e1000e: Fix check_for_link return value with autoneg off
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         unsigned long *older_than_this;
39         enum writeback_sync_modes sync_mode;
40         unsigned int tagged_writepages:1;
41         unsigned int for_kupdate:1;
42         unsigned int range_cyclic:1;
43         unsigned int for_background:1;
44         enum wb_reason reason;          /* why was writeback initiated? */
45
46         struct list_head list;          /* pending work list */
47         struct completion *done;        /* set if the caller waits */
48 };
49
50 /*
51  * We don't actually have pdflush, but this one is exported though /proc...
52  */
53 int nr_pdflush_threads;
54
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64         return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70         struct super_block *sb = inode->i_sb;
71
72         if (strcmp(sb->s_type->name, "bdev") == 0)
73                 return inode->i_mapping->backing_dev_info;
74
75         return sb->s_bdi;
76 }
77
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80         return list_entry(head, struct inode, i_wb_list);
81 }
82
83 /*
84  * Include the creation of the trace points after defining the
85  * wb_writeback_work structure and inline functions so that the definition
86  * remains local to this file.
87  */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90
91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
93 {
94         if (bdi->wb.task) {
95                 wake_up_process(bdi->wb.task);
96         } else {
97                 /*
98                  * The bdi thread isn't there, wake up the forker thread which
99                  * will create and run it.
100                  */
101                 wake_up_process(default_backing_dev_info.wb.task);
102         }
103 }
104
105 static void bdi_queue_work(struct backing_dev_info *bdi,
106                            struct wb_writeback_work *work)
107 {
108         trace_writeback_queue(bdi, work);
109
110         spin_lock_bh(&bdi->wb_lock);
111         list_add_tail(&work->list, &bdi->work_list);
112         if (!bdi->wb.task)
113                 trace_writeback_nothread(bdi, work);
114         bdi_wakeup_flusher(bdi);
115         spin_unlock_bh(&bdi->wb_lock);
116 }
117
118 static void
119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
120                       bool range_cyclic, enum wb_reason reason)
121 {
122         struct wb_writeback_work *work;
123
124         /*
125          * This is WB_SYNC_NONE writeback, so if allocation fails just
126          * wakeup the thread for old dirty data writeback
127          */
128         work = kzalloc(sizeof(*work), GFP_ATOMIC);
129         if (!work) {
130                 if (bdi->wb.task) {
131                         trace_writeback_nowork(bdi);
132                         wake_up_process(bdi->wb.task);
133                 }
134                 return;
135         }
136
137         work->sync_mode = WB_SYNC_NONE;
138         work->nr_pages  = nr_pages;
139         work->range_cyclic = range_cyclic;
140         work->reason    = reason;
141
142         bdi_queue_work(bdi, work);
143 }
144
145 /**
146  * bdi_start_writeback - start writeback
147  * @bdi: the backing device to write from
148  * @nr_pages: the number of pages to write
149  * @reason: reason why some writeback work was initiated
150  *
151  * Description:
152  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
153  *   started when this function returns, we make no guarantees on
154  *   completion. Caller need not hold sb s_umount semaphore.
155  *
156  */
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158                         enum wb_reason reason)
159 {
160         __bdi_start_writeback(bdi, nr_pages, true, reason);
161 }
162
163 /**
164  * bdi_start_background_writeback - start background writeback
165  * @bdi: the backing device to write from
166  *
167  * Description:
168  *   This makes sure WB_SYNC_NONE background writeback happens. When
169  *   this function returns, it is only guaranteed that for given BDI
170  *   some IO is happening if we are over background dirty threshold.
171  *   Caller need not hold sb s_umount semaphore.
172  */
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
174 {
175         /*
176          * We just wake up the flusher thread. It will perform background
177          * writeback as soon as there is no other work to do.
178          */
179         trace_writeback_wake_background(bdi);
180         spin_lock_bh(&bdi->wb_lock);
181         bdi_wakeup_flusher(bdi);
182         spin_unlock_bh(&bdi->wb_lock);
183 }
184
185 /*
186  * Remove the inode from the writeback list it is on.
187  */
188 void inode_wb_list_del(struct inode *inode)
189 {
190         struct backing_dev_info *bdi = inode_to_bdi(inode);
191
192         spin_lock(&bdi->wb.list_lock);
193         list_del_init(&inode->i_wb_list);
194         spin_unlock(&bdi->wb.list_lock);
195 }
196
197 /*
198  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
199  * furthest end of its superblock's dirty-inode list.
200  *
201  * Before stamping the inode's ->dirtied_when, we check to see whether it is
202  * already the most-recently-dirtied inode on the b_dirty list.  If that is
203  * the case then the inode must have been redirtied while it was being written
204  * out and we don't reset its dirtied_when.
205  */
206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
207 {
208         assert_spin_locked(&wb->list_lock);
209         if (!list_empty(&wb->b_dirty)) {
210                 struct inode *tail;
211
212                 tail = wb_inode(wb->b_dirty.next);
213                 if (time_before(inode->dirtied_when, tail->dirtied_when))
214                         inode->dirtied_when = jiffies;
215         }
216         list_move(&inode->i_wb_list, &wb->b_dirty);
217 }
218
219 /*
220  * requeue inode for re-scanning after bdi->b_io list is exhausted.
