fix file specification in comments
[pandora-kernel.git] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/mm.h>
34 #include <linux/suspend.h>
35 #include <linux/pagemap.h>
36 #include <linux/kthread.h>
37 #include <linux/poison.h>
38 #include <linux/proc_fs.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/page.h>
42
43 EXPORT_SYMBOL(journal_start);
44 EXPORT_SYMBOL(journal_restart);
45 EXPORT_SYMBOL(journal_extend);
46 EXPORT_SYMBOL(journal_stop);
47 EXPORT_SYMBOL(journal_lock_updates);
48 EXPORT_SYMBOL(journal_unlock_updates);
49 EXPORT_SYMBOL(journal_get_write_access);
50 EXPORT_SYMBOL(journal_get_create_access);
51 EXPORT_SYMBOL(journal_get_undo_access);
52 EXPORT_SYMBOL(journal_dirty_data);
53 EXPORT_SYMBOL(journal_dirty_metadata);
54 EXPORT_SYMBOL(journal_release_buffer);
55 EXPORT_SYMBOL(journal_forget);
56 #if 0
57 EXPORT_SYMBOL(journal_sync_buffer);
58 #endif
59 EXPORT_SYMBOL(journal_flush);
60 EXPORT_SYMBOL(journal_revoke);
61
62 EXPORT_SYMBOL(journal_init_dev);
63 EXPORT_SYMBOL(journal_init_inode);
64 EXPORT_SYMBOL(journal_update_format);
65 EXPORT_SYMBOL(journal_check_used_features);
66 EXPORT_SYMBOL(journal_check_available_features);
67 EXPORT_SYMBOL(journal_set_features);
68 EXPORT_SYMBOL(journal_create);
69 EXPORT_SYMBOL(journal_load);
70 EXPORT_SYMBOL(journal_destroy);
71 EXPORT_SYMBOL(journal_update_superblock);
72 EXPORT_SYMBOL(journal_abort);
73 EXPORT_SYMBOL(journal_errno);
74 EXPORT_SYMBOL(journal_ack_err);
75 EXPORT_SYMBOL(journal_clear_err);
76 EXPORT_SYMBOL(log_wait_commit);
77 EXPORT_SYMBOL(journal_start_commit);
78 EXPORT_SYMBOL(journal_force_commit_nested);
79 EXPORT_SYMBOL(journal_wipe);
80 EXPORT_SYMBOL(journal_blocks_per_page);
81 EXPORT_SYMBOL(journal_invalidatepage);
82 EXPORT_SYMBOL(journal_try_to_free_buffers);
83 EXPORT_SYMBOL(journal_force_commit);
84
85 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
86 static void __journal_abort_soft (journal_t *journal, int errno);
87 static int journal_create_jbd_slab(size_t slab_size);
88
89 /*
90  * Helper function used to manage commit timeouts
91  */
92
93 static void commit_timeout(unsigned long __data)
94 {
95         struct task_struct * p = (struct task_struct *) __data;
96
97         wake_up_process(p);
98 }
99
100 /*
101  * kjournald: The main thread function used to manage a logging device
102  * journal.
103  *
104  * This kernel thread is responsible for two things:
105  *
106  * 1) COMMIT:  Every so often we need to commit the current state of the
107  *    filesystem to disk.  The journal thread is responsible for writing
108  *    all of the metadata buffers to disk.
109  *
110  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
111  *    of the data in that part of the log has been rewritten elsewhere on
112  *    the disk.  Flushing these old buffers to reclaim space in the log is
113  *    known as checkpointing, and this thread is responsible for that job.
114  */
115
116 static int kjournald(void *arg)
117 {
118         journal_t *journal = arg;
119         transaction_t *transaction;
120
121         /*
122          * Set up an interval timer which can be used to trigger a commit wakeup
123          * after the commit interval expires
124          */
125         setup_timer(&journal->j_commit_timer, commit_timeout,
126                         (unsigned long)current);
127
128         /* Record that the journal thread is running */
129         journal->j_task = current;
130         wake_up(&journal->j_wait_done_commit);
131
132         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
133                         journal->j_commit_interval / HZ);
134
135         /*
136          * And now, wait forever for commit wakeup events.
137          */
138         spin_lock(&journal->j_state_lock);
139
140 loop:
141         if (journal->j_flags & JFS_UNMOUNT)
142                 goto end_loop;
143
144         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
145                 journal->j_commit_sequence, journal->j_commit_request);
146
147         if (journal->j_commit_sequence != journal->j_commit_request) {
148                 jbd_debug(1, "OK, requests differ\n");
149                 spin_unlock(&journal->j_state_lock);
150                 del_timer_sync(&journal->j_commit_timer);
151                 journal_commit_transaction(journal);
152                 spin_lock(&journal->j_state_lock);
153                 goto loop;
154         }
155
156         wake_up(&journal->j_wait_done_commit);
157         if (freezing(current)) {
158                 /*
159                  * The simpler the better. Flushing journal isn't a
160                  * good idea, because that depends on threads that may
161                  * be already stopped.
162                  */
163                 jbd_debug(1, "Now suspending kjournald\n");
164                 spin_unlock(&journal->j_state_lock);
165                 refrigerator();
166                 spin_lock(&journal->j_state_lock);
167         } else {
168                 /*
169                  * We assume on resume that commits are already there,
170                  * so we don't sleep
171                  */
172                 DEFINE_WAIT(wait);
173                 int should_sleep = 1;
174
175                 prepare_to_wait(&journal->j_wait_commit, &wait,
176                                 TASK_INTERRUPTIBLE);
177                 if (journal->j_commit_sequence != journal->j_commit_request)
178                         should_sleep = 0;
179                 transaction = journal->j_running_transaction;
180                 if (transaction && time_after_eq(jiffies,
181                                                 transaction->t_expires))
182                         should_sleep = 0;
183                 if (journal->j_flags & JFS_UNMOUNT)
184                         should_sleep = 0;
185                 if (should_sleep) {
186                         spin_unlock(&journal->j_state_lock);
187                         schedule();
188                         spin_lock(&journal->j_state_lock);
189                 }
190                 finish_wait(&journal->j_wait_commit, &wait);
191         }
192
193         jbd_debug(1, "kjournald wakes\n");
194
195         /*
196          * Were we woken up by a commit wakeup event?
197          */
198         transaction = journal->j_running_transaction;
199         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
200                 journal->j_commit_request = transaction->t_tid;
201                 jbd_debug(1, "woke because of timeout\n");
202         }
203         goto loop;
204
205 end_loop:
206         spin_unlock(&journal->j_state_lock);
207         del_timer_sync(&journal->j_commit_timer);
208         journal->j_task = NULL;
209         wake_up(&journal->j_wait_done_commit);
210         jbd_debug(1, "Journal thread exiting.\n");
211         return 0;
212 }
213
214 static void journal_start_thread(journal_t *journal)
215 {
216         kthread_run(kjournald, journal, "kjournald");
217         wait_event(journal->j_wait_done_commit, journal->j_task != 0);
218 }
219
220 static void journal_kill_thread(journal_t *journal)
221 {
222         spin_lock(&journal->j_state_lock);
223         journal->j_flags |= JFS_UNMOUNT;
224
225         while (journal->j_task) {
226                 wake_up(&journal->j_wait_commit);
227                 spin_unlock(&journal->j_state_lock);
228                 wait_event(journal->j_wait_done_commit, journal->j_task == 0);
229                 spin_lock(&journal->j_state_lock);
230         }
231         spin_unlock(&journal->j_state_lock);
232 }
233
234 /*
235  * journal_write_metadata_buffer: write a metadata buffer to the journal.
236  *
237  * Writes a metadata buffer to a given disk block.  The actual IO is not
238  * performed but a new buffer_head is constructed which labels the data
239  * to be written with the correct destination disk block.
240  *
241  * Any magic-number escaping which needs to be done will cause a
242  * copy-out here.  If the buffer happens to start with the
243  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
244  * magic number is only written to the log for descripter blocks.  In
245  * this case, we copy the data and replace the first word with 0, and we
246  * return a result code which indicates that this buffer needs to be
247  * marked as an escaped buffer in the corresponding log descriptor
248  * block.  The missing word can then be restored when the block is read
249  * during recovery.
