Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-fixes
[pandora-kernel.git] / fs / gfs2 / aops.c
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37
38
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40                                    unsigned int from, unsigned int to)
41 {
42         struct buffer_head *head = page_buffers(page);
43         unsigned int bsize = head->b_size;
44         struct buffer_head *bh;
45         unsigned int start, end;
46
47         for (bh = head, start = 0; bh != head || !start;
48              bh = bh->b_this_page, start = end) {
49                 end = start + bsize;
50                 if (end <= from || start >= to)
51                         continue;
52                 if (gfs2_is_jdata(ip))
53                         set_buffer_uptodate(bh);
54                 gfs2_trans_add_bh(ip->i_gl, bh, 0);
55         }
56 }
57
58 /**
59  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60  * @inode: The inode
61  * @lblock: The block number to look up
62  * @bh_result: The buffer head to return the result in
63  * @create: Non-zero if we may add block to the file
64  *
65  * Returns: errno
66  */
67
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69                                   struct buffer_head *bh_result, int create)
70 {
71         int error;
72
73         error = gfs2_block_map(inode, lblock, bh_result, 0);
74         if (error)
75                 return error;
76         if (!buffer_mapped(bh_result))
77                 return -EIO;
78         return 0;
79 }
80
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82                                  struct buffer_head *bh_result, int create)
83 {
84         return gfs2_block_map(inode, lblock, bh_result, 0);
85 }
86
87 /**
88  * gfs2_writepage_common - Common bits of writepage
89  * @page: The page to be written
90  * @wbc: The writeback control
91  *
92  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93  */
94
95 static int gfs2_writepage_common(struct page *page,
96                                  struct writeback_control *wbc)
97 {
98         struct inode *inode = page->mapping->host;
99         struct gfs2_inode *ip = GFS2_I(inode);
100         struct gfs2_sbd *sdp = GFS2_SB(inode);
101         loff_t i_size = i_size_read(inode);
102         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103         unsigned offset;
104
105         if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106                 goto out;
107         if (current->journal_info)
108                 goto redirty;
109         /* Is the page fully outside i_size? (truncate in progress) */
110         offset = i_size & (PAGE_CACHE_SIZE-1);
111         if (page->index > end_index || (page->index == end_index && !offset)) {
112                 page->mapping->a_ops->invalidatepage(page, 0);
113                 goto out;
114         }
115         return 1;
116 redirty:
117         redirty_page_for_writepage(wbc, page);
118 out:
119         unlock_page(page);
120         return 0;
121 }
122
123 /**
124  * gfs2_writeback_writepage - Write page for writeback mappings
125  * @page: The page
126  * @wbc: The writeback control
127  *
128  */
129
130 static int gfs2_writeback_writepage(struct page *page,
131                                     struct writeback_control *wbc)
132 {
133         int ret;
134
135         ret = gfs2_writepage_common(page, wbc);
136         if (ret <= 0)
137                 return ret;
138
139         ret = mpage_writepage(page, gfs2_get_block_noalloc, wbc);
140         if (ret == -EAGAIN)
141                 ret = block_write_full_page(page, gfs2_get_block_noalloc, wbc);
142         return ret;
143 }
144
145 /**
146  * gfs2_ordered_writepage - Write page for ordered data files
147  * @page: The page to write
148  * @wbc: The writeback control
149  *
150  */
151
152 static int gfs2_ordered_writepage(struct page *page,
153                                   struct writeback_control *wbc)
154 {
155         struct inode *inode = page->mapping->host;
156         struct gfs2_inode *ip = GFS2_I(inode);
157         int ret;
158
159         ret = gfs2_writepage_common(page, wbc);
160         if (ret <= 0)
161                 return ret;
162
163         if (!page_has_buffers(page)) {
164                 create_empty_buffers(page, inode->i_sb->s_blocksize,
165                                      (1 << BH_Dirty)|(1 << BH_Uptodate));
166         }
167         gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
168         return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
169 }
170
171 /**
172  * __gfs2_jdata_writepage - The core of jdata writepage
173  * @page: The page to write
174  * @wbc: The writeback control
175  *
176  * This is shared between writepage and writepages and implements the
177  * core of the writepage operation. If a transaction is required then
178  * PageChecked will have been set and the transaction will have
179  * already been started before this is called.