221  */
222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
223 {
224         assert_spin_locked(&wb->list_lock);
225         list_move(&inode->i_wb_list, &wb->b_more_io);
226 }
227
228 static void inode_sync_complete(struct inode *inode)
229 {
230         /*
231          * Prevent speculative execution through
232          * spin_unlock(&wb->list_lock);
233          */
234
235         smp_mb();
236         wake_up_bit(&inode->i_state, __I_SYNC);
237 }
238
239 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
240 {
241         bool ret = time_after(inode->dirtied_when, t);
242 #ifndef CONFIG_64BIT
243         /*
244          * For inodes being constantly redirtied, dirtied_when can get stuck.
245          * It _appears_ to be in the future, but is actually in distant past.
246          * This test is necessary to prevent such wrapped-around relative times
247          * from permanently stopping the whole bdi writeback.
248          */
249         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
250 #endif
251         return ret;
252 }
253
254 /*
255  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
256  */
257 static int move_expired_inodes(struct list_head *delaying_queue,
258                                struct list_head *dispatch_queue,
259                                struct wb_writeback_work *work)
260 {
261         LIST_HEAD(tmp);
262         struct list_head *pos, *node;
263         struct super_block *sb = NULL;
264         struct inode *inode;
265         int do_sb_sort = 0;
266         int moved = 0;
267
268         while (!list_empty(delaying_queue)) {
269                 inode = wb_inode(delaying_queue->prev);
270                 if (work->older_than_this &&
271                     inode_dirtied_after(inode, *work->older_than_this))
272                         break;
273                 if (sb && sb != inode->i_sb)
274                         do_sb_sort = 1;
275                 sb = inode->i_sb;
276                 list_move(&inode->i_wb_list, &tmp);
277                 moved++;
278         }
279
280         /* just one sb in list, splice to dispatch_queue and we're done */
281         if (!do_sb_sort) {
282                 list_splice(&tmp, dispatch_queue);
283                 goto out;
284         }
285
286         /* Move inodes from one superblock together */
287         while (!list_empty(&tmp)) {
288                 sb = wb_inode(tmp.prev)->i_sb;
289                 list_for_each_prev_safe(pos, node, &tmp) {
290                         inode = wb_inode(pos);
291                         if (inode->i_sb == sb)
292                                 list_move(&inode->i_wb_list, dispatch_queue);
293                 }
294         }
295 out:
296         return moved;
297 }
298
299 /*
300  * Queue all expired dirty inodes for io, eldest first.
301  * Before
302  *         newly dirtied     b_dirty    b_io    b_more_io
303  *         =============>    gf         edc     BA
304  * After
305  *         newly dirtied     b_dirty    b_io    b_more_io
306  *         =============>    g          fBAedc
307  *                                           |
308  *                                           +--> dequeue for IO
309  */
310 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
311 {
312         int moved;
313         assert_spin_locked(&wb->list_lock);
314         list_splice_init(&wb->b_more_io, &wb->b_io);
315         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
316         trace_writeback_queue_io(wb, work, moved);
317 }
318
319 static int write_inode(struct inode *inode, struct writeback_control *wbc)
320 {
321         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
322                 return inode->i_sb->s_op->write_inode(inode, wbc);
323         return 0;
324 }
325
326 /*
327  * Wait for writeback on an inode to complete.
328  */
329 static void inode_wait_for_writeback(struct inode *inode,
330                                      struct bdi_writeback *wb)
331 {
332         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
333         wait_queue_head_t *wqh;
334
335         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
336         while (inode->i_state & I_SYNC) {
337                 spin_unlock(&inode->i_lock);
338                 spin_unlock(&wb->list_lock);
339                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
340                 spin_lock(&wb->list_lock);
341                 spin_lock(&inode->i_lock);
342         }
343 }
344
345 /*
346  * Write out an inode's dirty pages.  Called under wb->list_lock and
347  * inode->i_lock.  Either the caller has an active reference on the inode or
348  * the inode has I_WILL_FREE set.
349  *
350  * If `wait' is set, wait on the writeout.
351  *
352  * The whole writeout design is quite complex and fragile.  We want to avoid
353  * starvation of particular inodes when others are being redirtied, prevent
354  * livelocks, etc.
355  */
356 static int
357 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
358                        struct writeback_control *wbc)
359 {
360         struct address_space *mapping = inode->i_mapping;
361         long nr_to_write = wbc->nr_to_write;
362         unsigned dirty;
363         int ret;
364
365         assert_spin_locked(&wb->list_lock);
366         assert_spin_locked(&inode->i_lock);
367
368         if (!atomic_read(&inode->i_count))
369                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
370         else
371                 WARN_ON(inode->i_state & I_WILL_FREE);
372
373         if (inode->i_state & I_SYNC) {
374                 /*
375                  * If this inode is locked for writeback and we are not doing
376                  * writeback-for-data-integrity, move it to b_more_io so that
377                  * writeback can proceed with the other inodes on s_io.
378                  *
379                  * We'll have another go at writing back this inode when we
380                  * completed a full scan of b_io.
381                  */
382                 if (wbc->sync_mode != WB_SYNC_ALL) {
383                         requeue_io(inode, wb);
384                         trace_writeback_single_inode_requeue(inode, wbc,
385                                                              nr_to_write);
386                         return 0;
387                 }
388
389                 /*
390                  * It's a data-integrity sync.  We must wait.
391                  */
392                 inode_wait_for_writeback(inode, wb);
393         }
394
395         BUG_ON(inode->i_state & I_SYNC);
396
397         /* Set I_SYNC, reset I_DIRTY_PAGES */
398         inode->i_state |= I_SYNC;
399         spin_unlock(&inode->i_lock);
400         spin_unlock(&wb->list_lock);
401
402         ret = do_writepages(mapping, wbc);
403
404         /*
405          * Make sure to wait on the data before writing out the metadata.