250  *
251  * If the source buffer has already been modified by a new transaction
252  * since we took the last commit snapshot, we use the frozen copy of
253  * that data for IO.  If we end up using the existing buffer_head's data
254  * for the write, then we *have* to lock the buffer to prevent anyone
255  * else from using and possibly modifying it while the IO is in
256  * progress.
257  *
258  * The function returns a pointer to the buffer_heads to be used for IO.
259  *
260  * We assume that the journal has already been locked in this function.
261  *
262  * Return value:
263  *  <0: Error
264  * >=0: Finished OK
265  *
266  * On success:
267  * Bit 0 set == escape performed on the data
268  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
269  */
270
271 int journal_write_metadata_buffer(transaction_t *transaction,
272                                   struct journal_head  *jh_in,
273                                   struct journal_head **jh_out,
274                                   unsigned long blocknr)
275 {
276         int need_copy_out = 0;
277         int done_copy_out = 0;
278         int do_escape = 0;
279         char *mapped_data;
280         struct buffer_head *new_bh;
281         struct journal_head *new_jh;
282         struct page *new_page;
283         unsigned int new_offset;
284         struct buffer_head *bh_in = jh2bh(jh_in);
285
286         /*
287          * The buffer really shouldn't be locked: only the current committing
288          * transaction is allowed to write it, so nobody else is allowed
289          * to do any IO.
290          *
291          * akpm: except if we're journalling data, and write() output is
292          * also part of a shared mapping, and another thread has
293          * decided to launch a writepage() against this buffer.
294          */
295         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
296
297         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
298
299         /*
300          * If a new transaction has already done a buffer copy-out, then
301          * we use that version of the data for the commit.
302          */
303         jbd_lock_bh_state(bh_in);
304 repeat:
305         if (jh_in->b_frozen_data) {
306                 done_copy_out = 1;
307                 new_page = virt_to_page(jh_in->b_frozen_data);
308                 new_offset = offset_in_page(jh_in->b_frozen_data);
309         } else {
310                 new_page = jh2bh(jh_in)->b_page;
311                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
312         }
313
314         mapped_data = kmap_atomic(new_page, KM_USER0);
315         /*
316          * Check for escaping
317          */
318         if (*((__be32 *)(mapped_data + new_offset)) ==
319                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
320                 need_copy_out = 1;
321                 do_escape = 1;
322         }
323         kunmap_atomic(mapped_data, KM_USER0);
324
325         /*
326          * Do we need to do a data copy?
327          */
328         if (need_copy_out && !done_copy_out) {
329                 char *tmp;
330
331                 jbd_unlock_bh_state(bh_in);
332                 tmp = jbd_slab_alloc(bh_in->b_size, GFP_NOFS);
333                 jbd_lock_bh_state(bh_in);
334                 if (jh_in->b_frozen_data) {
335                         jbd_slab_free(tmp, bh_in->b_size);
336                         goto repeat;
337                 }
338
339                 jh_in->b_frozen_data = tmp;
340                 mapped_data = kmap_atomic(new_page, KM_USER0);
341                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
342                 kunmap_atomic(mapped_data, KM_USER0);
343
344                 new_page = virt_to_page(tmp);
345                 new_offset = offset_in_page(tmp);
346                 done_copy_out = 1;
347         }
348
349         /*
350          * Did we need to do an escaping?  Now we've done all the
351          * copying, we can finally do so.
352          */
353         if (do_escape) {
354                 mapped_data = kmap_atomic(new_page, KM_USER0);
355                 *((unsigned int *)(mapped_data + new_offset)) = 0;
356                 kunmap_atomic(mapped_data, KM_USER0);
357         }
358
359         /* keep subsequent assertions sane */
360         new_bh->b_state = 0;
361         init_buffer(new_bh, NULL, NULL);
362         atomic_set(&new_bh->b_count, 1);
363         jbd_unlock_bh_state(bh_in);
364
365         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
366
367         set_bh_page(new_bh, new_page, new_offset);
368         new_jh->b_transaction = NULL;
369         new_bh->b_size = jh2bh(jh_in)->b_size;
370         new_bh->b_bdev = transaction->t_journal->j_dev;
371         new_bh->b_blocknr = blocknr;
372         set_buffer_mapped(new_bh);
373         set_buffer_dirty(new_bh);
374
375         *jh_out = new_jh;
376
377         /*
378          * The to-be-written buffer needs to get moved to the io queue,
379          * and the original buffer whose contents we are shadowing or
380          * copying is moved to the transaction's shadow queue.
381          */
382         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
383         journal_file_buffer(jh_in, transaction, BJ_Shadow);
384         JBUFFER_TRACE(new_jh, "file as BJ_IO");
385         journal_file_buffer(new_jh, transaction, BJ_IO);
386
387         return do_escape | (done_copy_out << 1);
388 }
389
390 /*
391  * Allocation code for the journal file.  Manage the space left in the
392  * journal, so that we can begin checkpointing when appropriate.
393  */
394
395 /*
396  * __log_space_left: Return the number of free blocks left in the journal.
397  *
398  * Called with the journal already locked.
399  *
400  * Called under j_state_lock
401  */
402
403 int __log_space_left(journal_t *journal)
404 {
405         int left = journal->j_free;
406
407         assert_spin_locked(&journal->j_state_lock);
408
409         /*
410          * Be pessimistic here about the number of those free blocks which
411          * might be required for log descriptor control blocks.
412          */
413
414 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
415
416         left -= MIN_LOG_RESERVED_BLOCKS;
417
418         if (left <= 0)
419                 return 0;
420         left -= (left >> 3);
421         return left;
422 }
423
424 /*
425  * Called under j_state_lock.  Returns true if a transaction was started.
426  */
427 int __log_start_commit(journal_t *journal, tid_t target)
428 {
429         /*
430          * Are we already doing a recent enough commit?
431          */
432         if (!tid_geq(journal->j_commit_request, target)) {
433                 /*
434                  * We want a new commit: OK, mark the request and wakup the
435                  * commit thread.  We do _not_ do the commit ourselves.
436                  */
437
438                 journal->j_commit_request = target;
439                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
440                           journal->j_commit_request,
441                           journal->j_commit_sequence);
442                 wake_up(&journal->j_wait_commit);
443                 return 1;
444         }
445         return 0;
446 }
447
448 int log_start_commit(journal_t *journal, tid_t tid)
449 {
450         int ret;
451
452         spin_lock(&journal->j_state_lock);
453         ret = __log_start_commit(journal, tid);
454         spin_unlock(&journal->j_state_lock);
455         return ret;
456 }
457
458 /*
459  * Force and wait upon a commit if the calling process is not within
460  * transaction.  This is used for forcing out undo-protected data which contains
461  * bitmaps, when the fs is running out of space.
462  *
463  * We can only force the running transaction if we don't have an active handle;
464  * otherwise, we will deadlock.
465  *
466  * Returns true if a transaction was started.
467  */
468 int journal_force_commit_nested(journal_t *journal)
469 {
470         transaction_t *transaction = NULL;
471         tid_t tid;
472
473         spin_lock(&journal->j_state_lock);
474         if (journal->j_running_transaction && !current->journal_info) {
475                 transaction = journal->j_running_transaction;
476                 __log_start_commit(journal, transaction->t_tid);
477         } else if (journal->j_committing_transaction)
478                 transaction = journal->j_committing_transaction;
479
480         if (!transaction) {
481                 spin_unlock(&journal->j_state_lock);
482                 return 0;       /* Nothing to retry */
483         }
484
485         tid = transaction->t_tid;
486         spin_unlock(&journal->j_state_lock);
487         log_wait_commit(journal, tid);
488         return 1;
489 }
490
491 /*
492  * Start a commit of the current running transaction (if any).  Returns true
493  * if a transaction was started, and fills its tid in at *ptid
494  */
495 int journal_start_commit(journal_t *journal, tid_t *ptid)
496 {
497         int ret = 0;
498
499         spin_lock(&journal->j_state_lock);
500         if (journal->j_running_transaction) {
501                 tid_t tid = journal->j_running_transaction->t_tid;
502
503                 ret = __log_start_commit(journal, tid);
504                 if (ret && ptid)
505                         *ptid = tid;
506         } else if (journal->j_committing_transaction && ptid) {
507                 /*
508                  * If ext3_write_super() recently started a commit, then we
509                  * have to wait for completion of that transaction
510                  */
511                 *ptid = journal->j_committing_transaction->t_tid;
512                 ret = 1;
513         }
514         spin_unlock(&journal->j_state_lock);
515         return ret;
516 }
517
518 /*
519  * Wait for a specified commit to complete.
