writeback: Move I_DIRTY_PAGES handling
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         unsigned long *older_than_this;
39         enum writeback_sync_modes sync_mode;
40         unsigned int tagged_writepages:1;
41         unsigned int for_kupdate:1;
42         unsigned int range_cyclic:1;
43         unsigned int for_background:1;
44         enum wb_reason reason;          /* why was writeback initiated? */
45
46         struct list_head list;          /* pending work list */
47         struct completion *done;        /* set if the caller waits */
48 };
49
50 /*
51  * We don't actually have pdflush, but this one is exported though /proc...
52  */
53 int nr_pdflush_threads;
54
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64         return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70         struct super_block *sb = inode->i_sb;
71
72         if (strcmp(sb->s_type->name, "bdev") == 0)
73                 return inode->i_mapping->backing_dev_info;
74
75         return sb->s_bdi;
76 }
77
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80         return list_entry(head, struct inode, i_wb_list);
81 }
82
83 /*
84  * Include the creation of the trace points after defining the
85  * wb_writeback_work structure and inline functions so that the definition
86  * remains local to this file.
87  */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90
91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
93 {
94         if (bdi->wb.task) {
95                 wake_up_process(bdi->wb.task);
96         } else {
97                 /*
98                  * The bdi thread isn't there, wake up the forker thread which
99                  * will create and run it.
100                  */
101                 wake_up_process(default_backing_dev_info.wb.task);
102         }
103 }
104
105 static void bdi_queue_work(struct backing_dev_info *bdi,
106                            struct wb_writeback_work *work)
107 {
108         trace_writeback_queue(bdi, work);
109
110         spin_lock_bh(&bdi->wb_lock);
111         list_add_tail(&work->list, &bdi->work_list);
112         if (!bdi->wb.task)
113                 trace_writeback_nothread(bdi, work);
114         bdi_wakeup_flusher(bdi);
115         spin_unlock_bh(&bdi->wb_lock);
116 }
117
118 static void
119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
120                       bool range_cyclic, enum wb_reason reason)
121 {
122         struct wb_writeback_work *work;
123
124         /*
125          * This is WB_SYNC_NONE writeback, so if allocation fails just
126          * wakeup the thread for old dirty data writeback
127          */
128         work = kzalloc(sizeof(*work), GFP_ATOMIC);
129         if (!work) {
130                 if (bdi->wb.task) {
131                         trace_writeback_nowork(bdi);
132                         wake_up_process(bdi->wb.task);
133                 }
134                 return;
135         }
136
137         work->sync_mode = WB_SYNC_NONE;
138         work->nr_pages  = nr_pages;
139         work->range_cyclic = range_cyclic;
140         work->reason    = reason;
141
142         bdi_queue_work(bdi, work);
143 }
144
145 /**
146  * bdi_start_writeback - start writeback
147  * @bdi: the backing device to write from
148  * @nr_pages: the number of pages to write
149  * @reason: reason why some writeback work was initiated
150  *
151  * Description:
152  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
153  *   started when this function returns, we make no guarantees on
154  *   completion. Caller need not hold sb s_umount semaphore.
155  *
156  */
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158                         enum wb_reason reason)
159 {
160         __bdi_start_writeback(bdi, nr_pages, true, reason);
161 }
162
163 /**
164  * bdi_start_background_writeback - start background writeback
165  * @bdi: the backing device to write from
166  *
167  * Description:
168  *   This makes sure WB_SYNC_NONE background writeback happens. When
169  *   this function returns, it is only guaranteed that for given BDI
170  *   some IO is happening if we are over background dirty threshold.
171  *   Caller need not hold sb s_umount semaphore.
172  */
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
174 {
175         /*
176          * We just wake up the flusher thread. It will perform background
177          * writeback as soon as there is no other work to do.
178          */
179         trace_writeback_wake_background(bdi);
180         spin_lock_bh(&bdi->wb_lock);
181         bdi_wakeup_flusher(bdi);
182         spin_unlock_bh(&bdi->wb_lock);
183 }
184
185 /*
186  * Remove the inode from the writeback list it is on.
187  */
188 void inode_wb_list_del(struct inode *inode)
189 {
190         struct backing_dev_info *bdi = inode_to_bdi(inode);
191
192         spin_lock(&bdi->wb.list_lock);
193         list_del_init(&inode->i_wb_list);
194         spin_unlock(&bdi->wb.list_lock);
195 }
196
197 /*
198  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
199  * furthest end of its superblock's dirty-inode list.
200  *
201  * Before stamping the inode's ->dirtied_when, we check to see whether it is
202  * already the most-recently-dirtied inode on the b_dirty list.  If that is
203  * the case then the inode must have been redirtied while it was being written
204  * out and we don't reset its dirtied_when.
205  */
206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
207 {
208         assert_spin_locked(&wb->list_lock);
209         if (!list_empty(&wb->b_dirty)) {
210                 struct inode *tail;
211
212                 tail = wb_inode(wb->b_dirty.next);
213                 if (time_before(inode->dirtied_when, tail->dirtied_when))
214                         inode->dirtied_when = jiffies;
215         }
216         list_move(&inode->i_wb_list, &wb->b_dirty);
217 }
218
219 /*
220  * requeue inode for re-scanning after bdi->b_io list is exhausted.
