mm: export generic_pipe_buf_*() to modules
[pandora-kernel.git] / fs / fuse / dev.c
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/swap.h>
21 #include <linux/splice.h>
22
23 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
24
25 static struct kmem_cache *fuse_req_cachep;
26
27 static struct fuse_conn *fuse_get_conn(struct file *file)
28 {
29         /*
30          * Lockless access is OK, because file->private data is set
31          * once during mount and is valid until the file is released.
32          */
33         return file->private_data;
34 }
35
36 static void fuse_request_init(struct fuse_req *req)
37 {
38         memset(req, 0, sizeof(*req));
39         INIT_LIST_HEAD(&req->list);
40         INIT_LIST_HEAD(&req->intr_entry);
41         init_waitqueue_head(&req->waitq);
42         atomic_set(&req->count, 1);
43 }
44
45 struct fuse_req *fuse_request_alloc(void)
46 {
47         struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
48         if (req)
49                 fuse_request_init(req);
50         return req;
51 }
52 EXPORT_SYMBOL_GPL(fuse_request_alloc);
53
54 struct fuse_req *fuse_request_alloc_nofs(void)
55 {
56         struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_NOFS);
57         if (req)
58                 fuse_request_init(req);
59         return req;
60 }
61
62 void fuse_request_free(struct fuse_req *req)
63 {
64         kmem_cache_free(fuse_req_cachep, req);
65 }
66
67 static void block_sigs(sigset_t *oldset)
68 {
69         sigset_t mask;
70
71         siginitsetinv(&mask, sigmask(SIGKILL));
72         sigprocmask(SIG_BLOCK, &mask, oldset);
73 }
74
75 static void restore_sigs(sigset_t *oldset)
76 {
77         sigprocmask(SIG_SETMASK, oldset, NULL);
78 }
79
80 static void __fuse_get_request(struct fuse_req *req)
81 {
82         atomic_inc(&req->count);
83 }
84
85 /* Must be called with > 1 refcount */
86 static void __fuse_put_request(struct fuse_req *req)
87 {
88         BUG_ON(atomic_read(&req->count) < 2);
89         atomic_dec(&req->count);
90 }
91
92 static void fuse_req_init_context(struct fuse_req *req)
93 {
94         req->in.h.uid = current_fsuid();
95         req->in.h.gid = current_fsgid();
96         req->in.h.pid = current->pid;
97 }
98
99 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
100 {
101         struct fuse_req *req;
102         sigset_t oldset;
103         int intr;
104         int err;
105
106         atomic_inc(&fc->num_waiting);
107         block_sigs(&oldset);
108         intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
109         restore_sigs(&oldset);
110         err = -EINTR;
111         if (intr)
112                 goto out;
113
114         err = -ENOTCONN;
115         if (!fc->connected)
116                 goto out;
117
118         req = fuse_request_alloc();
119         err = -ENOMEM;
120         if (!req)
121                 goto out;
122
123         fuse_req_init_context(req);
124         req->waiting = 1;
125         return req;
126
127  out:
128         atomic_dec(&fc->num_waiting);
129         return ERR_PTR(err);
130 }
131 EXPORT_SYMBOL_GPL(fuse_get_req);
132
133 /*
134  * Return request in fuse_file->reserved_req.  However that may
135  * currently be in use.  If that is the case, wait for it to become
136  * available.
137  */
138 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
139                                          struct file *file)
140 {
141         struct fuse_req *req = NULL;
142         struct fuse_file *ff = file->private_data;
143
144         do {
145                 wait_event(fc->reserved_req_waitq, ff->reserved_req);
146                 spin_lock(&fc->lock);
147                 if (ff->reserved_req) {
148                         req = ff->reserved_req;
149                         ff->reserved_req = NULL;
150                         get_file(file);
151                         req->stolen_file = file;
152                 }
153                 spin_unlock(&fc->lock);
154         } while (!req);
155
156         return req;
157 }
158
159 /*
160  * Put stolen request back into fuse_file->reserved_req
161  */
162 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
163 {
164         struct file *file = req->stolen_file;
165         struct fuse_file *ff = file->private_data;
166
167         spin_lock(&fc->lock);
168         fuse_request_init(req);
169         BUG_ON(ff->reserved_req);
170         ff->reserved_req = req;
171         wake_up_all(&fc->reserved_req_waitq);
172         spin_unlock(&fc->lock);
173         fput(file);
174 }
175
176 /*
177  * Gets a requests for a file operation, always succeeds
178  *
179  * This is used for sending the FLUSH request, which must get to
180  * userspace, due to POSIX locks which may need to be unlocked.
181  *
182  * If allocation fails due to OOM, use the reserved request in
183  * fuse_file.
184  *
185  * This is very unlikely to deadlock accidentally, since the
186  * filesystem should not have it's own file open.  If deadlock is
187  * intentional, it can still be broken by "aborting" the filesystem.