520  * The caller may not hold the journal lock.
521  */
522 int log_wait_commit(journal_t *journal, tid_t tid)
523 {
524         int err = 0;
525
526 #ifdef CONFIG_JBD_DEBUG
527         spin_lock(&journal->j_state_lock);
528         if (!tid_geq(journal->j_commit_request, tid)) {
529                 printk(KERN_EMERG
530                        "%s: error: j_commit_request=%d, tid=%d\n",
531                        __FUNCTION__, journal->j_commit_request, tid);
532         }
533         spin_unlock(&journal->j_state_lock);
534 #endif
535         spin_lock(&journal->j_state_lock);
536         while (tid_gt(tid, journal->j_commit_sequence)) {
537                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
538                                   tid, journal->j_commit_sequence);
539                 wake_up(&journal->j_wait_commit);
540                 spin_unlock(&journal->j_state_lock);
541                 wait_event(journal->j_wait_done_commit,
542                                 !tid_gt(tid, journal->j_commit_sequence));
543                 spin_lock(&journal->j_state_lock);
544         }
545         spin_unlock(&journal->j_state_lock);
546
547         if (unlikely(is_journal_aborted(journal))) {
548                 printk(KERN_EMERG "journal commit I/O error\n");
549                 err = -EIO;
550         }
551         return err;
552 }
553
554 /*
555  * Log buffer allocation routines:
556  */
557
558 int journal_next_log_block(journal_t *journal, unsigned long *retp)
559 {
560         unsigned long blocknr;
561
562         spin_lock(&journal->j_state_lock);
563         J_ASSERT(journal->j_free > 1);
564
565         blocknr = journal->j_head;
566         journal->j_head++;
567         journal->j_free--;
568         if (journal->j_head == journal->j_last)
569                 journal->j_head = journal->j_first;
570         spin_unlock(&journal->j_state_lock);
571         return journal_bmap(journal, blocknr, retp);
572 }
573
574 /*
575  * Conversion of logical to physical block numbers for the journal
576  *
577  * On external journals the journal blocks are identity-mapped, so
578  * this is a no-op.  If needed, we can use j_blk_offset - everything is
579  * ready.
580  */
581 int journal_bmap(journal_t *journal, unsigned long blocknr,
582                  unsigned long *retp)
583 {
584         int err = 0;
585         unsigned long ret;
586
587         if (journal->j_inode) {
588                 ret = bmap(journal->j_inode, blocknr);
589                 if (ret)
590                         *retp = ret;
591                 else {
592                         char b[BDEVNAME_SIZE];
593
594                         printk(KERN_ALERT "%s: journal block not found "
595                                         "at offset %lu on %s\n",
596                                 __FUNCTION__,
597                                 blocknr,
598                                 bdevname(journal->j_dev, b));
599                         err = -EIO;
600                         __journal_abort_soft(journal, err);
601                 }
602         } else {
603                 *retp = blocknr; /* +journal->j_blk_offset */
604         }
605         return err;
606 }
607
608 /*
609  * We play buffer_head aliasing tricks to write data/metadata blocks to
610  * the journal without copying their contents, but for journal
611  * descriptor blocks we do need to generate bona fide buffers.
612  *
613  * After the caller of journal_get_descriptor_buffer() has finished modifying
614  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
615  * But we don't bother doing that, so there will be coherency problems with
616  * mmaps of blockdevs which hold live JBD-controlled filesystems.
617  */
618 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
619 {
620         struct buffer_head *bh;
621         unsigned long blocknr;
622         int err;
623
624         err = journal_next_log_block(journal, &blocknr);
625
626         if (err)
627                 return NULL;
628
629         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
630         lock_buffer(bh);
631         memset(bh->b_data, 0, journal->j_blocksize);
632         set_buffer_uptodate(bh);
633         unlock_buffer(bh);
634         BUFFER_TRACE(bh, "return this buffer");
635         return journal_add_journal_head(bh);
636 }
637
638 /*
639  * Management for journal control blocks: functions to create and
640  * destroy journal_t structures, and to initialise and read existing
641  * journal blocks from disk.  */
642
643 /* First: create and setup a journal_t object in memory.  We initialise
644  * very few fields yet: that has to wait until we have created the
645  * journal structures from from scratch, or loaded them from disk. */
646
647 static journal_t * journal_init_common (void)
648 {
649         journal_t *journal;
650         int err;
651
652         journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL);
653         if (!journal)
654                 goto fail;
655         memset(journal, 0, sizeof(*journal));
656
657         init_waitqueue_head(&journal->j_wait_transaction_locked);
658         init_waitqueue_head(&journal->j_wait_logspace);
659         init_waitqueue_head(&journal->j_wait_done_commit);
660         init_waitqueue_head(&journal->j_wait_checkpoint);
661         init_waitqueue_head(&journal->j_wait_commit);
662         init_waitqueue_head(&journal->j_wait_updates);
663         mutex_init(&journal->j_barrier);
664         mutex_init(&journal->j_checkpoint_mutex);
665         spin_lock_init(&journal->j_revoke_lock);
666         spin_lock_init(&journal->j_list_lock);
667         spin_lock_init(&journal->j_state_lock);
668
669         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
670
671         /* The journal is marked for error until we succeed with recovery! */
672         journal->j_flags = JFS_ABORT;
673
674         /* Set up a default-sized revoke table for the new mount. */
675         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
676         if (err) {
677                 kfree(journal);
678                 goto fail;
679         }
680         return journal;
681 fail:
682         return NULL;
683 }
684
685 /* journal_init_dev and journal_init_inode:
686  *
687  * Create a journal structure assigned some fixed set of disk blocks to
688  * the journal.  We don't actually touch those disk blocks yet, but we
689  * need to set up all of the mapping information to tell the journaling
690  * system where the journal blocks are.
691  *
692  */
693
694 /**
695  *  journal_t * journal_init_dev() - creates an initialises a journal structure
696  *  @bdev: Block device on which to create the journal
697  *  @fs_dev: Device which hold journalled filesystem for this journal.
698  *  @start: Block nr Start of journal.
699  *  @len:  Length of the journal in blocks.
700  *  @blocksize: blocksize of journalling device
701  *  @returns: a newly created journal_t *
702  *
703  *  journal_init_dev creates a journal which maps a fixed contiguous
704  *  range of blocks on an arbitrary block device.
705  *
706  */
707 journal_t * journal_init_dev(struct block_device *bdev,
708                         struct block_device *fs_dev,
709                         int start, int len, int blocksize)
710 {
711         journal_t *journal = journal_init_common();
712         struct buffer_head *bh;
713         int n;
714
715         if (!journal)
716                 return NULL;
717
718         /* journal descriptor can store up to n blocks -bzzz */
719         journal->j_blocksize = blocksize;
720         n = journal->j_blocksize / sizeof(journal_block_tag_t);
721         journal->j_wbufsize = n;
722         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
723         if (!journal->j_wbuf) {
724                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
725                         __FUNCTION__);
726                 kfree(journal);
727                 journal = NULL;
728         }
729         journal->j_dev = bdev;
730         journal->j_fs_dev = fs_dev;
731         journal->j_blk_offset = start;
732         journal->j_maxlen = len;
733
734         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
735         J_ASSERT(bh != NULL);
736         journal->j_sb_buffer = bh;
737         journal->j_superblock = (journal_superblock_t *)bh->b_data;
738
739         return journal;
740 }
741
742 /**
743  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
744  *  @inode: An inode to create the journal in
745  *
746  * journal_init_inode creates a journal which maps an on-disk inode as
747  * the journal.  The inode must exist already, must support bmap() and
748  * must have all data blocks preallocated.
