0;
1596 }
1597
1598
1599 /**
1600  * int jbd2_journal_flush () - Flush journal
1601  * @journal: Journal to act on.
1602  *
1603  * Flush all data for a given journal to disk and empty the journal.
1604  * Filesystems can use this when remounting readonly to ensure that
1605  * recovery does not need to happen on remount.
1606  */
1607
1608 int jbd2_journal_flush(journal_t *journal)
1609 {
1610         int err = 0;
1611         transaction_t *transaction = NULL;
1612         unsigned long old_tail;
1613
1614         write_lock(&journal->j_state_lock);
1615
1616         /* Force everything buffered to the log... */
1617         if (journal->j_running_transaction) {
1618                 transaction = journal->j_running_transaction;
1619                 __jbd2_log_start_commit(journal, transaction->t_tid);
1620         } else if (journal->j_committing_transaction)
1621                 transaction = journal->j_committing_transaction;
1622
1623         /* Wait for the log commit to complete... */
1624         if (transaction) {
1625                 tid_t tid = transaction->t_tid;
1626
1627                 write_unlock(&journal->j_state_lock);
1628                 jbd2_log_wait_commit(journal, tid);
1629         } else {
1630                 write_unlock(&journal->j_state_lock);
1631         }
1632
1633         /* ...and flush everything in the log out to disk. */
1634         spin_lock(&journal->j_list_lock);
1635         while (!err && journal->j_checkpoint_transactions != NULL) {
1636                 spin_unlock(&journal->j_list_lock);
1637                 mutex_lock(&journal->j_checkpoint_mutex);
1638                 err = jbd2_log_do_checkpoint(journal);
1639                 mutex_unlock(&journal->j_checkpoint_mutex);
1640                 spin_lock(&journal->j_list_lock);
1641         }
1642         spin_unlock(&journal->j_list_lock);
1643
1644         if (is_journal_aborted(journal))
1645                 return -EIO;
1646
1647         jbd2_cleanup_journal_tail(journal);
1648
1649         /* Finally, mark the journal as really needing no recovery.
1650          * This sets s_start==0 in the underlying superblock, which is
1651          * the magic code for a fully-recovered superblock.  Any future
1652          * commits of data to the journal will restore the current
1653          * s_start value. */
1654         write_lock(&journal->j_state_lock);
1655         old_tail = journal->j_tail;
1656         journal->j_tail = 0;
1657         write_unlock(&journal->j_state_lock);
1658         jbd2_journal_update_superblock(journal, 1);
1659         write_lock(&journal->j_state_lock);
1660         journal->j_tail = old_tail;
1661
1662         J_ASSERT(!journal->j_running_transaction);
1663         J_ASSERT(!journal->j_committing_transaction);
1664         J_ASSERT(!journal->j_checkpoint_transactions);
1665         J_ASSERT(journal->j_head == journal->j_tail);
1666         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1667         write_unlock(&journal->j_state_lock);
1668         return 0;
1669 }
1670
1671 /**
1672  * int jbd2_journal_wipe() - Wipe journal contents
1673  * @journal: Journal to act on.
1674  * @write: flag (see below)
1675  *
1676  * Wipe out all of the contents of a journal, safely.  This will produce
1677  * a warning if the journal contains any valid recovery information.
1678  * Must be called between journal_init_*() and jbd2_journal_load().
1679  *
1680  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1681  * we merely suppress recovery.
1682  */
1683
1684 int jbd2_journal_wipe(journal_t *journal, int write)
1685 {
1686         int err = 0;
1687
1688         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1689
1690         err = load_superblock(journal);
1691         if (err)
1692                 return err;
1693
1694         if (!journal->j_tail)
1695                 goto no_recovery;
1696
1697         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1698                 write ? "Clearing" : "Ignoring");
1699
1700         err = jbd2_journal_skip_recovery(journal);
1701         if (write)
1702                 jbd2_journal_update_superblock(journal, 1);
1703
1704  no_recovery:
1705         return err;
1706 }
1707
1708 /*
1709  * Journal abort has very specific semantics, which we describe
1710  * for journal abort.