221  */
222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
223 {
224         assert_spin_locked(&wb->list_lock);
225         list_move(&inode->i_wb_list, &wb->b_more_io);
226 }
227
228 static void inode_sync_complete(struct inode *inode)
229 {
230         /*
231          * Prevent speculative execution through
232          * spin_unlock(&wb->list_lock);
233          */
234
235         smp_mb();
236         wake_up_bit(&inode->i_state, __I_SYNC);
237 }
238
239 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
240 {
241         bool ret = time_after(inode->dirtied_when, t);
242 #ifndef CONFIG_64BIT
243         /*
244          * For inodes being constantly redirtied, dirtied_when can get stuck.
245          * It _appears_ to be in the future, but is actually in distant past.
246          * This test is necessary to prevent such wrapped-around relative times
247          * from permanently stopping the whole bdi writeback.
248          */
249         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
250 #endif
251         return ret;
252 }
253
254 /*
255  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
256  */
257 static int move_expired_inodes(struct list_head *delaying_queue,
258                                struct list_head *dispatch_queue,
259                                struct wb_writeback_work *work)
260 {
261         LIST_HEAD(tmp);
262         struct list_head *pos, *node;
263         struct super_block *sb = NULL;
264         struct inode *inode;
265         int do_sb_sort = 0;
266         int moved = 0;
267
268         while (!list_empty(delaying_queue)) {
269                 inode = wb_inode(delaying_queue->prev);
270                 if (work->older_than_this &&
271                     inode_dirtied_after(inode, *work->older_than_this))
272                         break;
273                 if (sb && sb != inode->i_sb)
274                         do_sb_sort = 1;
275                 sb = inode->i_sb;
276                 list_move(&inode->i_wb_list, &tmp);
277                 moved++;
278         }
279
280         /* just one sb in list, splice to dispatch_queue and we're done */
281         if (!do_sb_sort) {
282                 list_splice(&tmp, dispatch_queue);
283                 goto out;
284         }
285
286         /* Move inodes from one superblock together */
287         while (!list_empty(&tmp)) {
288                 sb = wb_inode(tmp.prev)->i_sb;
289                 list_for_each_prev_safe(pos, node, &tmp) {
290                         inode = wb_inode(pos);
291                         if (inode->i_sb == sb)
292                                 list_move(&inode->i_wb_list, dispatch_queue);
293                 }
294         }
295 out:
296         return moved;
297 }
298
299 /*
300  * Queue all expired dirty inodes for io, eldest first.
301  * Before
302  *         newly dirtied     b_dirty    b_io    b_more_io
303  *         =============>    gf         edc     BA
304  * After
305  *         newly dirtied     b_dirty    b_io    b_more_io
306  *         =============>    g          fBAedc
307  *                                           |
308  *                                           +--> dequeue for IO
309  */
310 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
311 {
312         int moved;
313         assert_spin_locked(&wb->list_lock);
314         list_splice_init(&wb->b_more_io, &wb->b_io);
315         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
316         trace_writeback_queue_io(wb, work, moved);
317 }
318
319 static int write_inode(struct inode *inode, struct writeback_control *wbc)
320 {
321         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
322                 return inode->i_sb->s_op->write_inode(inode, wbc);
323         return 0;
324 }
325
326 /*
327  * Wait for writeback on an inode to complete.
328  */
329 static void inode_wait_for_writeback(struct inode *inode,
330                                      struct bdi_writeback *wb)
331 {
332         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
333         wait_queue_head_t *wqh;
334
335         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
336         while (inode->i_state & I_SYNC) {
337                 spin_unlock(&inode->i_lock);
338                 spin_unlock(&wb->list_lock);
339                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
340                 spin_lock(&wb->list_lock);
341                 spin_lock(&inode->i_lock);
342         }
343 }
344
345 /*
346  * Write out an inode's dirty pages.  Called under wb->list_lock and
347  * inode->i_lock.  Either the caller has an active reference on the inode or
348  * the inode has I_WILL_FREE set.
349  *
350  * If `wait' is set, wait on the writeout.
351  *
352  * The whole writeout design is quite complex and fragile.  We want to avoid
353  * starvation of particular inodes when others are being redirtied, prevent
354  * livelocks, etc.
355  */
356 static int
357 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
358                        struct writeback_control *wbc)
359 {
360         struct address_space *mapping = inode->i_mapping;
361         long nr_to_write = wbc->nr_to_write;
362         unsigned dirty;
363         int ret;
364
365         assert_spin_locked(&wb->list_lock);
366         assert_spin_locked(&inode->i_lock);
367
368         if (!atomic_read(&inode->i_count))
369                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
370         else
371                 WARN_ON(inode->i_state & I_WILL_FREE);
372
373         if (inode->i_state & I_SYNC) {
374                 /*
375                  * If this inode is locked for writeback and we are not doing
376                  * writeback-for-data-integrity, move it to b_more_io so that
377                  * writeback can proceed with the other inodes on s_io.
378                  *
379                  * We'll have another go at writing back this inode when we
380                  * completed a full scan of b_io.
381                  */
382                 if (wbc->sync_mode != WB_SYNC_ALL) {
383                         requeue_io(inode, wb);
384                         trace_writeback_single_inode_requeue(inode, wbc,
385                                                              nr_to_write);
386                         return 0;
387                 }
388
389                 /*
390                  * It's a data-integrity sync.  We must wait.
