Merge branches 'release', 'drop_do_IRQ', 'fix_early_irq', 'misc-2.6.37', 'next-fixes...
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         enum writeback_sync_modes sync_mode;
39         unsigned int for_kupdate:1;
40         unsigned int range_cyclic:1;
41         unsigned int for_background:1;
42
43         struct list_head list;          /* pending work list */
44         struct completion *done;        /* set if the caller waits */
45 };
46
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69         return test_bit(BDI_writeback_running, &bdi->state);
70 }
71
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74         struct super_block *sb = inode->i_sb;
75         struct backing_dev_info *bdi = inode->i_mapping->backing_dev_info;
76
77         /*
78          * For inodes on standard filesystems, we use superblock's bdi. For
79          * inodes on virtual filesystems, we want to use inode mapping's bdi
80          * because they can possibly point to something useful (think about
81          * block_dev filesystem).
82          */
83         if (sb->s_bdi && sb->s_bdi != &noop_backing_dev_info) {
84                 /* Some device inodes could play dirty tricks. Catch them... */
85                 WARN(bdi != sb->s_bdi && bdi_cap_writeback_dirty(bdi),
86                         "Dirtiable inode bdi %s != sb bdi %s\n",
87                         bdi->name, sb->s_bdi->name);
88                 return sb->s_bdi;
89         }
90         return bdi;
91 }
92
93 static void bdi_queue_work(struct backing_dev_info *bdi,
94                 struct wb_writeback_work *work)
95 {
96         trace_writeback_queue(bdi, work);
97
98         spin_lock_bh(&bdi->wb_lock);
99         list_add_tail(&work->list, &bdi->work_list);
100         if (bdi->wb.task) {
101                 wake_up_process(bdi->wb.task);
102         } else {
103                 /*
104                  * The bdi thread isn't there, wake up the forker thread which
105                  * will create and run it.
106                  */
107                 trace_writeback_nothread(bdi, work);
108                 wake_up_process(default_backing_dev_info.wb.task);
109         }
110         spin_unlock_bh(&bdi->wb_lock);
111 }
112
113 static void
114 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
115                 bool range_cyclic, bool for_background)
116 {
117         struct wb_writeback_work *work;
118
119         /*
120          * This is WB_SYNC_NONE writeback, so if allocation fails just
121          * wakeup the thread for old dirty data writeback
122          */
123         work = kzalloc(sizeof(*work), GFP_ATOMIC);
124         if (!work) {
125                 if (bdi->wb.task) {
126                         trace_writeback_nowork(bdi);
127                         wake_up_process(bdi->wb.task);
128                 }
129                 return;
130         }
131
132         work->sync_mode = WB_SYNC_NONE;
133         work->nr_pages  = nr_pages;
134         work->range_cyclic = range_cyclic;
135         work->for_background = for_background;
136
137         bdi_queue_work(bdi, work);
138 }
139
140 /**
141  * bdi_start_writeback - start writeback
142  * @bdi: the backing device to write from
143  * @nr_pages: the number of pages to write
144  *
145  * Description:
146  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
147  *   started when this function returns, we make no guarentees on
148  *   completion. Caller need not hold sb s_umount semaphore.
149  *
150  */
151 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
152 {
153         __bdi_start_writeback(bdi, nr_pages, true, false);
154 }
155
156 /**
157  * bdi_start_background_writeback - start background writeback
158  * @bdi: the backing device to write from
159  *
160  * Description:
161  *   This does WB_SYNC_NONE background writeback. The IO is only
162  *   started when this function returns, we make no guarentees on
163  *   completion. Caller need not hold sb s_umount semaphore.
164  */
165 void bdi_start_background_writeback(struct backing_dev_info *bdi)
166 {
167         __bdi_start_writeback(bdi, LONG_MAX, true, true);
168 }
169
170 /*
171  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
172  * furthest end of its superblock's dirty-inode list.
173  *
174  * Before stamping the inode's ->dirtied_when, we check to see whether it is
175  * already the most-recently-dirtied inode on the b_dirty list.  If that is
176  * the case then the inode must have been redirtied while it was being written
177  * out and we don't reset its dirtied_when.
178  */
179 static void redirty_tail(struct inode *inode)
180 {
181         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
182
183         if (!list_empty(&wb->b_dirty)) {
184                 struct inode *tail;
185
186                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
187                 if (time_before(inode->dirtied_when, tail->dirtied_when))
188                         inode->dirtied_when = jiffies;
189         }
190         list_move(&inode->i_list, &wb->b_dirty);
191 }
192
193 /*
194  * requeue inode for re-scanning after bdi->b_io list is exhausted.