749  */
750 journal_t * journal_init_inode (struct inode *inode)
751 {
752         struct buffer_head *bh;
753         journal_t *journal = journal_init_common();
754         int err;
755         int n;
756         unsigned long blocknr;
757
758         if (!journal)
759                 return NULL;
760
761         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
762         journal->j_inode = inode;
763         jbd_debug(1,
764                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
765                   journal, inode->i_sb->s_id, inode->i_ino,
766                   (long long) inode->i_size,
767                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
768
769         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
770         journal->j_blocksize = inode->i_sb->s_blocksize;
771
772         /* journal descriptor can store up to n blocks -bzzz */
773         n = journal->j_blocksize / sizeof(journal_block_tag_t);
774         journal->j_wbufsize = n;
775         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
776         if (!journal->j_wbuf) {
777                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
778                         __FUNCTION__);
779                 kfree(journal);
780                 return NULL;
781         }
782
783         err = journal_bmap(journal, 0, &blocknr);
784         /* If that failed, give up */
785         if (err) {
786                 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
787                        __FUNCTION__);
788                 kfree(journal);
789                 return NULL;
790         }
791
792         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
793         J_ASSERT(bh != NULL);
794         journal->j_sb_buffer = bh;
795         journal->j_superblock = (journal_superblock_t *)bh->b_data;
796
797         return journal;
798 }
799
800 /*
801  * If the journal init or create aborts, we need to mark the journal
802  * superblock as being NULL to prevent the journal destroy from writing
803  * back a bogus superblock.
804  */
805 static void journal_fail_superblock (journal_t *journal)
806 {
807         struct buffer_head *bh = journal->j_sb_buffer;
808         brelse(bh);
809         journal->j_sb_buffer = NULL;
810 }
811
812 /*
813  * Given a journal_t structure, initialise the various fields for
814  * startup of a new journaling session.  We use this both when creating
815  * a journal, and after recovering an old journal to reset it for
816  * subsequent use.
817  */
818
819 static int journal_reset(journal_t *journal)
820 {
821         journal_superblock_t *sb = journal->j_superblock;
822         unsigned long first, last;
823
824         first = be32_to_cpu(sb->s_first);
825         last = be32_to_cpu(sb->s_maxlen);
826
827         journal->j_first = first;
828         journal->j_last = last;
829
830         journal->j_head = first;
831         journal->j_tail = first;
832         journal->j_free = last - first;
833
834         journal->j_tail_sequence = journal->j_transaction_sequence;
835         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
836         journal->j_commit_request = journal->j_commit_sequence;
837
838         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
839
840         /* Add the dynamic fields and write it to disk. */
841         journal_update_superblock(journal, 1);
842         journal_start_thread(journal);
843         return 0;
844 }
845
846 /**
847  * int journal_create() - Initialise the new journal file
848  * @journal: Journal to create. This structure must have been initialised
849  *
850  * Given a journal_t structure which tells us which disk blocks we can
851  * use, create a new journal superblock and initialise all of the
852  * journal fields from scratch.
853  **/
854 int journal_create(journal_t *journal)
855 {
856         unsigned long blocknr;
857         struct buffer_head *bh;
858         journal_superblock_t *sb;
859         int i, err;
860
861         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
862                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
863                         journal->j_maxlen);
864                 journal_fail_superblock(journal);
865                 return -EINVAL;
866         }
867
868         if (journal->j_inode == NULL) {
869                 /*
870                  * We don't know what block to start at!
871                  */
872                 printk(KERN_EMERG
873                        "%s: creation of journal on external device!\n",
874                        __FUNCTION__);
875                 BUG();
876         }
877
878         /* Zero out the entire journal on disk.  We cannot afford to
879            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
880         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
881         for (i = 0; i < journal->j_maxlen; i++) {
882                 err = journal_bmap(journal, i, &blocknr);
883                 if (err)
884                         return err;
885                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
886                 lock_buffer(bh);
887                 memset (bh->b_data, 0, journal->j_blocksize);
888                 BUFFER_TRACE(bh, "marking dirty");
889                 mark_buffer_dirty(bh);
890                 BUFFER_TRACE(bh, "marking uptodate");
891                 set_buffer_uptodate(bh);
892                 unlock_buffer(bh);
893                 __brelse(bh);
894         }
895
896         sync_blockdev(journal->j_dev);
897         jbd_debug(1, "JBD: journal cleared.\n");
898
899         /* OK, fill in the initial static fields in the new superblock */
900         sb = journal->j_superblock;
901
902         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
903         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
904
905         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
906         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
907         sb->s_first     = cpu_to_be32(1);
908
909         journal->j_transaction_sequence = 1;
910
911         journal->j_flags &= ~JFS_ABORT;
912         journal->j_format_version = 2;
913
914         return journal_reset(journal);
915 }
916
917 /**
918  * void journal_update_superblock() - Update journal sb on disk.
919  * @journal: The journal to update.
920  * @wait: Set to '0' if you don't want to wait for IO completion.
921  *
922  * Update a journal's dynamic superblock fields and write it to disk,
923  * optionally waiting for the IO to complete.
924  */
925 void journal_update_superblock(journal_t *journal, int wait)
926 {
927         journal_superblock_t *sb = journal->j_superblock;
928         struct buffer_head *bh = journal->j_sb_buffer;
929
930         /*
931          * As a special case, if the on-disk copy is already marked as needing
932          * no recovery (s_start == 0) and there are no outstanding transactions
933          * in the filesystem, then we can safely defer the superblock update
934          * until the next commit by setting JFS_FLUSHED.  This avoids
935          * attempting a write to a potential-readonly device.
936          */
937         if (sb->s_start == 0 && journal->j_tail_sequence ==
938                                 journal->j_transaction_sequence) {
939                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
940                         "(start %ld, seq %d, errno %d)\n",
941                         journal->j_tail, journal->j_tail_sequence,
942                         journal->j_errno);
943                 goto out;
944         }
945
946         spin_lock(&journal->j_state_lock);
947         jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
948                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
949
950         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
951         sb->s_start    = cpu_to_be32(journal->j_tail);
952         sb->s_errno    = cpu_to_be32(journal->j_errno);
953         spin_unlock(&journal->j_state_lock);
954
955         BUFFER_TRACE(bh, "marking dirty");
956         mark_buffer_dirty(bh);
957         if (wait)
958                 sync_dirty_buffer(bh);
959         else
960                 ll_rw_block(SWRITE, 1, &bh);
961
962 out:
963         /* If we have just flushed the log (by marking s_start==0), then
964          * any future commit will have to be careful to update the
965          * superblock again to re-record the true start of the log. */
966
967         spin_lock(&journal->j_state_lock);
968         if (sb->s_start)
969                 journal->j_flags &= ~JFS_FLUSHED;
970         else
971                 journal->j_flags |= JFS_FLUSHED;
972         spin_unlock(&journal->j_state_lock);
973 }
974
975 /*
976  * Read the superblock for a given journal, performing initial
977  * validation of the format.
978  */
979
980 static int journal_get_superblock(journal_t *journal)
981 {
982         struct buffer_head *bh;
983         journal_superblock_t *sb;
984         int err = -EIO;
985
986         bh = journal->j_sb_buffer;
987
988         J_ASSERT(bh != NULL);
989         if (!buffer_uptodate(bh)) {
990                 ll_rw_block(READ, 1, &bh);
991                 wait_on_buffer(bh);
992                 if (!buffer_uptodate(bh)) {
993                         printk (KERN_ERR
994                                 "JBD: IO error reading journal superblock\n");
995                         goto out;
996                 }
997         }
998
999         sb = journal->j_superblock;
1000
1001         err = -EINVAL;
1002
1003         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1004             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1005                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1006                 goto out;
1007         }
1008
1009         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1010         case JFS_SUPERBLOCK_V1:
1011                 journal->j_format_version = 1;
1012                 break;
1013         case JFS_SUPERBLOCK_V2:
1014                 journal->j_format_version = 2;
1015                 break;
1016         default:
1017                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1018                 goto out;
1019         }
1020
1021         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1022                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1023         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1024                 printk (KERN_WARNING "JBD: journal file too short\n");
1025                 goto out;
1026         }
1027
1028         return 0;
1029
1030 out:
1031         journal_fail_superblock(journal);
1032         return err;
1033 }
1034
1035 /*
1036  * Load the on-disk journal superblock and read the key fields into the
1037  * journal_t.
1038  */
1039
1040 static int load_superblock(journal_t *journal)
1041 {
1042         int err;
1043         journal_superblock_t *sb;
1044
1045         err = journal_get_superblock(journal);
1046         if (err)
1047                 return err;
1048
1049         sb = journal->j_superblock;
1050
1051         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1052         journal->j_tail = be32_to_cpu(sb->s_start);
1053         journal->j_first = be32_to_cpu(sb->s_first);
1054         journal->j_last = be32_to_cpu(sb->s_maxlen);
1055         journal->j_errno = be32_to_cpu(sb->s_errno);
1056
1057         return 0;
1058 }
1059
1060
1061 /**
1062  * int journal_load() - Read journal from disk.
