NFSv4: Ensure that we check lock exclusive/shared type against open modes
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         unsigned long *older_than_this;
39         enum writeback_sync_modes sync_mode;
40         unsigned int tagged_writepages:1;
41         unsigned int for_kupdate:1;
42         unsigned int range_cyclic:1;
43         unsigned int for_background:1;
44         enum wb_reason reason;          /* why was writeback initiated? */
45
46         struct list_head list;          /* pending work list */
47         struct completion *done;        /* set if the caller waits */
48 };
49
50 /*
51  * We don't actually have pdflush, but this one is exported though /proc...
52  */
53 int nr_pdflush_threads;
54
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64         return test_bit(BDI_writeback_running, &bdi->state);
65 }
66
67 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
68 {
69         struct super_block *sb = inode->i_sb;
70
71         if (strcmp(sb->s_type->name, "bdev") == 0)
72                 return inode->i_mapping->backing_dev_info;
73
74         return sb->s_bdi;
75 }
76
77 static inline struct inode *wb_inode(struct list_head *head)
78 {
79         return list_entry(head, struct inode, i_wb_list);
80 }
81
82 /*
83  * Include the creation of the trace points after defining the
84  * wb_writeback_work structure and inline functions so that the definition
85  * remains local to this file.
86  */
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/writeback.h>
89
90 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
91 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
92 {
93         if (bdi->wb.task) {
94                 wake_up_process(bdi->wb.task);
95         } else {
96                 /*
97                  * The bdi thread isn't there, wake up the forker thread which
98                  * will create and run it.
99                  */
100                 wake_up_process(default_backing_dev_info.wb.task);
101         }
102 }
103
104 static void bdi_queue_work(struct backing_dev_info *bdi,
105                            struct wb_writeback_work *work)
106 {
107         trace_writeback_queue(bdi, work);
108
109         spin_lock_bh(&bdi->wb_lock);
110         list_add_tail(&work->list, &bdi->work_list);
111         if (!bdi->wb.task)
112                 trace_writeback_nothread(bdi, work);
113         bdi_wakeup_flusher(bdi);
114         spin_unlock_bh(&bdi->wb_lock);
115 }
116
117 static void
118 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
119                       bool range_cyclic, enum wb_reason reason)
120 {
121         struct wb_writeback_work *work;
122
123         /*
124          * This is WB_SYNC_NONE writeback, so if allocation fails just
125          * wakeup the thread for old dirty data writeback
126          */
127         work = kzalloc(sizeof(*work), GFP_ATOMIC);
128         if (!work) {
129                 if (bdi->wb.task) {
130                         trace_writeback_nowork(bdi);
131                         wake_up_process(bdi->wb.task);
132                 }
133                 return;
134         }
135
136         work->sync_mode = WB_SYNC_NONE;
137         work->nr_pages  = nr_pages;
138         work->range_cyclic = range_cyclic;
139         work->reason    = reason;
140
141         bdi_queue_work(bdi, work);
142 }
143
144 /**
145  * bdi_start_writeback - start writeback
146  * @bdi: the backing device to write from
147  * @nr_pages: the number of pages to write
148  * @reason: reason why some writeback work was initiated
149  *
150  * Description:
151  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
152  *   started when this function returns, we make no guarantees on
153  *   completion. Caller need not hold sb s_umount semaphore.
154  *
155  */
156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157                         enum wb_reason reason)
158 {
159         __bdi_start_writeback(bdi, nr_pages, true, reason);
160 }
161
162 /**
163  * bdi_start_background_writeback - start background writeback
164  * @bdi: the backing device to write from
165  *
166  * Description:
167  *   This makes sure WB_SYNC_NONE background writeback happens. When
168  *   this function returns, it is only guaranteed that for given BDI
169  *   some IO is happening if we are over background dirty threshold.
170  *   Caller need not hold sb s_umount semaphore.