180  */
181
182 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
183 {
184         struct inode *inode = page->mapping->host;
185         struct gfs2_inode *ip = GFS2_I(inode);
186         struct gfs2_sbd *sdp = GFS2_SB(inode);
187
188         if (PageChecked(page)) {
189                 ClearPageChecked(page);
190                 if (!page_has_buffers(page)) {
191                         create_empty_buffers(page, inode->i_sb->s_blocksize,
192                                              (1 << BH_Dirty)|(1 << BH_Uptodate));
193                 }
194                 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
195         }
196         return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
197 }
198
199 /**
200  * gfs2_jdata_writepage - Write complete page
201  * @page: Page to write
202  *
203  * Returns: errno
204  *
205  */
206
207 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
208 {
209         struct inode *inode = page->mapping->host;
210         struct gfs2_sbd *sdp = GFS2_SB(inode);
211         int ret;
212         int done_trans = 0;
213
214         if (PageChecked(page)) {
215                 if (wbc->sync_mode != WB_SYNC_ALL)
216                         goto out_ignore;
217                 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
218                 if (ret)
219                         goto out_ignore;
220                 done_trans = 1;
221         }
222         ret = gfs2_writepage_common(page, wbc);
223         if (ret > 0)
224                 ret = __gfs2_jdata_writepage(page, wbc);
225         if (done_trans)
226                 gfs2_trans_end(sdp);
227         return ret;
228
229 out_ignore:
230         redirty_page_for_writepage(wbc, page);
231         unlock_page(page);
232         return 0;
233 }
234
235 /**
236  * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
237  * @mapping: The mapping to write
238  * @wbc: Write-back control
239  *
240  * For the data=writeback case we can already ignore buffer heads
241  * and write whole extents at once. This is a big reduction in the
242  * number of I/O requests we send and the bmap calls we make in this case.
243  */
244 static int gfs2_writeback_writepages(struct address_space *mapping,
245                                      struct writeback_control *wbc)
246 {
247         return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
248 }
249
250 /**
251  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
252  * @mapping: The mapping
253  * @wbc: The writeback control
254  * @writepage: The writepage function to call for each page
255  * @pvec: The vector of pages
256  * @nr_pages: The number of pages to write
257  *
258  * Returns: non-zero if loop should terminate, zero otherwise
259  */
260
261 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
262                                     struct writeback_control *wbc,
263                                     struct pagevec *pvec,
264                                     int nr_pages, pgoff_t end)
265 {
266         struct inode *inode = mapping->host;
267         struct gfs2_sbd *sdp = GFS2_SB(inode);
268         loff_t i_size = i_size_read(inode);
269         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
270         unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
271         unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
272         int i;
273         int ret;
274
275         ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
276         if (ret < 0)
277                 return ret;
278
279         for(i = 0; i < nr_pages; i++) {
280                 struct page *page = pvec->pages[i];
281
282                 lock_page(page);
283
284                 if (unlikely(page->mapping != mapping)) {
285                         unlock_page(page);
286                         continue;
287                 }
288
289                 if (!wbc->range_cyclic && page->index > end) {
290                         ret = 1;
291                         unlock_page(page);
292                         continue;
293                 }
294
295                 if (wbc->sync_mode != WB_SYNC_NONE)
296                         wait_on_page_writeback(page);
297
298                 if (PageWriteback(page) ||
299                     !clear_page_dirty_for_io(page)) {
300                         unlock_page(page);
301                         continue;
302                 }
303
304                 /* Is the page fully outside i_size? (truncate in progress) */
305                 if (page->index > end_index || (page->index == end_index && !offset)) {
306                         page->mapping->a_ops->invalidatepage(page, 0);
307                         unlock_page(page);
308                         continue;
309                 }
310
311                 ret = __gfs2_jdata_writepage(page, wbc);
312
313                 if (ret || (--(wbc->nr_to_write) <= 0))
314                         ret = 1;
315         }
316         gfs2_trans_end(sdp);
317         return ret;
318 }
319
320 /**
321  * gfs2_write_cache_jdata - Like write_cache_pages but different
322  * @mapping: The mapping to write
323  * @wbc: The writeback control
324  * @writepage: The writepage function to call
325  * @data: The data to pass to writepage
326  *
327  * The reason that we use our own function here is that we need to
328  * start transactions before we grab page locks. This allows us
329  * to get the ordering right.