195  */
196 static void requeue_io(struct inode *inode)
197 {
198         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
199
200         list_move(&inode->i_list, &wb->b_more_io);
201 }
202
203 static void inode_sync_complete(struct inode *inode)
204 {
205         /*
206          * Prevent speculative execution through spin_unlock(&inode_lock);
207          */
208         smp_mb();
209         wake_up_bit(&inode->i_state, __I_SYNC);
210 }
211
212 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
213 {
214         bool ret = time_after(inode->dirtied_when, t);
215 #ifndef CONFIG_64BIT
216         /*
217          * For inodes being constantly redirtied, dirtied_when can get stuck.
218          * It _appears_ to be in the future, but is actually in distant past.
219          * This test is necessary to prevent such wrapped-around relative times
220          * from permanently stopping the whole bdi writeback.
221          */
222         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
223 #endif
224         return ret;
225 }
226
227 /*
228  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
229  */
230 static void move_expired_inodes(struct list_head *delaying_queue,
231                                struct list_head *dispatch_queue,
232                                 unsigned long *older_than_this)
233 {
234         LIST_HEAD(tmp);
235         struct list_head *pos, *node;
236         struct super_block *sb = NULL;
237         struct inode *inode;
238         int do_sb_sort = 0;
239
240         while (!list_empty(delaying_queue)) {
241                 inode = list_entry(delaying_queue->prev, struct inode, i_list);
242                 if (older_than_this &&
243                     inode_dirtied_after(inode, *older_than_this))
244                         break;
245                 if (sb && sb != inode->i_sb)
246                         do_sb_sort = 1;
247                 sb = inode->i_sb;
248                 list_move(&inode->i_list, &tmp);
249         }
250
251         /* just one sb in list, splice to dispatch_queue and we're done */
252         if (!do_sb_sort) {
253                 list_splice(&tmp, dispatch_queue);
254                 return;
255         }
256
257         /* Move inodes from one superblock together */
258         while (!list_empty(&tmp)) {
259                 inode = list_entry(tmp.prev, struct inode, i_list);
260                 sb = inode->i_sb;
261                 list_for_each_prev_safe(pos, node, &tmp) {
262                         inode = list_entry(pos, struct inode, i_list);
263                         if (inode->i_sb == sb)
264                                 list_move(&inode->i_list, dispatch_queue);
265                 }
266         }
267 }
268
269 /*
270  * Queue all expired dirty inodes for io, eldest first.
271  * Before
272  *         newly dirtied     b_dirty    b_io    b_more_io
273  *         =============>    gf         edc     BA
274  * After
275  *         newly dirtied     b_dirty    b_io    b_more_io
276  *         =============>    g          fBAedc
277  *                                           |
278  *                                           +--> dequeue for IO
279  */
280 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
281 {
282         list_splice_init(&wb->b_more_io, &wb->b_io);
283         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
284 }
285
286 static int write_inode(struct inode *inode, struct writeback_control *wbc)
287 {
288         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
289                 return inode->i_sb->s_op->write_inode(inode, wbc);
290         return 0;
291 }
292
293 /*
294  * Wait for writeback on an inode to complete.
295  */
296 static void inode_wait_for_writeback(struct inode *inode)
297 {
298         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
299         wait_queue_head_t *wqh;
300
301         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
302          while (inode->i_state & I_SYNC) {
303                 spin_unlock(&inode_lock);
304                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
305                 spin_lock(&inode_lock);
306         }
307 }
308
309 /*
310  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
311  * caller has ref on the inode (either via __iget or via syscall against an fd)
312  * or the inode has I_WILL_FREE set (via generic_forget_inode)
313  *
314  * If `wait' is set, wait on the writeout.
315  *
316  * The whole writeout design is quite complex and fragile.  We want to avoid
317  * starvation of particular inodes when others are being redirtied, prevent
318  * livelocks, etc.
319  *
320  * Called under inode_lock.
321  */
322 static int
323 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
324 {
325         struct address_space *mapping = inode->i_mapping;
326         unsigned dirty;
327         int ret;
328
329         if (!atomic_read(&inode->i_count))
330                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
331         else
332                 WARN_ON(inode->i_state & I_WILL_FREE);
333
334         if (inode->i_state & I_SYNC) {
335                 /*
336                  * If this inode is locked for writeback and we are not doing
337                  * writeback-for-data-integrity, move it to b_more_io so that
338                  * writeback can proceed with the other inodes on s_io.
339                  *
340                  * We'll have another go at writing back this inode when we
341                  * completed a full scan of b_io.