391                  */
392                 inode_wait_for_writeback(inode, wb);
393         }
394
395         BUG_ON(inode->i_state & I_SYNC);
396
397         /* Set I_SYNC, reset I_DIRTY_PAGES */
398         inode->i_state |= I_SYNC;
399         spin_unlock(&inode->i_lock);
400         spin_unlock(&wb->list_lock);
401
402         ret = do_writepages(mapping, wbc);
403
404         /*
405          * Make sure to wait on the data before writing out the metadata.
406          * This is important for filesystems that modify metadata on data
407          * I/O completion.
408          */
409         if (wbc->sync_mode == WB_SYNC_ALL) {
410                 int err = filemap_fdatawait(mapping);
411                 if (ret == 0)
412                         ret = err;
413         }
414
415         /*
416          * Some filesystems may redirty the inode during the writeback
417          * due to delalloc, clear dirty metadata flags right before
418          * write_inode()
419          */
420         spin_lock(&inode->i_lock);
421         /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
422         if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
423                 inode->i_state &= ~I_DIRTY_PAGES;
424         dirty = inode->i_state & I_DIRTY;
425         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
426         spin_unlock(&inode->i_lock);
427         /* Don't write the inode if only I_DIRTY_PAGES was set */
428         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
429                 int err = write_inode(inode, wbc);
430                 if (ret == 0)
431                         ret = err;
432         }
433
434         spin_lock(&wb->list_lock);
435         spin_lock(&inode->i_lock);
436         inode->i_state &= ~I_SYNC;
437         if (!(inode->i_state & I_FREEING)) {
438                 /*
439                  * Sync livelock prevention. Each inode is tagged and synced in
440                  * one shot. If still dirty, it will be redirty_tail()'ed below.
441                  * Update the dirty time to prevent enqueue and sync it again.
442                  */
443                 if ((inode->i_state & I_DIRTY) &&
444                     (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
445                         inode->dirtied_when = jiffies;
446
447                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
448                         /*
449                          * We didn't write back all the pages.  nfs_writepages()
450                          * sometimes bales out without doing anything.
451                          */
452                         if (wbc->nr_to_write <= 0) {
453                                 /*
454                                  * slice used up: queue for next turn
455                                  */
456                                 requeue_io(inode, wb);
457                         } else {
458                                 /*
459                                  * Writeback blocked by something other than
460                                  * congestion. Delay the inode for some time to
461                                  * avoid spinning on the CPU (100% iowait)
462                                  * retrying writeback of the dirty page/inode
463                                  * that cannot be performed immediately.
464                                  */
465                                 redirty_tail(inode, wb);
466                         }
467                 } else if (inode->i_state & I_DIRTY) {
468                         /*
469                          * Filesystems can dirty the inode during writeback
470                          * operations, such as delayed allocation during
471                          * submission or metadata updates after data IO
472                          * completion.
473                          */
474                         redirty_tail(inode, wb);
475                 } else {
476                         /*
477                          * The inode is clean.  At this point we either have
478                          * a reference to the inode or it's on it's way out.
479                          * No need to add it back to the LRU.
480                          */
481                         list_del_init(&inode->i_wb_list);
482                 }
483         }
484         inode_sync_complete(inode);
485         trace_writeback_single_inode(inode, wbc, nr_to_write);
486         return ret;
487 }
488
489 static long writeback_chunk_size(struct backing_dev_info *bdi,
490                                  struct wb_writeback_work *work)
491 {
492         long pages;
493
494         /*
495          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
496          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
497          * here avoids calling into writeback_inodes_wb() more than once.
498          *
499          * The intended call sequence for WB_SYNC_ALL writeback is:
500          *
501          *      wb_writeback()
502          *          writeback_sb_inodes()       <== called only once
503          *              write_cache_pages()     <== called once for each inode
504          *                   (quickly) tag currently dirty pages
505          *                   (maybe slowly) sync all tagged pages
506          */
507         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
508                 pages = LONG_MAX;
509         else {
510                 pages = min(bdi->avg_write_bandwidth / 2,
511                             global_dirty_limit / DIRTY_SCOPE);
512                 pages = min(pages, work->nr_pages);
513                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
514                                    MIN_WRITEBACK_PAGES);
515         }
516
517         return pages;
518 }
519
520 /*
521  * Write a portion of b_io inodes which belong to @sb.
522  *
523  * If @only_this_sb is true, then find and write all such
524  * inodes. Otherwise write only ones which go sequentially
525  * in reverse order.
526  *
527  * Return the number of pages and/or inodes written.
528  */
529 static long writeback_sb_inodes(struct super_block *sb,
530                                 struct bdi_writeback *wb,
531                                 struct wb_writeback_work *work)
532 {
533         struct writeback_control wbc = {
534                 .sync_mode              = work->sync_mode,
535                 .tagged_writepages      = work->tagged_writepages,
536                 .for_kupdate            = work->for_kupdate,
537                 .for_background         = work->for_background,
538                 .range_cyclic           = work->range_cyclic,
539                 .range_start            = 0,
540                 .range_end              = LLONG_MAX,
541         };
542         unsigned long start_time = jiffies;
543         long write_chunk;
544         long wrote = 0;  /* count both pages and inodes */
545
546         while (!list_empty(&wb->b_io)) {
547                 struct inode *inode = wb_inode(wb->b_io.prev);
548
549                 if (inode->i_sb != sb) {
550                         if (work->sb) {
551                                 /*
552                                  * We only want to write back data for this
553                                  * superblock, move all inodes not belonging
554                                  * to it back onto the dirty list.