1711  *
1712  * Two internal functions, which provide abort to the jbd layer
1713  * itself are here.
1714  */
1715
1716 /*
1717  * Quick version for internal journal use (doesn't lock the journal).
1718  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1719  * and don't attempt to make any other journal updates.
1720  */
1721 void __jbd2_journal_abort_hard(journal_t *journal)
1722 {
1723         transaction_t *transaction;
1724
1725         if (journal->j_flags & JBD2_ABORT)
1726                 return;
1727
1728         printk(KERN_ERR "Aborting journal on device %s.\n",
1729                journal->j_devname);
1730
1731         write_lock(&journal->j_state_lock);
1732         journal->j_flags |= JBD2_ABORT;
1733         transaction = journal->j_running_transaction;
1734         if (transaction)
1735                 __jbd2_log_start_commit(journal, transaction->t_tid);
1736         write_unlock(&journal->j_state_lock);
1737 }
1738
1739 /* Soft abort: record the abort error status in the journal superblock,
1740  * but don't do any other IO. */
1741 static void __journal_abort_soft (journal_t *journal, int errno)
1742 {
1743         if (journal->j_flags & JBD2_ABORT)
1744                 return;
1745
1746         if (!journal->j_errno)
1747                 journal->j_errno = errno;
1748
1749         __jbd2_journal_abort_hard(journal);
1750
1751         if (errno)
1752                 jbd2_journal_update_superblock(journal, 1);
1753 }
1754
1755 /**
1756  * void jbd2_journal_abort () - Shutdown the journal immediately.
1757  * @journal: the journal to shutdown.
1758  * @errno:   an error number to record in the journal indicating
1759  *           the reason for the shutdown.
1760  *
1761  * Perform a complete, immediate shutdown of the ENTIRE
1762  * journal (not of a single transaction).  This operation cannot be
1763  * undone without closing and reopening the journal.
1764  *
1765  * The jbd2_journal_abort function is intended to support higher level error
1766  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1767  * mode.
1768  *
1769  * Journal abort has very specific semantics.  Any existing dirty,
1770  * unjournaled buffers in the main filesystem will still be written to
1771  * disk by bdflush, but the journaling mechanism will be suspended
1772  * immediately and no further transaction commits will be honoured.
1773  *
1774  * Any dirty, journaled buffers will be written back to disk without
1775  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1776  * filesystem, but we _do_ attempt to leave as much data as possible
1777  * behind for fsck to use for cleanup.
1778  *
1779  * Any attempt to get a new transaction handle on a journal which is in
1780  * ABORT state will just result in an -EROFS error return.  A
1781  * jbd2_journal_stop on an existing handle will return -EIO if we have
1782  * entered abort state during the update.
1783  *
1784  * Recursive transactions are not disturbed by journal abort until the
1785  * final jbd2_journal_stop, which will receive the -EIO error.
1786  *
1787  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1788  * which will be recorded (if possible) in the journal superblock.  This
1789  * allows a client to record failure conditions in the middle of a
1790  * transaction without having to complete the transaction to record the
1791  * failure to disk.  ext3_error, for example, now uses this
1792  * functionality.
1793  *
1794  * Errors which originate from within the journaling layer will NOT
1795  * supply an errno; a null errno implies that absolutely no further
1796  * writes are done to the journal (unless there are any already in
1797  * progress).
1798  *
1799  */
1800
1801 void jbd2_journal_abort(journal_t *journal, int errno)
1802 {
1803         __journal_abort_soft(journal, errno);
1804 }
1805
1806 /**
1807  * int jbd2_journal_errno () - returns the journal's error state.
1808  * @journal: journal to examine.
1809  *
1810  * This is the errno number set with jbd2_journal_abort(), the last
1811  * time the journal was mounted - if the journal was stopped
1812  * without calling abort this will be 0.
1813  *
1814  * If the journal has been aborted on this mount time -EROFS will
1815  * be returned.