342                  */
343                 if (wbc->sync_mode != WB_SYNC_ALL) {
344                         requeue_io(inode);
345                         return 0;
346                 }
347
348                 /*
349                  * It's a data-integrity sync.  We must wait.
350                  */
351                 inode_wait_for_writeback(inode);
352         }
353
354         BUG_ON(inode->i_state & I_SYNC);
355
356         /* Set I_SYNC, reset I_DIRTY_PAGES */
357         inode->i_state |= I_SYNC;
358         inode->i_state &= ~I_DIRTY_PAGES;
359         spin_unlock(&inode_lock);
360
361         ret = do_writepages(mapping, wbc);
362
363         /*
364          * Make sure to wait on the data before writing out the metadata.
365          * This is important for filesystems that modify metadata on data
366          * I/O completion.
367          */
368         if (wbc->sync_mode == WB_SYNC_ALL) {
369                 int err = filemap_fdatawait(mapping);
370                 if (ret == 0)
371                         ret = err;
372         }
373
374         /*
375          * Some filesystems may redirty the inode during the writeback
376          * due to delalloc, clear dirty metadata flags right before
377          * write_inode()
378          */
379         spin_lock(&inode_lock);
380         dirty = inode->i_state & I_DIRTY;
381         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
382         spin_unlock(&inode_lock);
383         /* Don't write the inode if only I_DIRTY_PAGES was set */
384         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
385                 int err = write_inode(inode, wbc);
386                 if (ret == 0)
387                         ret = err;
388         }
389
390         spin_lock(&inode_lock);
391         inode->i_state &= ~I_SYNC;
392         if (!(inode->i_state & I_FREEING)) {
393                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
394                         /*
395                          * We didn't write back all the pages.  nfs_writepages()
396                          * sometimes bales out without doing anything.
397                          */
398                         inode->i_state |= I_DIRTY_PAGES;
399                         if (wbc->nr_to_write <= 0) {
400                                 /*
401                                  * slice used up: queue for next turn
402                                  */
403                                 requeue_io(inode);
404                         } else {
405                                 /*
406                                  * Writeback blocked by something other than
407                                  * congestion. Delay the inode for some time to
408                                  * avoid spinning on the CPU (100% iowait)
409                                  * retrying writeback of the dirty page/inode
410                                  * that cannot be performed immediately.
411                                  */
412                                 redirty_tail(inode);
413                         }
414                 } else if (inode->i_state & I_DIRTY) {
415                         /*
416                          * Filesystems can dirty the inode during writeback
417                          * operations, such as delayed allocation during
418                          * submission or metadata updates after data IO
419                          * completion.
420                          */
421                         redirty_tail(inode);
422                 } else if (atomic_read(&inode->i_count)) {
423                         /*
424                          * The inode is clean, inuse
425                          */
426                         list_move(&inode->i_list, &inode_in_use);
427                 } else {
428                         /*
429                          * The inode is clean, unused
430                          */
431                         list_move(&inode->i_list, &inode_unused);
432                 }
433         }
434         inode_sync_complete(inode);
435         return ret;
436 }
437
438 /*
439  * For background writeback the caller does not have the sb pinned
440  * before calling writeback. So make sure that we do pin it, so it doesn't
441  * go away while we are writing inodes from it.
442  */
443 static bool pin_sb_for_writeback(struct super_block *sb)
444 {
445         spin_lock(&sb_lock);
446         if (list_empty(&sb->s_instances)) {
447                 spin_unlock(&sb_lock);
448                 return false;
449         }
450
451         sb->s_count++;
452         spin_unlock(&sb_lock);
453
454         if (down_read_trylock(&sb->s_umount)) {
455                 if (sb->s_root)
456                         return true;
457                 up_read(&sb->s_umount);
458         }
459
460         put_super(sb);
461         return false;
462 }
463
464 /*
465  * Write a portion of b_io inodes which belong to @sb.
466  *
467  * If @only_this_sb is true, then find and write all such
468  * inodes. Otherwise write only ones which go sequentially
469  * in reverse order.
470  *
471  * Return 1, if the caller writeback routine should be
472  * interrupted. Otherwise return 0.
473  */
474 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
475                 struct writeback_control *wbc, bool only_this_sb)
476 {
477         while (!list_empty(&wb->b_io)) {
478                 long pages_skipped;
479                 struct inode *inode = list_entry(wb->b_io.prev,
480                                                  struct inode, i_list);
481
482                 if (inode->i_sb != sb) {
483                         if (only_this_sb) {
484                                 /*
485                                  * We only want to write back data for this
486                                  * superblock, move all inodes not belonging
487                                  * to it back onto the dirty list.