555                                  */
556                                 redirty_tail(inode, wb);
557                                 continue;
558                         }
559
560                         /*
561                          * The inode belongs to a different superblock.
562                          * Bounce back to the caller to unpin this and
563                          * pin the next superblock.
564                          */
565                         break;
566                 }
567
568                 /*
569                  * Don't bother with new inodes or inodes beeing freed, first
570                  * kind does not need peridic writeout yet, and for the latter
571                  * kind writeout is handled by the freer.
572                  */
573                 spin_lock(&inode->i_lock);
574                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
575                         spin_unlock(&inode->i_lock);
576                         redirty_tail(inode, wb);
577                         continue;
578                 }
579                 __iget(inode);
580                 write_chunk = writeback_chunk_size(wb->bdi, work);
581                 wbc.nr_to_write = write_chunk;
582                 wbc.pages_skipped = 0;
583
584                 writeback_single_inode(inode, wb, &wbc);
585
586                 work->nr_pages -= write_chunk - wbc.nr_to_write;
587                 wrote += write_chunk - wbc.nr_to_write;
588                 if (!(inode->i_state & I_DIRTY))
589                         wrote++;
590                 if (wbc.pages_skipped) {
591                         /*
592                          * writeback is not making progress due to locked
593                          * buffers.  Skip this inode for now.
594                          */
595                         redirty_tail(inode, wb);
596                 }
597                 spin_unlock(&inode->i_lock);
598                 spin_unlock(&wb->list_lock);
599                 iput(inode);
600                 cond_resched();
601                 spin_lock(&wb->list_lock);
602                 /*
603                  * bail out to wb_writeback() often enough to check
604                  * background threshold and other termination conditions.
605                  */
606                 if (wrote) {
607                         if (time_is_before_jiffies(start_time + HZ / 10UL))
608                                 break;
609                         if (work->nr_pages <= 0)
610                                 break;
611                 }
612         }
613         return wrote;
614 }
615
616 static long __writeback_inodes_wb(struct bdi_writeback *wb,
617                                   struct wb_writeback_work *work)
618 {
619         unsigned long start_time = jiffies;
620         long wrote = 0;
621
622         while (!list_empty(&wb->b_io)) {
623                 struct inode *inode = wb_inode(wb->b_io.prev);
624                 struct super_block *sb = inode->i_sb;
625
626                 if (!grab_super_passive(sb)) {
627                         /*
628                          * grab_super_passive() may fail consistently due to
629                          * s_umount being grabbed by someone else. Don't use
630                          * requeue_io() to avoid busy retrying the inode/sb.
631                          */
632                         redirty_tail(inode, wb);
633                         continue;
634                 }
635                 wrote += writeback_sb_inodes(sb, wb, work);
636                 drop_super(sb);
637
638                 /* refer to the same tests at the end of writeback_sb_inodes */
639                 if (wrote) {
640                         if (time_is_before_jiffies(start_time + HZ / 10UL))
641                                 break;
642                         if (work->nr_pages <= 0)
643                                 break;
644                 }
645         }
646         /* Leave any unwritten inodes on b_io */
647         return wrote;
648 }
649
650 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
651                                 enum wb_reason reason)
652 {
653         struct wb_writeback_work work = {
654                 .nr_pages       = nr_pages,
655                 .sync_mode      = WB_SYNC_NONE,
656                 .range_cyclic   = 1,
657                 .reason         = reason,
658         };
659
660         spin_lock(&wb->list_lock);
661         if (list_empty(&wb->b_io))
662                 queue_io(wb, &work);
663         __writeback_inodes_wb(wb, &work);
664         spin_unlock(&wb->list_lock);
665
666         return nr_pages - work.nr_pages;
667 }
668
669 static bool over_bground_thresh(struct backing_dev_info *bdi)
670 {
671         unsigned long background_thresh, dirty_thresh;
672
673         global_dirty_limits(&background_thresh, &dirty_thresh);
674
675         if (global_page_state(NR_FILE_DIRTY) +
676             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
677                 return true;
678
679         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
680                                 bdi_dirty_limit(bdi, background_thresh))
681                 return true;
682
683         return false;
684 }
685
686 /*
687  * Called under wb->list_lock. If there are multiple wb per bdi,
688  * only the flusher working on the first wb should do it.
689  */
690 static void wb_update_bandwidth(struct bdi_writeback *wb,
691                                 unsigned long start_time)
692 {
693         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
694 }
695
696 /*
697  * Explicit flushing or periodic writeback of "old" data.
698  *
699  * Define "old": the first time one of an inode's pages is dirtied, we mark the
700  * dirtying-time in the inode's address_space.  So this periodic writeback code
701  * just walks the superblock inode list, writing back any inodes which are
702  * older than a specific point in time.
703  *
704  * Try to run once per dirty_writeback_interval.  But if a writeback event
705  * takes longer than a dirty_writeback_interval interval, then leave a
706  * one-second gap.
707  *
708  * older_than_this takes precedence over nr_to_write.  So we'll only write back
709  * all dirty pages if they are all attached to "old" mappings.
710  */
711 static long wb_writeback(struct bdi_writeback *wb,
712                          struct wb_writeback_work *work)
713 {
714         unsigned long wb_start = jiffies;
715         long nr_pages = work->nr_pages;
716         unsigned long oldest_jif;
717         struct inode *inode;
718         long progress;
719
720         oldest_jif = jiffies;
721         work->older_than_this = &oldest_jif;
722
723         spin_lock(&wb->list_lock);
724         for (;;) {
725                 /*
726                  * Stop writeback when nr_pages has been consumed
727                  */
728                 if (work->nr_pages <= 0)
729                         break;
730
731                 /*
732                  * Background writeout and kupdate-style writeback may
733                  * run forever. Stop them if there is other work to do
734                  * so that e.g. sync can proceed. They'll be restarted
735                  * after the other works are all done.