1063  * @journal: Journal to act on.
1064  *
1065  * Given a journal_t structure which tells us which disk blocks contain
1066  * a journal, read the journal from disk to initialise the in-memory
1067  * structures.
1068  */
1069 int journal_load(journal_t *journal)
1070 {
1071         int err;
1072         journal_superblock_t *sb;
1073
1074         err = load_superblock(journal);
1075         if (err)
1076                 return err;
1077
1078         sb = journal->j_superblock;
1079         /* If this is a V2 superblock, then we have to check the
1080          * features flags on it. */
1081
1082         if (journal->j_format_version >= 2) {
1083                 if ((sb->s_feature_ro_compat &
1084                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1085                     (sb->s_feature_incompat &
1086                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1087                         printk (KERN_WARNING
1088                                 "JBD: Unrecognised features on journal\n");
1089                         return -EINVAL;
1090                 }
1091         }
1092
1093         /*
1094          * Create a slab for this blocksize
1095          */
1096         err = journal_create_jbd_slab(be32_to_cpu(sb->s_blocksize));
1097         if (err)
1098                 return err;
1099
1100         /* Let the recovery code check whether it needs to recover any
1101          * data from the journal. */
1102         if (journal_recover(journal))
1103                 goto recovery_error;
1104
1105         /* OK, we've finished with the dynamic journal bits:
1106          * reinitialise the dynamic contents of the superblock in memory
1107          * and reset them on disk. */
1108         if (journal_reset(journal))
1109                 goto recovery_error;
1110
1111         journal->j_flags &= ~JFS_ABORT;
1112         journal->j_flags |= JFS_LOADED;
1113         return 0;
1114
1115 recovery_error:
1116         printk (KERN_WARNING "JBD: recovery failed\n");
1117         return -EIO;
1118 }
1119
1120 /**
1121  * void journal_destroy() - Release a journal_t structure.
1122  * @journal: Journal to act on.
1123  *
1124  * Release a journal_t structure once it is no longer in use by the
1125  * journaled object.
1126  */
1127 void journal_destroy(journal_t *journal)
1128 {
1129         /* Wait for the commit thread to wake up and die. */
1130         journal_kill_thread(journal);
1131
1132         /* Force a final log commit */
1133         if (journal->j_running_transaction)
1134                 journal_commit_transaction(journal);
1135
1136         /* Force any old transactions to disk */
1137
1138         /* Totally anal locking here... */
1139         spin_lock(&journal->j_list_lock);
1140         while (journal->j_checkpoint_transactions != NULL) {
1141                 spin_unlock(&journal->j_list_lock);
1142                 log_do_checkpoint(journal);
1143                 spin_lock(&journal->j_list_lock);
1144         }
1145
1146         J_ASSERT(journal->j_running_transaction == NULL);
1147         J_ASSERT(journal->j_committing_transaction == NULL);
1148         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1149         spin_unlock(&journal->j_list_lock);
1150
1151         /* We can now mark the journal as empty. */
1152         journal->j_tail = 0;
1153         journal->j_tail_sequence = ++journal->j_transaction_sequence;
1154         if (journal->j_sb_buffer) {
1155                 journal_update_superblock(journal, 1);
1156                 brelse(journal->j_sb_buffer);
1157         }
1158
1159         if (journal->j_inode)
1160                 iput(journal->j_inode);
1161         if (journal->j_revoke)
1162                 journal_destroy_revoke(journal);
1163         kfree(journal->j_wbuf);
1164         kfree(journal);
1165 }
1166
1167
1168 /**
1169  *int journal_check_used_features () - Check if features specified are used.
1170  * @journal: Journal to check.
1171  * @compat: bitmask of compatible features
1172  * @ro: bitmask of features that force read-only mount
1173  * @incompat: bitmask of incompatible features
1174  *
1175  * Check whether the journal uses all of a given set of
1176  * features.  Return true (non-zero) if it does.
1177  **/
1178
1179 int journal_check_used_features (journal_t *journal, unsigned long compat,
1180                                  unsigned long ro, unsigned long incompat)
1181 {
1182         journal_superblock_t *sb;
1183
1184         if (!compat && !ro && !incompat)
1185                 return 1;
1186         if (journal->j_format_version == 1)
1187                 return 0;
1188
1189         sb = journal->j_superblock;
1190
1191         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1192             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1193             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1194                 return 1;
1195
1196         return 0;
1197 }
1198
1199 /**
1200  * int journal_check_available_features() - Check feature set in journalling layer
1201  * @journal: Journal to check.
1202  * @compat: bitmask of compatible features
1203  * @ro: bitmask of features that force read-only mount
1204  * @incompat: bitmask of incompatible features
1205  *
1206  * Check whether the journaling code supports the use of
1207  * all of a given set of features on this journal.  Return true
1208  * (non-zero) if it can. */
1209
1210 int journal_check_available_features (journal_t *journal, unsigned long compat,
1211                                       unsigned long ro, unsigned long incompat)
1212 {
1213         journal_superblock_t *sb;
1214
1215         if (!compat && !ro && !incompat)
1216                 return 1;
1217
1218         sb = journal->j_superblock;
1219
1220         /* We can support any known requested features iff the
1221          * superblock is in version 2.  Otherwise we fail to support any
1222          * extended sb features. */
1223
1224         if (journal->j_format_version != 2)
1225                 return 0;
1226
1227         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1228             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1229             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1230                 return 1;
1231
1232         return 0;
1233 }
1234
1235 /**
1236  * int journal_set_features () - Mark a given journal feature in the superblock
1237  * @journal: Journal to act on.
1238  * @compat: bitmask of compatible features
1239  * @ro: bitmask of features that force read-only mount
1240  * @incompat: bitmask of incompatible features
1241  *
1242  * Mark a given journal feature as present on the
1243  * superblock.  Returns true if the requested features could be set.
1244  *
1245  */
1246
1247 int journal_set_features (journal_t *journal, unsigned long compat,
1248                           unsigned long ro, unsigned long incompat)
1249 {
1250         journal_superblock_t *sb;
1251
1252         if (journal_check_used_features(journal, compat, ro, incompat))
1253                 return 1;
1254
1255         if (!journal_check_available_features(journal, compat, ro, incompat))
1256                 return 0;
1257
1258         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1259                   compat, ro, incompat);
1260
1261         sb = journal->j_superblock;
1262
1263         sb->s_feature_compat    |= cpu_to_be32(compat);
1264         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1265         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1266
1267         return 1;
1268 }
1269
1270
1271 /**
1272  * int journal_update_format () - Update on-disk journal structure.
1273  * @journal: Journal to act on.
1274  *
1275  * Given an initialised but unloaded journal struct, poke about in the
1276  * on-disk structure to update it to the most recent supported version.
1277  */
1278 int journal_update_format (journal_t *journal)
1279 {
1280         journal_superblock_t *sb;
1281         int err;
1282
1283         err = journal_get_superblock(journal);
1284         if (err)
1285                 return err;
1286
1287         sb = journal->j_superblock;
1288
1289         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1290         case JFS_SUPERBLOCK_V2:
1291                 return 0;
1292         case JFS_SUPERBLOCK_V1:
1293                 return journal_convert_superblock_v1(journal, sb);
1294         default:
1295                 break;
1296         }
1297         return -EINVAL;
1298 }
1299
1300 static int journal_convert_superblock_v1(journal_t *journal,
1301                                          journal_superblock_t *sb)
1302 {
1303         int offset, blocksize;
1304         struct buffer_head *bh;
1305
1306         printk(KERN_WARNING
1307                 "JBD: Converting superblock from version 1 to 2.\n");
1308
1309         /* Pre-initialise new fields to zero */
1310         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1311         blocksize = be32_to_cpu(sb->s_blocksize);
1312         memset(&sb->s_feature_compat, 0, blocksize-offset);
1313
1314         sb->s_nr_users = cpu_to_be32(1);
1315         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1316         journal->j_format_version = 2;
1317
1318         bh = journal->j_sb_buffer;
1319         BUFFER_TRACE(bh, "marking dirty");
1320         mark_buffer_dirty(bh);
1321         sync_dirty_buffer(bh);
1322         return 0;
1323 }
1324
1325
1326 /**
1327  * int journal_flush () - Flush journal
1328  * @journal: Journal to act on.
