Merge branch 'delayed-logging-for-2.6.35' into for-linus
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
30
31 #define inode_to_bdi(inode)     ((inode)->i_mapping->backing_dev_info)
32
33 /*
34  * We don't actually have pdflush, but this one is exported though /proc...
35  */
36 int nr_pdflush_threads;
37
38 /*
39  * Passed into wb_writeback(), essentially a subset of writeback_control
40  */
41 struct wb_writeback_args {
42         long nr_pages;
43         struct super_block *sb;
44         enum writeback_sync_modes sync_mode;
45         unsigned int for_kupdate:1;
46         unsigned int range_cyclic:1;
47         unsigned int for_background:1;
48         unsigned int sb_pinned:1;
49 };
50
51 /*
52  * Work items for the bdi_writeback threads
53  */
54 struct bdi_work {
55         struct list_head list;          /* pending work list */
56         struct rcu_head rcu_head;       /* for RCU free/clear of work */
57
58         unsigned long seen;             /* threads that have seen this work */
59         atomic_t pending;               /* number of threads still to do work */
60
61         struct wb_writeback_args args;  /* writeback arguments */
62
63         unsigned long state;            /* flag bits, see WS_* */
64 };
65
66 enum {
67         WS_USED_B = 0,
68         WS_ONSTACK_B,
69 };
70
71 #define WS_USED (1 << WS_USED_B)
72 #define WS_ONSTACK (1 << WS_ONSTACK_B)
73
74 static inline bool bdi_work_on_stack(struct bdi_work *work)
75 {
76         return test_bit(WS_ONSTACK_B, &work->state);
77 }
78
79 static inline void bdi_work_init(struct bdi_work *work,
80                                  struct wb_writeback_args *args)
81 {
82         INIT_RCU_HEAD(&work->rcu_head);
83         work->args = *args;
84         work->state = WS_USED;
85 }
86
87 /**
88  * writeback_in_progress - determine whether there is writeback in progress
89  * @bdi: the device's backing_dev_info structure.
90  *
91  * Determine whether there is writeback waiting to be handled against a
92  * backing device.
93  */
94 int writeback_in_progress(struct backing_dev_info *bdi)
95 {
96         return !list_empty(&bdi->work_list);
97 }
98
99 static void bdi_work_clear(struct bdi_work *work)
100 {
101         clear_bit(WS_USED_B, &work->state);
102         smp_mb__after_clear_bit();
103         /*
104          * work can have disappeared at this point. bit waitq functions
105          * should be able to tolerate this, provided bdi_sched_wait does
106          * not dereference it's pointer argument.
107         */
108         wake_up_bit(&work->state, WS_USED_B);
109 }
110
111 static void bdi_work_free(struct rcu_head *head)
112 {
113         struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
114
115         if (!bdi_work_on_stack(work))
116                 kfree(work);
117         else
118                 bdi_work_clear(work);
119 }
120
121 static void wb_work_complete(struct bdi_work *work)
122 {
123         const enum writeback_sync_modes sync_mode = work->args.sync_mode;
124         int onstack = bdi_work_on_stack(work);
125
126         /*
127          * For allocated work, we can clear the done/seen bit right here.
128          * For on-stack work, we need to postpone both the clear and free
129          * to after the RCU grace period, since the stack could be invalidated
130          * as soon as bdi_work_clear() has done the wakeup.
131          */
132         if (!onstack)
133                 bdi_work_clear(work);
134         if (sync_mode == WB_SYNC_NONE || onstack)
135                 call_rcu(&work->rcu_head, bdi_work_free);
136 }
137
138 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
139 {
140         /*
141          * The caller has retrieved the work arguments from this work,
142          * drop our reference. If this is the last ref, delete and free it
143          */
144         if (atomic_dec_and_test(&work->pending)) {
145                 struct backing_dev_info *bdi = wb->bdi;
146
147                 spin_lock(&bdi->wb_lock);
148                 list_del_rcu(&work->list);
149                 spin_unlock(&bdi->wb_lock);
150
151                 wb_work_complete(work);
152         }
153 }
154
155 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
156 {
157         work->seen = bdi->wb_mask;
158         BUG_ON(!work->seen);
159         atomic_set(&work->pending, bdi->wb_cnt);
160         BUG_ON(!bdi->wb_cnt);
161
162         /*
163          * list_add_tail_rcu() contains the necessary barriers to
164          * make sure the above stores are seen before the item is
165          * noticed on the list
166          */
167         spin_lock(&bdi->wb_lock);
168         list_add_tail_rcu(&work->list, &bdi->work_list);
169         spin_unlock(&bdi->wb_lock);
170
171         /*
172          * If the default thread isn't there, make sure we add it. When
173          * it gets created and wakes up, we'll run this work.
174          */
175         if (unlikely(list_empty_careful(&bdi->wb_list)))
176                 wake_up_process(default_backing_dev_info.wb.task);
177         else {
178                 struct bdi_writeback *wb = &bdi->wb;
179
180                 if (wb->task)
181                         wake_up_process(wb->task);
182         }
183 }
184
185 /*
186  * Used for on-stack allocated work items. The caller needs to wait until
187  * the wb threads have acked the work before it's safe to continue.