736                  */
737                 if ((work->for_background || work->for_kupdate) &&
738                     !list_empty(&wb->bdi->work_list))
739                         break;
740
741                 /*
742                  * For background writeout, stop when we are below the
743                  * background dirty threshold
744                  */
745                 if (work->for_background && !over_bground_thresh(wb->bdi))
746                         break;
747
748                 if (work->for_kupdate) {
749                         oldest_jif = jiffies -
750                                 msecs_to_jiffies(dirty_expire_interval * 10);
751                         work->older_than_this = &oldest_jif;
752                 }
753
754                 trace_writeback_start(wb->bdi, work);
755                 if (list_empty(&wb->b_io))
756                         queue_io(wb, work);
757                 if (work->sb)
758                         progress = writeback_sb_inodes(work->sb, wb, work);
759                 else
760                         progress = __writeback_inodes_wb(wb, work);
761                 trace_writeback_written(wb->bdi, work);
762
763                 wb_update_bandwidth(wb, wb_start);
764
765                 /*
766                  * Did we write something? Try for more
767                  *
768                  * Dirty inodes are moved to b_io for writeback in batches.
769                  * The completion of the current batch does not necessarily
770                  * mean the overall work is done. So we keep looping as long
771                  * as made some progress on cleaning pages or inodes.
772                  */
773                 if (progress)
774                         continue;
775                 /*
776                  * No more inodes for IO, bail
777                  */
778                 if (list_empty(&wb->b_more_io))
779                         break;
780                 /*
781                  * Nothing written. Wait for some inode to
782                  * become available for writeback. Otherwise
783                  * we'll just busyloop.
784                  */
785                 if (!list_empty(&wb->b_more_io))  {
786                         trace_writeback_wait(wb->bdi, work);
787                         inode = wb_inode(wb->b_more_io.prev);
788                         spin_lock(&inode->i_lock);
789                         inode_wait_for_writeback(inode, wb);
790                         spin_unlock(&inode->i_lock);
791                 }
792         }
793         spin_unlock(&wb->list_lock);
794
795         return nr_pages - work->nr_pages;
796 }
797
798 /*
799  * Return the next wb_writeback_work struct that hasn't been processed yet.
800  */
801 static struct wb_writeback_work *
802 get_next_work_item(struct backing_dev_info *bdi)
803 {
804         struct wb_writeback_work *work = NULL;
805
806         spin_lock_bh(&bdi->wb_lock);
807         if (!list_empty(&bdi->work_list)) {
808                 work = list_entry(bdi->work_list.next,
809                                   struct wb_writeback_work, list);
810                 list_del_init(&work->list);
811         }
812         spin_unlock_bh(&bdi->wb_lock);
813         return work;
814 }
815
816 /*
817  * Add in the number of potentially dirty inodes, because each inode
818  * write can dirty pagecache in the underlying blockdev.
819  */
820 static unsigned long get_nr_dirty_pages(void)
821 {
822         return global_page_state(NR_FILE_DIRTY) +
823                 global_page_state(NR_UNSTABLE_NFS) +
824                 get_nr_dirty_inodes();
825 }
826
827 static long wb_check_background_flush(struct bdi_writeback *wb)
828 {
829         if (over_bground_thresh(wb->bdi)) {
830
831                 struct wb_writeback_work work = {
832                         .nr_pages       = LONG_MAX,
833                         .sync_mode      = WB_SYNC_NONE,
834                         .for_background = 1,
835                         .range_cyclic   = 1,
836                         .reason         = WB_REASON_BACKGROUND,
837                 };
838
839                 return wb_writeback(wb, &work);
840         }
841
842         return 0;
843 }
844
845 static long wb_check_old_data_flush(struct bdi_writeback *wb)
846 {
847         unsigned long expired;
848         long nr_pages;
849
850         /*
851          * When set to zero, disable periodic writeback
852          */
853         if (!dirty_writeback_interval)
854                 return 0;
855
856         expired = wb->last_old_flush +
857                         msecs_to_jiffies(dirty_writeback_interval * 10);
858         if (time_before(jiffies, expired))
859                 return 0;
860
861         wb->last_old_flush = jiffies;
862         nr_pages = get_nr_dirty_pages();
863
864         if (nr_pages) {
865                 struct wb_writeback_work work = {
866                         .nr_pages       = nr_pages,
867                         .sync_mode      = WB_SYNC_NONE,
868                         .for_kupdate    = 1,
869                         .range_cyclic   = 1,
870                         .reason         = WB_REASON_PERIODIC,
871                 };
872
873                 return wb_writeback(wb, &work);
874         }
875
876         return 0;
877 }
878
879 /*
880  * Retrieve work items and do the writeback they describe
881  */
882 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
883 {
884         struct backing_dev_info *bdi = wb->bdi;
885         struct wb_writeback_work *work;
886         long wrote = 0;
887
888         set_bit(BDI_writeback_running, &wb->bdi->state);
889         while ((work = get_next_work_item(bdi)) != NULL) {
890                 /*
891                  * Override sync mode, in case we must wait for completion
892                  * because this thread is exiting now.