1329  *
1330  * Flush all data for a given journal to disk and empty the journal.
1331  * Filesystems can use this when remounting readonly to ensure that
1332  * recovery does not need to happen on remount.
1333  */
1334
1335 int journal_flush(journal_t *journal)
1336 {
1337         int err = 0;
1338         transaction_t *transaction = NULL;
1339         unsigned long old_tail;
1340
1341         spin_lock(&journal->j_state_lock);
1342
1343         /* Force everything buffered to the log... */
1344         if (journal->j_running_transaction) {
1345                 transaction = journal->j_running_transaction;
1346                 __log_start_commit(journal, transaction->t_tid);
1347         } else if (journal->j_committing_transaction)
1348                 transaction = journal->j_committing_transaction;
1349
1350         /* Wait for the log commit to complete... */
1351         if (transaction) {
1352                 tid_t tid = transaction->t_tid;
1353
1354                 spin_unlock(&journal->j_state_lock);
1355                 log_wait_commit(journal, tid);
1356         } else {
1357                 spin_unlock(&journal->j_state_lock);
1358         }
1359
1360         /* ...and flush everything in the log out to disk. */
1361         spin_lock(&journal->j_list_lock);
1362         while (!err && journal->j_checkpoint_transactions != NULL) {
1363                 spin_unlock(&journal->j_list_lock);
1364                 err = log_do_checkpoint(journal);
1365                 spin_lock(&journal->j_list_lock);
1366         }
1367         spin_unlock(&journal->j_list_lock);
1368         cleanup_journal_tail(journal);
1369
1370         /* Finally, mark the journal as really needing no recovery.
1371          * This sets s_start==0 in the underlying superblock, which is
1372          * the magic code for a fully-recovered superblock.  Any future
1373          * commits of data to the journal will restore the current
1374          * s_start value. */
1375         spin_lock(&journal->j_state_lock);
1376         old_tail = journal->j_tail;
1377         journal->j_tail = 0;
1378         spin_unlock(&journal->j_state_lock);
1379         journal_update_superblock(journal, 1);
1380         spin_lock(&journal->j_state_lock);
1381         journal->j_tail = old_tail;
1382
1383         J_ASSERT(!journal->j_running_transaction);
1384         J_ASSERT(!journal->j_committing_transaction);
1385         J_ASSERT(!journal->j_checkpoint_transactions);
1386         J_ASSERT(journal->j_head == journal->j_tail);
1387         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1388         spin_unlock(&journal->j_state_lock);
1389         return err;
1390 }
1391
1392 /**
1393  * int journal_wipe() - Wipe journal contents
1394  * @journal: Journal to act on.
1395  * @write: flag (see below)
1396  *
1397  * Wipe out all of the contents of a journal, safely.  This will produce
1398  * a warning if the journal contains any valid recovery information.
1399  * Must be called between journal_init_*() and journal_load().
1400  *
1401  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1402  * we merely suppress recovery.
1403  */
1404
1405 int journal_wipe(journal_t *journal, int write)
1406 {
1407         journal_superblock_t *sb;
1408         int err = 0;
1409
1410         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1411
1412         err = load_superblock(journal);
1413         if (err)
1414                 return err;
1415
1416         sb = journal->j_superblock;
1417
1418         if (!journal->j_tail)
1419                 goto no_recovery;
1420
1421         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1422                 write ? "Clearing" : "Ignoring");
1423
1424         err = journal_skip_recovery(journal);
1425         if (write)
1426                 journal_update_superblock(journal, 1);
1427
1428  no_recovery:
1429         return err;
1430 }
1431
1432 /*
1433  * journal_dev_name: format a character string to describe on what
1434  * device this journal is present.
1435  */
1436
1437 static const char *journal_dev_name(journal_t *journal, char *buffer)
1438 {
1439         struct block_device *bdev;
1440
1441         if (journal->j_inode)
1442                 bdev = journal->j_inode->i_sb->s_bdev;
1443         else
1444                 bdev = journal->j_dev;
1445
1446         return bdevname(bdev, buffer);
1447 }
1448
1449 /*
1450  * Journal abort has very specific semantics, which we describe
1451  * for journal abort.
1452  *
1453  * Two internal function, which provide abort to te jbd layer
1454  * itself are here.
1455  */
1456
1457 /*
1458  * Quick version for internal journal use (doesn't lock the journal).
1459  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1460  * and don't attempt to make any other journal updates.
1461  */
1462 void __journal_abort_hard(journal_t *journal)
1463 {
1464         transaction_t *transaction;
1465         char b[BDEVNAME_SIZE];
1466
1467         if (journal->j_flags & JFS_ABORT)
1468                 return;
1469
1470         printk(KERN_ERR "Aborting journal on device %s.\n",
1471                 journal_dev_name(journal, b));
1472
1473         spin_lock(&journal->j_state_lock);
1474         journal->j_flags |= JFS_ABORT;
1475         transaction = journal->j_running_transaction;
1476         if (transaction)
1477                 __log_start_commit(journal, transaction->t_tid);
1478         spin_unlock(&journal->j_state_lock);
1479 }
1480
1481 /* Soft abort: record the abort error status in the journal superblock,
1482  * but don't do any other IO. */
1483 static void __journal_abort_soft (journal_t *journal, int errno)
1484 {
1485         if (journal->j_flags & JFS_ABORT)
1486                 return;
1487
1488         if (!journal->j_errno)
1489                 journal->j_errno = errno;
1490
1491         __journal_abort_hard(journal);
1492
1493         if (errno)
1494                 journal_update_superblock(journal, 1);
1495 }
1496
1497 /**
1498  * void journal_abort () - Shutdown the journal immediately.
1499  * @journal: the journal to shutdown.
1500  * @errno:   an error number to record in the journal indicating
1501  *           the reason for the shutdown.
1502  *
1503  * Perform a complete, immediate shutdown of the ENTIRE
1504  * journal (not of a single transaction).  This operation cannot be
1505  * undone without closing and reopening the journal.
1506  *
1507  * The journal_abort function is intended to support higher level error
1508  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1509  * mode.
1510  *
1511  * Journal abort has very specific semantics.  Any existing dirty,
1512  * unjournaled buffers in the main filesystem will still be written to
1513  * disk by bdflush, but the journaling mechanism will be suspended
1514  * immediately and no further transaction commits will be honoured.
1515  *
1516  * Any dirty, journaled buffers will be written back to disk without
1517  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1518  * filesystem, but we _do_ attempt to leave as much data as possible
1519  * behind for fsck to use for cleanup.
1520  *
1521  * Any attempt to get a new transaction handle on a journal which is in
1522  * ABORT state will just result in an -EROFS error return.  A
1523  * journal_stop on an existing handle will return -EIO if we have
1524  * entered abort state during the update.
1525  *
1526  * Recursive transactions are not disturbed by journal abort until the
1527  * final journal_stop, which will receive the -EIO error.
1528  *
1529  * Finally, the journal_abort call allows the caller to supply an errno
1530  * which will be recorded (if possible) in the journal superblock.  This
1531  * allows a client to record failure conditions in the middle of a
1532  * transaction without having to complete the transaction to record the
1533  * failure to disk.  ext3_error, for example, now uses this
1534  * functionality.
1535  *
1536  * Errors which originate from within the journaling layer will NOT
1537  * supply an errno; a null errno implies that absolutely no further
1538  * writes are done to the journal (unless there are any already in
1539  * progress).
1540  *
1541  */
1542
1543 void journal_abort(journal_t *journal, int errno)
1544 {
1545         __journal_abort_soft(journal, errno);
1546 }
1547
1548 /**
1549  * int journal_errno () - returns the journal's error state.
1550  * @journal: journal to examine.
1551  *
1552  * This is the errno numbet set with journal_abort(), the last
1553  * time the journal was mounted - if the journal was stopped
1554  * without calling abort this will be 0.
1555  *
1556  * If the journal has been aborted on this mount time -EROFS will
1557  * be returned.
1558  */
1559 int journal_errno(journal_t *journal)
1560 {
1561         int err;
1562
1563         spin_lock(&journal->j_state_lock);
1564         if (journal->j_flags & JFS_ABORT)
1565                 err = -EROFS;
1566         else
1567                 err = journal->j_errno;
1568         spin_unlock(&journal->j_state_lock);
1569         return err;
1570 }
1571
1572 /**
1573  * int journal_clear_err () - clears the journal's error state
1574  * @journal: journal to act on.