1816  */
1817 int jbd2_journal_errno(journal_t *journal)
1818 {
1819         int err;
1820
1821         read_lock(&journal->j_state_lock);
1822         if (journal->j_flags & JBD2_ABORT)
1823                 err = -EROFS;
1824         else
1825                 err = journal->j_errno;
1826         read_unlock(&journal->j_state_lock);
1827         return err;
1828 }
1829
1830 /**
1831  * int jbd2_journal_clear_err () - clears the journal's error state
1832  * @journal: journal to act on.
1833  *
1834  * An error must be cleared or acked to take a FS out of readonly
1835  * mode.
1836  */
1837 int jbd2_journal_clear_err(journal_t *journal)
1838 {
1839         int err = 0;
1840
1841         write_lock(&journal->j_state_lock);
1842         if (journal->j_flags & JBD2_ABORT)
1843                 err = -EROFS;
1844         else
1845                 journal->j_errno = 0;
1846         write_unlock(&journal->j_state_lock);
1847         return err;
1848 }
1849
1850 /**
1851  * void jbd2_journal_ack_err() - Ack journal err.
1852  * @journal: journal to act on.
1853  *
1854  * An error must be cleared or acked to take a FS out of readonly
1855  * mode.
1856  */
1857 void jbd2_journal_ack_err(journal_t *journal)
1858 {
1859         write_lock(&journal->j_state_lock);
1860         if (journal->j_errno)
1861                 journal->j_flags |= JBD2_ACK_ERR;
1862         write_unlock(&journal->j_state_lock);
1863 }
1864
1865 int jbd2_journal_blocks_per_page(struct inode *inode)
1866 {
1867         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1868 }
1869
1870 /*
1871  * helper functions to deal with 32 or 64bit block numbers.
1872  */
1873 size_t journal_tag_bytes(journal_t *journal)
1874 {
1875         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1876                 return JBD2_TAG_SIZE64;
1877         else
1878                 return JBD2_TAG_SIZE32;
1879 }
1880
1881 /*
1882  * JBD memory management
1883  *
1884  * These functions are used to allocate block-sized chunks of memory
1885  * used for making copies of buffer_head data.  Very often it will be
1886  * page-sized chunks of data, but sometimes it will be in
1887  * sub-page-size chunks.  (For example, 16k pages on Power systems
1888  * with a 4k block file system.)  For blocks smaller than a page, we
1889  * use a SLAB allocator.  There are slab caches for each block size,
1890  * which are allocated at mount time, if necessary, and we only free
1891  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1892  * this reason we don't need to a mutex to protect access to
1893  * jbd2_slab[] allocating or releasing memory; only in
1894  * jbd2_journal_create_slab().
1895  */
1896 #define JBD2_MAX_SLABS 8
1897 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1898
1899 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1900         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1901         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1902 };
1903
1904
1905 static void jbd2_journal_destroy_slabs(void)
1906 {
1907         int i;
1908
1909         for (i = 0; i < JBD2_MAX_SLABS; i++) {
1910                 if (jbd2_slab[i])
1911                         kmem_cache_destroy(jbd2_slab[i]);
1912                 jbd2_slab[i] = NULL;
1913         }
1914 }
1915
1916 static int jbd2_journal_create_slab(size_t size)
1917 {
1918         static DEFINE_MUTEX(jbd2_slab_create_mutex);
1919         int i = order_base_2(size) - 10;
1920         size_t slab_size;
1921
1922         if (size == PAGE_SIZE)
1923                 return 0;
1924
1925         if (i >= JBD2_MAX_SLABS)
1926                 return -EINVAL;
1927
1928         if (unlikely(i < 0))
1929                 i = 0;
1930         mutex_lock(&jbd2_slab_create_mutex);
1931         if (jbd2_slab[i]) {
1932                 mutex_unlock(&jbd2_slab_create_mutex);
1933                 return 0;       /* Already created */
1934         }
1935
1936         slab_size = 1 << (i+10);
1937         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1938                                          slab_size, 0, NULL);
1939         mutex_unlock(&jbd2_slab_create_mutex);
1940         if (!jbd2_slab[i]) {
1941                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1942                 return -ENOMEM;
1943         }
1944         return 0;