406          * This is important for filesystems that modify metadata on data
407          * I/O completion.
408          */
409         if (wbc->sync_mode == WB_SYNC_ALL) {
410                 int err = filemap_fdatawait(mapping);
411                 if (ret == 0)
412                         ret = err;
413         }
414
415         /*
416          * Some filesystems may redirty the inode during the writeback
417          * due to delalloc, clear dirty metadata flags right before
418          * write_inode()
419          */
420         spin_lock(&inode->i_lock);
421
422         dirty = inode->i_state & I_DIRTY;
423         inode->i_state &= ~I_DIRTY;
424
425         /*
426          * Paired with smp_mb() in __mark_inode_dirty().  This allows
427          * __mark_inode_dirty() to test i_state without grabbing i_lock -
428          * either they see the I_DIRTY bits cleared or we see the dirtied
429          * inode.
430          *
431          * I_DIRTY_PAGES is always cleared together above even if @mapping
432          * still has dirty pages.  The flag is reinstated after smp_mb() if
433          * necessary.  This guarantees that either __mark_inode_dirty()
434          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
435          */
436         smp_mb();
437
438         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
439                 inode->i_state |= I_DIRTY_PAGES;
440
441         spin_unlock(&inode->i_lock);
442
443         /* Don't write the inode if only I_DIRTY_PAGES was set */
444         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
445                 int err = write_inode(inode, wbc);
446                 if (ret == 0)
447                         ret = err;
448         }
449
450         spin_lock(&wb->list_lock);
451         spin_lock(&inode->i_lock);
452         inode->i_state &= ~I_SYNC;
453         if (!(inode->i_state & I_FREEING)) {
454                 /*
455                  * Sync livelock prevention. Each inode is tagged and synced in
456                  * one shot. If still dirty, it will be redirty_tail()'ed below.
457                  * Update the dirty time to prevent enqueue and sync it again.
458                  */
459                 if ((inode->i_state & I_DIRTY) &&
460                     (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
461                         inode->dirtied_when = jiffies;
462
463                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
464                         /*
465                          * We didn't write back all the pages.  nfs_writepages()
466                          * sometimes bales out without doing anything.
467                          */
468                         if (wbc->nr_to_write <= 0) {
469                                 /*
470                                  * slice used up: queue for next turn
471                                  */
472                                 requeue_io(inode, wb);
473                         } else {
474                                 /*
475                                  * Writeback blocked by something other than
476                                  * congestion. Delay the inode for some time to
477                                  * avoid spinning on the CPU (100% iowait)
478                                  * retrying writeback of the dirty page/inode
479                                  * that cannot be performed immediately.
480                                  */
481                                 redirty_tail(inode, wb);
482                         }
483                 } else if (inode->i_state & I_DIRTY) {
484                         /*
485                          * Filesystems can dirty the inode during writeback
486                          * operations, such as delayed allocation during
487                          * submission or metadata updates after data IO
488                          * completion.
489                          */
490                         redirty_tail(inode, wb);
491                 } else {
492                         /*
493                          * The inode is clean.  At this point we either have
494                          * a reference to the inode or it's on it's way out.
495                          * No need to add it back to the LRU.
496                          */
497                         list_del_init(&inode->i_wb_list);
498                 }
499         }
500         inode_sync_complete(inode);
501         trace_writeback_single_inode(inode, wbc, nr_to_write);
502         return ret;
503 }
504
505 static long writeback_chunk_size(struct backing_dev_info *bdi,
506                                  struct wb_writeback_work *work)
507 {
508         long pages;
509
510         /*
511          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
512          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
513          * here avoids calling into writeback_inodes_wb() more than once.
514          *
515          * The intended call sequence for WB_SYNC_ALL writeback is:
516          *
517          *      wb_writeback()
518          *          writeback_sb_inodes()       <== called only once
519          *              write_cache_pages()     <== called once for each inode
520          *                   (quickly) tag currently dirty pages
521          *                   (maybe slowly) sync all tagged pages
522          */
523         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
524                 pages = LONG_MAX;
525         else {
526                 pages = min(bdi->avg_write_bandwidth / 2,
527                             global_dirty_limit / DIRTY_SCOPE);
528                 pages = min(pages, work->nr_pages);
529                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
530                                    MIN_WRITEBACK_PAGES);
531         }
532
533         return pages;
534 }
535
536 /*
537  * Write a portion of b_io inodes which belong to @sb.
538  *
539  * If @only_this_sb is true, then find and write all such
540  * inodes. Otherwise write only ones which go sequentially
541  * in reverse order.
542  *
543  * Return the number of pages and/or inodes written.
544  */
545 static long writeback_sb_inodes(struct super_block *sb,
546                                 struct bdi_writeback *wb,
547                                 struct wb_writeback_work *work)
548 {
549         struct writeback_control wbc = {
550                 .sync_mode              = work->sync_mode,
551                 .tagged_writepages      = work->tagged_writepages,
552                 .for_kupdate            = work->for_kupdate,
553                 .for_background         = work->for_background,
554                 .range_cyclic           = work->range_cyclic,
555                 .range_start            = 0,
556                 .range_end              = LLONG_MAX,
557         };
558         unsigned long start_time = jiffies;
559         long write_chunk;
560         long wrote = 0;  /* count both pages and inodes */
561
562         while (!list_empty(&wb->b_io)) {
563                 struct inode *inode = wb_inode(wb->b_io.prev);
564
565                 if (inode->i_sb != sb) {
566                         if (work->sb) {
567                                 /*
568                                  * We only want to write back data for this
569                                  * superblock, move all inodes not belonging
570                                  * to it back onto the dirty list.