188  */
189 static void bdi_wait_on_work_clear(struct bdi_work *work)
190 {
191         wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
192                     TASK_UNINTERRUPTIBLE);
193 }
194
195 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
196                                  struct wb_writeback_args *args,
197                                  int wait)
198 {
199         struct bdi_work *work;
200
201         /*
202          * This is WB_SYNC_NONE writeback, so if allocation fails just
203          * wakeup the thread for old dirty data writeback
204          */
205         work = kmalloc(sizeof(*work), GFP_ATOMIC);
206         if (work) {
207                 bdi_work_init(work, args);
208                 bdi_queue_work(bdi, work);
209                 if (wait)
210                         bdi_wait_on_work_clear(work);
211         } else {
212                 struct bdi_writeback *wb = &bdi->wb;
213
214                 if (wb->task)
215                         wake_up_process(wb->task);
216         }
217 }
218
219 /**
220  * bdi_sync_writeback - start and wait for writeback
221  * @bdi: the backing device to write from
222  * @sb: write inodes from this super_block
223  *
224  * Description:
225  *   This does WB_SYNC_ALL data integrity writeback and waits for the
226  *   IO to complete. Callers must hold the sb s_umount semaphore for
227  *   reading, to avoid having the super disappear before we are done.
228  */
229 static void bdi_sync_writeback(struct backing_dev_info *bdi,
230                                struct super_block *sb)
231 {
232         struct wb_writeback_args args = {
233                 .sb             = sb,
234                 .sync_mode      = WB_SYNC_ALL,
235                 .nr_pages       = LONG_MAX,
236                 .range_cyclic   = 0,
237                 /*
238                  * Setting sb_pinned is not necessary for WB_SYNC_ALL, but
239                  * lets make it explicitly clear.
240                  */
241                 .sb_pinned      = 1,
242         };
243         struct bdi_work work;
244
245         bdi_work_init(&work, &args);
246         work.state |= WS_ONSTACK;
247
248         bdi_queue_work(bdi, &work);
249         bdi_wait_on_work_clear(&work);
250 }
251
252 /**
253  * bdi_start_writeback - start writeback
254  * @bdi: the backing device to write from
255  * @sb: write inodes from this super_block
256  * @nr_pages: the number of pages to write
257  * @sb_locked: caller already holds sb umount sem.
258  *
259  * Description:
260  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
261  *   started when this function returns, we make no guarentees on
262  *   completion. Caller specifies whether sb umount sem is held already or not.
263  *
264  */
265 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
266                          long nr_pages, int sb_locked)
267 {
268         struct wb_writeback_args args = {
269                 .sb             = sb,
270                 .sync_mode      = WB_SYNC_NONE,
271                 .nr_pages       = nr_pages,
272                 .range_cyclic   = 1,
273                 .sb_pinned      = sb_locked,
274         };
275
276         /*
277          * We treat @nr_pages=0 as the special case to do background writeback,
278          * ie. to sync pages until the background dirty threshold is reached.
279          */
280         if (!nr_pages) {
281                 args.nr_pages = LONG_MAX;
282                 args.for_background = 1;
283         }
284
285         bdi_alloc_queue_work(bdi, &args, sb_locked);
286 }
287
288 /*
289  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
290  * furthest end of its superblock's dirty-inode list.
291  *
292  * Before stamping the inode's ->dirtied_when, we check to see whether it is
293  * already the most-recently-dirtied inode on the b_dirty list.  If that is
294  * the case then the inode must have been redirtied while it was being written
295  * out and we don't reset its dirtied_when.
296  */
297 static void redirty_tail(struct inode *inode)
298 {
299         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
300
301         if (!list_empty(&wb->b_dirty)) {
302                 struct inode *tail;
303
304                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
305                 if (time_before(inode->dirtied_when, tail->dirtied_when))
306                         inode->dirtied_when = jiffies;
307         }
308         list_move(&inode->i_list, &wb->b_dirty);
309 }
310
311 /*
312  * requeue inode for re-scanning after bdi->b_io list is exhausted.
313  */
314 static void requeue_io(struct inode *inode)
315 {
316         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
317
318         list_move(&inode->i_list, &wb->b_more_io);
319 }
320
321 static void inode_sync_complete(struct inode *inode)
322 {
323         /*
324          * Prevent speculative execution through spin_unlock(&inode_lock);
325          */
326         smp_mb();
327         wake_up_bit(&inode->i_state, __I_SYNC);
328 }
329
330 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
331 {
332         bool ret = time_after(inode->dirtied_when, t);
333 #ifndef CONFIG_64BIT
334         /*
335          * For inodes being constantly redirtied, dirtied_when can get stuck.
336          * It _appears_ to be in the future, but is actually in distant past.
337          * This test is necessary to prevent such wrapped-around relative times
338          * from permanently stopping the whole bdi writeback.