488                                  */
489                                 redirty_tail(inode);
490                                 continue;
491                         }
492
493                         /*
494                          * The inode belongs to a different superblock.
495                          * Bounce back to the caller to unpin this and
496                          * pin the next superblock.
497                          */
498                         return 0;
499                 }
500
501                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
502                         requeue_io(inode);
503                         continue;
504                 }
505                 /*
506                  * Was this inode dirtied after sync_sb_inodes was called?
507                  * This keeps sync from extra jobs and livelock.
508                  */
509                 if (inode_dirtied_after(inode, wbc->wb_start))
510                         return 1;
511
512                 BUG_ON(inode->i_state & I_FREEING);
513                 __iget(inode);
514                 pages_skipped = wbc->pages_skipped;
515                 writeback_single_inode(inode, wbc);
516                 if (wbc->pages_skipped != pages_skipped) {
517                         /*
518                          * writeback is not making progress due to locked
519                          * buffers.  Skip this inode for now.
520                          */
521                         redirty_tail(inode);
522                 }
523                 spin_unlock(&inode_lock);
524                 iput(inode);
525                 cond_resched();
526                 spin_lock(&inode_lock);
527                 if (wbc->nr_to_write <= 0) {
528                         wbc->more_io = 1;
529                         return 1;
530                 }
531                 if (!list_empty(&wb->b_more_io))
532                         wbc->more_io = 1;
533         }
534         /* b_io is empty */
535         return 1;
536 }
537
538 void writeback_inodes_wb(struct bdi_writeback *wb,
539                 struct writeback_control *wbc)
540 {
541         int ret = 0;
542
543         if (!wbc->wb_start)
544                 wbc->wb_start = jiffies; /* livelock avoidance */
545         spin_lock(&inode_lock);
546         if (!wbc->for_kupdate || list_empty(&wb->b_io))
547                 queue_io(wb, wbc->older_than_this);
548
549         while (!list_empty(&wb->b_io)) {
550                 struct inode *inode = list_entry(wb->b_io.prev,
551                                                  struct inode, i_list);
552                 struct super_block *sb = inode->i_sb;
553
554                 if (!pin_sb_for_writeback(sb)) {
555                         requeue_io(inode);
556                         continue;
557                 }
558                 ret = writeback_sb_inodes(sb, wb, wbc, false);
559                 drop_super(sb);
560
561                 if (ret)
562                         break;
563         }
564         spin_unlock(&inode_lock);
565         /* Leave any unwritten inodes on b_io */
566 }
567
568 static void __writeback_inodes_sb(struct super_block *sb,
569                 struct bdi_writeback *wb, struct writeback_control *wbc)
570 {
571         WARN_ON(!rwsem_is_locked(&sb->s_umount));
572
573         spin_lock(&inode_lock);
574         if (!wbc->for_kupdate || list_empty(&wb->b_io))
575                 queue_io(wb, wbc->older_than_this);
576         writeback_sb_inodes(sb, wb, wbc, true);
577         spin_unlock(&inode_lock);
578 }
579
580 /*
581  * The maximum number of pages to writeout in a single bdi flush/kupdate
582  * operation.  We do this so we don't hold I_SYNC against an inode for
583  * enormous amounts of time, which would block a userspace task which has
584  * been forced to throttle against that inode.  Also, the code reevaluates
585  * the dirty each time it has written this many pages.
586  */
587 #define MAX_WRITEBACK_PAGES     1024
588
589 static inline bool over_bground_thresh(void)
590 {
591         unsigned long background_thresh, dirty_thresh;
592
593         global_dirty_limits(&background_thresh, &dirty_thresh);
594
595         return (global_page_state(NR_FILE_DIRTY) +
596                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
597 }
598
599 /*
600  * Explicit flushing or periodic writeback of "old" data.
601  *
602  * Define "old": the first time one of an inode's pages is dirtied, we mark the
603  * dirtying-time in the inode's address_space.  So this periodic writeback code
604  * just walks the superblock inode list, writing back any inodes which are
605  * older than a specific point in time.
606  *
607  * Try to run once per dirty_writeback_interval.  But if a writeback event
608  * takes longer than a dirty_writeback_interval interval, then leave a
609  * one-second gap.
610  *
611  * older_than_this takes precedence over nr_to_write.  So we'll only write back
612  * all dirty pages if they are all attached to "old" mappings.