1575  *
1576  * An error must be cleared or Acked to take a FS out of readonly
1577  * mode.
1578  */
1579 int journal_clear_err(journal_t *journal)
1580 {
1581         int err = 0;
1582
1583         spin_lock(&journal->j_state_lock);
1584         if (journal->j_flags & JFS_ABORT)
1585                 err = -EROFS;
1586         else
1587                 journal->j_errno = 0;
1588         spin_unlock(&journal->j_state_lock);
1589         return err;
1590 }
1591
1592 /**
1593  * void journal_ack_err() - Ack journal err.
1594  * @journal: journal to act on.
1595  *
1596  * An error must be cleared or Acked to take a FS out of readonly
1597  * mode.
1598  */
1599 void journal_ack_err(journal_t *journal)
1600 {
1601         spin_lock(&journal->j_state_lock);
1602         if (journal->j_errno)
1603                 journal->j_flags |= JFS_ACK_ERR;
1604         spin_unlock(&journal->j_state_lock);
1605 }
1606
1607 int journal_blocks_per_page(struct inode *inode)
1608 {
1609         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1610 }
1611
1612 /*
1613  * Simple support for retrying memory allocations.  Introduced to help to
1614  * debug different VM deadlock avoidance strategies.
1615  */
1616 void * __jbd_kmalloc (const char *where, size_t size, gfp_t flags, int retry)
1617 {
1618         return kmalloc(size, flags | (retry ? __GFP_NOFAIL : 0));
1619 }
1620
1621 /*
1622  * jbd slab management: create 1k, 2k, 4k, 8k slabs as needed
1623  * and allocate frozen and commit buffers from these slabs.
1624  *
1625  * Reason for doing this is to avoid, SLAB_DEBUG - since it could
1626  * cause bh to cross page boundary.
1627  */
1628
1629 #define JBD_MAX_SLABS 5
1630 #define JBD_SLAB_INDEX(size)  (size >> 11)
1631
1632 static kmem_cache_t *jbd_slab[JBD_MAX_SLABS];
1633 static const char *jbd_slab_names[JBD_MAX_SLABS] = {
1634         "jbd_1k", "jbd_2k", "jbd_4k", NULL, "jbd_8k"
1635 };
1636
1637 static void journal_destroy_jbd_slabs(void)
1638 {
1639         int i;
1640
1641         for (i = 0; i < JBD_MAX_SLABS; i++) {
1642                 if (jbd_slab[i])
1643                         kmem_cache_destroy(jbd_slab[i]);
1644                 jbd_slab[i] = NULL;
1645         }
1646 }
1647
1648 static int journal_create_jbd_slab(size_t slab_size)
1649 {
1650         int i = JBD_SLAB_INDEX(slab_size);
1651
1652         BUG_ON(i >= JBD_MAX_SLABS);
1653
1654         /*
1655          * Check if we already have a slab created for this size
1656          */
1657         if (jbd_slab[i])
1658                 return 0;
1659
1660         /*
1661          * Create a slab and force alignment to be same as slabsize -
1662          * this will make sure that allocations won't cross the page
1663          * boundary.
1664          */
1665         jbd_slab[i] = kmem_cache_create(jbd_slab_names[i],
1666                                 slab_size, slab_size, 0, NULL, NULL);
1667         if (!jbd_slab[i]) {
1668                 printk(KERN_EMERG "JBD: no memory for jbd_slab cache\n");
1669                 return -ENOMEM;
1670         }
1671         return 0;
1672 }
1673
1674 void * jbd_slab_alloc(size_t size, gfp_t flags)
1675 {
1676         int idx;
1677
1678         idx = JBD_SLAB_INDEX(size);
1679         BUG_ON(jbd_slab[idx] == NULL);
1680         return kmem_cache_alloc(jbd_slab[idx], flags | __GFP_NOFAIL);
1681 }
1682
1683 void jbd_slab_free(void *ptr,  size_t size)
1684 {
1685         int idx;
1686
1687         idx = JBD_SLAB_INDEX(size);
1688         BUG_ON(jbd_slab[idx] == NULL);
1689         kmem_cache_free(jbd_slab[idx], ptr);
1690 }
1691
1692 /*
1693  * Journal_head storage management
1694  */
1695 static kmem_cache_t *journal_head_cache;
1696 #ifdef CONFIG_JBD_DEBUG
1697 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1698 #endif
1699
1700 static int journal_init_journal_head_cache(void)
1701 {
1702         int retval;
1703
1704         J_ASSERT(journal_head_cache == 0);
1705         journal_head_cache = kmem_cache_create("journal_head",
1706                                 sizeof(struct journal_head),
1707                                 0,              /* offset */
1708                                 0,              /* flags */
1709                                 NULL,           /* ctor */
1710                                 NULL);          /* dtor */
1711         retval = 0;
1712         if (journal_head_cache == 0) {
1713                 retval = -ENOMEM;
1714                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1715         }
1716         return retval;
1717 }
1718
1719 static void journal_destroy_journal_head_cache(void)
1720 {
1721         J_ASSERT(journal_head_cache != NULL);
1722         kmem_cache_destroy(journal_head_cache);
1723         journal_head_cache = NULL;
1724 }
1725
1726 /*
1727  * journal_head splicing and dicing
1728  */
1729 static struct journal_head *journal_alloc_journal_head(void)
1730 {
1731         struct journal_head *ret;
1732         static unsigned long last_warning;
1733
1734 #ifdef CONFIG_JBD_DEBUG
1735         atomic_inc(&nr_journal_heads);
1736 #endif
1737         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1738         if (ret == 0) {
1739                 jbd_debug(1, "out of memory for journal_head\n");
1740                 if (time_after(jiffies, last_warning + 5*HZ)) {
1741                         printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1742                                __FUNCTION__);
1743                         last_warning = jiffies;
1744                 }
1745                 while (ret == 0) {
1746                         yield();
1747                         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1748                 }
1749         }
1750         return ret;
1751 }
1752
1753 static void journal_free_journal_head(struct journal_head *jh)
1754 {
1755 #ifdef CONFIG_JBD_DEBUG
1756         atomic_dec(&nr_journal_heads);
1757         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1758 #endif
1759         kmem_cache_free(journal_head_cache, jh);
1760 }
1761
1762 /*
1763  * A journal_head is attached to a buffer_head whenever JBD has an
1764  * interest in the buffer.
1765  *
1766  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1767  * is set.  This bit is tested in core kernel code where we need to take
1768  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1769  * there.
1770  *
1771  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1772  *
1773  * When a buffer has its BH_JBD bit set it is immune from being released by
1774  * core kernel code, mainly via ->b_count.
1775  *
1776  * A journal_head may be detached from its buffer_head when the journal_head's
1777  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1778  * Various places in JBD call journal_remove_journal_head() to indicate that the
1779  * journal_head can be dropped if needed.
1780  *
1781  * Various places in the kernel want to attach a journal_head to a buffer_head
1782  * _before_ attaching the journal_head to a transaction.  To protect the
1783  * journal_head in this situation, journal_add_journal_head elevates the
1784  * journal_head's b_jcount refcount by one.  The caller must call
1785  * journal_put_journal_head() to undo this.
1786  *
1787  * So the typical usage would be:
1788  *
1789  *      (Attach a journal_head if needed.  Increments b_jcount)
1790  *      struct journal_head *jh = journal_add_journal_head(bh);
1791  *      ...
1792  *      jh->b_transaction = xxx;
1793  *      journal_put_journal_head(jh);
1794  *
1795  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1796  * because it has a non-zero b_transaction.
1797  */
1798
1799 /*
1800  * Give a buffer_head a journal_head.
1801  *
1802  * Doesn't need the journal lock.
1803  * May sleep.