339          */
340         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
341 #endif
342         return ret;
343 }
344
345 /*
346  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
347  */
348 static void move_expired_inodes(struct list_head *delaying_queue,
349                                struct list_head *dispatch_queue,
350                                 unsigned long *older_than_this)
351 {
352         LIST_HEAD(tmp);
353         struct list_head *pos, *node;
354         struct super_block *sb = NULL;
355         struct inode *inode;
356         int do_sb_sort = 0;
357
358         while (!list_empty(delaying_queue)) {
359                 inode = list_entry(delaying_queue->prev, struct inode, i_list);
360                 if (older_than_this &&
361                     inode_dirtied_after(inode, *older_than_this))
362                         break;
363                 if (sb && sb != inode->i_sb)
364                         do_sb_sort = 1;
365                 sb = inode->i_sb;
366                 list_move(&inode->i_list, &tmp);
367         }
368
369         /* just one sb in list, splice to dispatch_queue and we're done */
370         if (!do_sb_sort) {
371                 list_splice(&tmp, dispatch_queue);
372                 return;
373         }
374
375         /* Move inodes from one superblock together */
376         while (!list_empty(&tmp)) {
377                 inode = list_entry(tmp.prev, struct inode, i_list);
378                 sb = inode->i_sb;
379                 list_for_each_prev_safe(pos, node, &tmp) {
380                         inode = list_entry(pos, struct inode, i_list);
381                         if (inode->i_sb == sb)
382                                 list_move(&inode->i_list, dispatch_queue);
383                 }
384         }
385 }
386
387 /*
388  * Queue all expired dirty inodes for io, eldest first.
389  */
390 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
391 {
392         list_splice_init(&wb->b_more_io, wb->b_io.prev);
393         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
394 }
395
396 static int write_inode(struct inode *inode, struct writeback_control *wbc)
397 {
398         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
399                 return inode->i_sb->s_op->write_inode(inode, wbc);
400         return 0;
401 }
402
403 /*
404  * Wait for writeback on an inode to complete.
405  */
406 static void inode_wait_for_writeback(struct inode *inode)
407 {
408         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
409         wait_queue_head_t *wqh;
410
411         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
412         do {
413                 spin_unlock(&inode_lock);
414                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
415                 spin_lock(&inode_lock);
416         } while (inode->i_state & I_SYNC);
417 }
418
419 /*
420  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
421  * caller has ref on the inode (either via __iget or via syscall against an fd)
422  * or the inode has I_WILL_FREE set (via generic_forget_inode)
423  *
424  * If `wait' is set, wait on the writeout.
425  *
426  * The whole writeout design is quite complex and fragile.  We want to avoid
427  * starvation of particular inodes when others are being redirtied, prevent
428  * livelocks, etc.
429  *
430  * Called under inode_lock.
431  */
432 static int
433 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
434 {
435         struct address_space *mapping = inode->i_mapping;
436         unsigned dirty;
437         int ret;
438
439         if (!atomic_read(&inode->i_count))
440                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
441         else
442                 WARN_ON(inode->i_state & I_WILL_FREE);
443
444         if (inode->i_state & I_SYNC) {
445                 /*
446                  * If this inode is locked for writeback and we are not doing
447                  * writeback-for-data-integrity, move it to b_more_io so that
448                  * writeback can proceed with the other inodes on s_io.
449                  *
450                  * We'll have another go at writing back this inode when we
451                  * completed a full scan of b_io.
452                  */
453                 if (wbc->sync_mode != WB_SYNC_ALL) {
454                         requeue_io(inode);
455                         return 0;
456                 }
457
458                 /*
459                  * It's a data-integrity sync.  We must wait.
460                  */
461                 inode_wait_for_writeback(inode);
462         }
463
464         BUG_ON(inode->i_state & I_SYNC);
465
466         /* Set I_SYNC, reset I_DIRTY_PAGES */
467         inode->i_state |= I_SYNC;
468         inode->i_state &= ~I_DIRTY_PAGES;
469         spin_unlock(&inode_lock);
470
471         ret = do_writepages(mapping, wbc);
472
473         /*
474          * Make sure to wait on the data before writing out the metadata.
475          * This is important for filesystems that modify metadata on data
476          * I/O completion.
477          */
478         if (wbc->sync_mode == WB_SYNC_ALL) {
479                 int err = filemap_fdatawait(mapping);
480                 if (ret == 0)
481                         ret = err;
482         }
483
484         /*
485          * Some filesystems may redirty the inode during the writeback
486          * due to delalloc, clear dirty metadata flags right before
487          * write_inode()
488          */
489         spin_lock(&inode_lock);
490         dirty = inode->i_state & I_DIRTY;
491         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
492         spin_unlock(&inode_lock);
493         /* Don't write the inode if only I_DIRTY_PAGES was set */
494         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
495                 int err = write_inode(inode, wbc);
496                 if (ret == 0)
497                         ret = err;
498         }
499
500         spin_lock(&inode_lock);
501         inode->i_state &= ~I_SYNC;
502         if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
503                 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
504                         /*
505                          * More pages get dirtied by a fast dirtier.
506                          */
507                         goto select_queue;
508                 } else if (inode->i_state & I_DIRTY) {
509                         /*
510                          * At least XFS will redirty the inode during the
511                          * writeback (delalloc) and on io completion (isize).
512                          */
513                         redirty_tail(inode);
514                 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
515                         /*
516                          * We didn't write back all the pages.  nfs_writepages()
517                          * sometimes bales out without doing anything. Redirty
518                          * the inode; Move it from b_io onto b_more_io/b_dirty.