171  */
172 void bdi_start_background_writeback(struct backing_dev_info *bdi)
173 {
174         /*
175          * We just wake up the flusher thread. It will perform background
176          * writeback as soon as there is no other work to do.
177          */
178         trace_writeback_wake_background(bdi);
179         spin_lock_bh(&bdi->wb_lock);
180         bdi_wakeup_flusher(bdi);
181         spin_unlock_bh(&bdi->wb_lock);
182 }
183
184 /*
185  * Remove the inode from the writeback list it is on.
186  */
187 void inode_wb_list_del(struct inode *inode)
188 {
189         struct backing_dev_info *bdi = inode_to_bdi(inode);
190
191         spin_lock(&bdi->wb.list_lock);
192         list_del_init(&inode->i_wb_list);
193         spin_unlock(&bdi->wb.list_lock);
194 }
195
196 /*
197  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
198  * furthest end of its superblock's dirty-inode list.
199  *
200  * Before stamping the inode's ->dirtied_when, we check to see whether it is
201  * already the most-recently-dirtied inode on the b_dirty list.  If that is
202  * the case then the inode must have been redirtied while it was being written
203  * out and we don't reset its dirtied_when.
204  */
205 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
206 {
207         assert_spin_locked(&wb->list_lock);
208         if (!list_empty(&wb->b_dirty)) {
209                 struct inode *tail;
210
211                 tail = wb_inode(wb->b_dirty.next);
212                 if (time_before(inode->dirtied_when, tail->dirtied_when))
213                         inode->dirtied_when = jiffies;
214         }
215         list_move(&inode->i_wb_list, &wb->b_dirty);
216 }
217
218 /*
219  * requeue inode for re-scanning after bdi->b_io list is exhausted.
220  */
221 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
222 {
223         assert_spin_locked(&wb->list_lock);
224         list_move(&inode->i_wb_list, &wb->b_more_io);
225 }
226
227 static void inode_sync_complete(struct inode *inode)
228 {
229         /*
230          * Prevent speculative execution through
231          * spin_unlock(&wb->list_lock);
232          */
233
234         smp_mb();
235         wake_up_bit(&inode->i_state, __I_SYNC);
236 }
237
238 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
239 {
240         bool ret = time_after(inode->dirtied_when, t);
241 #ifndef CONFIG_64BIT
242         /*
243          * For inodes being constantly redirtied, dirtied_when can get stuck.
244          * It _appears_ to be in the future, but is actually in distant past.
245          * This test is necessary to prevent such wrapped-around relative times
246          * from permanently stopping the whole bdi writeback.
247          */
248         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
249 #endif
250         return ret;
251 }
252
253 /*
254  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
255  */
256 static int move_expired_inodes(struct list_head *delaying_queue,
257                                struct list_head *dispatch_queue,
258                                struct wb_writeback_work *work)
259 {
260         LIST_HEAD(tmp);
261         struct list_head *pos, *node;
262         struct super_block *sb = NULL;
263         struct inode *inode;
264         int do_sb_sort = 0;
265         int moved = 0;
266
267         while (!list_empty(delaying_queue)) {
268                 inode = wb_inode(delaying_queue->prev);
269                 if (work->older_than_this &&
270                     inode_dirtied_after(inode, *work->older_than_this))
271                         break;
272                 if (sb && sb != inode->i_sb)
273                         do_sb_sort = 1;
274                 sb = inode->i_sb;
275                 list_move(&inode->i_wb_list, &tmp);
276                 moved++;
277         }
278
279         /* just one sb in list, splice to dispatch_queue and we're done */
280         if (!do_sb_sort) {
281                 list_splice(&tmp, dispatch_queue);
282                 goto out;
283         }
284
285         /* Move inodes from one superblock together */
286         while (!list_empty(&tmp)) {
287                 sb = wb_inode(tmp.prev)->i_sb;
288                 list_for_each_prev_safe(pos, node, &tmp) {
289                         inode = wb_inode(pos);
290                         if (inode->i_sb == sb)
291                                 list_move(&inode->i_wb_list, dispatch_queue);
292                 }
293         }
294 out:
295         return moved;
296 }
297
298 /*
299  * Queue all expired dirty inodes for io, eldest first.