188  */
189 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
190 {
191         struct fuse_req *req;
192
193         atomic_inc(&fc->num_waiting);
194         wait_event(fc->blocked_waitq, !fc->blocked);
195         req = fuse_request_alloc();
196         if (!req)
197                 req = get_reserved_req(fc, file);
198
199         fuse_req_init_context(req);
200         req->waiting = 1;
201         return req;
202 }
203
204 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
205 {
206         if (atomic_dec_and_test(&req->count)) {
207                 if (req->waiting)
208                         atomic_dec(&fc->num_waiting);
209
210                 if (req->stolen_file)
211                         put_reserved_req(fc, req);
212                 else
213                         fuse_request_free(req);
214         }
215 }
216 EXPORT_SYMBOL_GPL(fuse_put_request);
217
218 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
219 {
220         unsigned nbytes = 0;
221         unsigned i;
222
223         for (i = 0; i < numargs; i++)
224                 nbytes += args[i].size;
225
226         return nbytes;
227 }
228
229 static u64 fuse_get_unique(struct fuse_conn *fc)
230 {
231         fc->reqctr++;
232         /* zero is special */
233         if (fc->reqctr == 0)
234                 fc->reqctr = 1;
235
236         return fc->reqctr;
237 }
238
239 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
240 {
241         req->in.h.unique = fuse_get_unique(fc);
242         req->in.h.len = sizeof(struct fuse_in_header) +
243                 len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
244         list_add_tail(&req->list, &fc->pending);
245         req->state = FUSE_REQ_PENDING;
246         if (!req->waiting) {
247                 req->waiting = 1;
248                 atomic_inc(&fc->num_waiting);
249         }
250         wake_up(&fc->waitq);
251         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
252 }
253
254 static void flush_bg_queue(struct fuse_conn *fc)
255 {
256         while (fc->active_background < fc->max_background &&
257                !list_empty(&fc->bg_queue)) {
258                 struct fuse_req *req;
259
260                 req = list_entry(fc->bg_queue.next, struct fuse_req, list);
261                 list_del(&req->list);
262                 fc->active_background++;
263                 queue_request(fc, req);
264         }
265 }
266
267 /*
268  * This function is called when a request is finished.  Either a reply
269  * has arrived or it was aborted (and not yet sent) or some error
270  * occurred during communication with userspace, or the device file
271  * was closed.  The requester thread is woken up (if still waiting),
272  * the 'end' callback is called if given, else the reference to the
273  * request is released
274  *
275  * Called with fc->lock, unlocks it
276  */
277 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
278 __releases(&fc->lock)
279 {
280         void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
281         req->end = NULL;
282         list_del(&req->list);
283         list_del(&req->intr_entry);
284         req->state = FUSE_REQ_FINISHED;
285         if (req->background) {
286                 if (fc->num_background == fc->max_background) {
287                         fc->blocked = 0;
288                         wake_up_all(&fc->blocked_waitq);
289                 }
290                 if (fc->num_background == fc->congestion_threshold &&
291                     fc->connected && fc->bdi_initialized) {
292                         clear_bdi_congested(&fc->bdi, BLK_RW_SYNC);
293                         clear_bdi_congested(&fc->bdi, BLK_RW_ASYNC);
294                 }
295                 fc->num_background--;
296                 fc->active_background--;
297                 flush_bg_queue(fc);
298         }
299         spin_unlock(&fc->lock);
300         wake_up(&req->waitq);
301         if (end)
302                 end(fc, req);
303         fuse_put_request(fc, req);
304 }
305
306 static void wait_answer_interruptible(struct fuse_conn *fc,
307                                       struct fuse_req *req)
308 __releases(&fc->lock)
309 __acquires(&fc->lock)
310 {
311         if (signal_pending(current))
312                 return;
313
314         spin_unlock(&fc->lock);
315         wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
316         spin_lock(&fc->lock);
317 }
318
319 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
320 {
321         list_add_tail(&req->intr_entry, &fc->interrupts);
322         wake_up(&fc->waitq);
323         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
324 }
325
326 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
327 __releases(&fc->lock)
328 __acquires(&fc->lock)
329 {
330         if (!fc->no_interrupt) {
331                 /* Any signal may interrupt this */
332                 wait_answer_interruptible(fc, req);
333
334                 if (req->aborted)
335                         goto aborted;
336                 if (req->state == FUSE_REQ_FINISHED)
337                         return;
338
339                 req->interrupted = 1;
340                 if (req->state == FUSE_REQ_SENT)
341                         queue_interrupt(fc, req);
342         }
343
344         if (!req->force) {
345                 sigset_t oldset;
346
347                 /* Only fatal signals may interrupt this */
348                 block_sigs(&oldset);
349                 wait_answer_interruptible(fc, req);
350                 restore_sigs(&oldset);
351
352                 if (req->aborted)
353                         goto aborted;
354                 if (req->state == FUSE_REQ_FINISHED)
355                         return;
356
357                 /* Request is not yet in userspace, bail out */
358                 if (req->state == FUSE_REQ_PENDING) {
359                         list_del(&req->list);
360                         __fuse_put_request(req);
361                         req->out.h.error = -EINTR;
362                         return;
363                 }
364         }
365
366         /*
367          * Either request is already in userspace, or it was forced.
368          * Wait it out.
369          */
370         spin_unlock(&fc->lock);
371         wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
372         spin_lock(&fc->lock);
373
374         if (!req->aborted)
375                 return;
376
377  aborted:
378         BUG_ON(req->state != FUSE_REQ_FINISHED);
379         if (req->locked) {
380                 /* This is uninterruptible sleep, because data is
381                    being copied to/from the buffers of req.  During
382                    locked state, there mustn't be any filesystem
383                    operation (e.g. page fault), since that could lead
384                    to deadlock */
385                 spin_unlock(&fc->lock);
386                 wait_event(req->waitq, !req->locked);
387                 spin_lock(&fc->lock);
388         }
389 }
390
391 void fuse_request_send(struct fuse_conn *fc, struct fuse_req *req)
392 {
393         req->isreply = 1;
394         spin_lock(&fc->lock);
395         if (!fc->connected)
396                 req->out.h.error = -ENOTCONN;
397         else if (fc->conn_error)
398                 req->out.h.error = -ECONNREFUSED;
399         else {
400                 queue_request(fc, req);
401                 /* acquire extra reference, since request is still needed
402                    after request_end() */
403                 __fuse_get_request(req);
404
405                 request_wait_answer(fc, req);
406         }
407         spin_unlock(&fc->lock);
408 }
409 EXPORT_SYMBOL_GPL(fuse_request_send);
410
411 static void fuse_request_send_nowait_locked(struct fuse_conn *fc,
412                                             struct fuse_req *req)
413 {
414         req->background = 1;
415         fc->num_background++;
416         if (fc->num_background == fc->max_background)
417                 fc->blocked = 1;
418         if (fc->num_background == fc->congestion_threshold &&
419             fc->bdi_initialized) {
420                 set_bdi_congested(&fc->bdi, BLK_RW_SYNC);
421                 set_bdi_congested(&fc->bdi, BLK_RW_ASYNC);
422         }
423         list_add_tail(&req->list, &fc->bg_queue);
424         flush_bg_queue(fc);
425 }
426
427 static void fuse_request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
428 {
429         spin_lock(&fc->lock);
430         if (fc->connected) {
431                 fuse_request_send_nowait_locked(fc, req);
432                 spin_unlock(&fc->lock);
433         } else {
434                 req->out.h.error = -ENOTCONN;
435                 request_end(fc, req);
436         }
437 }
438
439 void fuse_request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
440 {
441         req->isreply = 0;
442         fuse_request_send_nowait(fc, req);
443 }
444
445 void fuse_request_send_background(struct fuse_conn *fc, struct fuse_req *req)
446 {
447         req->isreply = 1;
448         fuse_request_send_nowait(fc, req);
449 }
450 EXPORT_SYMBOL_GPL(fuse_request_send_background);
451
452 /*
453  * Called under fc->lock
454  *
455  * fc->connected must have been checked previously
456  */
457 void fuse_request_send_background_locked(struct fuse_conn *fc,
458                                          struct fuse_req *req)
459 {
460         req->isreply = 1;
461         fuse_request_send_nowait_locked(fc, req);
462 }
463
464 /*
465  * Lock the request.  Up to the next unlock_request() there mustn't be
466  * anything that could cause a page-fault.  If the request was already
467  * aborted bail out.