613  */
614 static long wb_writeback(struct bdi_writeback *wb,
615                          struct wb_writeback_work *work)
616 {
617         struct writeback_control wbc = {
618                 .sync_mode              = work->sync_mode,
619                 .older_than_this        = NULL,
620                 .for_kupdate            = work->for_kupdate,
621                 .for_background         = work->for_background,
622                 .range_cyclic           = work->range_cyclic,
623         };
624         unsigned long oldest_jif;
625         long wrote = 0;
626         struct inode *inode;
627
628         if (wbc.for_kupdate) {
629                 wbc.older_than_this = &oldest_jif;
630                 oldest_jif = jiffies -
631                                 msecs_to_jiffies(dirty_expire_interval * 10);
632         }
633         if (!wbc.range_cyclic) {
634                 wbc.range_start = 0;
635                 wbc.range_end = LLONG_MAX;
636         }
637
638         wbc.wb_start = jiffies; /* livelock avoidance */
639         for (;;) {
640                 /*
641                  * Stop writeback when nr_pages has been consumed
642                  */
643                 if (work->nr_pages <= 0)
644                         break;
645
646                 /*
647                  * For background writeout, stop when we are below the
648                  * background dirty threshold
649                  */
650                 if (work->for_background && !over_bground_thresh())
651                         break;
652
653                 wbc.more_io = 0;
654                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
655                 wbc.pages_skipped = 0;
656
657                 trace_wbc_writeback_start(&wbc, wb->bdi);
658                 if (work->sb)
659                         __writeback_inodes_sb(work->sb, wb, &wbc);
660                 else
661                         writeback_inodes_wb(wb, &wbc);
662                 trace_wbc_writeback_written(&wbc, wb->bdi);
663
664                 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
665                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
666
667                 /*
668                  * If we consumed everything, see if we have more
669                  */
670                 if (wbc.nr_to_write <= 0)
671                         continue;
672                 /*
673                  * Didn't write everything and we don't have more IO, bail
674                  */
675                 if (!wbc.more_io)
676                         break;
677                 /*
678                  * Did we write something? Try for more
679                  */
680                 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
681                         continue;
682                 /*
683                  * Nothing written. Wait for some inode to
684                  * become available for writeback. Otherwise
685                  * we'll just busyloop.
686                  */
687                 spin_lock(&inode_lock);
688                 if (!list_empty(&wb->b_more_io))  {
689                         inode = list_entry(wb->b_more_io.prev,
690                                                 struct inode, i_list);
691                         trace_wbc_writeback_wait(&wbc, wb->bdi);
692                         inode_wait_for_writeback(inode);
693                 }
694                 spin_unlock(&inode_lock);
695         }
696
697         return wrote;
698 }
699
700 /*
701  * Return the next wb_writeback_work struct that hasn't been processed yet.
702  */
703 static struct wb_writeback_work *
704 get_next_work_item(struct backing_dev_info *bdi)
705 {
706         struct wb_writeback_work *work = NULL;
707
708         spin_lock_bh(&bdi->wb_lock);
709         if (!list_empty(&bdi->work_list)) {
710                 work = list_entry(bdi->work_list.next,
711                                   struct wb_writeback_work, list);
712                 list_del_init(&work->list);
713         }
714         spin_unlock_bh(&bdi->wb_lock);
715         return work;
716 }
717
718 static long wb_check_old_data_flush(struct bdi_writeback *wb)
719 {
720         unsigned long expired;
721         long nr_pages;
722
723         /*
724          * When set to zero, disable periodic writeback
725          */
726         if (!dirty_writeback_interval)
727                 return 0;
728
729         expired = wb->last_old_flush +
730                         msecs_to_jiffies(dirty_writeback_interval * 10);
731         if (time_before(jiffies, expired))
732                 return 0;
733
734         wb->last_old_flush = jiffies;
735         nr_pages = global_page_state(NR_FILE_DIRTY) +
736                         global_page_state(NR_UNSTABLE_NFS) +
737                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
738
739         if (nr_pages) {
740                 struct wb_writeback_work work = {
741                         .nr_pages       = nr_pages,
742                         .sync_mode      = WB_SYNC_NONE,
743                         .for_kupdate    = 1,
744                         .range_cyclic   = 1,
745                 };
746
747                 return wb_writeback(wb, &work);
748         }
749
750         return 0;
751 }
752
753 /*
754  * Retrieve work items and do the writeback they describe
755  */
756 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
757 {
758         struct backing_dev_info *bdi = wb->bdi;
759         struct wb_writeback_work *work;
760         long wrote = 0;
761
762         set_bit(BDI_writeback_running, &wb->bdi->state);
763         while ((work = get_next_work_item(bdi)) != NULL) {
764                 /*
765                  * Override sync mode, in case we must wait for completion
766                  * because this thread is exiting now.