893                  */
894                 if (force_wait)
895                         work->sync_mode = WB_SYNC_ALL;
896
897                 trace_writeback_exec(bdi, work);
898
899                 wrote += wb_writeback(wb, work);
900
901                 /*
902                  * Notify the caller of completion if this is a synchronous
903                  * work item, otherwise just free it.
904                  */
905                 if (work->done)
906                         complete(work->done);
907                 else
908                         kfree(work);
909         }
910
911         /*
912          * Check for periodic writeback, kupdated() style
913          */
914         wrote += wb_check_old_data_flush(wb);
915         wrote += wb_check_background_flush(wb);
916         clear_bit(BDI_writeback_running, &wb->bdi->state);
917
918         return wrote;
919 }
920
921 /*
922  * Handle writeback of dirty data for the device backed by this bdi. Also
923  * wakes up periodically and does kupdated style flushing.
924  */
925 int bdi_writeback_thread(void *data)
926 {
927         struct bdi_writeback *wb = data;
928         struct backing_dev_info *bdi = wb->bdi;
929         long pages_written;
930
931         current->flags |= PF_SWAPWRITE;
932         set_freezable();
933         wb->last_active = jiffies;
934
935         /*
936          * Our parent may run at a different priority, just set us to normal
937          */
938         set_user_nice(current, 0);
939
940         trace_writeback_thread_start(bdi);
941
942         while (!kthread_should_stop()) {
943                 /*
944                  * Remove own delayed wake-up timer, since we are already awake
945                  * and we'll take care of the preriodic write-back.
946                  */
947                 del_timer(&wb->wakeup_timer);
948
949                 pages_written = wb_do_writeback(wb, 0);
950
951                 trace_writeback_pages_written(pages_written);
952
953                 if (pages_written)
954                         wb->last_active = jiffies;
955
956                 set_current_state(TASK_INTERRUPTIBLE);
957                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
958                         __set_current_state(TASK_RUNNING);
959                         continue;
960                 }
961
962                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
963                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
964                 else {
965                         /*
966                          * We have nothing to do, so can go sleep without any
967                          * timeout and save power. When a work is queued or
968                          * something is made dirty - we will be woken up.
969                          */
970                         schedule();
971                 }
972
973                 try_to_freeze();
974         }
975
976         /* Flush any work that raced with us exiting */
977         if (!list_empty(&bdi->work_list))
978                 wb_do_writeback(wb, 1);
979
980         trace_writeback_thread_stop(bdi);
981         return 0;
982 }
983
984
985 /*
986  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
987  * the whole world.
988  */
989 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
990 {
991         struct backing_dev_info *bdi;
992
993         if (!nr_pages) {
994                 nr_pages = global_page_state(NR_FILE_DIRTY) +
995                                 global_page_state(NR_UNSTABLE_NFS);
996         }
997
998         rcu_read_lock();
999         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1000                 if (!bdi_has_dirty_io(bdi))
1001                         continue;
1002                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1003         }
1004         rcu_read_unlock();
1005 }
1006
1007 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1008 {
1009         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1010                 struct dentry *dentry;
1011                 const char *name = "?";
1012
1013                 dentry = d_find_alias(inode);
1014                 if (dentry) {
1015                         spin_lock(&dentry->d_lock);
1016                         name = (const char *) dentry->d_name.name;
1017                 }
1018                 printk(KERN_DEBUG
1019                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1020                        current->comm, task_pid_nr(current), inode->i_ino,
1021                        name, inode->i_sb->s_id);
1022                 if (dentry) {
1023                         spin_unlock(&dentry->d_lock);
1024                         dput(dentry);
1025                 }
1026         }
1027 }
1028
1029 /**
1030  *      __mark_inode_dirty -    internal function
1031  *      @inode: inode to mark
1032  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1033  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1034  *      mark_inode_dirty_sync.
1035  *
1036  * Put the inode on the super block's dirty list.
1037  *
1038  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1039  * dirty list only if it is hashed or if it refers to a blockdev.
1040  * If it was not hashed, it will never be added to the dirty list
1041  * even if it is later hashed, as it will have been marked dirty already.
1042  *
1043  * In short, make sure you hash any inodes _before_ you start marking
1044  * them dirty.
1045  *
1046  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1047  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1048  * the kernel-internal blockdev inode represents the dirtying time of the
1049  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1050  * page->mapping->host, so the page-dirtying time is recorded in the internal
1051  * blockdev inode.
1052  */
1053 void __mark_inode_dirty(struct inode *inode, int flags)
1054 {
1055         struct super_block *sb = inode->i_sb;
1056         struct backing_dev_info *bdi = NULL;
1057
1058         /*
1059          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1060          * dirty the inode itself
1061          */
1062         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1063                 if (sb->s_op->dirty_inode)
1064                         sb->s_op->dirty_inode(inode, flags);
1065         }
1066
1067         /*
1068          * make sure that changes are seen by all cpus before we test i_state
1069          * -- mikulas
1070          */
1071         smp_mb();
1072
1073         /* avoid the locking if we can */
1074         if ((inode->i_state & flags) == flags)
1075                 return;
1076
1077         if (unlikely(block_dump))
1078                 block_dump___mark_inode_dirty(inode);
1079
1080         spin_lock(&inode->i_lock);
1081         if ((inode->i_state & flags) != flags) {
1082                 const int was_dirty = inode->i_state & I_DIRTY;
1083
1084                 inode->i_state |= flags;
1085
1086                 /*
1087                  * If the inode is being synced, just update its dirty state.