330  */
331
332 static int gfs2_write_cache_jdata(struct address_space *mapping,
333                                   struct writeback_control *wbc)
334 {
335         int ret = 0;
336         int done = 0;
337         struct pagevec pvec;
338         int nr_pages;
339         pgoff_t index;
340         pgoff_t end;
341         int scanned = 0;
342         int range_whole = 0;
343
344         pagevec_init(&pvec, 0);
345         if (wbc->range_cyclic) {
346                 index = mapping->writeback_index; /* Start from prev offset */
347                 end = -1;
348         } else {
349                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
350                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
351                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
352                         range_whole = 1;
353                 scanned = 1;
354         }
355
356 retry:
357          while (!done && (index <= end) &&
358                 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359                                                PAGECACHE_TAG_DIRTY,
360                                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
361                 scanned = 1;
362                 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
363                 if (ret)
364                         done = 1;
365                 if (ret > 0)
366                         ret = 0;
367
368                 pagevec_release(&pvec);
369                 cond_resched();
370         }
371
372         if (!scanned && !done) {
373                 /*
374                  * We hit the last page and there is more work to be done: wrap
375                  * back to the start of the file
376                  */
377                 scanned = 1;
378                 index = 0;
379                 goto retry;
380         }
381
382         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
383                 mapping->writeback_index = index;
384         return ret;
385 }
386
387
388 /**
389  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
390  * @mapping: The mapping to write
391  * @wbc: The writeback control
392  * 
393  */
394
395 static int gfs2_jdata_writepages(struct address_space *mapping,
396                                  struct writeback_control *wbc)
397 {
398         struct gfs2_inode *ip = GFS2_I(mapping->host);
399         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
400         int ret;
401
402         ret = gfs2_write_cache_jdata(mapping, wbc);
403         if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
404                 gfs2_log_flush(sdp, ip->i_gl);
405                 ret = gfs2_write_cache_jdata(mapping, wbc);
406         }
407         return ret;
408 }
409
410 /**
411  * stuffed_readpage - Fill in a Linux page with stuffed file data
412  * @ip: the inode
413  * @page: the page
414  *
415  * Returns: errno
416  */
417
418 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
419 {
420         struct buffer_head *dibh;
421         u64 dsize = i_size_read(&ip->i_inode);
422         void *kaddr;
423         int error;
424
425         /*
426          * Due to the order of unstuffing files and ->fault(), we can be
427          * asked for a zero page in the case of a stuffed file being extended,
428          * so we need to supply one here. It doesn't happen often.
429          */
430         if (unlikely(page->index)) {
431                 zero_user(page, 0, PAGE_CACHE_SIZE);
432                 SetPageUptodate(page);
433                 return 0;
434         }
435
436         error = gfs2_meta_inode_buffer(ip, &dibh);
437         if (error)
438                 return error;
439
440         kaddr = kmap_atomic(page, KM_USER0);
441         if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
442                 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
443         memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
444         memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
445         kunmap_atomic(kaddr, KM_USER0);
446         flush_dcache_page(page);
447         brelse(dibh);
448         SetPageUptodate(page);
449
450         return 0;
451 }
452
453
454 /**
455  * __gfs2_readpage - readpage
456  * @file: The file to read a page for
457  * @page: The page to read
458  *
459  * This is the core of gfs2's readpage. Its used by the internal file
460  * reading code as in that case we already hold the glock. Also its
461  * called by gfs2_readpage() once the required lock has been granted.
462  *
463  */
464
465 static int __gfs2_readpage(void *file, struct page *page)
466 {
467         struct gfs2_inode *ip = GFS2_I(page->mapping->host);
468         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
469         int error;
470
471         if (gfs2_is_stuffed(ip)) {
472                 error = stuffed_readpage(ip, page);
473                 unlock_page(page);
474         } else {
475                 error = mpage_readpage(page, gfs2_block_map);
476         }
477
478         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
479                 return -EIO;
480
481         return error;
482 }
483
484 /**
485  * gfs2_readpage - read a page of a file
486  * @file: The file to read
487  * @page: The page of the file
488  *
489  * This deals with the locking required. We have to unlock and
490  * relock the page in order to get the locking in the right
491  * order.