767                  */
768                 if (force_wait)
769                         work->sync_mode = WB_SYNC_ALL;
770
771                 trace_writeback_exec(bdi, work);
772
773                 wrote += wb_writeback(wb, work);
774
775                 /*
776                  * Notify the caller of completion if this is a synchronous
777                  * work item, otherwise just free it.
778                  */
779                 if (work->done)
780                         complete(work->done);
781                 else
782                         kfree(work);
783         }
784
785         /*
786          * Check for periodic writeback, kupdated() style
787          */
788         wrote += wb_check_old_data_flush(wb);
789         clear_bit(BDI_writeback_running, &wb->bdi->state);
790
791         return wrote;
792 }
793
794 /*
795  * Handle writeback of dirty data for the device backed by this bdi. Also
796  * wakes up periodically and does kupdated style flushing.
797  */
798 int bdi_writeback_thread(void *data)
799 {
800         struct bdi_writeback *wb = data;
801         struct backing_dev_info *bdi = wb->bdi;
802         long pages_written;
803
804         current->flags |= PF_FLUSHER | PF_SWAPWRITE;
805         set_freezable();
806         wb->last_active = jiffies;
807
808         /*
809          * Our parent may run at a different priority, just set us to normal
810          */
811         set_user_nice(current, 0);
812
813         trace_writeback_thread_start(bdi);
814
815         while (!kthread_should_stop()) {
816                 /*
817                  * Remove own delayed wake-up timer, since we are already awake
818                  * and we'll take care of the preriodic write-back.
819                  */
820                 del_timer(&wb->wakeup_timer);
821
822                 pages_written = wb_do_writeback(wb, 0);
823
824                 trace_writeback_pages_written(pages_written);
825
826                 if (pages_written)
827                         wb->last_active = jiffies;
828
829                 set_current_state(TASK_INTERRUPTIBLE);
830                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
831                         __set_current_state(TASK_RUNNING);
832                         continue;
833                 }
834
835                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
836                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
837                 else {
838                         /*
839                          * We have nothing to do, so can go sleep without any
840                          * timeout and save power. When a work is queued or
841                          * something is made dirty - we will be woken up.
842                          */
843                         schedule();
844                 }
845
846                 try_to_freeze();
847         }
848
849         /* Flush any work that raced with us exiting */
850         if (!list_empty(&bdi->work_list))
851                 wb_do_writeback(wb, 1);
852
853         trace_writeback_thread_stop(bdi);
854         return 0;
855 }
856
857
858 /*
859  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
860  * the whole world.
861  */
862 void wakeup_flusher_threads(long nr_pages)
863 {
864         struct backing_dev_info *bdi;
865
866         if (!nr_pages) {
867                 nr_pages = global_page_state(NR_FILE_DIRTY) +
868                                 global_page_state(NR_UNSTABLE_NFS);
869         }
870
871         rcu_read_lock();
872         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
873                 if (!bdi_has_dirty_io(bdi))
874                         continue;
875                 __bdi_start_writeback(bdi, nr_pages, false, false);
876         }
877         rcu_read_unlock();
878 }
879
880 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
881 {
882         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
883                 struct dentry *dentry;
884                 const char *name = "?";
885
886                 dentry = d_find_alias(inode);
887                 if (dentry) {
888                         spin_lock(&dentry->d_lock);
889                         name = (const char *) dentry->d_name.name;
890                 }
891                 printk(KERN_DEBUG
892                        "%s(%d): dirtied inode %lu (%s) on %s\n",
893                        current->comm, task_pid_nr(current), inode->i_ino,
894                        name, inode->i_sb->s_id);
895                 if (dentry) {
896                         spin_unlock(&dentry->d_lock);
897                         dput(dentry);
898                 }
899         }
900 }
901
902 /**
903  *      __mark_inode_dirty -    internal function
904  *      @inode: inode to mark
905  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
906  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
907  *      mark_inode_dirty_sync.
908  *
909  * Put the inode on the super block's dirty list.
910  *
911  * CAREFUL! We mark it dirty unconditionally, but move it onto the
912  * dirty list only if it is hashed or if it refers to a blockdev.
913  * If it was not hashed, it will never be added to the dirty list
914  * even if it is later hashed, as it will have been marked dirty already.
915  *
916  * In short, make sure you hash any inodes _before_ you start marking
917  * them dirty.
918  *
919  * This function *must* be atomic for the I_DIRTY_PAGES case -
920  * set_page_dirty() is called under spinlock in several places.
921  *
922  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
923  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
924  * the kernel-internal blockdev inode represents the dirtying time of the
925  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
926  * page->mapping->host, so the page-dirtying time is recorded in the internal
927  * blockdev inode.