468  */
469 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
470 {
471         int err = 0;
472         if (req) {
473                 spin_lock(&fc->lock);
474                 if (req->aborted)
475                         err = -ENOENT;
476                 else
477                         req->locked = 1;
478                 spin_unlock(&fc->lock);
479         }
480         return err;
481 }
482
483 /*
484  * Unlock request.  If it was aborted during being locked, the
485  * requester thread is currently waiting for it to be unlocked, so
486  * wake it up.
487  */
488 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
489 {
490         if (req) {
491                 spin_lock(&fc->lock);
492                 req->locked = 0;
493                 if (req->aborted)
494                         wake_up(&req->waitq);
495                 spin_unlock(&fc->lock);
496         }
497 }
498
499 struct fuse_copy_state {
500         struct fuse_conn *fc;
501         int write;
502         struct fuse_req *req;
503         const struct iovec *iov;
504         struct pipe_buffer *pipebufs;
505         struct pipe_buffer *currbuf;
506         struct pipe_inode_info *pipe;
507         unsigned long nr_segs;
508         unsigned long seglen;
509         unsigned long addr;
510         struct page *pg;
511         void *mapaddr;
512         void *buf;
513         unsigned len;
514         unsigned move_pages:1;
515 };
516
517 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
518                            int write,
519                            const struct iovec *iov, unsigned long nr_segs)
520 {
521         memset(cs, 0, sizeof(*cs));
522         cs->fc = fc;
523         cs->write = write;
524         cs->iov = iov;
525         cs->nr_segs = nr_segs;
526 }
527
528 /* Unmap and put previous page of userspace buffer */
529 static void fuse_copy_finish(struct fuse_copy_state *cs)
530 {
531         if (cs->currbuf) {
532                 struct pipe_buffer *buf = cs->currbuf;
533
534                 if (!cs->write) {
535                         buf->ops->unmap(cs->pipe, buf, cs->mapaddr);
536                 } else {
537                         kunmap_atomic(cs->mapaddr, KM_USER0);
538                         buf->len = PAGE_SIZE - cs->len;
539                 }
540                 cs->currbuf = NULL;
541                 cs->mapaddr = NULL;
542         } else if (cs->mapaddr) {
543                 kunmap_atomic(cs->mapaddr, KM_USER0);
544                 if (cs->write) {
545                         flush_dcache_page(cs->pg);
546                         set_page_dirty_lock(cs->pg);
547                 }
548                 put_page(cs->pg);
549                 cs->mapaddr = NULL;
550         }
551 }
552
553 /*
554  * Get another pagefull of userspace buffer, and map it to kernel
555  * address space, and lock request
556  */
557 static int fuse_copy_fill(struct fuse_copy_state *cs)
558 {
559         unsigned long offset;
560         int err;
561
562         unlock_request(cs->fc, cs->req);
563         fuse_copy_finish(cs);
564         if (cs->pipebufs) {
565                 struct pipe_buffer *buf = cs->pipebufs;
566
567                 if (!cs->write) {
568                         err = buf->ops->confirm(cs->pipe, buf);
569                         if (err)
570                                 return err;
571
572                         BUG_ON(!cs->nr_segs);
573                         cs->currbuf = buf;
574                         cs->mapaddr = buf->ops->map(cs->pipe, buf, 1);
575                         cs->len = buf->len;
576                         cs->buf = cs->mapaddr + buf->offset;
577                         cs->pipebufs++;
578                         cs->nr_segs--;
579                 } else {
580                         struct page *page;
581
582                         if (cs->nr_segs == cs->pipe->buffers)
583                                 return -EIO;
584
585                         page = alloc_page(GFP_HIGHUSER);
586                         if (!page)
587                                 return -ENOMEM;
588
589                         buf->page = page;
590                         buf->offset = 0;
591                         buf->len = 0;
592
593                         cs->currbuf = buf;
594                         cs->mapaddr = kmap_atomic(page, KM_USER0);
595                         cs->buf = cs->mapaddr;
596                         cs->len = PAGE_SIZE;
597                         cs->pipebufs++;
598                         cs->nr_segs++;
599                 }
600         } else {
601                 if (!cs->seglen) {
602                         BUG_ON(!cs->nr_segs);
603                         cs->seglen = cs->iov[0].iov_len;
604                         cs->addr = (unsigned long) cs->iov[0].iov_base;
605                         cs->iov++;
606                         cs->nr_segs--;
607                 }
608                 err = get_user_pages_fast(cs->addr, 1, cs->write, &cs->pg);
609                 if (err < 0)
610                         return err;
611                 BUG_ON(err != 1);
612                 offset = cs->addr % PAGE_SIZE;
613                 cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
614                 cs->buf = cs->mapaddr + offset;
615                 cs->len = min(PAGE_SIZE - offset, cs->seglen);
616                 cs->seglen -= cs->len;
617                 cs->addr += cs->len;
618         }
619
620         return lock_request(cs->fc, cs->req);
621 }
622
623 /* Do as much copy to/from userspace buffer as we can */
624 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
625 {
626         unsigned ncpy = min(*size, cs->len);
627         if (val) {
628                 if (cs->write)
629                         memcpy(cs->buf, *val, ncpy);
630                 else
631                         memcpy(*val, cs->buf, ncpy);
632                 *val += ncpy;
633         }
634         *size -= ncpy;
635         cs->len -= ncpy;
636         cs->buf += ncpy;
637         return ncpy;
638 }
639
640 static int fuse_check_page(struct page *page)
641 {
642         if (page_mapcount(page) ||
643             page->mapping != NULL ||
644             page_count(page) != 1 ||
645             (page->flags & PAGE_FLAGS_CHECK_AT_PREP &
646              ~(1 << PG_locked |
647                1 << PG_referenced |
648                1 << PG_uptodate |
649                1 << PG_lru |
650                1 << PG_active |
651                1 << PG_reclaim))) {
652                 printk(KERN_WARNING "fuse: trying to steal weird page\n");
653                 printk(KERN_WARNING "  page=%p index=%li flags=%08lx, count=%i, mapcount=%i, mapping=%p\n", page, page->index, page->flags, page_count(page), page_mapcount(page), page->mapping);
654                 return 1;
655         }
656         return 0;
657 }
658
659 static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep)
660 {
661         int err;
662         struct page *oldpage = *pagep;
663         struct page *newpage;
664         struct pipe_buffer *buf = cs->pipebufs;
665         struct address_space *mapping;
666         pgoff_t index;
667
668         unlock_request(cs->fc, cs->req);
669         fuse_copy_finish(cs);
670
671         err = buf->ops->confirm(cs->pipe, buf);
672         if (err)
673                 return err;
674
675         BUG_ON(!cs->nr_segs);
676         cs->currbuf = buf;
677         cs->len = buf->len;
678         cs->pipebufs++;
679         cs->nr_segs--;
680
681         if (cs->len != PAGE_SIZE)
682                 goto out_fallback;
683
684         if (buf->ops->steal(cs->pipe, buf) != 0)
685                 goto out_fallback;
686
687         newpage = buf->page;