519                          */
520                         /*
521                          * akpm: if the caller was the kupdate function we put
522                          * this inode at the head of b_dirty so it gets first
523                          * consideration.  Otherwise, move it to the tail, for
524                          * the reasons described there.  I'm not really sure
525                          * how much sense this makes.  Presumably I had a good
526                          * reasons for doing it this way, and I'd rather not
527                          * muck with it at present.
528                          */
529                         if (wbc->for_kupdate) {
530                                 /*
531                                  * For the kupdate function we move the inode
532                                  * to b_more_io so it will get more writeout as
533                                  * soon as the queue becomes uncongested.
534                                  */
535                                 inode->i_state |= I_DIRTY_PAGES;
536 select_queue:
537                                 if (wbc->nr_to_write <= 0) {
538                                         /*
539                                          * slice used up: queue for next turn
540                                          */
541                                         requeue_io(inode);
542                                 } else {
543                                         /*
544                                          * somehow blocked: retry later
545                                          */
546                                         redirty_tail(inode);
547                                 }
548                         } else {
549                                 /*
550                                  * Otherwise fully redirty the inode so that
551                                  * other inodes on this superblock will get some
552                                  * writeout.  Otherwise heavy writing to one
553                                  * file would indefinitely suspend writeout of
554                                  * all the other files.
555                                  */
556                                 inode->i_state |= I_DIRTY_PAGES;
557                                 redirty_tail(inode);
558                         }
559                 } else if (atomic_read(&inode->i_count)) {
560                         /*
561                          * The inode is clean, inuse
562                          */
563                         list_move(&inode->i_list, &inode_in_use);
564                 } else {
565                         /*
566                          * The inode is clean, unused
567                          */
568                         list_move(&inode->i_list, &inode_unused);
569                 }
570         }
571         inode_sync_complete(inode);
572         return ret;
573 }
574
575 static void unpin_sb_for_writeback(struct super_block *sb)
576 {
577         up_read(&sb->s_umount);
578         put_super(sb);
579 }
580
581 enum sb_pin_state {
582         SB_PINNED,
583         SB_NOT_PINNED,
584         SB_PIN_FAILED
585 };
586
587 /*
588  * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
589  * before calling writeback. So make sure that we do pin it, so it doesn't
590  * go away while we are writing inodes from it.
591  */
592 static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc,
593                                               struct super_block *sb)
594 {
595         /*
596          * Caller must already hold the ref for this
597          */
598         if (wbc->sync_mode == WB_SYNC_ALL || wbc->sb_pinned) {
599                 WARN_ON(!rwsem_is_locked(&sb->s_umount));
600                 return SB_NOT_PINNED;
601         }
602         spin_lock(&sb_lock);
603         sb->s_count++;
604         if (down_read_trylock(&sb->s_umount)) {
605                 if (sb->s_root) {
606                         spin_unlock(&sb_lock);
607                         return SB_PINNED;
608                 }
609                 /*
610                  * umounted, drop rwsem again and fall through to failure
611                  */
612                 up_read(&sb->s_umount);
613         }
614         sb->s_count--;
615         spin_unlock(&sb_lock);
616         return SB_PIN_FAILED;
617 }
618
619 /*
620  * Write a portion of b_io inodes which belong to @sb.
621  * If @wbc->sb != NULL, then find and write all such
622  * inodes. Otherwise write only ones which go sequentially
623  * in reverse order.
624  * Return 1, if the caller writeback routine should be
625  * interrupted. Otherwise return 0.
626  */
627 static int writeback_sb_inodes(struct super_block *sb,
628                                struct bdi_writeback *wb,
629                                struct writeback_control *wbc)
630 {
631         while (!list_empty(&wb->b_io)) {
632                 long pages_skipped;
633                 struct inode *inode = list_entry(wb->b_io.prev,
634                                                  struct inode, i_list);
635                 if (wbc->sb && sb != inode->i_sb) {
636                         /* super block given and doesn't
637                            match, skip this inode */
638                         redirty_tail(inode);
639                         continue;
640                 }
641                 if (sb != inode->i_sb)
642                         /* finish with this superblock */
643                         return 0;
644                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
645                         requeue_io(inode);
646                         continue;
647                 }
648                 /*
649                  * Was this inode dirtied after sync_sb_inodes was called?
650                  * This keeps sync from extra jobs and livelock.
651                  */
652                 if (inode_dirtied_after(inode, wbc->wb_start))
653                         return 1;
654
655                 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
656                 __iget(inode);
657                 pages_skipped = wbc->pages_skipped;
658                 writeback_single_inode(inode, wbc);
659                 if (wbc->pages_skipped != pages_skipped) {
660                         /*
661                          * writeback is not making progress due to locked
662                          * buffers.  Skip this inode for now.