1088                  * The unlocker will place the inode on the appropriate
1089                  * superblock list, based upon its state.
1090                  */
1091                 if (inode->i_state & I_SYNC)
1092                         goto out_unlock_inode;
1093
1094                 /*
1095                  * Only add valid (hashed) inodes to the superblock's
1096                  * dirty list.  Add blockdev inodes as well.
1097                  */
1098                 if (!S_ISBLK(inode->i_mode)) {
1099                         if (inode_unhashed(inode))
1100                                 goto out_unlock_inode;
1101                 }
1102                 if (inode->i_state & I_FREEING)
1103                         goto out_unlock_inode;
1104
1105                 /*
1106                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1107                  * reposition it (that would break b_dirty time-ordering).
1108                  */
1109                 if (!was_dirty) {
1110                         bool wakeup_bdi = false;
1111                         bdi = inode_to_bdi(inode);
1112
1113                         if (bdi_cap_writeback_dirty(bdi)) {
1114                                 WARN(!test_bit(BDI_registered, &bdi->state),
1115                                      "bdi-%s not registered\n", bdi->name);
1116
1117                                 /*
1118                                  * If this is the first dirty inode for this
1119                                  * bdi, we have to wake-up the corresponding
1120                                  * bdi thread to make sure background
1121                                  * write-back happens later.
1122                                  */
1123                                 if (!wb_has_dirty_io(&bdi->wb))
1124                                         wakeup_bdi = true;
1125                         }
1126
1127                         spin_unlock(&inode->i_lock);
1128                         spin_lock(&bdi->wb.list_lock);
1129                         inode->dirtied_when = jiffies;
1130                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1131                         spin_unlock(&bdi->wb.list_lock);
1132
1133                         if (wakeup_bdi)
1134                                 bdi_wakeup_thread_delayed(bdi);
1135                         return;
1136                 }
1137         }
1138 out_unlock_inode:
1139         spin_unlock(&inode->i_lock);
1140
1141 }
1142 EXPORT_SYMBOL(__mark_inode_dirty);
1143
1144 /*
1145  * Write out a superblock's list of dirty inodes.  A wait will be performed
1146  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1147  *
1148  * If older_than_this is non-NULL, then only write out inodes which
1149  * had their first dirtying at a time earlier than *older_than_this.
1150  *
1151  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1152  * This function assumes that the blockdev superblock's inodes are backed by
1153  * a variety of queues, so all inodes are searched.  For other superblocks,
1154  * assume that all inodes are backed by the same queue.
1155  *
1156  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1157  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1158  * on the writer throttling path, and we get decent balancing between many
1159  * throttled threads: we don't want them all piling up on inode_sync_wait.
1160  */
1161 static void wait_sb_inodes(struct super_block *sb)
1162 {
1163         struct inode *inode, *old_inode = NULL;
1164
1165         /*
1166          * We need to be protected against the filesystem going from
1167          * r/o to r/w or vice versa.
1168          */
1169         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1170
1171         spin_lock(&inode_sb_list_lock);
1172
1173         /*
1174          * Data integrity sync. Must wait for all pages under writeback,
1175          * because there may have been pages dirtied before our sync
1176          * call, but which had writeout started before we write it out.
1177          * In which case, the inode may not be on the dirty list, but
1178          * we still have to wait for that writeout.
1179          */
1180         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1181                 struct address_space *mapping = inode->i_mapping;
1182
1183                 spin_lock(&inode->i_lock);
1184                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1185                     (mapping->nrpages == 0)) {
1186                         spin_unlock(&inode->i_lock);
1187                         continue;
1188                 }
1189                 __iget(inode);
1190                 spin_unlock(&inode->i_lock);
1191                 spin_unlock(&inode_sb_list_lock);
1192
1193                 /*
1194                  * We hold a reference to 'inode' so it couldn't have been
1195                  * removed from s_inodes list while we dropped the
1196                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1197                  * be holding the last reference and we cannot iput it under
1198                  * inode_sb_list_lock. So we keep the reference and iput it
1199                  * later.
1200                  */
1201                 iput(old_inode);
1202                 old_inode = inode;
1203
1204                 filemap_fdatawait(mapping);
1205
1206                 cond_resched();
1207
1208                 spin_lock(&inode_sb_list_lock);
1209         }
1210         spin_unlock(&inode_sb_list_lock);
1211         iput(old_inode);
1212 }
1213
1214 /**
1215  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1216  * @sb: the superblock
1217  * @nr: the number of pages to write
1218  * @reason: reason why some writeback work initiated
1219  *
1220  * Start writeback on some inodes on this super_block. No guarantees are made
1221  * on how many (if any) will be written, and this function does not wait
1222  * for IO completion of submitted IO.
1223  */
1224 void writeback_inodes_sb_nr(struct super_block *sb,
1225                             unsigned long nr,
1226                             enum wb_reason reason)
1227 {
1228         DECLARE_COMPLETION_ONSTACK(done);
1229         struct wb_writeback_work work = {
1230                 .sb                     = sb,
1231                 .sync_mode              = WB_SYNC_NONE,
1232                 .tagged_writepages      = 1,
1233                 .done                   = &done,
1234                 .nr_pages               = nr,
1235                 .reason                 = reason,
1236         };
1237
1238         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1239         bdi_queue_work(sb->s_bdi, &work);
1240         wait_for_completion(&done);
1241 }
1242 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1243
1244 /**
1245  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1246  * @sb: the superblock
1247  * @reason: reason why some writeback work was initiated
1248  *
1249  * Start writeback on some inodes on this super_block. No guarantees are made
1250  * on how many (if any) will be written, and this function does not wait
1251  * for IO completion of submitted IO.