492  */
493
494 static int gfs2_readpage(struct file *file, struct page *page)
495 {
496         struct address_space *mapping = page->mapping;
497         struct gfs2_inode *ip = GFS2_I(mapping->host);
498         struct gfs2_holder gh;
499         int error;
500
501         unlock_page(page);
502         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
503         error = gfs2_glock_nq(&gh);
504         if (unlikely(error))
505                 goto out;
506         error = AOP_TRUNCATED_PAGE;
507         lock_page(page);
508         if (page->mapping == mapping && !PageUptodate(page))
509                 error = __gfs2_readpage(file, page);
510         else
511                 unlock_page(page);
512         gfs2_glock_dq(&gh);
513 out:
514         gfs2_holder_uninit(&gh);
515         if (error && error != AOP_TRUNCATED_PAGE)
516                 lock_page(page);
517         return error;
518 }
519
520 /**
521  * gfs2_internal_read - read an internal file
522  * @ip: The gfs2 inode
523  * @ra_state: The readahead state (or NULL for no readahead)
524  * @buf: The buffer to fill
525  * @pos: The file position
526  * @size: The amount to read
527  *
528  */
529
530 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
531                        char *buf, loff_t *pos, unsigned size)
532 {
533         struct address_space *mapping = ip->i_inode.i_mapping;
534         unsigned long index = *pos / PAGE_CACHE_SIZE;
535         unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
536         unsigned copied = 0;
537         unsigned amt;
538         struct page *page;
539         void *p;
540
541         do {
542                 amt = size - copied;
543                 if (offset + size > PAGE_CACHE_SIZE)
544                         amt = PAGE_CACHE_SIZE - offset;
545                 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
546                 if (IS_ERR(page))
547                         return PTR_ERR(page);
548                 p = kmap_atomic(page, KM_USER0);
549                 memcpy(buf + copied, p + offset, amt);
550                 kunmap_atomic(p, KM_USER0);
551                 mark_page_accessed(page);
552                 page_cache_release(page);
553                 copied += amt;
554                 index++;
555                 offset = 0;
556         } while(copied < size);
557         (*pos) += size;
558         return size;
559 }
560
561 /**
562  * gfs2_readpages - Read a bunch of pages at once
563  *
564  * Some notes:
565  * 1. This is only for readahead, so we can simply ignore any things
566  *    which are slightly inconvenient (such as locking conflicts between
567  *    the page lock and the glock) and return having done no I/O. Its
568  *    obviously not something we'd want to do on too regular a basis.
569  *    Any I/O we ignore at this time will be done via readpage later.
570  * 2. We don't handle stuffed files here we let readpage do the honours.
571  * 3. mpage_readpages() does most of the heavy lifting in the common case.
572  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
573  */
574
575 static int gfs2_readpages(struct file *file, struct address_space *mapping,
576                           struct list_head *pages, unsigned nr_pages)
577 {
578         struct inode *inode = mapping->host;
579         struct gfs2_inode *ip = GFS2_I(inode);
580         struct gfs2_sbd *sdp = GFS2_SB(inode);
581         struct gfs2_holder gh;
582         int ret;
583
584         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
585         ret = gfs2_glock_nq(&gh);
586         if (unlikely(ret))
587                 goto out_uninit;
588         if (!gfs2_is_stuffed(ip))
589                 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
590         gfs2_glock_dq(&gh);
591 out_uninit:
592         gfs2_holder_uninit(&gh);
593         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
594                 ret = -EIO;
595         return ret;
596 }
597
598 /**
599  * gfs2_write_begin - Begin to write to a file
600  * @file: The file to write to
601  * @mapping: The mapping in which to write
602  * @pos: The file offset at which to start writing
603  * @len: Length of the write
604  * @flags: Various flags
605  * @pagep: Pointer to return the page
606  * @fsdata: Pointer to return fs data (unused by GFS2)
607  *
608  * Returns: errno
609  */
610
611 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
612                             loff_t pos, unsigned len, unsigned flags,
613                             struct page **pagep, void **fsdata)
614 {
615         struct gfs2_inode *ip = GFS2_I(mapping->host);
616         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
617         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
618         unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
619         int alloc_required;
620         int error = 0;
621         struct gfs2_alloc *al;
622         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
623         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
624         unsigned to = from + len;
625         struct page *page;
626
627         gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
628         error = gfs2_glock_nq(&ip->i_gh);
629         if (unlikely(error))
630                 goto out_uninit;
631         if (&ip->i_inode == sdp->sd_rindex) {