663                          */
664                         redirty_tail(inode);
665                 }
666                 spin_unlock(&inode_lock);
667                 iput(inode);
668                 cond_resched();
669                 spin_lock(&inode_lock);
670                 if (wbc->nr_to_write <= 0) {
671                         wbc->more_io = 1;
672                         return 1;
673                 }
674                 if (!list_empty(&wb->b_more_io))
675                         wbc->more_io = 1;
676         }
677         /* b_io is empty */
678         return 1;
679 }
680
681 static void writeback_inodes_wb(struct bdi_writeback *wb,
682                                 struct writeback_control *wbc)
683 {
684         int ret = 0;
685
686         wbc->wb_start = jiffies; /* livelock avoidance */
687         spin_lock(&inode_lock);
688         if (!wbc->for_kupdate || list_empty(&wb->b_io))
689                 queue_io(wb, wbc->older_than_this);
690
691         while (!list_empty(&wb->b_io)) {
692                 struct inode *inode = list_entry(wb->b_io.prev,
693                                                  struct inode, i_list);
694                 struct super_block *sb = inode->i_sb;
695                 enum sb_pin_state state;
696
697                 if (wbc->sb && sb != wbc->sb) {
698                         /* super block given and doesn't
699                            match, skip this inode */
700                         redirty_tail(inode);
701                         continue;
702                 }
703                 state = pin_sb_for_writeback(wbc, sb);
704
705                 if (state == SB_PIN_FAILED) {
706                         requeue_io(inode);
707                         continue;
708                 }
709                 ret = writeback_sb_inodes(sb, wb, wbc);
710
711                 if (state == SB_PINNED)
712                         unpin_sb_for_writeback(sb);
713                 if (ret)
714                         break;
715         }
716         spin_unlock(&inode_lock);
717         /* Leave any unwritten inodes on b_io */
718 }
719
720 void writeback_inodes_wbc(struct writeback_control *wbc)
721 {
722         struct backing_dev_info *bdi = wbc->bdi;
723
724         writeback_inodes_wb(&bdi->wb, wbc);
725 }
726
727 /*
728  * The maximum number of pages to writeout in a single bdi flush/kupdate
729  * operation.  We do this so we don't hold I_SYNC against an inode for
730  * enormous amounts of time, which would block a userspace task which has
731  * been forced to throttle against that inode.  Also, the code reevaluates
732  * the dirty each time it has written this many pages.
733  */
734 #define MAX_WRITEBACK_PAGES     1024
735
736 static inline bool over_bground_thresh(void)
737 {
738         unsigned long background_thresh, dirty_thresh;
739
740         get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
741
742         return (global_page_state(NR_FILE_DIRTY) +
743                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
744 }
745
746 /*
747  * Explicit flushing or periodic writeback of "old" data.
748  *
749  * Define "old": the first time one of an inode's pages is dirtied, we mark the
750  * dirtying-time in the inode's address_space.  So this periodic writeback code
751  * just walks the superblock inode list, writing back any inodes which are
752  * older than a specific point in time.
753  *
754  * Try to run once per dirty_writeback_interval.  But if a writeback event
755  * takes longer than a dirty_writeback_interval interval, then leave a
756  * one-second gap.
757  *
758  * older_than_this takes precedence over nr_to_write.  So we'll only write back
759  * all dirty pages if they are all attached to "old" mappings.
760  */
761 static long wb_writeback(struct bdi_writeback *wb,
762                          struct wb_writeback_args *args)
763 {
764         struct writeback_control wbc = {
765                 .bdi                    = wb->bdi,
766                 .sb                     = args->sb,
767                 .sync_mode              = args->sync_mode,
768                 .older_than_this        = NULL,
769                 .for_kupdate            = args->for_kupdate,
770                 .for_background         = args->for_background,
771                 .range_cyclic           = args->range_cyclic,
772                 .sb_pinned              = args->sb_pinned,
773         };
774         unsigned long oldest_jif;
775         long wrote = 0;
776         struct inode *inode;
777
778         if (wbc.for_kupdate) {
779                 wbc.older_than_this = &oldest_jif;
780                 oldest_jif = jiffies -
781                                 msecs_to_jiffies(dirty_expire_interval * 10);
782         }
783         if (!wbc.range_cyclic) {
784                 wbc.range_start = 0;
785                 wbc.range_end = LLONG_MAX;
786         }
787
788         for (;;) {
789                 /*
790                  * Stop writeback when nr_pages has been consumed
791                  */
792                 if (args->nr_pages <= 0)
793                         break;
794
795                 /*
796                  * For background writeout, stop when we are below the
797                  * background dirty threshold
798                  */
799                 if (args->for_background && !over_bground_thresh())
800                         break;
801
802                 wbc.more_io = 0;
803                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
804                 wbc.pages_skipped = 0;
805                 writeback_inodes_wb(wb, &wbc);
806                 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
807                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
808
809                 /*
810                  * If we consumed everything, see if we have more
811                  */
812                 if (wbc.nr_to_write <= 0)
813                         continue;
814                 /*
815                  * Didn't write everything and we don't have more IO, bail
816                  */
817                 if (!wbc.more_io)
818                         break;
819                 /*
820                  * Did we write something? Try for more
821                  */
822                 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
823                         continue;
824                 /*
825                  * Nothing written. Wait for some inode to
826                  * become available for writeback. Otherwise
827                  * we'll just busyloop.
828                  */
829                 spin_lock(&inode_lock);
830                 if (!list_empty(&wb->b_more_io))  {
831                         inode = list_entry(wb->b_more_io.prev,
832                                                 struct inode, i_list);
833                         inode_wait_for_writeback(inode);
834                 }
835                 spin_unlock(&inode_lock);
836         }
837
838         return wrote;
839 }
840
841 /*
842  * Return the next bdi_work struct that hasn't been processed by this
843  * wb thread yet. ->seen is initially set for each thread that exists
844  * for this device, when a thread first notices a piece of work it
845  * clears its bit. Depending on writeback type, the thread will notify
846  * completion on either receiving the work (WB_SYNC_NONE) or after
847  * it is done (WB_SYNC_ALL).