1252  */
1253 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1254 {
1255         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1256 }
1257 EXPORT_SYMBOL(writeback_inodes_sb);
1258
1259 /**
1260  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1261  * @sb: the superblock
1262  * @reason: reason why some writeback work was initiated
1263  *
1264  * Invoke writeback_inodes_sb if no writeback is currently underway.
1265  * Returns 1 if writeback was started, 0 if not.
1266  */
1267 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1268 {
1269         if (!writeback_in_progress(sb->s_bdi)) {
1270                 down_read(&sb->s_umount);
1271                 writeback_inodes_sb(sb, reason);
1272                 up_read(&sb->s_umount);
1273                 return 1;
1274         } else
1275                 return 0;
1276 }
1277 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1278
1279 /**
1280  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1281  * @sb: the superblock
1282  * @nr: the number of pages to write
1283  * @reason: reason why some writeback work was initiated
1284  *
1285  * Invoke writeback_inodes_sb if no writeback is currently underway.
1286  * Returns 1 if writeback was started, 0 if not.
1287  */
1288 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1289                                    unsigned long nr,
1290                                    enum wb_reason reason)
1291 {
1292         if (!writeback_in_progress(sb->s_bdi)) {
1293                 down_read(&sb->s_umount);
1294                 writeback_inodes_sb_nr(sb, nr, reason);
1295                 up_read(&sb->s_umount);
1296                 return 1;
1297         } else
1298                 return 0;
1299 }
1300 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1301
1302 /**
1303  * sync_inodes_sb       -       sync sb inode pages
1304  * @sb: the superblock
1305  *
1306  * This function writes and waits on any dirty inode belonging to this
1307  * super_block.
1308  */
1309 void sync_inodes_sb(struct super_block *sb)
1310 {
1311         DECLARE_COMPLETION_ONSTACK(done);
1312         struct wb_writeback_work work = {
1313                 .sb             = sb,
1314                 .sync_mode      = WB_SYNC_ALL,
1315                 .nr_pages       = LONG_MAX,
1316                 .range_cyclic   = 0,
1317                 .done           = &done,
1318                 .reason         = WB_REASON_SYNC,
1319         };
1320
1321         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1322
1323         bdi_queue_work(sb->s_bdi, &work);
1324         wait_for_completion(&done);
1325
1326         wait_sb_inodes(sb);
1327 }
1328 EXPORT_SYMBOL(sync_inodes_sb);
1329
1330 /**
1331  * write_inode_now      -       write an inode to disk
1332  * @inode: inode to write to disk
1333  * @sync: whether the write should be synchronous or not
1334  *
1335  * This function commits an inode to disk immediately if it is dirty. This is
1336  * primarily needed by knfsd.
1337  *
1338  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1339  */
1340 int write_inode_now(struct inode *inode, int sync)
1341 {
1342         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1343         int ret;
1344         struct writeback_control wbc = {
1345                 .nr_to_write = LONG_MAX,
1346                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1347                 .range_start = 0,
1348                 .range_end = LLONG_MAX,
1349         };
1350
1351         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1352                 wbc.nr_to_write = 0;
1353
1354         might_sleep();
1355         spin_lock(&wb->list_lock);
1356         spin_lock(&inode->i_lock);
1357         ret = writeback_single_inode(inode, wb, &wbc);
1358         spin_unlock(&inode->i_lock);
1359         spin_unlock(&wb->list_lock);
1360         if (sync)
1361                 inode_sync_wait(inode);
1362         return ret;
1363 }
1364 EXPORT_SYMBOL(write_inode_now);
1365
1366 /**
1367  * sync_inode - write an inode and its pages to disk.
1368  * @inode: the inode to sync
1369  * @wbc: controls the writeback mode
1370  *
1371  * sync_inode() will write an inode and its pages to disk.  It will also
1372  * correctly update the inode on its superblock's dirty inode lists and will
1373  * update inode->i_state.
1374  *
1375  * The caller must have a ref on the inode.
1376  */
1377 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1378 {
1379         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1380         int ret;
1381
1382         spin_lock(&wb->list_lock);
1383         spin_lock(&inode->i_lock);
1384         ret = writeback_single_inode(inode, wb, wbc);
1385         spin_unlock(&inode->i_lock);
1386         spin_unlock(&wb->list_lock);
1387         return ret;
1388 }
1389 EXPORT_SYMBOL(sync_inode);
1390
1391 /**
1392  * sync_inode_metadata - write an inode to disk
1393  * @inode: the inode to sync
1394  * @wait: wait for I/O to complete.
1395  *
1396  * Write an inode to disk and adjust its dirty state after completion.
1397  *
1398  * Note: only writes the actual inode, no associated data or other metadata.
1399  */
1400 int sync_inode_metadata(struct inode *inode, int wait)
1401 {
1402         struct writeback_control wbc = {
1403                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1404                 .nr_to_write = 0, /* metadata-only */
1405         };
1406
1407         return sync_inode(inode, &wbc);
1408 }
1409 EXPORT_SYMBOL(sync_inode_metadata);