1945 }
1946
1947 static struct kmem_cache *get_slab(size_t size)
1948 {
1949         int i = order_base_2(size) - 10;
1950
1951         BUG_ON(i >= JBD2_MAX_SLABS);
1952         if (unlikely(i < 0))
1953                 i = 0;
1954         BUG_ON(jbd2_slab[i] == NULL);
1955         return jbd2_slab[i];
1956 }
1957
1958 void *jbd2_alloc(size_t size, gfp_t flags)
1959 {
1960         void *ptr;
1961
1962         BUG_ON(size & (size-1)); /* Must be a power of 2 */
1963
1964         flags |= __GFP_REPEAT;
1965         if (size == PAGE_SIZE)
1966                 ptr = (void *)__get_free_pages(flags, 0);
1967         else if (size > PAGE_SIZE) {
1968                 int order = get_order(size);
1969
1970                 if (order < 3)
1971                         ptr = (void *)__get_free_pages(flags, order);
1972                 else
1973                         ptr = vmalloc(size);
1974         } else
1975                 ptr = kmem_cache_alloc(get_slab(size), flags);
1976
1977         /* Check alignment; SLUB has gotten this wrong in the past,
1978          * and this can lead to user data corruption! */
1979         BUG_ON(((unsigned long) ptr) & (size-1));
1980
1981         return ptr;
1982 }
1983
1984 void jbd2_free(void *ptr, size_t size)
1985 {
1986         if (size == PAGE_SIZE) {
1987                 free_pages((unsigned long)ptr, 0);
1988                 return;
1989         }
1990         if (size > PAGE_SIZE) {
1991                 int order = get_order(size);
1992
1993                 if (order < 3)
1994                         free_pages((unsigned long)ptr, order);
1995                 else
1996                         vfree(ptr);
1997                 return;
1998         }
1999         kmem_cache_free(get_slab(size), ptr);
2000 };
2001
2002 /*
2003  * Journal_head storage management
2004  */
2005 static struct kmem_cache *jbd2_journal_head_cache;
2006 #ifdef CONFIG_JBD2_DEBUG
2007 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2008 #endif
2009
2010 static int journal_init_jbd2_journal_head_cache(void)
2011 {
2012         int retval;
2013
2014         J_ASSERT(jbd2_journal_head_cache == NULL);
2015         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2016                                 sizeof(struct journal_head),
2017                                 0,              /* offset */
2018                                 SLAB_TEMPORARY, /* flags */
2019                                 NULL);          /* ctor */
2020         retval = 0;
2021         if (!jbd2_journal_head_cache) {
2022                 retval = -ENOMEM;
2023                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
2024         }
2025         return retval;
2026 }
2027
2028 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
2029 {
2030         if (jbd2_journal_head_cache) {
2031                 kmem_cache_destroy(jbd2_journal_head_cache);
2032                 jbd2_journal_head_cache = NULL;
2033         }
2034 }
2035
2036 /*
2037  * journal_head splicing and dicing
2038  */
2039 static struct journal_head *journal_alloc_journal_head(void)
2040 {
2041         struct journal_head *ret;
2042
2043 #ifdef CONFIG_JBD2_DEBUG
2044         atomic_inc(&nr_journal_heads);
2045 #endif
2046         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2047         if (!ret) {
2048                 jbd_debug(1, "out of memory for journal_head\n");
2049                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2050                 while (!ret) {
2051                         yield();
2052                         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2053                 }
2054         }
2055         return ret;
2056 }
2057
2058 static void journal_free_journal_head(struct journal_head *jh)
2059 {
2060 #ifdef CONFIG_JBD2_DEBUG
2061         atomic_dec(&nr_journal_heads);
2062         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2063 #endif
2064         kmem_cache_free(jbd2_journal_head_cache, jh);
2065 }
2066
2067 /*
2068  * A journal_head is attached to a buffer_head whenever JBD has an
2069  * interest in the buffer.
2070  *
2071  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2072  * is set.  This bit is tested in core kernel code where we need to take
2073  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2074  * there.