688
689         if (WARN_ON(!PageUptodate(newpage)))
690                 return -EIO;
691
692         ClearPageMappedToDisk(newpage);
693
694         if (fuse_check_page(newpage) != 0)
695                 goto out_fallback_unlock;
696
697         mapping = oldpage->mapping;
698         index = oldpage->index;
699
700         /*
701          * This is a new and locked page, it shouldn't be mapped or
702          * have any special flags on it
703          */
704         if (WARN_ON(page_mapped(oldpage)))
705                 goto out_fallback_unlock;
706         if (WARN_ON(page_has_private(oldpage)))
707                 goto out_fallback_unlock;
708         if (WARN_ON(PageDirty(oldpage) || PageWriteback(oldpage)))
709                 goto out_fallback_unlock;
710         if (WARN_ON(PageMlocked(oldpage)))
711                 goto out_fallback_unlock;
712
713         remove_from_page_cache(oldpage);
714         page_cache_release(oldpage);
715
716         err = add_to_page_cache_locked(newpage, mapping, index, GFP_KERNEL);
717         if (err) {
718                 printk(KERN_WARNING "fuse_try_move_page: failed to add page");
719                 goto out_fallback_unlock;
720         }
721         page_cache_get(newpage);
722
723         if (!(buf->flags & PIPE_BUF_FLAG_LRU))
724                 lru_cache_add_file(newpage);
725
726         err = 0;
727         spin_lock(&cs->fc->lock);
728         if (cs->req->aborted)
729                 err = -ENOENT;
730         else
731                 *pagep = newpage;
732         spin_unlock(&cs->fc->lock);
733
734         if (err) {
735                 unlock_page(newpage);
736                 page_cache_release(newpage);
737                 return err;
738         }
739
740         unlock_page(oldpage);
741         page_cache_release(oldpage);
742         cs->len = 0;
743
744         return 0;
745
746 out_fallback_unlock:
747         unlock_page(newpage);
748 out_fallback:
749         cs->mapaddr = buf->ops->map(cs->pipe, buf, 1);
750         cs->buf = cs->mapaddr + buf->offset;
751
752         err = lock_request(cs->fc, cs->req);
753         if (err)
754                 return err;
755
756         return 1;
757 }
758
759 static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page,
760                          unsigned offset, unsigned count)
761 {
762         struct pipe_buffer *buf;
763
764         if (cs->nr_segs == cs->pipe->buffers)
765                 return -EIO;
766
767         unlock_request(cs->fc, cs->req);
768         fuse_copy_finish(cs);
769
770         buf = cs->pipebufs;
771         page_cache_get(page);
772         buf->page = page;
773         buf->offset = offset;
774         buf->len = count;
775
776         cs->pipebufs++;
777         cs->nr_segs++;
778         cs->len = 0;
779
780         return 0;
781 }
782
783 /*
784  * Copy a page in the request to/from the userspace buffer.  Must be
785  * done atomically
786  */
787 static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep,
788                           unsigned offset, unsigned count, int zeroing)
789 {
790         int err;
791         struct page *page = *pagep;
792
793         if (page && zeroing && count < PAGE_SIZE) {
794                 void *mapaddr = kmap_atomic(page, KM_USER1);
795                 memset(mapaddr, 0, PAGE_SIZE);
796                 kunmap_atomic(mapaddr, KM_USER1);
797         }
798         while (count) {
799                 if (cs->write && cs->pipebufs && page) {
800                         return fuse_ref_page(cs, page, offset, count);
801                 } else if (!cs->len) {
802                         if (cs->move_pages && page &&
803                             offset == 0 && count == PAGE_SIZE) {
804                                 err = fuse_try_move_page(cs, pagep);
805                                 if (err <= 0)
806                                         return err;
807                         } else {
808                                 err = fuse_copy_fill(cs);
809                                 if (err)
810                                         return err;
811                         }
812                 }
813                 if (page) {
814                         void *mapaddr = kmap_atomic(page, KM_USER1);
815                         void *buf = mapaddr + offset;
816                         offset += fuse_copy_do(cs, &buf, &count);
817                         kunmap_atomic(mapaddr, KM_USER1);
818                 } else
819                         offset += fuse_copy_do(cs, NULL, &count);
820         }
821         if (page && !cs->write)
822                 flush_dcache_page(page);
823         return 0;
824 }
825
826 /* Copy pages in the request to/from userspace buffer */
827 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
828                            int zeroing)
829 {
830         unsigned i;
831         struct fuse_req *req = cs->req;
832         unsigned offset = req->page_offset;
833         unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
834
835         for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
836                 int err;
837
838                 err = fuse_copy_page(cs, &req->pages[i], offset, count,
839                                      zeroing);
840                 if (err)
841                         return err;
842
843                 nbytes -= count;
844                 count = min(nbytes, (unsigned) PAGE_SIZE);
845                 offset = 0;
846         }
847         return 0;
848 }
849
850 /* Copy a single argument in the request to/from userspace buffer */
851 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
852 {
853         while (size) {
854                 if (!cs->len) {
855                         int err = fuse_copy_fill(cs);
856                         if (err)
857                                 return err;
858                 }
859                 fuse_copy_do(cs, &val, &size);
860         }
861         return 0;
862 }
863
864 /* Copy request arguments to/from userspace buffer */
865 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
866                           unsigned argpages, struct fuse_arg *args,
867                           int zeroing)
868 {
869         int err = 0;
870         unsigned i;
871
872         for (i = 0; !err && i < numargs; i++)  {
873                 struct fuse_arg *arg = &args[i];
874                 if (i == numargs - 1 && argpages)
875                         err = fuse_copy_pages(cs, arg->size, zeroing);
876                 else
877                         err = fuse_copy_one(cs, arg->value, arg->size);
878         }
879         return err;
880 }
881
882 static int request_pending(struct fuse_conn *fc)
883 {
884         return !list_empty(&fc->pending) || !list_empty(&fc->interrupts);
885 }
886
887 /* Wait until a request is available on the pending list */
888 static void request_wait(struct fuse_conn *fc)
889 __releases(&fc->lock)
890 __acquires(&fc->lock)
891 {
892         DECLARE_WAITQUEUE(wait, current);
893
894         add_wait_queue_exclusive(&fc->waitq, &wait);
895         while (fc->connected && !request_pending(fc)) {
896                 set_current_state(TASK_INTERRUPTIBLE);
897                 if (signal_pending(current))
898                         break;
899
900                 spin_unlock(&fc->lock);
901                 schedule();
902                 spin_lock(&fc->lock);
903         }
904         set_current_state(TASK_RUNNING);
905         remove_wait_queue(&fc->waitq, &wait);
906 }
907
908 /*
909  * Transfer an interrupt request to userspace
910  *
911  * Unlike other requests this is assembled on demand, without a need
912  * to allocate a separate fuse_req structure.