571                                  */
572                                 redirty_tail(inode, wb);
573                                 continue;
574                         }
575
576                         /*
577                          * The inode belongs to a different superblock.
578                          * Bounce back to the caller to unpin this and
579                          * pin the next superblock.
580                          */
581                         break;
582                 }
583
584                 /*
585                  * Don't bother with new inodes or inodes beeing freed, first
586                  * kind does not need peridic writeout yet, and for the latter
587                  * kind writeout is handled by the freer.
588                  */
589                 spin_lock(&inode->i_lock);
590                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
591                         spin_unlock(&inode->i_lock);
592                         redirty_tail(inode, wb);
593                         continue;
594                 }
595                 __iget(inode);
596                 write_chunk = writeback_chunk_size(wb->bdi, work);
597                 wbc.nr_to_write = write_chunk;
598                 wbc.pages_skipped = 0;
599
600                 writeback_single_inode(inode, wb, &wbc);
601
602                 work->nr_pages -= write_chunk - wbc.nr_to_write;
603                 wrote += write_chunk - wbc.nr_to_write;
604                 if (!(inode->i_state & I_DIRTY))
605                         wrote++;
606                 if (wbc.pages_skipped) {
607                         /*
608                          * writeback is not making progress due to locked
609                          * buffers.  Skip this inode for now.
610                          */
611                         redirty_tail(inode, wb);
612                 }
613                 spin_unlock(&inode->i_lock);
614                 spin_unlock(&wb->list_lock);
615                 iput(inode);
616                 cond_resched();
617                 spin_lock(&wb->list_lock);
618                 /*
619                  * bail out to wb_writeback() often enough to check
620                  * background threshold and other termination conditions.
621                  */
622                 if (wrote) {
623                         if (time_is_before_jiffies(start_time + HZ / 10UL))
624                                 break;
625                         if (work->nr_pages <= 0)
626                                 break;
627                 }
628         }
629         return wrote;
630 }
631
632 static long __writeback_inodes_wb(struct bdi_writeback *wb,
633                                   struct wb_writeback_work *work)
634 {
635         unsigned long start_time = jiffies;
636         long wrote = 0;
637
638         while (!list_empty(&wb->b_io)) {
639                 struct inode *inode = wb_inode(wb->b_io.prev);
640                 struct super_block *sb = inode->i_sb;
641
642                 if (!grab_super_passive(sb)) {
643                         /*
644                          * grab_super_passive() may fail consistently due to
645                          * s_umount being grabbed by someone else. Don't use
646                          * requeue_io() to avoid busy retrying the inode/sb.
647                          */
648                         redirty_tail(inode, wb);
649                         continue;
650                 }
651                 wrote += writeback_sb_inodes(sb, wb, work);
652                 drop_super(sb);
653
654                 /* refer to the same tests at the end of writeback_sb_inodes */
655                 if (wrote) {
656                         if (time_is_before_jiffies(start_time + HZ / 10UL))
657                                 break;
658                         if (work->nr_pages <= 0)
659                                 break;
660                 }
661         }
662         /* Leave any unwritten inodes on b_io */
663         return wrote;
664 }
665
666 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
667                                 enum wb_reason reason)
668 {
669         struct wb_writeback_work work = {
670                 .nr_pages       = nr_pages,
671                 .sync_mode      = WB_SYNC_NONE,
672                 .range_cyclic   = 1,
673                 .reason         = reason,
674         };
675
676         spin_lock(&wb->list_lock);
677         if (list_empty(&wb->b_io))
678                 queue_io(wb, &work);
679         __writeback_inodes_wb(wb, &work);
680         spin_unlock(&wb->list_lock);
681
682         return nr_pages - work.nr_pages;
683 }
684
685 static bool over_bground_thresh(struct backing_dev_info *bdi)
686 {
687         unsigned long background_thresh, dirty_thresh;
688
689         global_dirty_limits(&background_thresh, &dirty_thresh);
690
691         if (global_page_state(NR_FILE_DIRTY) +
692             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
693                 return true;
694
695         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
696                                 bdi_dirty_limit(bdi, background_thresh))
697                 return true;
698
699         return false;
700 }
701
702 /*
703  * Called under wb->list_lock. If there are multiple wb per bdi,
704  * only the flusher working on the first wb should do it.
705  */
706 static void wb_update_bandwidth(struct bdi_writeback *wb,
707                                 unsigned long start_time)
708 {
709         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
710 }
711
712 /*
713  * Explicit flushing or periodic writeback of "old" data.
714  *
715  * Define "old": the first time one of an inode's pages is dirtied, we mark the
716  * dirtying-time in the inode's address_space.  So this periodic writeback code
717  * just walks the superblock inode list, writing back any inodes which are
718  * older than a specific point in time.
719  *
720  * Try to run once per dirty_writeback_interval.  But if a writeback event
721  * takes longer than a dirty_writeback_interval interval, then leave a
722  * one-second gap.
723  *
724  * older_than_this takes precedence over nr_to_write.  So we'll only write back
725  * all dirty pages if they are all attached to "old" mappings.
