vmwgfx: fix incorrect VRAM size check in vmw_kms_fb_create()
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         unsigned long *older_than_this;
39         enum writeback_sync_modes sync_mode;
40         unsigned int tagged_writepages:1;
41         unsigned int for_kupdate:1;
42         unsigned int range_cyclic:1;
43         unsigned int for_background:1;
44         enum wb_reason reason;          /* why was writeback initiated? */
45
46         struct list_head list;          /* pending work list */
47         struct completion *done;        /* set if the caller waits */
48 };
49
50 const char *wb_reason_name[] = {
51         [WB_REASON_BACKGROUND]          = "background",
52         [WB_REASON_TRY_TO_FREE_PAGES]   = "try_to_free_pages",
53         [WB_REASON_SYNC]                = "sync",
54         [WB_REASON_PERIODIC]            = "periodic",
55         [WB_REASON_LAPTOP_TIMER]        = "laptop_timer",
56         [WB_REASON_FREE_MORE_MEM]       = "free_more_memory",
57         [WB_REASON_FS_FREE_SPACE]       = "fs_free_space",
58         [WB_REASON_FORKER_THREAD]       = "forker_thread"
59 };
60
61 /*
62  * Include the creation of the trace points after defining the
63  * wb_writeback_work structure so that the definition remains local to this
64  * file.
65  */
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/writeback.h>
68
69 /*
70  * We don't actually have pdflush, but this one is exported though /proc...
71  */
72 int nr_pdflush_threads;
73
74 /**
75  * writeback_in_progress - determine whether there is writeback in progress
76  * @bdi: the device's backing_dev_info structure.
77  *
78  * Determine whether there is writeback waiting to be handled against a
79  * backing device.
80  */
81 int writeback_in_progress(struct backing_dev_info *bdi)
82 {
83         return test_bit(BDI_writeback_running, &bdi->state);
84 }
85
86 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
87 {
88         struct super_block *sb = inode->i_sb;
89
90         if (strcmp(sb->s_type->name, "bdev") == 0)
91                 return inode->i_mapping->backing_dev_info;
92
93         return sb->s_bdi;
94 }
95
96 static inline struct inode *wb_inode(struct list_head *head)
97 {
98         return list_entry(head, struct inode, i_wb_list);
99 }
100
101 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
102 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
103 {
104         if (bdi->wb.task) {
105                 wake_up_process(bdi->wb.task);
106         } else {
107                 /*
108                  * The bdi thread isn't there, wake up the forker thread which
109                  * will create and run it.
110                  */
111                 wake_up_process(default_backing_dev_info.wb.task);
112         }
113 }
114
115 static void bdi_queue_work(struct backing_dev_info *bdi,
116                            struct wb_writeback_work *work)
117 {
118         trace_writeback_queue(bdi, work);
119
120         spin_lock_bh(&bdi->wb_lock);
121         list_add_tail(&work->list, &bdi->work_list);
122         if (!bdi->wb.task)
123                 trace_writeback_nothread(bdi, work);
124         bdi_wakeup_flusher(bdi);
125         spin_unlock_bh(&bdi->wb_lock);
126 }
127
128 static void
129 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
130                       bool range_cyclic, enum wb_reason reason)
131 {
132         struct wb_writeback_work *work;
133
134         /*
135          * This is WB_SYNC_NONE writeback, so if allocation fails just
136          * wakeup the thread for old dirty data writeback
137          */
138         work = kzalloc(sizeof(*work), GFP_ATOMIC);
139         if (!work) {
140                 if (bdi->wb.task) {
141                         trace_writeback_nowork(bdi);
142                         wake_up_process(bdi->wb.task);
143                 }
144                 return;
145         }
146
147         work->sync_mode = WB_SYNC_NONE;
148         work->nr_pages  = nr_pages;
149         work->range_cyclic = range_cyclic;
150         work->reason    = reason;
151
152         bdi_queue_work(bdi, work);
153 }
154
155 /**
156  * bdi_start_writeback - start writeback
157  * @bdi: the backing device to write from
158  * @nr_pages: the number of pages to write
159  * @reason: reason why some writeback work was initiated
160  *
161  * Description:
162  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
163  *   started when this function returns, we make no guarantees on
164  *   completion. Caller need not hold sb s_umount semaphore.
165  *
166  */
167 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
168                         enum wb_reason reason)
169 {
170         __bdi_start_writeback(bdi, nr_pages, true, reason);
171 }
172
173 /**
174  * bdi_start_background_writeback - start background writeback
175  * @bdi: the backing device to write from
176  *
177  * Description:
178  *   This makes sure WB_SYNC_NONE background writeback happens. When
179  *   this function returns, it is only guaranteed that for given BDI
180  *   some IO is happening if we are over background dirty threshold.
181  *   Caller need not hold sb s_umount semaphore.
182  */
183 void bdi_start_background_writeback(struct backing_dev_info *bdi)
184 {
185         /*
186          * We just wake up the flusher thread. It will perform background
187          * writeback as soon as there is no other work to do.
188          */
189         trace_writeback_wake_background(bdi);
190         spin_lock_bh(&bdi->wb_lock);
191         bdi_wakeup_flusher(bdi);
192         spin_unlock_bh(&bdi->wb_lock);
193 }
194
195 /*
196  * Remove the inode from the writeback list it is on.
197  */
198 void inode_wb_list_del(struct inode *inode)
199 {
200         struct backing_dev_info *bdi = inode_to_bdi(inode);
201
202         spin_lock(&bdi->wb.list_lock);
203         list_del_init(&inode->i_wb_list);
204         spin_unlock(&bdi->wb.list_lock);
205 }
206
207 /*
208  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
209  * furthest end of its superblock's dirty-inode list.