632                 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
633                                            GL_NOCACHE, &m_ip->i_gh);
634                 if (unlikely(error)) {
635                         gfs2_glock_dq(&ip->i_gh);
636                         goto out_uninit;
637                 }
638         }
639
640         error = gfs2_write_alloc_required(ip, pos, len, &alloc_required);
641         if (error)
642                 goto out_unlock;
643
644         if (alloc_required || gfs2_is_jdata(ip))
645                 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
646
647         if (alloc_required) {
648                 al = gfs2_alloc_get(ip);
649                 if (!al) {
650                         error = -ENOMEM;
651                         goto out_unlock;
652                 }
653
654                 error = gfs2_quota_lock_check(ip);
655                 if (error)
656                         goto out_alloc_put;
657
658                 al->al_requested = data_blocks + ind_blocks;
659                 error = gfs2_inplace_reserve(ip);
660                 if (error)
661                         goto out_qunlock;
662         }
663
664         rblocks = RES_DINODE + ind_blocks;
665         if (gfs2_is_jdata(ip))
666                 rblocks += data_blocks ? data_blocks : 1;
667         if (ind_blocks || data_blocks)
668                 rblocks += RES_STATFS + RES_QUOTA;
669         if (&ip->i_inode == sdp->sd_rindex)
670                 rblocks += 2 * RES_STATFS;
671
672         error = gfs2_trans_begin(sdp, rblocks,
673                                  PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
674         if (error)
675                 goto out_trans_fail;
676
677         error = -ENOMEM;
678         flags |= AOP_FLAG_NOFS;
679         page = grab_cache_page_write_begin(mapping, index, flags);
680         *pagep = page;
681         if (unlikely(!page))
682                 goto out_endtrans;
683
684         if (gfs2_is_stuffed(ip)) {
685                 error = 0;
686                 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
687                         error = gfs2_unstuff_dinode(ip, page);
688                         if (error == 0)
689                                 goto prepare_write;
690                 } else if (!PageUptodate(page)) {
691                         error = stuffed_readpage(ip, page);
692                 }
693                 goto out;
694         }
695
696 prepare_write:
697         error = block_prepare_write(page, from, to, gfs2_block_map);
698 out:
699         if (error == 0)
700                 return 0;
701
702         page_cache_release(page);
703         if (pos + len > ip->i_inode.i_size)
704                 vmtruncate(&ip->i_inode, ip->i_inode.i_size);
705 out_endtrans:
706         gfs2_trans_end(sdp);
707 out_trans_fail:
708         if (alloc_required) {
709                 gfs2_inplace_release(ip);
710 out_qunlock:
711                 gfs2_quota_unlock(ip);
712 out_alloc_put:
713                 gfs2_alloc_put(ip);
714         }
715 out_unlock:
716         if (&ip->i_inode == sdp->sd_rindex) {
717                 gfs2_glock_dq(&m_ip->i_gh);
718                 gfs2_holder_uninit(&m_ip->i_gh);
719         }
720         gfs2_glock_dq(&ip->i_gh);
721 out_uninit:
722         gfs2_holder_uninit(&ip->i_gh);
723         return error;
724 }
725
726 /**
727  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
728  * @inode: the rindex inode
729  */
730 static void adjust_fs_space(struct inode *inode)
731 {
732         struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
733         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
734         struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
735         struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
736         struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
737         struct buffer_head *m_bh, *l_bh;
738         u64 fs_total, new_free;
739
740         /* Total up the file system space, according to the latest rindex. */
741         fs_total = gfs2_ri_total(sdp);
742         if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
743                 return;
744
745         spin_lock(&sdp->sd_statfs_spin);
746         gfs2_statfs_change_in(m_sc, m_bh->b_data +
747                               sizeof(struct gfs2_dinode));
748         if (fs_total > (m_sc->sc_total + l_sc->sc_total))
749                 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
750         else
751                 new_free = 0;
752         spin_unlock(&sdp->sd_statfs_spin);
753         fs_warn(sdp, "File system extended by %llu blocks.\n",
754                 (unsigned long long)new_free);
755         gfs2_statfs_change(sdp, new_free, new_free, 0);
756
757         if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
758                 goto out;
759         update_statfs(sdp, m_bh, l_bh);
760         brelse(l_bh);
761 out:
762         brelse(m_bh);
763 }
764
765 /**
766  * gfs2_stuffed_write_end - Write end for stuffed files
767  * @inode: The inode
768  * @dibh: The buffer_head containing the on-disk inode
769  * @pos: The file position
770  * @len: The length of the write
771  * @copied: How much was actually copied by the VFS
772  * @page: The page
773  *
774  * This copies the data from the page into the inode block after
775  * the inode data structure itself.