300  * Before
301  *         newly dirtied     b_dirty    b_io    b_more_io
302  *         =============>    gf         edc     BA
303  * After
304  *         newly dirtied     b_dirty    b_io    b_more_io
305  *         =============>    g          fBAedc
306  *                                           |
307  *                                           +--> dequeue for IO
308  */
309 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
310 {
311         int moved;
312         assert_spin_locked(&wb->list_lock);
313         list_splice_init(&wb->b_more_io, &wb->b_io);
314         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
315         trace_writeback_queue_io(wb, work, moved);
316 }
317
318 static int write_inode(struct inode *inode, struct writeback_control *wbc)
319 {
320         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
321                 return inode->i_sb->s_op->write_inode(inode, wbc);
322         return 0;
323 }
324
325 /*
326  * Wait for writeback on an inode to complete.
327  */
328 static void inode_wait_for_writeback(struct inode *inode,
329                                      struct bdi_writeback *wb)
330 {
331         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
332         wait_queue_head_t *wqh;
333
334         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
335         while (inode->i_state & I_SYNC) {
336                 spin_unlock(&inode->i_lock);
337                 spin_unlock(&wb->list_lock);
338                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
339                 spin_lock(&wb->list_lock);
340                 spin_lock(&inode->i_lock);
341         }
342 }
343
344 /*
345  * Write out an inode's dirty pages.  Called under wb->list_lock and
346  * inode->i_lock.  Either the caller has an active reference on the inode or
347  * the inode has I_WILL_FREE set.
348  *
349  * If `wait' is set, wait on the writeout.
350  *
351  * The whole writeout design is quite complex and fragile.  We want to avoid
352  * starvation of particular inodes when others are being redirtied, prevent
353  * livelocks, etc.
354  */
355 static int
356 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
357                        struct writeback_control *wbc)
358 {
359         struct address_space *mapping = inode->i_mapping;
360         long nr_to_write = wbc->nr_to_write;
361         unsigned dirty;
362         int ret;
363
364         assert_spin_locked(&wb->list_lock);
365         assert_spin_locked(&inode->i_lock);
366
367         if (!atomic_read(&inode->i_count))
368                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
369         else
370                 WARN_ON(inode->i_state & I_WILL_FREE);
371
372         if (inode->i_state & I_SYNC) {
373                 /*
374                  * If this inode is locked for writeback and we are not doing
375                  * writeback-for-data-integrity, move it to b_more_io so that
376                  * writeback can proceed with the other inodes on s_io.
377                  *
378                  * We'll have another go at writing back this inode when we
379                  * completed a full scan of b_io.
380                  */
381                 if (wbc->sync_mode != WB_SYNC_ALL) {
382                         requeue_io(inode, wb);
383                         trace_writeback_single_inode_requeue(inode, wbc,
384                                                              nr_to_write);
385                         return 0;
386                 }
387
388                 /*
389                  * It's a data-integrity sync.  We must wait.
390                  */
391                 inode_wait_for_writeback(inode, wb);
392         }
393
394         BUG_ON(inode->i_state & I_SYNC);
395
396         /* Set I_SYNC, reset I_DIRTY_PAGES */
397         inode->i_state |= I_SYNC;
398         inode->i_state &= ~I_DIRTY_PAGES;
399         spin_unlock(&inode->i_lock);
400         spin_unlock(&wb->list_lock);
401
402         ret = do_writepages(mapping, wbc);
403
404         /*
405          * Make sure to wait on the data before writing out the metadata.
406          * This is important for filesystems that modify metadata on data
407          * I/O completion.