2075  *
2076  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2077  *
2078  * When a buffer has its BH_JBD bit set it is immune from being released by
2079  * core kernel code, mainly via ->b_count.
2080  *
2081  * A journal_head is detached from its buffer_head when the journal_head's
2082  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2083  * transaction (b_cp_transaction) hold their references to b_jcount.
2084  *
2085  * Various places in the kernel want to attach a journal_head to a buffer_head
2086  * _before_ attaching the journal_head to a transaction.  To protect the
2087  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2088  * journal_head's b_jcount refcount by one.  The caller must call
2089  * jbd2_journal_put_journal_head() to undo this.
2090  *
2091  * So the typical usage would be:
2092  *
2093  *      (Attach a journal_head if needed.  Increments b_jcount)
2094  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2095  *      ...
2096  *      (Get another reference for transaction)
2097  *      jbd2_journal_grab_journal_head(bh);
2098  *      jh->b_transaction = xxx;
2099  *      (Put original reference)
2100  *      jbd2_journal_put_journal_head(jh);
2101  */
2102
2103 /*
2104  * Give a buffer_head a journal_head.
2105  *
2106  * May sleep.
2107  */
2108 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2109 {
2110         struct journal_head *jh;
2111         struct journal_head *new_jh = NULL;
2112
2113 repeat:
2114         if (!buffer_jbd(bh)) {
2115                 new_jh = journal_alloc_journal_head();
2116                 memset(new_jh, 0, sizeof(*new_jh));
2117         }
2118
2119         jbd_lock_bh_journal_head(bh);
2120         if (buffer_jbd(bh)) {
2121                 jh = bh2jh(bh);
2122         } else {
2123                 J_ASSERT_BH(bh,
2124                         (atomic_read(&bh->b_count) > 0) ||
2125                         (bh->b_page && bh->b_page->mapping));
2126
2127                 if (!new_jh) {
2128                         jbd_unlock_bh_journal_head(bh);
2129                         goto repeat;
2130                 }
2131
2132                 jh = new_jh;
2133                 new_jh = NULL;          /* We consumed it */
2134                 set_buffer_jbd(bh);
2135                 bh->b_private = jh;
2136                 jh->b_bh = bh;
2137                 get_bh(bh);
2138                 BUFFER_TRACE(bh, "added journal_head");
2139         }
2140         jh->b_jcount++;
2141         jbd_unlock_bh_journal_head(bh);
2142         if (new_jh)
2143                 journal_free_journal_head(new_jh);
2144         return bh->b_private;
2145 }
2146
2147 /*
2148  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2149  * having a journal_head, return NULL
2150  */
2151 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2152 {
2153         struct journal_head *jh = NULL;
2154
2155         jbd_lock_bh_journal_head(bh);
2156         if (buffer_jbd(bh)) {
2157                 jh = bh2jh(bh);
2158                 jh->b_jcount++;
2159         }
2160         jbd_unlock_bh_journal_head(bh);
2161         return jh;
2162 }
2163
2164 static void __journal_remove_journal_head(struct buffer_head *bh)
2165 {
2166         struct journal_head *jh = bh2jh(bh);
2167
2168         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2169         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2170         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2171         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2172         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2173         J_ASSERT_BH(bh, buffer_jbd(bh));
2174         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2175         BUFFER_TRACE(bh, "remove journal_head");
2176         if (jh->b_frozen_data) {
2177                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2178                 jbd2_free(jh->b_frozen_data, bh->b_size);
2179         }
2180         if (jh->b_committed_data) {
2181                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2182                 jbd2_free(jh->b_committed_data, bh->b_size);
2183         }
2184         bh->b_private = NULL;
2185         jh->b_bh = NULL;        /* debug, really */
2186         clear_buffer_jbd(bh);
2187         journal_free_journal_head(jh);
2188 }
2189
2190 /*
2191  * Drop a reference on the passed journal_head.  If it fell to zero then
2192  * release the journal_head from the buffer_head.