210  *
211  * Before stamping the inode's ->dirtied_when, we check to see whether it is
212  * already the most-recently-dirtied inode on the b_dirty list.  If that is
213  * the case then the inode must have been redirtied while it was being written
214  * out and we don't reset its dirtied_when.
215  */
216 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
217 {
218         assert_spin_locked(&wb->list_lock);
219         if (!list_empty(&wb->b_dirty)) {
220                 struct inode *tail;
221
222                 tail = wb_inode(wb->b_dirty.next);
223                 if (time_before(inode->dirtied_when, tail->dirtied_when))
224                         inode->dirtied_when = jiffies;
225         }
226         list_move(&inode->i_wb_list, &wb->b_dirty);
227 }
228
229 /*
230  * requeue inode for re-scanning after bdi->b_io list is exhausted.
231  */
232 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
233 {
234         assert_spin_locked(&wb->list_lock);
235         list_move(&inode->i_wb_list, &wb->b_more_io);
236 }
237
238 static void inode_sync_complete(struct inode *inode)
239 {
240         /*
241          * Prevent speculative execution through
242          * spin_unlock(&wb->list_lock);
243          */
244
245         smp_mb();
246         wake_up_bit(&inode->i_state, __I_SYNC);
247 }
248
249 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
250 {
251         bool ret = time_after(inode->dirtied_when, t);
252 #ifndef CONFIG_64BIT
253         /*
254          * For inodes being constantly redirtied, dirtied_when can get stuck.
255          * It _appears_ to be in the future, but is actually in distant past.
256          * This test is necessary to prevent such wrapped-around relative times
257          * from permanently stopping the whole bdi writeback.
258          */
259         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
260 #endif
261         return ret;
262 }
263
264 /*
265  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
266  */
267 static int move_expired_inodes(struct list_head *delaying_queue,
268                                struct list_head *dispatch_queue,
269                                struct wb_writeback_work *work)
270 {
271         LIST_HEAD(tmp);
272         struct list_head *pos, *node;
273         struct super_block *sb = NULL;
274         struct inode *inode;
275         int do_sb_sort = 0;
276         int moved = 0;
277
278         while (!list_empty(delaying_queue)) {
279                 inode = wb_inode(delaying_queue->prev);
280                 if (work->older_than_this &&
281                     inode_dirtied_after(inode, *work->older_than_this))
282                         break;
283                 if (sb && sb != inode->i_sb)
284                         do_sb_sort = 1;
285                 sb = inode->i_sb;
286                 list_move(&inode->i_wb_list, &tmp);
287                 moved++;
288         }
289
290         /* just one sb in list, splice to dispatch_queue and we're done */
291         if (!do_sb_sort) {
292                 list_splice(&tmp, dispatch_queue);
293                 goto out;
294         }
295
296         /* Move inodes from one superblock together */
297         while (!list_empty(&tmp)) {
298                 sb = wb_inode(tmp.prev)->i_sb;
299                 list_for_each_prev_safe(pos, node, &tmp) {
300                         inode = wb_inode(pos);
301                         if (inode->i_sb == sb)
302                                 list_move(&inode->i_wb_list, dispatch_queue);
303                 }
304         }
305 out:
306         return moved;
307 }
308
309 /*
310  * Queue all expired dirty inodes for io, eldest first.
311  * Before
312  *         newly dirtied     b_dirty    b_io    b_more_io
313  *         =============>    gf         edc     BA
314  * After
315  *         newly dirtied     b_dirty    b_io    b_more_io
316  *         =============>    g          fBAedc
317  *                                           |
318  *                                           +--> dequeue for IO
319  */
320 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
321 {
322         int moved;
323         assert_spin_locked(&wb->list_lock);
324         list_splice_init(&wb->b_more_io, &wb->b_io);
325         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
326         trace_writeback_queue_io(wb, work, moved);
327 }
328
329 static int write_inode(struct inode *inode, struct writeback_control *wbc)
330 {
331         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
332                 return inode->i_sb->s_op->write_inode(inode, wbc);
333         return 0;
334 }
335
336 /*
337  * Wait for writeback on an inode to complete.
338  */
339 static void inode_wait_for_writeback(struct inode *inode,
340                                      struct bdi_writeback *wb)
341 {
342         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
343         wait_queue_head_t *wqh;
344
345         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
346         while (inode->i_state & I_SYNC) {
347                 spin_unlock(&inode->i_lock);
348                 spin_unlock(&wb->list_lock);
349                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
350                 spin_lock(&wb->list_lock);
351                 spin_lock(&inode->i_lock);
352         }
353 }
354
355 /*
356  * Write out an inode's dirty pages.  Called under wb->list_lock and
357  * inode->i_lock.  Either the caller has an active reference on the inode or
358  * the inode has I_WILL_FREE set.
359  *
360  * If `wait' is set, wait on the writeout.
361  *
362  * The whole writeout design is quite complex and fragile.  We want to avoid
363  * starvation of particular inodes when others are being redirtied, prevent
364  * livelocks, etc.
365  */
366 static int
367 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
368                        struct writeback_control *wbc)
369 {
370         struct address_space *mapping = inode->i_mapping;
371         long nr_to_write = wbc->nr_to_write;
372         unsigned dirty;
373         int ret;
374
375         assert_spin_locked(&wb->list_lock);
376         assert_spin_locked(&inode->i_lock);
377
378         if (!atomic_read(&inode->i_count))
379                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
380         else
381                 WARN_ON(inode->i_state & I_WILL_FREE);
382
383         if (inode->i_state & I_SYNC) {
384                 /*
385                  * If this inode is locked for writeback and we are not doing
386                  * writeback-for-data-integrity, move it to b_more_io so that
387                  * writeback can proceed with the other inodes on s_io.