776  *
777  * Returns: errno
778  */
779 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
780                                   loff_t pos, unsigned len, unsigned copied,
781                                   struct page *page)
782 {
783         struct gfs2_inode *ip = GFS2_I(inode);
784         struct gfs2_sbd *sdp = GFS2_SB(inode);
785         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
786         u64 to = pos + copied;
787         void *kaddr;
788         unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
789         struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
790
791         BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
792         kaddr = kmap_atomic(page, KM_USER0);
793         memcpy(buf + pos, kaddr + pos, copied);
794         memset(kaddr + pos + copied, 0, len - copied);
795         flush_dcache_page(page);
796         kunmap_atomic(kaddr, KM_USER0);
797
798         if (!PageUptodate(page))
799                 SetPageUptodate(page);
800         unlock_page(page);
801         page_cache_release(page);
802
803         if (copied) {
804                 if (inode->i_size < to) {
805                         i_size_write(inode, to);
806                         ip->i_disksize = inode->i_size;
807                 }
808                 gfs2_dinode_out(ip, di);
809                 mark_inode_dirty(inode);
810         }
811
812         if (inode == sdp->sd_rindex) {
813                 adjust_fs_space(inode);
814                 ip->i_gh.gh_flags |= GL_NOCACHE;
815         }
816
817         brelse(dibh);
818         gfs2_trans_end(sdp);
819         if (inode == sdp->sd_rindex) {
820                 gfs2_glock_dq(&m_ip->i_gh);
821                 gfs2_holder_uninit(&m_ip->i_gh);
822         }
823         gfs2_glock_dq(&ip->i_gh);
824         gfs2_holder_uninit(&ip->i_gh);
825         return copied;
826 }
827
828 /**
829  * gfs2_write_end
830  * @file: The file to write to
831  * @mapping: The address space to write to
832  * @pos: The file position
833  * @len: The length of the data
834  * @copied:
835  * @page: The page that has been written
836  * @fsdata: The fsdata (unused in GFS2)
837  *
838  * The main write_end function for GFS2. We have a separate one for
839  * stuffed files as they are slightly different, otherwise we just
840  * put our locking around the VFS provided functions.
841  *
842  * Returns: errno
843  */
844
845 static int gfs2_write_end(struct file *file, struct address_space *mapping,
846                           loff_t pos, unsigned len, unsigned copied,
847                           struct page *page, void *fsdata)
848 {
849         struct inode *inode = page->mapping->host;
850         struct gfs2_inode *ip = GFS2_I(inode);
851         struct gfs2_sbd *sdp = GFS2_SB(inode);
852         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
853         struct buffer_head *dibh;
854         struct gfs2_alloc *al = ip->i_alloc;
855         unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
856         unsigned int to = from + len;
857         int ret;
858
859         BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
860
861         ret = gfs2_meta_inode_buffer(ip, &dibh);
862         if (unlikely(ret)) {
863                 unlock_page(page);
864                 page_cache_release(page);
865                 goto failed;
866         }
867
868         gfs2_trans_add_bh(ip->i_gl, dibh, 1);
869
870         if (gfs2_is_stuffed(ip))
871                 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
872
873         if (!gfs2_is_writeback(ip))
874                 gfs2_page_add_databufs(ip, page, from, to);
875
876         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
877         if (ret > 0) {
878                 if (inode->i_size > ip->i_disksize)
879                         ip->i_disksize = inode->i_size;
880                 gfs2_dinode_out(ip, dibh->b_data);
881                 mark_inode_dirty(inode);
882         }
883
884         if (inode == sdp->sd_rindex) {
885                 adjust_fs_space(inode);
886                 ip->i_gh.gh_flags |= GL_NOCACHE;
887         }
888
889         brelse(dibh);
890         gfs2_trans_end(sdp);
891 failed:
892         if (al) {
893                 gfs2_inplace_release(ip);
894                 gfs2_quota_unlock(ip);
895                 gfs2_alloc_put(ip);
896         }
897         if (inode == sdp->sd_rindex) {
898                 gfs2_glock_dq(&m_ip->i_gh);
899                 gfs2_holder_uninit(&m_ip->i_gh);
900         }
901         gfs2_glock_dq(&ip->i_gh);
902         gfs2_holder_uninit(&ip->i_gh);
903         return ret;
904 }
905
906 /**
907  * gfs2_set_page_dirty - Page dirtying function
908  * @page: The page to dirty
909  *
910  * Returns: 1 if it dirtyed the page, or 0 otherwise
911  */
912  
913 static int gfs2_set_page_dirty(struct page *page)
914 {
915         SetPageChecked(page);