2193  */
2194 void jbd2_journal_put_journal_head(struct journal_head *jh)
2195 {
2196         struct buffer_head *bh = jh2bh(jh);
2197
2198         jbd_lock_bh_journal_head(bh);
2199         J_ASSERT_JH(jh, jh->b_jcount > 0);
2200         --jh->b_jcount;
2201         if (!jh->b_jcount) {
2202                 __journal_remove_journal_head(bh);
2203                 jbd_unlock_bh_journal_head(bh);
2204                 __brelse(bh);
2205         } else
2206                 jbd_unlock_bh_journal_head(bh);
2207 }
2208
2209 /*
2210  * Initialize jbd inode head
2211  */
2212 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2213 {
2214         jinode->i_transaction = NULL;
2215         jinode->i_next_transaction = NULL;
2216         jinode->i_vfs_inode = inode;
2217         jinode->i_flags = 0;
2218         INIT_LIST_HEAD(&jinode->i_list);
2219 }
2220
2221 /*
2222  * Function to be called before we start removing inode from memory (i.e.,
2223  * clear_inode() is a fine place to be called from). It removes inode from
2224  * transaction's lists.
2225  */
2226 void jbd2_journal_release_jbd_inode(journal_t *journal,
2227                                     struct jbd2_inode *jinode)
2228 {
2229         if (!journal)
2230                 return;
2231 restart:
2232         spin_lock(&journal->j_list_lock);
2233         /* Is commit writing out inode - we have to wait */
2234         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2235                 wait_queue_head_t *wq;
2236                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2237                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2238                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2239                 spin_unlock(&journal->j_list_lock);
2240                 schedule();
2241                 finish_wait(wq, &wait.wait);
2242                 goto restart;
2243         }
2244
2245         if (jinode->i_transaction) {
2246                 list_del(&jinode->i_list);
2247                 jinode->i_transaction = NULL;
2248         }
2249         spin_unlock(&journal->j_list_lock);
2250 }
2251
2252 /*
2253  * debugfs tunables
2254  */
2255 #ifdef CONFIG_JBD2_DEBUG
2256 u8 jbd2_journal_enable_debug __read_mostly;
2257 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2258
2259 #define JBD2_DEBUG_NAME "jbd2-debug"
2260
2261 static struct dentry *jbd2_debugfs_dir;
2262 static struct dentry *jbd2_debug;
2263
2264 static void __init jbd2_create_debugfs_entry(void)
2265 {
2266         jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2267         if (jbd2_debugfs_dir)
2268                 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2269                                                S_IRUGO | S_IWUSR,
2270                                                jbd2_debugfs_dir,
2271                                                &jbd2_journal_enable_debug);
2272 }
2273
2274 static void __exit jbd2_remove_debugfs_entry(void)
2275 {
2276         debugfs_remove(jbd2_debug);
2277         debugfs_remove(jbd2_debugfs_dir);
2278 }
2279
2280 #else
2281
2282 static void __init jbd2_create_debugfs_entry(void)
2283 {
2284 }
2285
2286 static void __exit jbd2_remove_debugfs_entry(void)
2287 {
2288 }
2289
2290 #endif
2291
2292 #ifdef CONFIG_PROC_FS
2293
2294 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2295
2296 static void __init jbd2_create_jbd_stats_proc_entry(void)
2297 {
2298         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2299 }
2300
2301 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2302 {
2303         if (proc_jbd2_stats)
2304                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2305 }
2306
2307 #else
2308
2309 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2310 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2311
2312 #endif
2313
2314 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2315
2316 static int __init journal_init_handle_cache(void)
2317 {
2318         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2319         if (jbd2_handle_cache == NULL) {
2320                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2321                 return -ENOMEM;
2322         }
2323         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2324         if (jbd2_inode_cache == NULL) {
2325                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2326                 kmem_cache_destroy(jbd2_handle_cache);