726  */
727 static long wb_writeback(struct bdi_writeback *wb,
728                          struct wb_writeback_work *work)
729 {
730         unsigned long wb_start = jiffies;
731         long nr_pages = work->nr_pages;
732         unsigned long oldest_jif;
733         struct inode *inode;
734         long progress;
735
736         oldest_jif = jiffies;
737         work->older_than_this = &oldest_jif;
738
739         spin_lock(&wb->list_lock);
740         for (;;) {
741                 /*
742                  * Stop writeback when nr_pages has been consumed
743                  */
744                 if (work->nr_pages <= 0)
745                         break;
746
747                 /*
748                  * Background writeout and kupdate-style writeback may
749                  * run forever. Stop them if there is other work to do
750                  * so that e.g. sync can proceed. They'll be restarted
751                  * after the other works are all done.
752                  */
753                 if ((work->for_background || work->for_kupdate) &&
754                     !list_empty(&wb->bdi->work_list))
755                         break;
756
757                 /*
758                  * For background writeout, stop when we are below the
759                  * background dirty threshold
760                  */
761                 if (work->for_background && !over_bground_thresh(wb->bdi))
762                         break;
763
764                 if (work->for_kupdate) {
765                         oldest_jif = jiffies -
766                                 msecs_to_jiffies(dirty_expire_interval * 10);
767                         work->older_than_this = &oldest_jif;
768                 }
769
770                 trace_writeback_start(wb->bdi, work);
771                 if (list_empty(&wb->b_io))
772                         queue_io(wb, work);
773                 if (work->sb)
774                         progress = writeback_sb_inodes(work->sb, wb, work);
775                 else
776                         progress = __writeback_inodes_wb(wb, work);
777                 trace_writeback_written(wb->bdi, work);
778
779                 wb_update_bandwidth(wb, wb_start);
780
781                 /*
782                  * Did we write something? Try for more
783                  *
784                  * Dirty inodes are moved to b_io for writeback in batches.
785                  * The completion of the current batch does not necessarily
786                  * mean the overall work is done. So we keep looping as long
787                  * as made some progress on cleaning pages or inodes.
788                  */
789                 if (progress)
790                         continue;
791                 /*
792                  * No more inodes for IO, bail
793                  */
794                 if (list_empty(&wb->b_more_io))
795                         break;
796                 /*
797                  * Nothing written. Wait for some inode to
798                  * become available for writeback. Otherwise
799                  * we'll just busyloop.
800                  */
801                 if (!list_empty(&wb->b_more_io))  {
802                         trace_writeback_wait(wb->bdi, work);
803                         inode = wb_inode(wb->b_more_io.prev);
804                         spin_lock(&inode->i_lock);
805                         inode_wait_for_writeback(inode, wb);
806                         spin_unlock(&inode->i_lock);
807                 }
808         }
809         spin_unlock(&wb->list_lock);
810
811         return nr_pages - work->nr_pages;
812 }
813
814 /*
815  * Return the next wb_writeback_work struct that hasn't been processed yet.
816  */
817 static struct wb_writeback_work *
818 get_next_work_item(struct backing_dev_info *bdi)
819 {
820         struct wb_writeback_work *work = NULL;
821
822         spin_lock_bh(&bdi->wb_lock);
823         if (!list_empty(&bdi->work_list)) {
824                 work = list_entry(bdi->work_list.next,
825                                   struct wb_writeback_work, list);
826                 list_del_init(&work->list);
827         }
828         spin_unlock_bh(&bdi->wb_lock);
829         return work;
830 }
831
832 /*
833  * Add in the number of potentially dirty inodes, because each inode
834  * write can dirty pagecache in the underlying blockdev.
835  */
836 static unsigned long get_nr_dirty_pages(void)
837 {
838         return global_page_state(NR_FILE_DIRTY) +
839                 global_page_state(NR_UNSTABLE_NFS) +
840                 get_nr_dirty_inodes();
841 }
842
843 static long wb_check_background_flush(struct bdi_writeback *wb)
844 {
845         if (over_bground_thresh(wb->bdi)) {
846
847                 struct wb_writeback_work work = {
848                         .nr_pages       = LONG_MAX,
849                         .sync_mode      = WB_SYNC_NONE,
850                         .for_background = 1,
851                         .range_cyclic   = 1,
852                         .reason         = WB_REASON_BACKGROUND,
853                 };
854
855                 return wb_writeback(wb, &work);
856         }
857
858         return 0;
859 }
860
861 static long wb_check_old_data_flush(struct bdi_writeback *wb)
862 {
863         unsigned long expired;
864         long nr_pages;
865
866         /*
867          * When set to zero, disable periodic writeback
868          */
869         if (!dirty_writeback_interval)
870                 return 0;
871
872         expired = wb->last_old_flush +
873                         msecs_to_jiffies(dirty_writeback_interval * 10);
874         if (time_before(jiffies, expired))
875                 return 0;
876
877         wb->last_old_flush = jiffies;
878         nr_pages = get_nr_dirty_pages();
879
880         if (nr_pages) {
881                 struct wb_writeback_work work = {
882                         .nr_pages       = nr_pages,
883                         .sync_mode      = WB_SYNC_NONE,
884                         .for_kupdate    = 1,
885                         .range_cyclic   = 1,
886                         .reason         = WB_REASON_PERIODIC,
887                 };
888
889                 return wb_writeback(wb, &work);
890         }
891
892         return 0;
893 }
894
895 /*
896  * Retrieve work items and do the writeback they describe
897  */
898 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
899 {
900         struct backing_dev_info *bdi = wb->bdi;
901         struct wb_writeback_work *work;
902         long wrote = 0;
903
904         set_bit(BDI_writeback_running, &wb->bdi->state);
905         while ((work = get_next_work_item(bdi)) != NULL) {
906                 /*
907                  * Override sync mode, in case we must wait for completion
908                  * because this thread is exiting now.