916         return __set_page_dirty_buffers(page);
917 }
918
919 /**
920  * gfs2_bmap - Block map function
921  * @mapping: Address space info
922  * @lblock: The block to map
923  *
924  * Returns: The disk address for the block or 0 on hole or error
925  */
926
927 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
928 {
929         struct gfs2_inode *ip = GFS2_I(mapping->host);
930         struct gfs2_holder i_gh;
931         sector_t dblock = 0;
932         int error;
933
934         error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
935         if (error)
936                 return 0;
937
938         if (!gfs2_is_stuffed(ip))
939                 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
940
941         gfs2_glock_dq_uninit(&i_gh);
942
943         return dblock;
944 }
945
946 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
947 {
948         struct gfs2_bufdata *bd;
949
950         lock_buffer(bh);
951         gfs2_log_lock(sdp);
952         clear_buffer_dirty(bh);
953         bd = bh->b_private;
954         if (bd) {
955                 if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
956                         list_del_init(&bd->bd_le.le_list);
957                 else
958                         gfs2_remove_from_journal(bh, current->journal_info, 0);
959         }
960         bh->b_bdev = NULL;
961         clear_buffer_mapped(bh);
962         clear_buffer_req(bh);
963         clear_buffer_new(bh);
964         gfs2_log_unlock(sdp);
965         unlock_buffer(bh);
966 }
967
968 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
969 {
970         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
971         struct buffer_head *bh, *head;
972         unsigned long pos = 0;
973
974         BUG_ON(!PageLocked(page));
975         if (offset == 0)
976                 ClearPageChecked(page);
977         if (!page_has_buffers(page))
978                 goto out;
979
980         bh = head = page_buffers(page);
981         do {
982                 if (offset <= pos)
983                         gfs2_discard(sdp, bh);
984                 pos += bh->b_size;
985                 bh = bh->b_this_page;
986         } while (bh != head);
987 out:
988         if (offset == 0)
989                 try_to_release_page(page, 0);
990 }
991
992 /**
993  * gfs2_ok_for_dio - check that dio is valid on this file
994  * @ip: The inode
995  * @rw: READ or WRITE
996  * @offset: The offset at which we are reading or writing
997  *
998  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
999  *          1 (to accept the i/o request)
1000  */
1001 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1002 {
1003         /*
1004          * Should we return an error here? I can't see that O_DIRECT for
1005          * a stuffed file makes any sense. For now we'll silently fall
1006          * back to buffered I/O
1007          */
1008         if (gfs2_is_stuffed(ip))
1009                 return 0;
1010
1011         if (offset >= i_size_read(&ip->i_inode))
1012                 return 0;
1013         return 1;
1014 }
1015
1016
1017
1018 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1019                               const struct iovec *iov, loff_t offset,
1020                               unsigned long nr_segs)
1021 {
1022         struct file *file = iocb->ki_filp;
1023         struct inode *inode = file->f_mapping->host;
1024         struct gfs2_inode *ip = GFS2_I(inode);
1025         struct gfs2_holder gh;
1026         int rv;
1027
1028         /*
1029          * Deferred lock, even if its a write, since we do no allocation
1030          * on this path. All we need change is atime, and this lock mode
1031          * ensures that other nodes have flushed their buffered read caches
1032          * (i.e. their page cache entries for this inode). We do not,
1033          * unfortunately have the option of only flushing a range like
1034          * the VFS does.
1035          */
1036         gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1037         rv = gfs2_glock_nq(&gh);
1038         if (rv)
1039                 return rv;
1040         rv = gfs2_ok_for_dio(ip, rw, offset);
1041         if (rv != 1)
1042                 goto out; /* dio not valid, fall back to buffered i/o */
1043
1044         rv = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev,
1045                                            iov, offset, nr_segs,
1046                                            gfs2_get_block_direct, NULL);
1047 out:
1048         gfs2_glock_dq_m(1, &gh);
1049         gfs2_holder_uninit(&gh);
1050         return rv;
1051 }
1052
1053 /**
1054  * gfs2_releasepage - free the metadata associated with a page
1055  * @page: the page that's being released
1056  * @gfp_mask: passed from Linux VFS, ignored by us
1057  *
1058  * Call try_to_free_buffers() if the buffers in this page can be
1059  * released.