913  *
914  * Called with fc->lock held, releases it
915  */
916 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_copy_state *cs,
917                                size_t nbytes, struct fuse_req *req)
918 __releases(&fc->lock)
919 {
920         struct fuse_in_header ih;
921         struct fuse_interrupt_in arg;
922         unsigned reqsize = sizeof(ih) + sizeof(arg);
923         int err;
924
925         list_del_init(&req->intr_entry);
926         req->intr_unique = fuse_get_unique(fc);
927         memset(&ih, 0, sizeof(ih));
928         memset(&arg, 0, sizeof(arg));
929         ih.len = reqsize;
930         ih.opcode = FUSE_INTERRUPT;
931         ih.unique = req->intr_unique;
932         arg.unique = req->in.h.unique;
933
934         spin_unlock(&fc->lock);
935         if (nbytes < reqsize)
936                 return -EINVAL;
937
938         err = fuse_copy_one(cs, &ih, sizeof(ih));
939         if (!err)
940                 err = fuse_copy_one(cs, &arg, sizeof(arg));
941         fuse_copy_finish(cs);
942
943         return err ? err : reqsize;
944 }
945
946 /*
947  * Read a single request into the userspace filesystem's buffer.  This
948  * function waits until a request is available, then removes it from
949  * the pending list and copies request data to userspace buffer.  If
950  * no reply is needed (FORGET) or request has been aborted or there
951  * was an error during the copying then it's finished by calling
952  * request_end().  Otherwise add it to the processing list, and set
953  * the 'sent' flag.
954  */
955 static ssize_t fuse_dev_do_read(struct fuse_conn *fc, struct file *file,
956                                 struct fuse_copy_state *cs, size_t nbytes)
957 {
958         int err;
959         struct fuse_req *req;
960         struct fuse_in *in;
961         unsigned reqsize;
962
963  restart:
964         spin_lock(&fc->lock);
965         err = -EAGAIN;
966         if ((file->f_flags & O_NONBLOCK) && fc->connected &&
967             !request_pending(fc))
968                 goto err_unlock;
969
970         request_wait(fc);
971         err = -ENODEV;
972         if (!fc->connected)
973                 goto err_unlock;
974         err = -ERESTARTSYS;
975         if (!request_pending(fc))
976                 goto err_unlock;
977
978         if (!list_empty(&fc->interrupts)) {
979                 req = list_entry(fc->interrupts.next, struct fuse_req,
980                                  intr_entry);
981                 return fuse_read_interrupt(fc, cs, nbytes, req);
982         }
983
984         req = list_entry(fc->pending.next, struct fuse_req, list);
985         req->state = FUSE_REQ_READING;
986         list_move(&req->list, &fc->io);
987
988         in = &req->in;
989         reqsize = in->h.len;
990         /* If request is too large, reply with an error and restart the read */
991         if (nbytes < reqsize) {
992                 req->out.h.error = -EIO;
993                 /* SETXATTR is special, since it may contain too large data */
994                 if (in->h.opcode == FUSE_SETXATTR)
995                         req->out.h.error = -E2BIG;
996                 request_end(fc, req);
997                 goto restart;
998         }
999         spin_unlock(&fc->lock);
1000         cs->req = req;
1001         err = fuse_copy_one(cs, &in->h, sizeof(in->h));
1002         if (!err)
1003                 err = fuse_copy_args(cs, in->numargs, in->argpages,
1004                                      (struct fuse_arg *) in->args, 0);
1005         fuse_copy_finish(cs);
1006         spin_lock(&fc->lock);
1007         req->locked = 0;
1008         if (req->aborted) {
1009                 request_end(fc, req);
1010                 return -ENODEV;
1011         }
1012         if (err) {
1013                 req->out.h.error = -EIO;
1014                 request_end(fc, req);
1015                 return err;
1016         }
1017         if (!req->isreply)
1018                 request_end(fc, req);
1019         else {
1020                 req->state = FUSE_REQ_SENT;
1021                 list_move_tail(&req->list, &fc->processing);
1022                 if (req->interrupted)
1023                         queue_interrupt(fc, req);
1024                 spin_unlock(&fc->lock);
1025         }
1026         return reqsize;
1027
1028  err_unlock:
1029         spin_unlock(&fc->lock);
1030         return err;
1031 }
1032
1033 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
1034                               unsigned long nr_segs, loff_t pos)
1035 {
1036         struct fuse_copy_state cs;
1037         struct file *file = iocb->ki_filp;
1038         struct fuse_conn *fc = fuse_get_conn(file);
1039         if (!fc)
1040                 return -EPERM;
1041
1042         fuse_copy_init(&cs, fc, 1, iov, nr_segs);
1043
1044         return fuse_dev_do_read(fc, file, &cs, iov_length(iov, nr_segs));
1045 }
1046
1047 static int fuse_dev_pipe_buf_steal(struct pipe_inode_info *pipe,
1048                                    struct pipe_buffer *buf)
1049 {
1050         return 1;
1051 }
1052
1053 static const struct pipe_buf_operations fuse_dev_pipe_buf_ops = {
1054         .can_merge = 0,
1055         .map = generic_pipe_buf_map,
1056         .unmap = generic_pipe_buf_unmap,
1057         .confirm = generic_pipe_buf_confirm,
1058         .release = generic_pipe_buf_release,
1059         .steal = fuse_dev_pipe_buf_steal,
1060         .get = generic_pipe_buf_get,
1061 };
1062
1063 static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos,
1064                                     struct pipe_inode_info *pipe,
1065                                     size_t len, unsigned int flags)
1066 {
1067         int ret;
1068         int page_nr = 0;
1069         int do_wakeup = 0;
1070         struct pipe_buffer *bufs;
1071         struct fuse_copy_state cs;
1072         struct fuse_conn *fc = fuse_get_conn(in);
1073         if (!fc)
1074                 return -EPERM;
1075
1076         bufs = kmalloc(pipe->buffers * sizeof (struct pipe_buffer), GFP_KERNEL);
1077         if (!bufs)
1078                 return -ENOMEM;
1079
1080         fuse_copy_init(&cs, fc, 1, NULL, 0);
1081         cs.pipebufs = bufs;
1082         cs.pipe = pipe;
1083         ret = fuse_dev_do_read(fc, in, &cs, len);
1084         if (ret < 0)
1085                 goto out;
1086
1087         ret = 0;
1088         pipe_lock(pipe);
1089
1090         if (!pipe->readers) {
1091                 send_sig(SIGPIPE, current, 0);
1092                 if (!ret)
1093                         ret = -EPIPE;
1094                 goto out_unlock;
1095         }
1096