388                  *
389                  * We'll have another go at writing back this inode when we
390                  * completed a full scan of b_io.
391                  */
392                 if (wbc->sync_mode != WB_SYNC_ALL) {
393                         requeue_io(inode, wb);
394                         trace_writeback_single_inode_requeue(inode, wbc,
395                                                              nr_to_write);
396                         return 0;
397                 }
398
399                 /*
400                  * It's a data-integrity sync.  We must wait.
401                  */
402                 inode_wait_for_writeback(inode, wb);
403         }
404
405         BUG_ON(inode->i_state & I_SYNC);
406
407         /* Set I_SYNC, reset I_DIRTY_PAGES */
408         inode->i_state |= I_SYNC;
409         inode->i_state &= ~I_DIRTY_PAGES;
410         spin_unlock(&inode->i_lock);
411         spin_unlock(&wb->list_lock);
412
413         ret = do_writepages(mapping, wbc);
414
415         /*
416          * Make sure to wait on the data before writing out the metadata.
417          * This is important for filesystems that modify metadata on data
418          * I/O completion.
419          */
420         if (wbc->sync_mode == WB_SYNC_ALL) {
421                 int err = filemap_fdatawait(mapping);
422                 if (ret == 0)
423                         ret = err;
424         }
425
426         /*
427          * Some filesystems may redirty the inode during the writeback
428          * due to delalloc, clear dirty metadata flags right before
429          * write_inode()
430          */
431         spin_lock(&inode->i_lock);
432         dirty = inode->i_state & I_DIRTY;
433         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
434         spin_unlock(&inode->i_lock);
435         /* Don't write the inode if only I_DIRTY_PAGES was set */
436         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
437                 int err = write_inode(inode, wbc);
438                 if (ret == 0)
439                         ret = err;
440         }
441
442         spin_lock(&wb->list_lock);
443         spin_lock(&inode->i_lock);
444         inode->i_state &= ~I_SYNC;
445         if (!(inode->i_state & I_FREEING)) {
446                 /*
447                  * Sync livelock prevention. Each inode is tagged and synced in
448                  * one shot. If still dirty, it will be redirty_tail()'ed below.
449                  * Update the dirty time to prevent enqueue and sync it again.
450                  */
451                 if ((inode->i_state & I_DIRTY) &&
452                     (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
453                         inode->dirtied_when = jiffies;
454
455                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
456                         /*
457                          * We didn't write back all the pages.  nfs_writepages()
458                          * sometimes bales out without doing anything.
459                          */
460                         inode->i_state |= I_DIRTY_PAGES;
461                         if (wbc->nr_to_write <= 0) {
462                                 /*
463                                  * slice used up: queue for next turn
464                                  */
465                                 requeue_io(inode, wb);
466                         } else {
467                                 /*
468                                  * Writeback blocked by something other than
469                                  * congestion. Delay the inode for some time to
470                                  * avoid spinning on the CPU (100% iowait)
471                                  * retrying writeback of the dirty page/inode
472                                  * that cannot be performed immediately.
473                                  */
474                                 redirty_tail(inode, wb);
475                         }
476                 } else if (inode->i_state & I_DIRTY) {
477                         /*
478                          * Filesystems can dirty the inode during writeback
479                          * operations, such as delayed allocation during
480                          * submission or metadata updates after data IO
481                          * completion.
482                          */
483                         redirty_tail(inode, wb);
484                 } else {
485                         /*
486                          * The inode is clean.  At this point we either have
487                          * a reference to the inode or it's on it's way out.
488                          * No need to add it back to the LRU.
489                          */
490                         list_del_init(&inode->i_wb_list);
491                 }
492         }
493         inode_sync_complete(inode);
494         trace_writeback_single_inode(inode, wbc, nr_to_write);
495         return ret;
496 }
497
498 static long writeback_chunk_size(struct backing_dev_info *bdi,
499                                  struct wb_writeback_work *work)
500 {
501         long pages;
502
503         /*
504          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
505          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
506          * here avoids calling into writeback_inodes_wb() more than once.
507          *
508          * The intended call sequence for WB_SYNC_ALL writeback is:
509          *
510          *      wb_writeback()
511          *          writeback_sb_inodes()       <== called only once
512          *              write_cache_pages()     <== called once for each inode
513          *                   (quickly) tag currently dirty pages
514          *                   (maybe slowly) sync all tagged pages
515          */
516         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
517                 pages = LONG_MAX;
518         else {
519                 pages = min(bdi->avg_write_bandwidth / 2,
520                             global_dirty_limit / DIRTY_SCOPE);
521                 pages = min(pages, work->nr_pages);
522                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
523                                    MIN_WRITEBACK_PAGES);
524         }
525
526         return pages;
527 }
528
529 /*
530  * Write a portion of b_io inodes which belong to @sb.
531  *
532  * If @only_this_sb is true, then find and write all such
533  * inodes. Otherwise write only ones which go sequentially
534  * in reverse order.
535  *
536  * Return the number of pages and/or inodes written.