2327                 return -ENOMEM;
2328         }
2329         return 0;
2330 }
2331
2332 static void jbd2_journal_destroy_handle_cache(void)
2333 {
2334         if (jbd2_handle_cache)
2335                 kmem_cache_destroy(jbd2_handle_cache);
2336         if (jbd2_inode_cache)
2337                 kmem_cache_destroy(jbd2_inode_cache);
2338
2339 }
2340
2341 /*
2342  * Module startup and shutdown
2343  */
2344
2345 static int __init journal_init_caches(void)
2346 {
2347         int ret;
2348
2349         ret = jbd2_journal_init_revoke_caches();
2350         if (ret == 0)
2351                 ret = journal_init_jbd2_journal_head_cache();
2352         if (ret == 0)
2353                 ret = journal_init_handle_cache();
2354         return ret;
2355 }
2356
2357 static void jbd2_journal_destroy_caches(void)
2358 {
2359         jbd2_journal_destroy_revoke_caches();
2360         jbd2_journal_destroy_jbd2_journal_head_cache();
2361         jbd2_journal_destroy_handle_cache();
2362         jbd2_journal_destroy_slabs();
2363 }
2364
2365 static int __init journal_init(void)
2366 {
2367         int ret;
2368
2369         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2370
2371         ret = journal_init_caches();
2372         if (ret == 0) {
2373                 jbd2_create_debugfs_entry();
2374                 jbd2_create_jbd_stats_proc_entry();
2375         } else {
2376                 jbd2_journal_destroy_caches();
2377         }
2378         return ret;
2379 }
2380
2381 static void __exit journal_exit(void)
2382 {
2383 #ifdef CONFIG_JBD2_DEBUG
2384         int n = atomic_read(&nr_journal_heads);
2385         if (n)
2386                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2387 #endif
2388         jbd2_remove_debugfs_entry();
2389         jbd2_remove_jbd_stats_proc_entry();
2390         jbd2_journal_destroy_caches();
2391 }
2392
2393 /* 
2394  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 
2395  * tracing infrastructure to map a dev_t to a device name.
2396  *
2397  * The caller should use rcu_read_lock() in order to make sure the
2398  * device name stays valid until its done with it.  We use
2399  * rcu_read_lock() as well to make sure we're safe in case the caller
2400  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2401  * nested.
2402  */
2403 struct devname_cache {
2404         struct rcu_head rcu;
2405         dev_t           device;
2406         char            devname[BDEVNAME_SIZE];
2407 };
2408 #define CACHE_SIZE_BITS 6
2409 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2410 static DEFINE_SPINLOCK(devname_cache_lock);
2411
2412 static void free_devcache(struct rcu_head *rcu)
2413 {
2414         kfree(rcu);
2415 }
2416
2417 const char *jbd2_dev_to_name(dev_t device)
2418 {
2419         int     i = hash_32(device, CACHE_SIZE_BITS);
2420         char    *ret;
2421         struct block_device *bd;
2422         static struct devname_cache *new_dev;
2423
2424         rcu_read_lock();
2425         if (devcache[i] && devcache[i]->device == device) {
2426                 ret = devcache[i]->devname;
2427                 rcu_read_unlock();
2428                 return ret;
2429         }
2430         rcu_read_unlock();
2431
2432         new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2433         if (!new_dev)
2434                 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2435         bd = bdget(device);
2436         spin_lock(&devname_cache_lock);
2437         if (devcache[i]) {
2438                 if (devcache[i]->device == device) {
2439                         kfree(new_dev);
2440                         bdput(bd);
2441                         ret = devcache[i]->devname;
2442                         spin_unlock(&devname_cache_lock);
2443                         return ret;
2444                 }
2445                 call_rcu(&devcache[i]->rcu, free_devcache);
2446         }
2447         devcache[i] = new_dev;
2448         devcache[i]->device = device;
2449         if (bd) {
2450                 bdevname(bd, devcache[i]->devname);
2451                 bdput(bd);
2452         } else
2453                 __bdevname(device, devcache[i]->devname);
2454         ret = devcache[i]->devname;
2455         spin_unlock(&devname_cache_lock);
2456         return ret;
2457 }
2458 EXPORT_SYMBOL(jbd2_dev_to_name);
2459
2460 MODULE_LICENSE("GPL");
2461 module_init(journal_init);
2462 module_exit(journal_exit);
2463