1097         if (pipe->nrbufs + cs.nr_segs > pipe->buffers) {
1098                 ret = -EIO;
1099                 goto out_unlock;
1100         }
1101
1102         while (page_nr < cs.nr_segs) {
1103                 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1104                 struct pipe_buffer *buf = pipe->bufs + newbuf;
1105
1106                 buf->page = bufs[page_nr].page;
1107                 buf->offset = bufs[page_nr].offset;
1108                 buf->len = bufs[page_nr].len;
1109                 buf->ops = &fuse_dev_pipe_buf_ops;
1110
1111                 pipe->nrbufs++;
1112                 page_nr++;
1113                 ret += buf->len;
1114
1115                 if (pipe->inode)
1116                         do_wakeup = 1;
1117         }
1118
1119 out_unlock:
1120         pipe_unlock(pipe);
1121
1122         if (do_wakeup) {
1123                 smp_mb();
1124                 if (waitqueue_active(&pipe->wait))
1125                         wake_up_interruptible(&pipe->wait);
1126                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1127         }
1128
1129 out:
1130         for (; page_nr < cs.nr_segs; page_nr++)
1131                 page_cache_release(bufs[page_nr].page);
1132
1133         kfree(bufs);
1134         return ret;
1135 }
1136
1137 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
1138                             struct fuse_copy_state *cs)
1139 {
1140         struct fuse_notify_poll_wakeup_out outarg;
1141         int err = -EINVAL;
1142
1143         if (size != sizeof(outarg))
1144                 goto err;
1145
1146         err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1147         if (err)
1148                 goto err;
1149
1150         fuse_copy_finish(cs);
1151         return fuse_notify_poll_wakeup(fc, &outarg);
1152
1153 err:
1154         fuse_copy_finish(cs);
1155         return err;
1156 }
1157
1158 static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size,
1159                                    struct fuse_copy_state *cs)
1160 {
1161         struct fuse_notify_inval_inode_out outarg;
1162         int err = -EINVAL;
1163
1164         if (size != sizeof(outarg))
1165                 goto err;
1166
1167         err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1168         if (err)
1169                 goto err;
1170         fuse_copy_finish(cs);
1171
1172         down_read(&fc->killsb);
1173         err = -ENOENT;
1174         if (fc->sb) {
1175                 err = fuse_reverse_inval_inode(fc->sb, outarg.ino,
1176                                                outarg.off, outarg.len);
1177         }
1178         up_read(&fc->killsb);
1179         return err;
1180
1181 err:
1182         fuse_copy_finish(cs);
1183         return err;
1184 }
1185
1186 static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size,
1187                                    struct fuse_copy_state *cs)
1188 {
1189         struct fuse_notify_inval_entry_out outarg;
1190         int err = -ENOMEM;
1191         char *buf;
1192         struct qstr name;
1193
1194         buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1195         if (!buf)
1196                 goto err;
1197
1198         err = -EINVAL;
1199         if (size < sizeof(outarg))
1200                 goto err;
1201
1202         err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1203         if (err)
1204                 goto err;
1205
1206         err = -ENAMETOOLONG;
1207         if (outarg.namelen > FUSE_NAME_MAX)
1208                 goto err;
1209
1210         name.name = buf;
1211         name.len = outarg.namelen;
1212         err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1213         if (err)
1214                 goto err;
1215         fuse_copy_finish(cs);
1216         buf[outarg.namelen] = 0;
1217         name.hash = full_name_hash(name.name, name.len);
1218
1219         down_read(&fc->killsb);
1220         err = -ENOENT;
1221         if (fc->sb)
1222                 err = fuse_reverse_inval_entry(fc->sb, outarg.parent, &name);
1223         up_read(&fc->killsb);
1224         kfree(buf);
1225         return err;
1226
1227 err:
1228         kfree(buf);
1229         fuse_copy_finish(cs);
1230         return err;
1231 }
1232
1233 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
1234                        unsigned int size, struct fuse_copy_state *cs)
1235 {
1236         switch (code) {
1237         case FUSE_NOTIFY_POLL:
1238                 return fuse_notify_poll(fc, size, cs);
1239
1240         case FUSE_NOTIFY_INVAL_INODE:
1241                 return fuse_notify_inval_inode(fc, size, cs);
1242
1243         case FUSE_NOTIFY_INVAL_ENTRY:
1244                 return fuse_notify_inval_entry(fc, size, cs);
1245
1246         default:
1247                 fuse_copy_finish(cs);
1248                 return -EINVAL;
1249         }
1250 }
1251
1252 /* Look up request on processing list by unique ID */
1253 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
1254 {
1255         struct list_head *entry;
1256
1257         list_for_each(entry, &fc->processing) {
1258                 struct fuse_req *req;
1259                 req = list_entry(entry, struct fuse_req, list);
1260                 if (req->in.h.unique == unique || req->intr_unique == unique)
1261                         return req;
1262         }
1263         return NULL;
1264 }
1265
1266 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
1267                          unsigned nbytes)
1268 {
1269         unsigned reqsize = sizeof(struct fuse_out_header);
1270
1271         if (out->h.error)
1272                 return nbytes != reqsize ? -EINVAL : 0;
1273
1274         reqsize += len_args(out->numargs, out->args);
1275
1276         if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
1277                 return -EINVAL;
1278         else if (reqsize > nbytes) {
1279                 struct fuse_arg *lastarg = &out->args[out->numargs-1];
1280                 unsigned diffsize = reqsize - nbytes;
1281                 if (diffsize > lastarg->size)
1282                         return -EINVAL;
1283                 lastarg->size -= diffsize;
1284         }
1285         return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
1286                               out->page_zeroing);
1287 }
1288
1289 /*
1290  * Write a single reply to a request.  First the header is copied from
1291  * the write buffer.  The request is then searched on the processing
1292  * list by the unique ID found in the header.  If found, then remove
1293  * it from the list and copy the rest of the buffer to the request.