1060  *
1061  * Returns: 0
1062  */
1063
1064 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1065 {
1066         struct address_space *mapping = page->mapping;
1067         struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1068         struct buffer_head *bh, *head;
1069         struct gfs2_bufdata *bd;
1070
1071         if (!page_has_buffers(page))
1072                 return 0;
1073
1074         gfs2_log_lock(sdp);
1075         head = bh = page_buffers(page);
1076         do {
1077                 if (atomic_read(&bh->b_count))
1078                         goto cannot_release;
1079                 bd = bh->b_private;
1080                 if (bd && bd->bd_ail)
1081                         goto cannot_release;
1082                 gfs2_assert_warn(sdp, !buffer_pinned(bh));
1083                 gfs2_assert_warn(sdp, !buffer_dirty(bh));
1084                 bh = bh->b_this_page;
1085         } while(bh != head);
1086         gfs2_log_unlock(sdp);
1087
1088         head = bh = page_buffers(page);
1089         do {
1090                 gfs2_log_lock(sdp);
1091                 bd = bh->b_private;
1092                 if (bd) {
1093                         gfs2_assert_warn(sdp, bd->bd_bh == bh);
1094                         gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1095                         if (!list_empty(&bd->bd_le.le_list)) {
1096                                 if (!buffer_pinned(bh))
1097                                         list_del_init(&bd->bd_le.le_list);
1098                                 else
1099                                         bd = NULL;
1100                         }
1101                         if (bd)
1102                                 bd->bd_bh = NULL;
1103                         bh->b_private = NULL;
1104                 }
1105                 gfs2_log_unlock(sdp);
1106                 if (bd)
1107                         kmem_cache_free(gfs2_bufdata_cachep, bd);
1108
1109                 bh = bh->b_this_page;
1110         } while (bh != head);
1111
1112         return try_to_free_buffers(page);
1113 cannot_release:
1114         gfs2_log_unlock(sdp);
1115         return 0;
1116 }
1117
1118 static const struct address_space_operations gfs2_writeback_aops = {
1119         .writepage = gfs2_writeback_writepage,
1120         .writepages = gfs2_writeback_writepages,
1121         .readpage = gfs2_readpage,
1122         .readpages = gfs2_readpages,
1123         .sync_page = block_sync_page,
1124         .write_begin = gfs2_write_begin,
1125         .write_end = gfs2_write_end,
1126         .bmap = gfs2_bmap,
1127         .invalidatepage = gfs2_invalidatepage,
1128         .releasepage = gfs2_releasepage,
1129         .direct_IO = gfs2_direct_IO,
1130         .migratepage = buffer_migrate_page,
1131         .is_partially_uptodate = block_is_partially_uptodate,
1132         .error_remove_page = generic_error_remove_page,
1133 };
1134
1135 static const struct address_space_operations gfs2_ordered_aops = {
1136         .writepage = gfs2_ordered_writepage,
1137         .readpage = gfs2_readpage,
1138         .readpages = gfs2_readpages,
1139         .sync_page = block_sync_page,
1140         .write_begin = gfs2_write_begin,
1141         .write_end = gfs2_write_end,
1142         .set_page_dirty = gfs2_set_page_dirty,
1143         .bmap = gfs2_bmap,
1144         .invalidatepage = gfs2_invalidatepage,
1145         .releasepage = gfs2_releasepage,
1146         .direct_IO = gfs2_direct_IO,
1147         .migratepage = buffer_migrate_page,
1148         .is_partially_uptodate = block_is_partially_uptodate,
1149         .error_remove_page = generic_error_remove_page,
1150 };
1151
1152 static const struct address_space_operations gfs2_jdata_aops = {
1153         .writepage = gfs2_jdata_writepage,
1154         .writepages = gfs2_jdata_writepages,
1155         .readpage = gfs2_readpage,
1156         .readpages = gfs2_readpages,
1157         .sync_page = block_sync_page,
1158         .write_begin = gfs2_write_begin,
1159         .write_end = gfs2_write_end,
1160         .set_page_dirty = gfs2_set_page_dirty,
1161         .bmap = gfs2_bmap,
1162         .invalidatepage = gfs2_invalidatepage,
1163         .releasepage = gfs2_releasepage,
1164         .is_partially_uptodate = block_is_partially_uptodate,
1165         .error_remove_page = generic_error_remove_page,
1166 };
1167
1168 void gfs2_set_aops(struct inode *inode)
1169 {
1170         struct gfs2_inode *ip = GFS2_I(inode);
1171
1172         if (gfs2_is_writeback(ip))
1173                 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1174         else if (gfs2_is_ordered(ip))
1175                 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1176         else if (gfs2_is_jdata(ip))
1177                 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1178         else
1179                 BUG();
1180 }
1181