928  */
929 void __mark_inode_dirty(struct inode *inode, int flags)
930 {
931         struct super_block *sb = inode->i_sb;
932         struct backing_dev_info *bdi = NULL;
933         bool wakeup_bdi = false;
934
935         /*
936          * Don't do this for I_DIRTY_PAGES - that doesn't actually
937          * dirty the inode itself
938          */
939         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
940                 if (sb->s_op->dirty_inode)
941                         sb->s_op->dirty_inode(inode);
942         }
943
944         /*
945          * make sure that changes are seen by all cpus before we test i_state
946          * -- mikulas
947          */
948         smp_mb();
949
950         /* avoid the locking if we can */
951         if ((inode->i_state & flags) == flags)
952                 return;
953
954         if (unlikely(block_dump))
955                 block_dump___mark_inode_dirty(inode);
956
957         spin_lock(&inode_lock);
958         if ((inode->i_state & flags) != flags) {
959                 const int was_dirty = inode->i_state & I_DIRTY;
960
961                 inode->i_state |= flags;
962
963                 /*
964                  * If the inode is being synced, just update its dirty state.
965                  * The unlocker will place the inode on the appropriate
966                  * superblock list, based upon its state.
967                  */
968                 if (inode->i_state & I_SYNC)
969                         goto out;
970
971                 /*
972                  * Only add valid (hashed) inodes to the superblock's
973                  * dirty list.  Add blockdev inodes as well.
974                  */
975                 if (!S_ISBLK(inode->i_mode)) {
976                         if (hlist_unhashed(&inode->i_hash))
977                                 goto out;
978                 }
979                 if (inode->i_state & I_FREEING)
980                         goto out;
981
982                 /*
983                  * If the inode was already on b_dirty/b_io/b_more_io, don't
984                  * reposition it (that would break b_dirty time-ordering).
985                  */
986                 if (!was_dirty) {
987                         bdi = inode_to_bdi(inode);
988
989                         if (bdi_cap_writeback_dirty(bdi)) {
990                                 WARN(!test_bit(BDI_registered, &bdi->state),
991                                      "bdi-%s not registered\n", bdi->name);
992
993                                 /*
994                                  * If this is the first dirty inode for this
995                                  * bdi, we have to wake-up the corresponding
996                                  * bdi thread to make sure background
997                                  * write-back happens later.
998                                  */
999                                 if (!wb_has_dirty_io(&bdi->wb))
1000                                         wakeup_bdi = true;
1001                         }
1002
1003                         inode->dirtied_when = jiffies;
1004                         list_move(&inode->i_list, &bdi->wb.b_dirty);
1005                 }
1006         }
1007 out:
1008         spin_unlock(&inode_lock);
1009
1010         if (wakeup_bdi)
1011                 bdi_wakeup_thread_delayed(bdi);
1012 }
1013 EXPORT_SYMBOL(__mark_inode_dirty);
1014
1015 /*
1016  * Write out a superblock's list of dirty inodes.  A wait will be performed
1017  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1018  *
1019  * If older_than_this is non-NULL, then only write out inodes which
1020  * had their first dirtying at a time earlier than *older_than_this.
1021  *
1022  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1023  * This function assumes that the blockdev superblock's inodes are backed by
1024  * a variety of queues, so all inodes are searched.  For other superblocks,
1025  * assume that all inodes are backed by the same queue.
1026  *
1027  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1028  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1029  * on the writer throttling path, and we get decent balancing between many
1030  * throttled threads: we don't want them all piling up on inode_sync_wait.
1031  */
1032 static void wait_sb_inodes(struct super_block *sb)
1033 {
1034         struct inode *inode, *old_inode = NULL;
1035
1036         /*
1037          * We need to be protected against the filesystem going from
1038          * r/o to r/w or vice versa.
1039          */
1040         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1041
1042         spin_lock(&inode_lock);
1043
1044         /*
1045          * Data integrity sync. Must wait for all pages under writeback,
1046          * because there may have been pages dirtied before our sync
1047          * call, but which had writeout started before we write it out.
1048          * In which case, the inode may not be on the dirty list, but
1049          * we still have to wait for that writeout.
1050          */
1051         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1052                 struct address_space *mapping;
1053
1054                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1055                         continue;
1056                 mapping = inode->i_mapping;
1057                 if (mapping->nrpages == 0)
1058                         continue;
1059                 __iget(inode);
1060                 spin_unlock(&inode_lock);
1061                 /*
1062                  * We hold a reference to 'inode' so it couldn't have
1063                  * been removed from s_inodes list while we dropped the
1064                  * inode_lock.  We cannot iput the inode now as we can
1065                  * be holding the last reference and we cannot iput it
1066                  * under inode_lock. So we keep the reference and iput
1067                  * it later.