1804  */
1805 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1806 {
1807         struct journal_head *jh;
1808         struct journal_head *new_jh = NULL;
1809
1810 repeat:
1811         if (!buffer_jbd(bh)) {
1812                 new_jh = journal_alloc_journal_head();
1813                 memset(new_jh, 0, sizeof(*new_jh));
1814         }
1815
1816         jbd_lock_bh_journal_head(bh);
1817         if (buffer_jbd(bh)) {
1818                 jh = bh2jh(bh);
1819         } else {
1820                 J_ASSERT_BH(bh,
1821                         (atomic_read(&bh->b_count) > 0) ||
1822                         (bh->b_page && bh->b_page->mapping));
1823
1824                 if (!new_jh) {
1825                         jbd_unlock_bh_journal_head(bh);
1826                         goto repeat;
1827                 }
1828
1829                 jh = new_jh;
1830                 new_jh = NULL;          /* We consumed it */
1831                 set_buffer_jbd(bh);
1832                 bh->b_private = jh;
1833                 jh->b_bh = bh;
1834                 get_bh(bh);
1835                 BUFFER_TRACE(bh, "added journal_head");
1836         }
1837         jh->b_jcount++;
1838         jbd_unlock_bh_journal_head(bh);
1839         if (new_jh)
1840                 journal_free_journal_head(new_jh);
1841         return bh->b_private;
1842 }
1843
1844 /*
1845  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1846  * having a journal_head, return NULL
1847  */
1848 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1849 {
1850         struct journal_head *jh = NULL;
1851
1852         jbd_lock_bh_journal_head(bh);
1853         if (buffer_jbd(bh)) {
1854                 jh = bh2jh(bh);
1855                 jh->b_jcount++;
1856         }
1857         jbd_unlock_bh_journal_head(bh);
1858         return jh;
1859 }
1860
1861 static void __journal_remove_journal_head(struct buffer_head *bh)
1862 {
1863         struct journal_head *jh = bh2jh(bh);
1864
1865         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1866
1867         get_bh(bh);
1868         if (jh->b_jcount == 0) {
1869                 if (jh->b_transaction == NULL &&
1870                                 jh->b_next_transaction == NULL &&
1871                                 jh->b_cp_transaction == NULL) {
1872                         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1873                         J_ASSERT_BH(bh, buffer_jbd(bh));
1874                         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1875                         BUFFER_TRACE(bh, "remove journal_head");
1876                         if (jh->b_frozen_data) {
1877                                 printk(KERN_WARNING "%s: freeing "
1878                                                 "b_frozen_data\n",
1879                                                 __FUNCTION__);
1880                                 jbd_slab_free(jh->b_frozen_data, bh->b_size);
1881                         }
1882                         if (jh->b_committed_data) {
1883                                 printk(KERN_WARNING "%s: freeing "
1884                                                 "b_committed_data\n",
1885                                                 __FUNCTION__);
1886                                 jbd_slab_free(jh->b_committed_data, bh->b_size);
1887                         }
1888                         bh->b_private = NULL;
1889                         jh->b_bh = NULL;        /* debug, really */
1890                         clear_buffer_jbd(bh);
1891                         __brelse(bh);
1892                         journal_free_journal_head(jh);
1893                 } else {
1894                         BUFFER_TRACE(bh, "journal_head was locked");
1895                 }
1896         }
1897 }
1898
1899 /*
1900  * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1901  * and has a zero b_jcount then remove and release its journal_head.   If we did
1902  * see that the buffer is not used by any transaction we also "logically"
1903  * decrement ->b_count.
1904  *
1905  * We in fact take an additional increment on ->b_count as a convenience,
1906  * because the caller usually wants to do additional things with the bh
1907  * after calling here.
1908  * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1909  * time.  Once the caller has run __brelse(), the buffer is eligible for
1910  * reaping by try_to_free_buffers().
1911  */
1912 void journal_remove_journal_head(struct buffer_head *bh)
1913 {
1914         jbd_lock_bh_journal_head(bh);
1915         __journal_remove_journal_head(bh);
1916         jbd_unlock_bh_journal_head(bh);
1917 }
1918
1919 /*
1920  * Drop a reference on the passed journal_head.  If it fell to zero then try to
1921  * release the journal_head from the buffer_head.
1922  */
1923 void journal_put_journal_head(struct journal_head *jh)
1924 {
1925         struct buffer_head *bh = jh2bh(jh);
1926
1927         jbd_lock_bh_journal_head(bh);
1928         J_ASSERT_JH(jh, jh->b_jcount > 0);
1929         --jh->b_jcount;
1930         if (!jh->b_jcount && !jh->b_transaction) {
1931                 __journal_remove_journal_head(bh);
1932                 __brelse(bh);
1933         }
1934         jbd_unlock_bh_journal_head(bh);
1935 }
1936
1937 /*
1938  * /proc tunables
1939  */
1940 #if defined(CONFIG_JBD_DEBUG)
1941 int journal_enable_debug;
1942 EXPORT_SYMBOL(journal_enable_debug);
1943 #endif
1944
1945 #if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS)
1946
1947 static struct proc_dir_entry *proc_jbd_debug;
1948
1949 static int read_jbd_debug(char *page, char **start, off_t off,
1950                           int count, int *eof, void *data)
1951 {
1952         int ret;
1953
1954         ret = sprintf(page + off, "%d\n", journal_enable_debug);
1955         *eof = 1;
1956         return ret;
1957 }
1958
1959 static int write_jbd_debug(struct file *file, const char __user *buffer,
1960                            unsigned long count, void *data)
1961 {
1962         char buf[32];
1963
1964         if (count > ARRAY_SIZE(buf) - 1)
1965                 count = ARRAY_SIZE(buf) - 1;
1966         if (copy_from_user(buf, buffer, count))
1967                 return -EFAULT;
1968         buf[ARRAY_SIZE(buf) - 1] = '\0';
1969         journal_enable_debug = simple_strtoul(buf, NULL, 10);
1970         return count;
1971 }
1972
1973 #define JBD_PROC_NAME "sys/fs/jbd-debug"
1974
1975 static void __init create_jbd_proc_entry(void)
1976 {
1977         proc_jbd_debug = create_proc_entry(JBD_PROC_NAME, 0644, NULL);
1978         if (proc_jbd_debug) {
1979                 /* Why is this so hard? */
1980                 proc_jbd_debug->read_proc = read_jbd_debug;
1981                 proc_jbd_debug->write_proc = write_jbd_debug;
1982         }
1983 }
1984
1985 static void __exit remove_jbd_proc_entry(void)
1986 {
1987         if (proc_jbd_debug)
1988                 remove_proc_entry(JBD_PROC_NAME, NULL);
1989 }
1990
1991 #else
1992
1993 #define create_jbd_proc_entry() do {} while (0)
1994 #define remove_jbd_proc_entry() do {} while (0)
1995
1996 #endif
1997
1998 kmem_cache_t *jbd_handle_cache;
1999
2000 static int __init journal_init_handle_cache(void)
2001 {
2002         jbd_handle_cache = kmem_cache_create("journal_handle",
2003                                 sizeof(handle_t),
2004                                 0,              /* offset */
2005                                 0,              /* flags */
2006                                 NULL,           /* ctor */
2007                                 NULL);          /* dtor */
2008         if (jbd_handle_cache == NULL) {
2009                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2010                 return -ENOMEM;
2011         }
2012         return 0;
2013 }
2014
2015 static void journal_destroy_handle_cache(void)
2016 {
2017         if (jbd_handle_cache)
2018                 kmem_cache_destroy(jbd_handle_cache);
2019 }
2020
2021 /*
2022  * Module startup and shutdown
2023  */
2024
2025 static int __init journal_init_caches(void)
2026 {
2027         int ret;
2028
2029         ret = journal_init_revoke_caches();
2030         if (ret == 0)
2031                 ret = journal_init_journal_head_cache();
2032         if (ret == 0)
2033                 ret = journal_init_handle_cache();
2034         return ret;
2035 }
2036
2037 static void journal_destroy_caches(void)
2038 {
2039         journal_destroy_revoke_caches();
2040         journal_destroy_journal_head_cache();
2041         journal_destroy_handle_cache();
2042         journal_destroy_jbd_slabs();
2043 }
2044
2045 static int __init journal_init(void)
2046 {
2047         int ret;
2048
2049         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2050
2051         ret = journal_init_caches();
2052         if (ret != 0)
2053                 journal_destroy_caches();
2054         create_jbd_proc_entry();
2055         return ret;
2056 }
2057
2058 static void __exit journal_exit(void)
2059 {
2060 #ifdef CONFIG_JBD_DEBUG
2061         int n = atomic_read(&nr_journal_heads);
2062         if (n)
2063                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2064 #endif
2065         remove_jbd_proc_entry();
2066         journal_destroy_caches();
2067 }
2068
2069 MODULE_LICENSE("GPL");
2070 module_init(journal_init);
2071 module_exit(journal_exit);
2072