848  */
849 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
850                                            struct bdi_writeback *wb)
851 {
852         struct bdi_work *work, *ret = NULL;
853
854         rcu_read_lock();
855
856         list_for_each_entry_rcu(work, &bdi->work_list, list) {
857                 if (!test_bit(wb->nr, &work->seen))
858                         continue;
859                 clear_bit(wb->nr, &work->seen);
860
861                 ret = work;
862                 break;
863         }
864
865         rcu_read_unlock();
866         return ret;
867 }
868
869 static long wb_check_old_data_flush(struct bdi_writeback *wb)
870 {
871         unsigned long expired;
872         long nr_pages;
873
874         /*
875          * When set to zero, disable periodic writeback
876          */
877         if (!dirty_writeback_interval)
878                 return 0;
879
880         expired = wb->last_old_flush +
881                         msecs_to_jiffies(dirty_writeback_interval * 10);
882         if (time_before(jiffies, expired))
883                 return 0;
884
885         wb->last_old_flush = jiffies;
886         nr_pages = global_page_state(NR_FILE_DIRTY) +
887                         global_page_state(NR_UNSTABLE_NFS) +
888                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
889
890         if (nr_pages) {
891                 struct wb_writeback_args args = {
892                         .nr_pages       = nr_pages,
893                         .sync_mode      = WB_SYNC_NONE,
894                         .for_kupdate    = 1,
895                         .range_cyclic   = 1,
896                 };
897
898                 return wb_writeback(wb, &args);
899         }
900
901         return 0;
902 }
903
904 /*
905  * Retrieve work items and do the writeback they describe
906  */
907 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
908 {
909         struct backing_dev_info *bdi = wb->bdi;
910         struct bdi_work *work;
911         long wrote = 0;
912
913         while ((work = get_next_work_item(bdi, wb)) != NULL) {
914                 struct wb_writeback_args args = work->args;
915                 int post_clear;
916
917                 /*
918                  * Override sync mode, in case we must wait for completion
919                  */
920                 if (force_wait)
921                         work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
922
923                 post_clear = WB_SYNC_ALL || args.sb_pinned;
924
925                 /*
926                  * If this isn't a data integrity operation, just notify
927                  * that we have seen this work and we are now starting it.
928                  */
929                 if (!post_clear)
930                         wb_clear_pending(wb, work);
931
932                 wrote += wb_writeback(wb, &args);
933
934                 /*
935                  * This is a data integrity writeback, so only do the
936                  * notification when we have completed the work.
937                  */
938                 if (post_clear)
939                         wb_clear_pending(wb, work);
940         }
941
942         /*
943          * Check for periodic writeback, kupdated() style
944          */
945         wrote += wb_check_old_data_flush(wb);
946
947         return wrote;
948 }
949
950 /*
951  * Handle writeback of dirty data for the device backed by this bdi. Also
952  * wakes up periodically and does kupdated style flushing.
953  */
954 int bdi_writeback_task(struct bdi_writeback *wb)
955 {
956         unsigned long last_active = jiffies;
957         unsigned long wait_jiffies = -1UL;
958         long pages_written;
959
960         while (!kthread_should_stop()) {
961                 pages_written = wb_do_writeback(wb, 0);
962
963                 if (pages_written)
964                         last_active = jiffies;
965                 else if (wait_jiffies != -1UL) {
966                         unsigned long max_idle;
967
968                         /*
969                          * Longest period of inactivity that we tolerate. If we
970                          * see dirty data again later, the task will get
971                          * recreated automatically.
972                          */
973                         max_idle = max(5UL * 60 * HZ, wait_jiffies);
974                         if (time_after(jiffies, max_idle + last_active))
975                                 break;
976                 }
977
978                 if (dirty_writeback_interval) {
979                         wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
980                         schedule_timeout_interruptible(wait_jiffies);
981                 } else {
982                         set_current_state(TASK_INTERRUPTIBLE);
983                         if (list_empty_careful(&wb->bdi->work_list) &&
984                             !kthread_should_stop())
985                                 schedule();
986                         __set_current_state(TASK_RUNNING);
987                 }
988
989                 try_to_freeze();
990         }
991
992         return 0;
993 }
994
995 /*
996  * Schedule writeback for all backing devices. This does WB_SYNC_NONE
997  * writeback, for integrity writeback see bdi_sync_writeback().
998  */
999 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
1000 {
1001         struct wb_writeback_args args = {
1002                 .sb             = sb,
1003                 .nr_pages       = nr_pages,
1004                 .sync_mode      = WB_SYNC_NONE,
1005         };
1006         struct backing_dev_info *bdi;
1007
1008         rcu_read_lock();
1009
1010         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1011                 if (!bdi_has_dirty_io(bdi))
1012                         continue;
1013
1014                 bdi_alloc_queue_work(bdi, &args, 0);
1015         }
1016
1017         rcu_read_unlock();
1018 }
1019
1020 /*
1021  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1022  * the whole world.