1068                  */
1069                 iput(old_inode);
1070                 old_inode = inode;
1071
1072                 filemap_fdatawait(mapping);
1073
1074                 cond_resched();
1075
1076                 spin_lock(&inode_lock);
1077         }
1078         spin_unlock(&inode_lock);
1079         iput(old_inode);
1080 }
1081
1082 /**
1083  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1084  * @sb: the superblock
1085  *
1086  * Start writeback on some inodes on this super_block. No guarantees are made
1087  * on how many (if any) will be written, and this function does not wait
1088  * for IO completion of submitted IO. The number of pages submitted is
1089  * returned.
1090  */
1091 void writeback_inodes_sb(struct super_block *sb)
1092 {
1093         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1094         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1095         DECLARE_COMPLETION_ONSTACK(done);
1096         struct wb_writeback_work work = {
1097                 .sb             = sb,
1098                 .sync_mode      = WB_SYNC_NONE,
1099                 .done           = &done,
1100         };
1101
1102         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1103
1104         work.nr_pages = nr_dirty + nr_unstable +
1105                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1106
1107         bdi_queue_work(sb->s_bdi, &work);
1108         wait_for_completion(&done);
1109 }
1110 EXPORT_SYMBOL(writeback_inodes_sb);
1111
1112 /**
1113  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1114  * @sb: the superblock
1115  *
1116  * Invoke writeback_inodes_sb if no writeback is currently underway.
1117  * Returns 1 if writeback was started, 0 if not.
1118  */
1119 int writeback_inodes_sb_if_idle(struct super_block *sb)
1120 {
1121         if (!writeback_in_progress(sb->s_bdi)) {
1122                 down_read(&sb->s_umount);
1123                 writeback_inodes_sb(sb);
1124                 up_read(&sb->s_umount);
1125                 return 1;
1126         } else
1127                 return 0;
1128 }
1129 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1130
1131 /**
1132  * sync_inodes_sb       -       sync sb inode pages
1133  * @sb: the superblock
1134  *
1135  * This function writes and waits on any dirty inode belonging to this
1136  * super_block. The number of pages synced is returned.
1137  */
1138 void sync_inodes_sb(struct super_block *sb)
1139 {
1140         DECLARE_COMPLETION_ONSTACK(done);
1141         struct wb_writeback_work work = {
1142                 .sb             = sb,
1143                 .sync_mode      = WB_SYNC_ALL,
1144                 .nr_pages       = LONG_MAX,
1145                 .range_cyclic   = 0,
1146                 .done           = &done,
1147         };
1148
1149         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1150
1151         bdi_queue_work(sb->s_bdi, &work);
1152         wait_for_completion(&done);
1153
1154         wait_sb_inodes(sb);
1155 }
1156 EXPORT_SYMBOL(sync_inodes_sb);
1157
1158 /**
1159  * write_inode_now      -       write an inode to disk
1160  * @inode: inode to write to disk
1161  * @sync: whether the write should be synchronous or not
1162  *
1163  * This function commits an inode to disk immediately if it is dirty. This is
1164  * primarily needed by knfsd.
1165  *
1166  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1167  */
1168 int write_inode_now(struct inode *inode, int sync)
1169 {
1170         int ret;
1171         struct writeback_control wbc = {
1172                 .nr_to_write = LONG_MAX,
1173                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1174                 .range_start = 0,
1175                 .range_end = LLONG_MAX,
1176         };
1177
1178         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1179                 wbc.nr_to_write = 0;
1180
1181         might_sleep();
1182         spin_lock(&inode_lock);
1183         ret = writeback_single_inode(inode, &wbc);
1184         spin_unlock(&inode_lock);
1185         if (sync)
1186                 inode_sync_wait(inode);
1187         return ret;
1188 }
1189 EXPORT_SYMBOL(write_inode_now);
1190
1191 /**
1192  * sync_inode - write an inode and its pages to disk.
1193  * @inode: the inode to sync
1194  * @wbc: controls the writeback mode
1195  *
1196  * sync_inode() will write an inode and its pages to disk.  It will also
1197  * correctly update the inode on its superblock's dirty inode lists and will
1198  * update inode->i_state.
1199  *
1200  * The caller must have a ref on the inode.
1201  */
1202 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1203 {
1204         int ret;
1205
1206         spin_lock(&inode_lock);
1207         ret = writeback_single_inode(inode, wbc);
1208         spin_unlock(&inode_lock);
1209         return ret;
1210 }
1211 EXPORT_SYMBOL(sync_inode);