909                  */
910                 if (force_wait)
911                         work->sync_mode = WB_SYNC_ALL;
912
913                 trace_writeback_exec(bdi, work);
914
915                 wrote += wb_writeback(wb, work);
916
917                 /*
918                  * Notify the caller of completion if this is a synchronous
919                  * work item, otherwise just free it.
920                  */
921                 if (work->done)
922                         complete(work->done);
923                 else
924                         kfree(work);
925         }
926
927         /*
928          * Check for periodic writeback, kupdated() style
929          */
930         wrote += wb_check_old_data_flush(wb);
931         wrote += wb_check_background_flush(wb);
932         clear_bit(BDI_writeback_running, &wb->bdi->state);
933
934         return wrote;
935 }
936
937 /*
938  * Handle writeback of dirty data for the device backed by this bdi. Also
939  * wakes up periodically and does kupdated style flushing.
940  */
941 int bdi_writeback_thread(void *data)
942 {
943         struct bdi_writeback *wb = data;
944         struct backing_dev_info *bdi = wb->bdi;
945         long pages_written;
946
947         current->flags |= PF_SWAPWRITE;
948         set_freezable();
949         wb->last_active = jiffies;
950
951         /*
952          * Our parent may run at a different priority, just set us to normal
953          */
954         set_user_nice(current, 0);
955
956         trace_writeback_thread_start(bdi);
957
958         while (!kthread_should_stop()) {
959                 /*
960                  * Remove own delayed wake-up timer, since we are already awake
961                  * and we'll take care of the preriodic write-back.
962                  */
963                 del_timer(&wb->wakeup_timer);
964
965                 pages_written = wb_do_writeback(wb, 0);
966
967                 trace_writeback_pages_written(pages_written);
968
969                 if (pages_written)
970                         wb->last_active = jiffies;
971
972                 set_current_state(TASK_INTERRUPTIBLE);
973                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
974                         __set_current_state(TASK_RUNNING);
975                         continue;
976                 }
977
978                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
979                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
980                 else {
981                         /*
982                          * We have nothing to do, so can go sleep without any
983                          * timeout and save power. When a work is queued or
984                          * something is made dirty - we will be woken up.
985                          */
986                         schedule();
987                 }
988
989                 try_to_freeze();
990         }
991
992         /* Flush any work that raced with us exiting */
993         if (!list_empty(&bdi->work_list))
994                 wb_do_writeback(wb, 1);
995
996         trace_writeback_thread_stop(bdi);
997         return 0;
998 }
999
1000
1001 /*
1002  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1003  * the whole world.
1004  */
1005 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1006 {
1007         struct backing_dev_info *bdi;
1008
1009         if (!nr_pages) {
1010                 nr_pages = global_page_state(NR_FILE_DIRTY) +
1011                                 global_page_state(NR_UNSTABLE_NFS);
1012         }
1013
1014         rcu_read_lock();
1015         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1016                 if (!bdi_has_dirty_io(bdi))
1017                         continue;
1018                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1019         }
1020         rcu_read_unlock();
1021 }
1022
1023 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1024 {
1025         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1026                 struct dentry *dentry;
1027                 const char *name = "?";
1028
1029                 dentry = d_find_alias(inode);
1030                 if (dentry) {
1031                         spin_lock(&dentry->d_lock);
1032                         name = (const char *) dentry->d_name.name;
1033                 }
1034                 printk(KERN_DEBUG
1035                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1036                        current->comm, task_pid_nr(current), inode->i_ino,
1037                        name, inode->i_sb->s_id);
1038                 if (dentry) {
1039                         spin_unlock(&dentry->d_lock);
1040                         dput(dentry);
1041                 }
1042         }
1043 }
1044
1045 /**
1046  *      __mark_inode_dirty -    internal function
1047  *      @inode: inode to mark
1048  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1049  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1050  *      mark_inode_dirty_sync.
1051  *
1052  * Put the inode on the super block's dirty list.
1053  *
1054  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1055  * dirty list only if it is hashed or if it refers to a blockdev.
1056  * If it was not hashed, it will never be added to the dirty list
1057  * even if it is later hashed, as it will have been marked dirty already.
1058  *
1059  * In short, make sure you hash any inodes _before_ you start marking
1060  * them dirty.
1061  *
1062  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1063  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1064  * the kernel-internal blockdev inode represents the dirtying time of the
1065  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1066  * page->mapping->host, so the page-dirtying time is recorded in the internal
1067  * blockdev inode.
1068  */
1069 void __mark_inode_dirty(struct inode *inode, int flags)
1070 {
1071         struct super_block *sb = inode->i_sb;
1072         struct backing_dev_info *bdi = NULL;
1073
1074         /*
1075          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1076          * dirty the inode itself
1077          */
1078         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1079                 if (sb->s_op->dirty_inode)
1080                         sb->s_op->dirty_inode(inode, flags);
1081         }
1082
1083         /*
1084          * Paired with smp_mb() in __writeback_single_inode() for the
1085          * following lockless i_state test.  See there for details.