537  */
538 static long writeback_sb_inodes(struct super_block *sb,
539                                 struct bdi_writeback *wb,
540                                 struct wb_writeback_work *work)
541 {
542         struct writeback_control wbc = {
543                 .sync_mode              = work->sync_mode,
544                 .tagged_writepages      = work->tagged_writepages,
545                 .for_kupdate            = work->for_kupdate,
546                 .for_background         = work->for_background,
547                 .range_cyclic           = work->range_cyclic,
548                 .range_start            = 0,
549                 .range_end              = LLONG_MAX,
550         };
551         unsigned long start_time = jiffies;
552         long write_chunk;
553         long wrote = 0;  /* count both pages and inodes */
554
555         while (!list_empty(&wb->b_io)) {
556                 struct inode *inode = wb_inode(wb->b_io.prev);
557
558                 if (inode->i_sb != sb) {
559                         if (work->sb) {
560                                 /*
561                                  * We only want to write back data for this
562                                  * superblock, move all inodes not belonging
563                                  * to it back onto the dirty list.
564                                  */
565                                 redirty_tail(inode, wb);
566                                 continue;
567                         }
568
569                         /*
570                          * The inode belongs to a different superblock.
571                          * Bounce back to the caller to unpin this and
572                          * pin the next superblock.
573                          */
574                         break;
575                 }
576
577                 /*
578                  * Don't bother with new inodes or inodes beeing freed, first
579                  * kind does not need peridic writeout yet, and for the latter
580                  * kind writeout is handled by the freer.
581                  */
582                 spin_lock(&inode->i_lock);
583                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
584                         spin_unlock(&inode->i_lock);
585                         redirty_tail(inode, wb);
586                         continue;
587                 }
588                 __iget(inode);
589                 write_chunk = writeback_chunk_size(wb->bdi, work);
590                 wbc.nr_to_write = write_chunk;
591                 wbc.pages_skipped = 0;
592
593                 writeback_single_inode(inode, wb, &wbc);
594
595                 work->nr_pages -= write_chunk - wbc.nr_to_write;
596                 wrote += write_chunk - wbc.nr_to_write;
597                 if (!(inode->i_state & I_DIRTY))
598                         wrote++;
599                 if (wbc.pages_skipped) {
600                         /*
601                          * writeback is not making progress due to locked
602                          * buffers.  Skip this inode for now.
603                          */
604                         redirty_tail(inode, wb);
605                 }
606                 spin_unlock(&inode->i_lock);
607                 spin_unlock(&wb->list_lock);
608                 iput(inode);
609                 cond_resched();
610                 spin_lock(&wb->list_lock);
611                 /*
612                  * bail out to wb_writeback() often enough to check
613                  * background threshold and other termination conditions.
614                  */
615                 if (wrote) {
616                         if (time_is_before_jiffies(start_time + HZ / 10UL))
617                                 break;
618                         if (work->nr_pages <= 0)
619                                 break;
620                 }
621         }
622         return wrote;
623 }
624
625 static long __writeback_inodes_wb(struct bdi_writeback *wb,
626                                   struct wb_writeback_work *work)
627 {
628         unsigned long start_time = jiffies;
629         long wrote = 0;
630
631         while (!list_empty(&wb->b_io)) {
632                 struct inode *inode = wb_inode(wb->b_io.prev);
633                 struct super_block *sb = inode->i_sb;
634
635                 if (!grab_super_passive(sb)) {
636                         /*
637                          * grab_super_passive() may fail consistently due to
638                          * s_umount being grabbed by someone else. Don't use
639                          * requeue_io() to avoid busy retrying the inode/sb.
640                          */
641                         redirty_tail(inode, wb);
642                         continue;
643                 }
644                 wrote += writeback_sb_inodes(sb, wb, work);
645                 drop_super(sb);
646
647                 /* refer to the same tests at the end of writeback_sb_inodes */
648                 if (wrote) {
649                         if (time_is_before_jiffies(start_time + HZ / 10UL))
650                                 break;
651                         if (work->nr_pages <= 0)
652                                 break;
653                 }
654         }
655         /* Leave any unwritten inodes on b_io */
656         return wrote;
657 }
658
659 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
660                                 enum wb_reason reason)
661 {
662         struct wb_writeback_work work = {
663                 .nr_pages       = nr_pages,
664                 .sync_mode      = WB_SYNC_NONE,
665                 .range_cyclic   = 1,
666                 .reason         = reason,
667         };
668
669         spin_lock(&wb->list_lock);
670         if (list_empty(&wb->b_io))
671                 queue_io(wb, &work);
672         __writeback_inodes_wb(wb, &work);
673         spin_unlock(&wb->list_lock);
674
675         return nr_pages - work.nr_pages;
676 }
677
678 static bool over_bground_thresh(struct backing_dev_info *bdi)
679 {
680         unsigned long background_thresh, dirty_thresh;
681
682         global_dirty_limits(&background_thresh, &dirty_thresh);
683
684         if (global_page_state(NR_FILE_DIRTY) +
685             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
686                 return true;
687
688         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
689                                 bdi_dirty_limit(bdi, background_thresh))
690                 return true;
691
692         return false;
693 }
694
695 /*
696  * Called under wb->list_lock. If there are multiple wb per bdi,
697  * only the flusher working on the first wb should do it.
698  */
699 static void wb_update_bandwidth(struct bdi_writeback *wb,
700                                 unsigned long start_time)
701 {
702         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
703 }
704
705 /*
706  * Explicit flushing or periodic writeback of "old" data.
707  *
708  * Define "old": the first time one of an inode's pages is dirtied, we mark the
709  * dirtying-time in the inode's address_space.  So this periodic writeback code
710  * just walks the superblock inode list, writing back any inodes which are
711  * older than a specific point in time.
712  *
713  * Try to run once per dirty_writeback_interval.  But if a writeback event
714  * takes longer than a dirty_writeback_interval interval, then leave a
715  * one-second gap.