1023  */
1024 void wakeup_flusher_threads(long nr_pages)
1025 {
1026         if (nr_pages == 0)
1027                 nr_pages = global_page_state(NR_FILE_DIRTY) +
1028                                 global_page_state(NR_UNSTABLE_NFS);
1029         bdi_writeback_all(NULL, nr_pages);
1030 }
1031
1032 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1033 {
1034         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1035                 struct dentry *dentry;
1036                 const char *name = "?";
1037
1038                 dentry = d_find_alias(inode);
1039                 if (dentry) {
1040                         spin_lock(&dentry->d_lock);
1041                         name = (const char *) dentry->d_name.name;
1042                 }
1043                 printk(KERN_DEBUG
1044                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1045                        current->comm, task_pid_nr(current), inode->i_ino,
1046                        name, inode->i_sb->s_id);
1047                 if (dentry) {
1048                         spin_unlock(&dentry->d_lock);
1049                         dput(dentry);
1050                 }
1051         }
1052 }
1053
1054 /**
1055  *      __mark_inode_dirty -    internal function
1056  *      @inode: inode to mark
1057  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1058  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1059  *      mark_inode_dirty_sync.
1060  *
1061  * Put the inode on the super block's dirty list.
1062  *
1063  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1064  * dirty list only if it is hashed or if it refers to a blockdev.
1065  * If it was not hashed, it will never be added to the dirty list
1066  * even if it is later hashed, as it will have been marked dirty already.
1067  *
1068  * In short, make sure you hash any inodes _before_ you start marking
1069  * them dirty.
1070  *
1071  * This function *must* be atomic for the I_DIRTY_PAGES case -
1072  * set_page_dirty() is called under spinlock in several places.
1073  *
1074  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1075  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1076  * the kernel-internal blockdev inode represents the dirtying time of the
1077  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1078  * page->mapping->host, so the page-dirtying time is recorded in the internal
1079  * blockdev inode.
1080  */
1081 void __mark_inode_dirty(struct inode *inode, int flags)
1082 {
1083         struct super_block *sb = inode->i_sb;
1084
1085         /*
1086          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1087          * dirty the inode itself
1088          */
1089         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1090                 if (sb->s_op->dirty_inode)
1091                         sb->s_op->dirty_inode(inode);
1092         }
1093
1094         /*
1095          * make sure that changes are seen by all cpus before we test i_state
1096          * -- mikulas
1097          */
1098         smp_mb();
1099
1100         /* avoid the locking if we can */
1101         if ((inode->i_state & flags) == flags)
1102                 return;
1103
1104         if (unlikely(block_dump))
1105                 block_dump___mark_inode_dirty(inode);
1106
1107         spin_lock(&inode_lock);
1108         if ((inode->i_state & flags) != flags) {
1109                 const int was_dirty = inode->i_state & I_DIRTY;
1110
1111                 inode->i_state |= flags;
1112
1113                 /*
1114                  * If the inode is being synced, just update its dirty state.
1115                  * The unlocker will place the inode on the appropriate
1116                  * superblock list, based upon its state.
1117                  */
1118                 if (inode->i_state & I_SYNC)
1119                         goto out;
1120
1121                 /*
1122                  * Only add valid (hashed) inodes to the superblock's
1123                  * dirty list.  Add blockdev inodes as well.
1124                  */
1125                 if (!S_ISBLK(inode->i_mode)) {
1126                         if (hlist_unhashed(&inode->i_hash))
1127                                 goto out;
1128                 }
1129                 if (inode->i_state & (I_FREEING|I_CLEAR))
1130                         goto out;
1131
1132                 /*
1133                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1134                  * reposition it (that would break b_dirty time-ordering).
1135                  */
1136                 if (!was_dirty) {
1137                         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1138                         struct backing_dev_info *bdi = wb->bdi;
1139
1140                         if (bdi_cap_writeback_dirty(bdi) &&
1141                             !test_bit(BDI_registered, &bdi->state)) {
1142                                 WARN_ON(1);
1143                                 printk(KERN_ERR "bdi-%s not registered\n",
1144                                                                 bdi->name);
1145                         }
1146
1147                         inode->dirtied_when = jiffies;
1148                         list_move(&inode->i_list, &wb->b_dirty);
1149                 }
1150         }
1151 out:
1152         spin_unlock(&inode_lock);
1153 }
1154 EXPORT_SYMBOL(__mark_inode_dirty);
1155
1156 /*
1157  * Write out a superblock's list of dirty inodes.  A wait will be performed
1158  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1159  *
1160  * If older_than_this is non-NULL, then only write out inodes which
1161  * had their first dirtying at a time earlier than *older_than_this.
1162  *
1163  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1164  * This function assumes that the blockdev superblock's inodes are backed by
1165  * a variety of queues, so all inodes are searched.  For other superblocks,
1166  * assume that all inodes are backed by the same queue.
1167  *
1168  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1169  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1170  * on the writer throttling path, and we get decent balancing between many
1171  * throttled threads: we don't want them all piling up on inode_sync_wait.
1172  */
1173 static void wait_sb_inodes(struct super_block *sb)
1174 {
1175         struct inode *inode, *old_inode = NULL;
1176
1177         /*
1178          * We need to be protected against the filesystem going from
1179          * r/o to r/w or vice versa.