1086          */
1087         smp_mb();
1088
1089         if ((inode->i_state & flags) == flags)
1090                 return;
1091
1092         if (unlikely(block_dump))
1093                 block_dump___mark_inode_dirty(inode);
1094
1095         spin_lock(&inode->i_lock);
1096         if ((inode->i_state & flags) != flags) {
1097                 const int was_dirty = inode->i_state & I_DIRTY;
1098
1099                 inode->i_state |= flags;
1100
1101                 /*
1102                  * If the inode is being synced, just update its dirty state.
1103                  * The unlocker will place the inode on the appropriate
1104                  * superblock list, based upon its state.
1105                  */
1106                 if (inode->i_state & I_SYNC)
1107                         goto out_unlock_inode;
1108
1109                 /*
1110                  * Only add valid (hashed) inodes to the superblock's
1111                  * dirty list.  Add blockdev inodes as well.
1112                  */
1113                 if (!S_ISBLK(inode->i_mode)) {
1114                         if (inode_unhashed(inode))
1115                                 goto out_unlock_inode;
1116                 }
1117                 if (inode->i_state & I_FREEING)
1118                         goto out_unlock_inode;
1119
1120                 /*
1121                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1122                  * reposition it (that would break b_dirty time-ordering).
1123                  */
1124                 if (!was_dirty) {
1125                         bool wakeup_bdi = false;
1126                         bdi = inode_to_bdi(inode);
1127
1128                         if (bdi_cap_writeback_dirty(bdi)) {
1129                                 WARN(!test_bit(BDI_registered, &bdi->state),
1130                                      "bdi-%s not registered\n", bdi->name);
1131
1132                                 /*
1133                                  * If this is the first dirty inode for this
1134                                  * bdi, we have to wake-up the corresponding
1135                                  * bdi thread to make sure background
1136                                  * write-back happens later.
1137                                  */
1138                                 if (!wb_has_dirty_io(&bdi->wb))
1139                                         wakeup_bdi = true;
1140                         }
1141
1142                         spin_unlock(&inode->i_lock);
1143                         spin_lock(&bdi->wb.list_lock);
1144                         inode->dirtied_when = jiffies;
1145                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1146                         spin_unlock(&bdi->wb.list_lock);
1147
1148                         if (wakeup_bdi)
1149                                 bdi_wakeup_thread_delayed(bdi);
1150                         return;
1151                 }
1152         }
1153 out_unlock_inode:
1154         spin_unlock(&inode->i_lock);
1155
1156 }
1157 EXPORT_SYMBOL(__mark_inode_dirty);
1158
1159 /*
1160  * Write out a superblock's list of dirty inodes.  A wait will be performed
1161  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1162  *
1163  * If older_than_this is non-NULL, then only write out inodes which
1164  * had their first dirtying at a time earlier than *older_than_this.
1165  *
1166  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1167  * This function assumes that the blockdev superblock's inodes are backed by
1168  * a variety of queues, so all inodes are searched.  For other superblocks,
1169  * assume that all inodes are backed by the same queue.
1170  *
1171  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1172  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1173  * on the writer throttling path, and we get decent balancing between many
1174  * throttled threads: we don't want them all piling up on inode_sync_wait.
1175  */
1176 static void wait_sb_inodes(struct super_block *sb)
1177 {
1178         struct inode *inode, *old_inode = NULL;
1179
1180         /*
1181          * We need to be protected against the filesystem going from
1182          * r/o to r/w or vice versa.
1183          */
1184         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1185
1186         spin_lock(&inode_sb_list_lock);
1187
1188         /*
1189          * Data integrity sync. Must wait for all pages under writeback,
1190          * because there may have been pages dirtied before our sync
1191          * call, but which had writeout started before we write it out.
1192          * In which case, the inode may not be on the dirty list, but
1193          * we still have to wait for that writeout.
1194          */
1195         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1196                 struct address_space *mapping = inode->i_mapping;
1197
1198                 spin_lock(&inode->i_lock);
1199                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1200                     (mapping->nrpages == 0)) {
1201                         spin_unlock(&inode->i_lock);
1202                         continue;
1203                 }
1204                 __iget(inode);
1205                 spin_unlock(&inode->i_lock);
1206                 spin_unlock(&inode_sb_list_lock);
1207
1208                 /*
1209                  * We hold a reference to 'inode' so it couldn't have been
1210                  * removed from s_inodes list while we dropped the
1211                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1212                  * be holding the last reference and we cannot iput it under
1213                  * inode_sb_list_lock. So we keep the reference and iput it
1214                  * later.
1215                  */
1216                 iput(old_inode);
1217                 old_inode = inode;
1218
1219                 filemap_fdatawait(mapping);
1220
1221                 cond_resched();
1222
1223                 spin_lock(&inode_sb_list_lock);
1224         }
1225         spin_unlock(&inode_sb_list_lock);
1226         iput(old_inode);
1227 }
1228
1229 /**
1230  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1231  * @sb: the superblock
1232  * @nr: the number of pages to write
1233  * @reason: reason why some writeback work initiated
1234  *
1235  * Start writeback on some inodes on this super_block. No guarantees are made
1236  * on how many (if any) will be written, and this function does not wait
1237  * for IO completion of submitted IO.
1238  */
1239 void writeback_inodes_sb_nr(struct super_block *sb,
1240                             unsigned long nr,
1241                             enum wb_reason reason)
1242 {
1243         DECLARE_COMPLETION_ONSTACK(done);
1244         struct wb_writeback_work work = {
1245                 .sb                     = sb,
1246                 .sync_mode              = WB_SYNC_NONE,
1247                 .tagged_writepages      = 1,
1248                 .done                   = &done,
1249                 .nr_pages               = nr,
1250                 .reason                 = reason,
1251         };
1252
1253         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1254         bdi_queue_work(sb->s_bdi, &work);
1255         wait_for_completion(&done);
1256 }
1257 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1258
1259 /**
1260  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1261  * @sb: the superblock
1262  * @reason: reason why some writeback work was initiated
1263  *
1264  * Start writeback on some inodes on this super_block. No guarantees are made
1265  * on how many (if any) will be written, and this function does not wait
1266  * for IO completion of submitted IO.