716  *
717  * older_than_this takes precedence over nr_to_write.  So we'll only write back
718  * all dirty pages if they are all attached to "old" mappings.
719  */
720 static long wb_writeback(struct bdi_writeback *wb,
721                          struct wb_writeback_work *work)
722 {
723         unsigned long wb_start = jiffies;
724         long nr_pages = work->nr_pages;
725         unsigned long oldest_jif;
726         struct inode *inode;
727         long progress;
728
729         oldest_jif = jiffies;
730         work->older_than_this = &oldest_jif;
731
732         spin_lock(&wb->list_lock);
733         for (;;) {
734                 /*
735                  * Stop writeback when nr_pages has been consumed
736                  */
737                 if (work->nr_pages <= 0)
738                         break;
739
740                 /*
741                  * Background writeout and kupdate-style writeback may
742                  * run forever. Stop them if there is other work to do
743                  * so that e.g. sync can proceed. They'll be restarted
744                  * after the other works are all done.
745                  */
746                 if ((work->for_background || work->for_kupdate) &&
747                     !list_empty(&wb->bdi->work_list))
748                         break;
749
750                 /*
751                  * For background writeout, stop when we are below the
752                  * background dirty threshold
753                  */
754                 if (work->for_background && !over_bground_thresh(wb->bdi))
755                         break;
756
757                 if (work->for_kupdate) {
758                         oldest_jif = jiffies -
759                                 msecs_to_jiffies(dirty_expire_interval * 10);
760                         work->older_than_this = &oldest_jif;
761                 }
762
763                 trace_writeback_start(wb->bdi, work);
764                 if (list_empty(&wb->b_io))
765                         queue_io(wb, work);
766                 if (work->sb)
767                         progress = writeback_sb_inodes(work->sb, wb, work);
768                 else
769                         progress = __writeback_inodes_wb(wb, work);
770                 trace_writeback_written(wb->bdi, work);
771
772                 wb_update_bandwidth(wb, wb_start);
773
774                 /*
775                  * Did we write something? Try for more
776                  *
777                  * Dirty inodes are moved to b_io for writeback in batches.
778                  * The completion of the current batch does not necessarily
779                  * mean the overall work is done. So we keep looping as long
780                  * as made some progress on cleaning pages or inodes.
781                  */
782                 if (progress)
783                         continue;
784                 /*
785                  * No more inodes for IO, bail
786                  */
787                 if (list_empty(&wb->b_more_io))
788                         break;
789                 /*
790                  * Nothing written. Wait for some inode to
791                  * become available for writeback. Otherwise
792                  * we'll just busyloop.
793                  */
794                 if (!list_empty(&wb->b_more_io))  {
795                         trace_writeback_wait(wb->bdi, work);
796                         inode = wb_inode(wb->b_more_io.prev);
797                         spin_lock(&inode->i_lock);
798                         inode_wait_for_writeback(inode, wb);
799                         spin_unlock(&inode->i_lock);
800                 }
801         }
802         spin_unlock(&wb->list_lock);
803
804         return nr_pages - work->nr_pages;
805 }
806
807 /*
808  * Return the next wb_writeback_work struct that hasn't been processed yet.
809  */
810 static struct wb_writeback_work *
811 get_next_work_item(struct backing_dev_info *bdi)
812 {
813         struct wb_writeback_work *work = NULL;
814
815         spin_lock_bh(&bdi->wb_lock);
816         if (!list_empty(&bdi->work_list)) {
817                 work = list_entry(bdi->work_list.next,
818                                   struct wb_writeback_work, list);
819                 list_del_init(&work->list);
820         }
821         spin_unlock_bh(&bdi->wb_lock);
822         return work;
823 }
824
825 /*
826  * Add in the number of potentially dirty inodes, because each inode
827  * write can dirty pagecache in the underlying blockdev.
828  */
829 static unsigned long get_nr_dirty_pages(void)
830 {
831         return global_page_state(NR_FILE_DIRTY) +
832                 global_page_state(NR_UNSTABLE_NFS) +
833                 get_nr_dirty_inodes();
834 }
835
836 static long wb_check_background_flush(struct bdi_writeback *wb)
837 {
838         if (over_bground_thresh(wb->bdi)) {
839
840                 struct wb_writeback_work work = {
841                         .nr_pages       = LONG_MAX,
842                         .sync_mode      = WB_SYNC_NONE,
843                         .for_background = 1,
844                         .range_cyclic   = 1,
845                         .reason         = WB_REASON_BACKGROUND,
846                 };
847
848                 return wb_writeback(wb, &work);
849         }
850
851         return 0;
852 }
853
854 static long wb_check_old_data_flush(struct bdi_writeback *wb)
855 {
856         unsigned long expired;
857         long nr_pages;
858
859         /*
860          * When set to zero, disable periodic writeback
861          */
862         if (!dirty_writeback_interval)
863                 return 0;
864
865         expired = wb->last_old_flush +
866                         msecs_to_jiffies(dirty_writeback_interval * 10);
867         if (time_before(jiffies, expired))
868                 return 0;
869
870         wb->last_old_flush = jiffies;
871         nr_pages = get_nr_dirty_pages();
872
873         if (nr_pages) {
874                 struct wb_writeback_work work = {
875                         .nr_pages       = nr_pages,
876                         .sync_mode      = WB_SYNC_NONE,
877                         .for_kupdate    = 1,
878                         .range_cyclic   = 1,
879                         .reason         = WB_REASON_PERIODIC,
880                 };
881
882                 return wb_writeback(wb, &work);
883         }
884
885         return 0;
886 }
887
888 /*
889  * Retrieve work items and do the writeback they describe
890  */
891 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
892 {
893         struct backing_dev_info *bdi = wb->bdi;
894         struct wb_writeback_work *work;
895         long wrote = 0;
896
897         set_bit(BDI_writeback_running, &wb->bdi->state);
898         while ((work = get_next_work_item(bdi)) != NULL) {
899                 /*
900                  * Override sync mode, in case we must wait for completion
901                  * because this thread is exiting now.