1180          */
1181         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1182
1183         spin_lock(&inode_lock);
1184
1185         /*
1186          * Data integrity sync. Must wait for all pages under writeback,
1187          * because there may have been pages dirtied before our sync
1188          * call, but which had writeout started before we write it out.
1189          * In which case, the inode may not be on the dirty list, but
1190          * we still have to wait for that writeout.
1191          */
1192         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1193                 struct address_space *mapping;
1194
1195                 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1196                         continue;
1197                 mapping = inode->i_mapping;
1198                 if (mapping->nrpages == 0)
1199                         continue;
1200                 __iget(inode);
1201                 spin_unlock(&inode_lock);
1202                 /*
1203                  * We hold a reference to 'inode' so it couldn't have
1204                  * been removed from s_inodes list while we dropped the
1205                  * inode_lock.  We cannot iput the inode now as we can
1206                  * be holding the last reference and we cannot iput it
1207                  * under inode_lock. So we keep the reference and iput
1208                  * it later.
1209                  */
1210                 iput(old_inode);
1211                 old_inode = inode;
1212
1213                 filemap_fdatawait(mapping);
1214
1215                 cond_resched();
1216
1217                 spin_lock(&inode_lock);
1218         }
1219         spin_unlock(&inode_lock);
1220         iput(old_inode);
1221 }
1222
1223 static void __writeback_inodes_sb(struct super_block *sb, int sb_locked)
1224 {
1225         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1226         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1227         long nr_to_write;
1228
1229         nr_to_write = nr_dirty + nr_unstable +
1230                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1231
1232         bdi_start_writeback(sb->s_bdi, sb, nr_to_write, sb_locked);
1233 }
1234
1235 /**
1236  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1237  * @sb: the superblock
1238  *
1239  * Start writeback on some inodes on this super_block. No guarantees are made
1240  * on how many (if any) will be written, and this function does not wait
1241  * for IO completion of submitted IO. The number of pages submitted is
1242  * returned.
1243  */
1244 void writeback_inodes_sb(struct super_block *sb)
1245 {
1246         __writeback_inodes_sb(sb, 0);
1247 }
1248 EXPORT_SYMBOL(writeback_inodes_sb);
1249
1250 /**
1251  * writeback_inodes_sb_locked   - writeback dirty inodes from given super_block
1252  * @sb: the superblock
1253  *
1254  * Like writeback_inodes_sb(), except the caller already holds the
1255  * sb umount sem.
1256  */
1257 void writeback_inodes_sb_locked(struct super_block *sb)
1258 {
1259         __writeback_inodes_sb(sb, 1);
1260 }
1261
1262 /**
1263  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1264  * @sb: the superblock
1265  *
1266  * Invoke writeback_inodes_sb if no writeback is currently underway.
1267  * Returns 1 if writeback was started, 0 if not.
1268  */
1269 int writeback_inodes_sb_if_idle(struct super_block *sb)
1270 {
1271         if (!writeback_in_progress(sb->s_bdi)) {
1272                 writeback_inodes_sb(sb);
1273                 return 1;
1274         } else
1275                 return 0;
1276 }
1277 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1278
1279 /**
1280  * sync_inodes_sb       -       sync sb inode pages
1281  * @sb: the superblock
1282  *
1283  * This function writes and waits on any dirty inode belonging to this
1284  * super_block. The number of pages synced is returned.
1285  */
1286 void sync_inodes_sb(struct super_block *sb)
1287 {
1288         bdi_sync_writeback(sb->s_bdi, sb);
1289         wait_sb_inodes(sb);
1290 }
1291 EXPORT_SYMBOL(sync_inodes_sb);
1292
1293 /**
1294  * write_inode_now      -       write an inode to disk
1295  * @inode: inode to write to disk
1296  * @sync: whether the write should be synchronous or not
1297  *
1298  * This function commits an inode to disk immediately if it is dirty. This is
1299  * primarily needed by knfsd.
1300  *
1301  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1302  */
1303 int write_inode_now(struct inode *inode, int sync)
1304 {
1305         int ret;
1306         struct writeback_control wbc = {
1307                 .nr_to_write = LONG_MAX,
1308                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1309                 .range_start = 0,
1310                 .range_end = LLONG_MAX,
1311         };
1312
1313         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1314                 wbc.nr_to_write = 0;
1315
1316         might_sleep();
1317         spin_lock(&inode_lock);
1318         ret = writeback_single_inode(inode, &wbc);
1319         spin_unlock(&inode_lock);
1320         if (sync)
1321                 inode_sync_wait(inode);
1322         return ret;
1323 }
1324 EXPORT_SYMBOL(write_inode_now);
1325
1326 /**
1327  * sync_inode - write an inode and its pages to disk.
1328  * @inode: the inode to sync
1329  * @wbc: controls the writeback mode
1330  *
1331  * sync_inode() will write an inode and its pages to disk.  It will also
1332  * correctly update the inode on its superblock's dirty inode lists and will
1333  * update inode->i_state.
1334  *
1335  * The caller must have a ref on the inode.
1336  */
1337 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1338 {
1339         int ret;
1340
1341         spin_lock(&inode_lock);
1342         ret = writeback_single_inode(inode, wbc);
1343         spin_unlock(&inode_lock);
1344         return ret;
1345 }
1346 EXPORT_SYMBOL(sync_inode);