1294  * The request is finished by calling request_end()
1295  */
1296 static ssize_t fuse_dev_do_write(struct fuse_conn *fc,
1297                                  struct fuse_copy_state *cs, size_t nbytes)
1298 {
1299         int err;
1300         struct fuse_req *req;
1301         struct fuse_out_header oh;
1302
1303         if (nbytes < sizeof(struct fuse_out_header))
1304                 return -EINVAL;
1305
1306         err = fuse_copy_one(cs, &oh, sizeof(oh));
1307         if (err)
1308                 goto err_finish;
1309
1310         err = -EINVAL;
1311         if (oh.len != nbytes)
1312                 goto err_finish;
1313
1314         /*
1315          * Zero oh.unique indicates unsolicited notification message
1316          * and error contains notification code.
1317          */
1318         if (!oh.unique) {
1319                 err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs);
1320                 return err ? err : nbytes;
1321         }
1322
1323         err = -EINVAL;
1324         if (oh.error <= -1000 || oh.error > 0)
1325                 goto err_finish;
1326
1327         spin_lock(&fc->lock);
1328         err = -ENOENT;
1329         if (!fc->connected)
1330                 goto err_unlock;
1331
1332         req = request_find(fc, oh.unique);
1333         if (!req)
1334                 goto err_unlock;
1335
1336         if (req->aborted) {
1337                 spin_unlock(&fc->lock);
1338                 fuse_copy_finish(cs);
1339                 spin_lock(&fc->lock);
1340                 request_end(fc, req);
1341                 return -ENOENT;
1342         }
1343         /* Is it an interrupt reply? */
1344         if (req->intr_unique == oh.unique) {
1345                 err = -EINVAL;
1346                 if (nbytes != sizeof(struct fuse_out_header))
1347                         goto err_unlock;
1348
1349                 if (oh.error == -ENOSYS)
1350                         fc->no_interrupt = 1;
1351                 else if (oh.error == -EAGAIN)
1352                         queue_interrupt(fc, req);
1353
1354                 spin_unlock(&fc->lock);
1355                 fuse_copy_finish(cs);
1356                 return nbytes;
1357         }
1358
1359         req->state = FUSE_REQ_WRITING;
1360         list_move(&req->list, &fc->io);
1361         req->out.h = oh;
1362         req->locked = 1;
1363         cs->req = req;
1364         if (!req->out.page_replace)
1365                 cs->move_pages = 0;
1366         spin_unlock(&fc->lock);
1367
1368         err = copy_out_args(cs, &req->out, nbytes);
1369         fuse_copy_finish(cs);
1370
1371         spin_lock(&fc->lock);
1372         req->locked = 0;
1373         if (!err) {
1374                 if (req->aborted)
1375                         err = -ENOENT;
1376         } else if (!req->aborted)
1377                 req->out.h.error = -EIO;
1378         request_end(fc, req);
1379
1380         return err ? err : nbytes;
1381
1382  err_unlock:
1383         spin_unlock(&fc->lock);
1384  err_finish:
1385         fuse_copy_finish(cs);
1386         return err;
1387 }
1388
1389 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
1390                               unsigned long nr_segs, loff_t pos)
1391 {
1392         struct fuse_copy_state cs;
1393         struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
1394         if (!fc)
1395                 return -EPERM;
1396
1397         fuse_copy_init(&cs, fc, 0, iov, nr_segs);
1398
1399         return fuse_dev_do_write(fc, &cs, iov_length(iov, nr_segs));
1400 }
1401
1402 static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe,
1403                                      struct file *out, loff_t *ppos,
1404                                      size_t len, unsigned int flags)
1405 {
1406         unsigned nbuf;
1407         unsigned idx;
1408         struct pipe_buffer *bufs;
1409         struct fuse_copy_state cs;
1410         struct fuse_conn *fc;
1411         size_t rem;
1412         ssize_t ret;
1413
1414         fc = fuse_get_conn(out);
1415         if (!fc)
1416                 return -EPERM;
1417
1418         bufs = kmalloc(pipe->buffers * sizeof (struct pipe_buffer), GFP_KERNEL);
1419         if (!bufs)
1420                 return -ENOMEM;
1421
1422         pipe_lock(pipe);
1423         nbuf = 0;
1424         rem = 0;
1425         for (idx = 0; idx < pipe->nrbufs && rem < len; idx++)
1426                 rem += pipe->bufs[(pipe->curbuf + idx) & (pipe->buffers - 1)].len;
1427
1428         ret = -EINVAL;
1429         if (rem < len) {
1430                 pipe_unlock(pipe);
1431                 goto out;
1432         }
1433
1434         rem = len;
1435         while (rem) {
1436                 struct pipe_buffer *ibuf;
1437                 struct pipe_buffer *obuf;
1438
1439                 BUG_ON(nbuf >= pipe->buffers);
1440                 BUG_ON(!pipe->nrbufs);
1441                 ibuf = &pipe->bufs[pipe->curbuf];
1442                 obuf = &bufs[nbuf];
1443
1444                 if (rem >= ibuf->len) {
1445                         *obuf = *ibuf;
1446                         ibuf->ops = NULL;
1447                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1448                         pipe->nrbufs--;
1449                 } else {
1450                         ibuf->ops->get(pipe, ibuf);
1451                         *obuf = *ibuf;
1452                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1453                         obuf->len = rem;
1454                         ibuf->offset += obuf->len;
1455                         ibuf->len -= obuf->len;
1456                 }
1457                 nbuf++;
1458                 rem -= obuf->len;
1459         }
1460         pipe_unlock(pipe);
1461
1462         fuse_copy_init(&cs, fc, 0, NULL, nbuf);
1463         cs.pipebufs = bufs;
1464         cs.pipe = pipe;
1465
1466         if (flags & SPLICE_F_MOVE)
1467                 cs.move_pages = 1;
1468
1469         ret = fuse_dev_do_write(fc, &cs, len);
1470
1471         for (idx = 0; idx < nbuf; idx++) {
1472                 struct pipe_buffer *buf = &bufs[idx];
1473                 buf->ops->release(pipe, buf);
1474         }
1475 out:
1476         kfree(bufs);
1477         return ret;
1478 }
1479
1480 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
1481 {
1482         unsigned mask = POLLOUT | POLLWRNORM;
1483         struct fuse_conn *fc = fuse_get_conn(file);
1484         if (!fc)
1485                 return POLLERR;
1486
1487         poll_wait(file, &fc->waitq, wait);
1488
1489         spin_lock(&fc->lock);
1490         if (!fc->connected)
1491                 mask = POLLERR;
1492         else if (request_pending(fc))
1493                 mask |= POLLIN | POLLRDNORM;
1494         spin_unlock(&fc->lock);
1495
1496         return mask;
1497 }
1498
1499 /*
1500  * Abort all requests on the given list (pending or processing)
1501  *
1502  * This function releases and reacquires fc->lock
1503  */
1504 static void end_requests(struct fuse_conn *fc, struct list_head *head)
1505 __releases(&fc->lock)
1506 __acquires(&fc->lock)
1507 {
1508         while (!list_empty(head)) {
1509                 struct fuse_req *req;
1510                 req = list_entry(head->next, struct fuse_req, list);
1511                 req->out.h.error = -ECONNABORTED;
1512                 request_end(fc, req);
1513                 spin_lock(&fc->lock);
1514         }
1515 }
1516
1517 /*
1518  * Abort requests under I/O
1519  *
1520  * The requests are set to aborted and finished, and the request
1521  * waiter is woken up.  This will make request_wait_answer() wait
1522  * until the request is unlocked and then return.