902                  */
903                 if (force_wait)
904                         work->sync_mode = WB_SYNC_ALL;
905
906                 trace_writeback_exec(bdi, work);
907
908                 wrote += wb_writeback(wb, work);
909
910                 /*
911                  * Notify the caller of completion if this is a synchronous
912                  * work item, otherwise just free it.
913                  */
914                 if (work->done)
915                         complete(work->done);
916                 else
917                         kfree(work);
918         }
919
920         /*
921          * Check for periodic writeback, kupdated() style
922          */
923         wrote += wb_check_old_data_flush(wb);
924         wrote += wb_check_background_flush(wb);
925         clear_bit(BDI_writeback_running, &wb->bdi->state);
926
927         return wrote;
928 }
929
930 /*
931  * Handle writeback of dirty data for the device backed by this bdi. Also
932  * wakes up periodically and does kupdated style flushing.
933  */
934 int bdi_writeback_thread(void *data)
935 {
936         struct bdi_writeback *wb = data;
937         struct backing_dev_info *bdi = wb->bdi;
938         long pages_written;
939
940         current->flags |= PF_SWAPWRITE;
941         set_freezable();
942         wb->last_active = jiffies;
943
944         /*
945          * Our parent may run at a different priority, just set us to normal
946          */
947         set_user_nice(current, 0);
948
949         trace_writeback_thread_start(bdi);
950
951         while (!kthread_should_stop()) {
952                 /*
953                  * Remove own delayed wake-up timer, since we are already awake
954                  * and we'll take care of the preriodic write-back.
955                  */
956                 del_timer(&wb->wakeup_timer);
957
958                 pages_written = wb_do_writeback(wb, 0);
959
960                 trace_writeback_pages_written(pages_written);
961
962                 if (pages_written)
963                         wb->last_active = jiffies;
964
965                 set_current_state(TASK_INTERRUPTIBLE);
966                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
967                         __set_current_state(TASK_RUNNING);
968                         continue;
969                 }
970
971                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
972                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
973                 else {
974                         /*
975                          * We have nothing to do, so can go sleep without any
976                          * timeout and save power. When a work is queued or
977                          * something is made dirty - we will be woken up.
978                          */
979                         schedule();
980                 }
981
982                 try_to_freeze();
983         }
984
985         /* Flush any work that raced with us exiting */
986         if (!list_empty(&bdi->work_list))
987                 wb_do_writeback(wb, 1);
988
989         trace_writeback_thread_stop(bdi);
990         return 0;
991 }
992
993
994 /*
995  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
996  * the whole world.
997  */
998 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
999 {
1000         struct backing_dev_info *bdi;
1001
1002         if (!nr_pages) {
1003                 nr_pages = global_page_state(NR_FILE_DIRTY) +
1004                                 global_page_state(NR_UNSTABLE_NFS);
1005         }
1006
1007         rcu_read_lock();
1008         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1009                 if (!bdi_has_dirty_io(bdi))
1010                         continue;
1011                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1012         }
1013         rcu_read_unlock();
1014 }
1015
1016 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1017 {
1018         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1019                 struct dentry *dentry;
1020                 const char *name = "?";
1021
1022                 dentry = d_find_alias(inode);
1023                 if (dentry) {
1024                         spin_lock(&dentry->d_lock);
1025                         name = (const char *) dentry->d_name.name;
1026                 }
1027                 printk(KERN_DEBUG
1028                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1029                        current->comm, task_pid_nr(current), inode->i_ino,
1030                        name, inode->i_sb->s_id);
1031                 if (dentry) {
1032                         spin_unlock(&dentry->d_lock);
1033                         dput(dentry);
1034                 }
1035         }
1036 }
1037
1038 /**
1039  *      __mark_inode_dirty -    internal function
1040  *      @inode: inode to mark
1041  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1042  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1043  *      mark_inode_dirty_sync.
1044  *
1045  * Put the inode on the super block's dirty list.
1046  *
1047  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1048  * dirty list only if it is hashed or if it refers to a blockdev.
1049  * If it was not hashed, it will never be added to the dirty list
1050  * even if it is later hashed, as it will have been marked dirty already.
1051  *
1052  * In short, make sure you hash any inodes _before_ you start marking
1053  * them dirty.
1054  *
1055  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1056  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1057  * the kernel-internal blockdev inode represents the dirtying time of the
1058  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1059  * page->mapping->host, so the page-dirtying time is recorded in the internal
1060  * blockdev inode.
1061  */
1062 void __mark_inode_dirty(struct inode *inode, int flags)
1063 {
1064         struct super_block *sb = inode->i_sb;
1065         struct backing_dev_info *bdi = NULL;
1066
1067         /*
1068          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1069          * dirty the inode itself
1070          */
1071         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1072                 if (sb->s_op->dirty_inode)
1073                         sb->s_op->dirty_inode(inode, flags);
1074         }
1075
1076         /*
1077          * make sure that changes are seen by all cpus before we test i_state
1078          * -- mikulas
1079          */
1080         smp_mb();
1081
1082         /* avoid the locking if we can */
1083         if ((inode->i_state & flags) == flags)
1084                 return;
1085
1086         if (unlikely(block_dump))
1087                 block_dump___mark_inode_dirty(inode);
1088
1089         spin_lock(&inode->i_lock);
1090         if ((inode->i_state & flags) != flags) {
1091                 const int was_dirty = inode->i_state & I_DIRTY;
1092
1093                 inode->i_state |= flags;
1094
1095                 /*
1096                  * If the inode is being synced, just update its dirty state.