1267  */
1268 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1269 {
1270         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1271 }
1272 EXPORT_SYMBOL(writeback_inodes_sb);
1273
1274 /**
1275  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1276  * @sb: the superblock
1277  * @reason: reason why some writeback work was initiated
1278  *
1279  * Invoke writeback_inodes_sb if no writeback is currently underway.
1280  * Returns 1 if writeback was started, 0 if not.
1281  */
1282 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1283 {
1284         if (!writeback_in_progress(sb->s_bdi)) {
1285                 down_read(&sb->s_umount);
1286                 writeback_inodes_sb(sb, reason);
1287                 up_read(&sb->s_umount);
1288                 return 1;
1289         } else
1290                 return 0;
1291 }
1292 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1293
1294 /**
1295  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1296  * @sb: the superblock
1297  * @nr: the number of pages to write
1298  * @reason: reason why some writeback work was initiated
1299  *
1300  * Invoke writeback_inodes_sb if no writeback is currently underway.
1301  * Returns 1 if writeback was started, 0 if not.
1302  */
1303 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1304                                    unsigned long nr,
1305                                    enum wb_reason reason)
1306 {
1307         if (!writeback_in_progress(sb->s_bdi)) {
1308                 down_read(&sb->s_umount);
1309                 writeback_inodes_sb_nr(sb, nr, reason);
1310                 up_read(&sb->s_umount);
1311                 return 1;
1312         } else
1313                 return 0;
1314 }
1315 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1316
1317 /**
1318  * sync_inodes_sb       -       sync sb inode pages
1319  * @sb: the superblock
1320  *
1321  * This function writes and waits on any dirty inode belonging to this
1322  * super_block.
1323  */
1324 void sync_inodes_sb(struct super_block *sb)
1325 {
1326         DECLARE_COMPLETION_ONSTACK(done);
1327         struct wb_writeback_work work = {
1328                 .sb             = sb,
1329                 .sync_mode      = WB_SYNC_ALL,
1330                 .nr_pages       = LONG_MAX,
1331                 .range_cyclic   = 0,
1332                 .done           = &done,
1333                 .reason         = WB_REASON_SYNC,
1334         };
1335
1336         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1337
1338         bdi_queue_work(sb->s_bdi, &work);
1339         wait_for_completion(&done);
1340
1341         wait_sb_inodes(sb);
1342 }
1343 EXPORT_SYMBOL(sync_inodes_sb);
1344
1345 /**
1346  * write_inode_now      -       write an inode to disk
1347  * @inode: inode to write to disk
1348  * @sync: whether the write should be synchronous or not
1349  *
1350  * This function commits an inode to disk immediately if it is dirty. This is
1351  * primarily needed by knfsd.
1352  *
1353  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1354  */
1355 int write_inode_now(struct inode *inode, int sync)
1356 {
1357         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1358         int ret;
1359         struct writeback_control wbc = {
1360                 .nr_to_write = LONG_MAX,
1361                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1362                 .range_start = 0,
1363                 .range_end = LLONG_MAX,
1364         };
1365
1366         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1367                 wbc.nr_to_write = 0;
1368
1369         might_sleep();
1370         spin_lock(&wb->list_lock);
1371         spin_lock(&inode->i_lock);
1372         ret = writeback_single_inode(inode, wb, &wbc);
1373         spin_unlock(&inode->i_lock);
1374         spin_unlock(&wb->list_lock);
1375         if (sync)
1376                 inode_sync_wait(inode);
1377         return ret;
1378 }
1379 EXPORT_SYMBOL(write_inode_now);
1380
1381 /**
1382  * sync_inode - write an inode and its pages to disk.
1383  * @inode: the inode to sync
1384  * @wbc: controls the writeback mode
1385  *
1386  * sync_inode() will write an inode and its pages to disk.  It will also
1387  * correctly update the inode on its superblock's dirty inode lists and will
1388  * update inode->i_state.
1389  *
1390  * The caller must have a ref on the inode.
1391  */
1392 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1393 {
1394         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1395         int ret;
1396
1397         spin_lock(&wb->list_lock);
1398         spin_lock(&inode->i_lock);
1399         ret = writeback_single_inode(inode, wb, wbc);
1400         spin_unlock(&inode->i_lock);
1401         spin_unlock(&wb->list_lock);
1402         return ret;
1403 }
1404 EXPORT_SYMBOL(sync_inode);
1405
1406 /**
1407  * sync_inode_metadata - write an inode to disk
1408  * @inode: the inode to sync
1409  * @wait: wait for I/O to complete.
1410  *
1411  * Write an inode to disk and adjust its dirty state after completion.
1412  *
1413  * Note: only writes the actual inode, no associated data or other metadata.
1414  */
1415 int sync_inode_metadata(struct inode *inode, int wait)
1416 {
1417         struct writeback_control wbc = {
1418                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1419                 .nr_to_write = 0, /* metadata-only */
1420         };
1421
1422         return sync_inode(inode, &wbc);
1423 }
1424 EXPORT_SYMBOL(sync_inode_metadata);