1523  *
1524  * If the request is asynchronous, then the end function needs to be
1525  * called after waiting for the request to be unlocked (if it was
1526  * locked).
1527  */
1528 static void end_io_requests(struct fuse_conn *fc)
1529 __releases(&fc->lock)
1530 __acquires(&fc->lock)
1531 {
1532         while (!list_empty(&fc->io)) {
1533                 struct fuse_req *req =
1534                         list_entry(fc->io.next, struct fuse_req, list);
1535                 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
1536
1537                 req->aborted = 1;
1538                 req->out.h.error = -ECONNABORTED;
1539                 req->state = FUSE_REQ_FINISHED;
1540                 list_del_init(&req->list);
1541                 wake_up(&req->waitq);
1542                 if (end) {
1543                         req->end = NULL;
1544                         __fuse_get_request(req);
1545                         spin_unlock(&fc->lock);
1546                         wait_event(req->waitq, !req->locked);
1547                         end(fc, req);
1548                         fuse_put_request(fc, req);
1549                         spin_lock(&fc->lock);
1550                 }
1551         }
1552 }
1553
1554 /*
1555  * Abort all requests.
1556  *
1557  * Emergency exit in case of a malicious or accidental deadlock, or
1558  * just a hung filesystem.
1559  *
1560  * The same effect is usually achievable through killing the
1561  * filesystem daemon and all users of the filesystem.  The exception
1562  * is the combination of an asynchronous request and the tricky
1563  * deadlock (see Documentation/filesystems/fuse.txt).
1564  *
1565  * During the aborting, progression of requests from the pending and
1566  * processing lists onto the io list, and progression of new requests
1567  * onto the pending list is prevented by req->connected being false.
1568  *
1569  * Progression of requests under I/O to the processing list is
1570  * prevented by the req->aborted flag being true for these requests.
1571  * For this reason requests on the io list must be aborted first.
1572  */
1573 void fuse_abort_conn(struct fuse_conn *fc)
1574 {
1575         spin_lock(&fc->lock);
1576         if (fc->connected) {
1577                 fc->connected = 0;
1578                 fc->blocked = 0;
1579                 end_io_requests(fc);
1580                 end_requests(fc, &fc->pending);
1581                 end_requests(fc, &fc->processing);
1582                 wake_up_all(&fc->waitq);
1583                 wake_up_all(&fc->blocked_waitq);
1584                 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
1585         }
1586         spin_unlock(&fc->lock);
1587 }
1588 EXPORT_SYMBOL_GPL(fuse_abort_conn);
1589
1590 int fuse_dev_release(struct inode *inode, struct file *file)
1591 {
1592         struct fuse_conn *fc = fuse_get_conn(file);
1593         if (fc) {
1594                 spin_lock(&fc->lock);
1595                 fc->connected = 0;
1596                 end_requests(fc, &fc->pending);
1597                 end_requests(fc, &fc->processing);
1598                 spin_unlock(&fc->lock);
1599                 fuse_conn_put(fc);
1600         }
1601
1602         return 0;
1603 }
1604 EXPORT_SYMBOL_GPL(fuse_dev_release);
1605
1606 static int fuse_dev_fasync(int fd, struct file *file, int on)
1607 {
1608         struct fuse_conn *fc = fuse_get_conn(file);
1609         if (!fc)
1610                 return -EPERM;
1611
1612         /* No locking - fasync_helper does its own locking */
1613         return fasync_helper(fd, file, on, &fc->fasync);
1614 }
1615
1616 const struct file_operations fuse_dev_operations = {
1617         .owner          = THIS_MODULE,
1618         .llseek         = no_llseek,
1619         .read           = do_sync_read,
1620         .aio_read       = fuse_dev_read,
1621         .splice_read    = fuse_dev_splice_read,
1622         .write          = do_sync_write,
1623         .aio_write      = fuse_dev_write,
1624         .splice_write   = fuse_dev_splice_write,
1625         .poll           = fuse_dev_poll,
1626         .release        = fuse_dev_release,
1627         .fasync         = fuse_dev_fasync,
1628 };
1629 EXPORT_SYMBOL_GPL(fuse_dev_operations);
1630
1631 static struct miscdevice fuse_miscdevice = {
1632         .minor = FUSE_MINOR,
1633         .name  = "fuse",
1634         .fops = &fuse_dev_operations,
1635 };
1636
1637 int __init fuse_dev_init(void)
1638 {
1639         int err = -ENOMEM;
1640         fuse_req_cachep = kmem_cache_create("fuse_request",
1641                                             sizeof(struct fuse_req),
1642                                             0, 0, NULL);
1643         if (!fuse_req_cachep)
1644                 goto out;
1645
1646         err = misc_register(&fuse_miscdevice);
1647         if (err)
1648                 goto out_cache_clean;
1649
1650         return 0;
1651
1652  out_cache_clean:
1653         kmem_cache_destroy(fuse_req_cachep);
1654  out:
1655         return err;
1656 }
1657
1658 void fuse_dev_cleanup(void)
1659 {
1660         misc_deregister(&fuse_miscdevice);
1661         kmem_cache_destroy(fuse_req_cachep);
1662 }