1097                  * The unlocker will place the inode on the appropriate
1098                  * superblock list, based upon its state.
1099                  */
1100                 if (inode->i_state & I_SYNC)
1101                         goto out_unlock_inode;
1102
1103                 /*
1104                  * Only add valid (hashed) inodes to the superblock's
1105                  * dirty list.  Add blockdev inodes as well.
1106                  */
1107                 if (!S_ISBLK(inode->i_mode)) {
1108                         if (inode_unhashed(inode))
1109                                 goto out_unlock_inode;
1110                 }
1111                 if (inode->i_state & I_FREEING)
1112                         goto out_unlock_inode;
1113
1114                 /*
1115                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1116                  * reposition it (that would break b_dirty time-ordering).
1117                  */
1118                 if (!was_dirty) {
1119                         bool wakeup_bdi = false;
1120                         bdi = inode_to_bdi(inode);
1121
1122                         if (bdi_cap_writeback_dirty(bdi)) {
1123                                 WARN(!test_bit(BDI_registered, &bdi->state),
1124                                      "bdi-%s not registered\n", bdi->name);
1125
1126                                 /*
1127                                  * If this is the first dirty inode for this
1128                                  * bdi, we have to wake-up the corresponding
1129                                  * bdi thread to make sure background
1130                                  * write-back happens later.
1131                                  */
1132                                 if (!wb_has_dirty_io(&bdi->wb))
1133                                         wakeup_bdi = true;
1134                         }
1135
1136                         spin_unlock(&inode->i_lock);
1137                         spin_lock(&bdi->wb.list_lock);
1138                         inode->dirtied_when = jiffies;
1139                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1140                         spin_unlock(&bdi->wb.list_lock);
1141
1142                         if (wakeup_bdi)
1143                                 bdi_wakeup_thread_delayed(bdi);
1144                         return;
1145                 }
1146         }
1147 out_unlock_inode:
1148         spin_unlock(&inode->i_lock);
1149
1150 }
1151 EXPORT_SYMBOL(__mark_inode_dirty);
1152
1153 /*
1154  * Write out a superblock's list of dirty inodes.  A wait will be performed
1155  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1156  *
1157  * If older_than_this is non-NULL, then only write out inodes which
1158  * had their first dirtying at a time earlier than *older_than_this.
1159  *
1160  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1161  * This function assumes that the blockdev superblock's inodes are backed by
1162  * a variety of queues, so all inodes are searched.  For other superblocks,
1163  * assume that all inodes are backed by the same queue.
1164  *
1165  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1166  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1167  * on the writer throttling path, and we get decent balancing between many
1168  * throttled threads: we don't want them all piling up on inode_sync_wait.
1169  */
1170 static void wait_sb_inodes(struct super_block *sb)
1171 {
1172         struct inode *inode, *old_inode = NULL;
1173
1174         /*
1175          * We need to be protected against the filesystem going from
1176          * r/o to r/w or vice versa.
1177          */
1178         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1179
1180         spin_lock(&inode_sb_list_lock);
1181
1182         /*
1183          * Data integrity sync. Must wait for all pages under writeback,
1184          * because there may have been pages dirtied before our sync
1185          * call, but which had writeout started before we write it out.
1186          * In which case, the inode may not be on the dirty list, but
1187          * we still have to wait for that writeout.
1188          */
1189         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1190                 struct address_space *mapping = inode->i_mapping;
1191
1192                 spin_lock(&inode->i_lock);
1193                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1194                     (mapping->nrpages == 0)) {
1195                         spin_unlock(&inode->i_lock);
1196                         continue;
1197                 }
1198                 __iget(inode);
1199                 spin_unlock(&inode->i_lock);
1200                 spin_unlock(&inode_sb_list_lock);
1201
1202                 /*
1203                  * We hold a reference to 'inode' so it couldn't have been
1204                  * removed from s_inodes list while we dropped the
1205                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1206                  * be holding the last reference and we cannot iput it under
1207                  * inode_sb_list_lock. So we keep the reference and iput it
1208                  * later.
1209                  */
1210                 iput(old_inode);
1211                 old_inode = inode;
1212
1213                 filemap_fdatawait(mapping);
1214
1215                 cond_resched();
1216
1217                 spin_lock(&inode_sb_list_lock);
1218         }
1219         spin_unlock(&inode_sb_list_lock);
1220         iput(old_inode);
1221 }
1222
1223 /**
1224  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1225  * @sb: the superblock
1226  * @nr: the number of pages to write
1227  * @reason: reason why some writeback work initiated
1228  *
1229  * Start writeback on some inodes on this super_block. No guarantees are made
1230  * on how many (if any) will be written, and this function does not wait
1231  * for IO completion of submitted IO.
1232  */
1233 void writeback_inodes_sb_nr(struct super_block *sb,
1234                             unsigned long nr,
1235                             enum wb_reason reason)
1236 {
1237         DECLARE_COMPLETION_ONSTACK(done);
1238         struct wb_writeback_work work = {
1239                 .sb                     = sb,
1240                 .sync_mode              = WB_SYNC_NONE,
1241                 .tagged_writepages      = 1,
1242                 .done                   = &done,
1243                 .nr_pages               = nr,
1244                 .reason                 = reason,
1245         };
1246
1247         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1248         bdi_queue_work(sb->s_bdi, &work);
1249         wait_for_completion(&done);
1250 }
1251 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1252
1253 /**
1254  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1255  * @sb: the superblock
1256  * @reason: reason why some writeback work was initiated
1257  *
1258  * Start writeback on some inodes on this super_block. No guarantees are made
1259  * on how many (if any) will be written, and this function does not wait
1260  * for IO completion of submitted IO.
1261  */
1262 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1263 {
1264         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1265 }
1266 EXPORT_SYMBOL(writeback_inodes_sb);
1267
1268 /**
1269  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1270  * @sb: the superblock
1271  * @reason: reason why some writeback work was initiated
1272  *
1273  * Invoke writeback_inodes_sb if no writeback is currently underway.
1274  * Returns 1 if writeback was started, 0 if not.
1275  */
1276 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1277 {
1278         if (!writeback_in_progress(sb->s_bdi)) {
1279                 down_read(&sb->s_umount);
1280                 writeback_inodes_sb(sb, reason);
1281                 up_read(&sb->s_umount);
1282                 return 1;
1283         } else
1284                 return 0;
1285 }
1286 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1287
1288 /**
1289  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1290  * @sb: the superblock
1291  * @nr: the number of pages to write
1292  * @reason: reason why some writeback work was initiated
1293  *
1294  * Invoke writeback_inodes_sb if no writeback is currently underway.
1295  * Returns 1 if writeback was started, 0 if not.
1296  */
1297 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1298                                    unsigned long nr,
1299                                    enum wb_reason reason)
1300 {
1301         if (!writeback_in_progress(sb->s_bdi)) {
1302                 down_read(&sb->s_umount);
1303                 writeback_inodes_sb_nr(sb, nr, reason);
1304                 up_read(&sb->s_umount);
1305                 return 1;
1306         } else
1307                 return 0;
1308 }
1309 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1310
1311 /**
1312  * sync_inodes_sb       -       sync sb inode pages
1313  * @sb: the superblock
1314  *
1315  * This function writes and waits on any dirty inode belonging to this
1316  * super_block.
1317  */
1318 void sync_inodes_sb(struct super_block *sb)
1319 {
1320         DECLARE_COMPLETION_ONSTACK(done);
1321         struct wb_writeback_work work = {
1322                 .sb             = sb,
1323                 .sync_mode      = WB_SYNC_ALL,
1324                 .nr_pages       = LONG_MAX,
1325                 .range_cyclic   = 0,
1326                 .done           = &done,
1327                 .reason         = WB_REASON_SYNC,
1328         };
1329
1330         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1331
1332         bdi_queue_work(sb->s_bdi, &work);
1333         wait_for_completion(&done);
1334
1335         wait_sb_inodes(sb);
1336 }
1337 EXPORT_SYMBOL(sync_inodes_sb);
1338
1339 /**
1340  * write_inode_now      -       write an inode to disk
1341  * @inode: inode to write to disk
1342  * @sync: whether the write should be synchronous or not
1343  *
1344  * This function commits an inode to disk immediately if it is dirty. This is
1345  * primarily needed by knfsd.
1346  *
1347  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1348  */
1349 int write_inode_now(struct inode *inode, int sync)
1350 {
1351         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1352         int ret;
1353         struct writeback_control wbc = {
1354                 .nr_to_write = LONG_MAX,
1355                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1356                 .range_start = 0,
1357                 .range_end = LLONG_MAX,
1358         };
1359
1360         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1361                 wbc.nr_to_write = 0;
1362
1363         might_sleep();
1364         spin_lock(&wb->list_lock);
1365         spin_lock(&inode->i_lock);
1366         ret = writeback_single_inode(inode, wb, &wbc);
1367         spin_unlock(&inode->i_lock);
1368         spin_unlock(&wb->list_lock);
1369         if (sync)
1370                 inode_sync_wait(inode);
1371         return ret;
1372 }
1373 EXPORT_SYMBOL(write_inode_now);
1374
1375 /**
1376  * sync_inode - write an inode and its pages to disk.
1377  * @inode: the inode to sync
1378  * @wbc: controls the writeback mode
1379  *
1380  * sync_inode() will write an inode and its pages to disk.  It will also
1381  * correctly update the inode on its superblock's dirty inode lists and will
1382  * update inode->i_state.
1383  *
1384  * The caller must have a ref on the inode.
1385  */
1386 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1387 {
1388         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1389         int ret;
1390
1391         spin_lock(&wb->list_lock);
1392         spin_lock(&inode->i_lock);
1393         ret = writeback_single_inode(inode, wb, wbc);
1394         spin_unlock(&inode->i_lock);
1395         spin_unlock(&wb->list_lock);
1396         return ret;
1397 }
1398 EXPORT_SYMBOL(sync_inode);
1399
1400 /**
1401  * sync_inode_metadata - write an inode to disk
1402  * @inode: the inode to sync
1403  * @wait: wait for I/O to complete.
1404  *
1405  * Write an inode to disk and adjust its dirty state after completion.
1406  *
1407  * Note: only writes the actual inode, no associated data or other metadata.
1408  */
1409 int sync_inode_metadata(struct inode *inode, int wait)
1410 {
1411         struct writeback_control wbc = {
1412                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1413                 .nr_to_write = 0, /* metadata-only */
1414         };
1415
1416         return sync_inode(inode, &wbc);
1417 }
1418 EXPORT_SYMBOL(sync_inode_metadata);