408          */
409         if (wbc->sync_mode == WB_SYNC_ALL) {
410                 int err = filemap_fdatawait(mapping);
411                 if (ret == 0)
412                         ret = err;
413         }
414
415         /*
416          * Some filesystems may redirty the inode during the writeback
417          * due to delalloc, clear dirty metadata flags right before
418          * write_inode()
419          */
420         spin_lock(&inode->i_lock);
421         dirty = inode->i_state & I_DIRTY;
422         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
423         spin_unlock(&inode->i_lock);
424         /* Don't write the inode if only I_DIRTY_PAGES was set */
425         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
426                 int err = write_inode(inode, wbc);
427                 if (ret == 0)
428                         ret = err;
429         }
430
431         spin_lock(&wb->list_lock);
432         spin_lock(&inode->i_lock);
433         inode->i_state &= ~I_SYNC;
434         if (!(inode->i_state & I_FREEING)) {
435                 /*
436                  * Sync livelock prevention. Each inode is tagged and synced in
437                  * one shot. If still dirty, it will be redirty_tail()'ed below.
438                  * Update the dirty time to prevent enqueue and sync it again.
439                  */
440                 if ((inode->i_state & I_DIRTY) &&
441                     (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
442                         inode->dirtied_when = jiffies;
443
444                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
445                         /*
446                          * We didn't write back all the pages.  nfs_writepages()
447                          * sometimes bales out without doing anything.
448                          */
449                         inode->i_state |= I_DIRTY_PAGES;
450                         if (wbc->nr_to_write <= 0) {
451                                 /*
452                                  * slice used up: queue for next turn
453                                  */
454                                 requeue_io(inode, wb);
455                         } else {
456                                 /*
457                                  * Writeback blocked by something other than
458                                  * congestion. Delay the inode for some time to
459                                  * avoid spinning on the CPU (100% iowait)
460                                  * retrying writeback of the dirty page/inode
461                                  * that cannot be performed immediately.
462                                  */
463                                 redirty_tail(inode, wb);
464                         }
465                 } else if (inode->i_state & I_DIRTY) {
466                         /*
467                          * Filesystems can dirty the inode during writeback
468                          * operations, such as delayed allocation during
469                          * submission or metadata updates after data IO
470                          * completion.
471                          */
472                         redirty_tail(inode, wb);
473                 } else {
474                         /*
475                          * The inode is clean.  At this point we either have
476                          * a reference to the inode or it's on it's way out.
477                          * No need to add it back to the LRU.
478                          */
479                         list_del_init(&inode->i_wb_list);
480                 }
481         }
482         inode_sync_complete(inode);
483         trace_writeback_single_inode(inode, wbc, nr_to_write);
484         return ret;
485 }
486
487 static long writeback_chunk_size(struct backing_dev_info *bdi,
488                                  struct wb_writeback_work *work)
489 {
490         long pages;
491
492         /*
493          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
494          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
495          * here avoids calling into writeback_inodes_wb() more than once.
496          *
497          * The intended call sequence for WB_SYNC_ALL writeback is:
498          *
499          *      wb_writeback()
500          *          writeback_sb_inodes()       <== called only once
501          *              write_cache_pages()     <== called once for each inode
502          *                   (quickly) tag currently dirty pages
503          *                   (maybe slowly) sync all tagged pages
504          */
505         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
506                 pages = LONG_MAX;
507         else {
508                 pages = min(bdi->avg_write_bandwidth / 2,
509                             global_dirty_limit / DIRTY_SCOPE);
510                 pages = min(pages, work->nr_pages);
511                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
512                                    MIN_WRITEBACK_PAGES);
513         }
514
515         return pages;
516 }
517
518 /*
519  * Write a portion of b_io inodes which belong to @sb.
520  *
521  * If @only_this_sb is true, then find and write all such
522  * inodes. Otherwise write only ones which go sequentially
523  * in reverse order.
524  *
525  * Return the number of pages and/or inodes written.
526  */
527 static long writeback_sb_inodes(struct super_block *sb,
528                                 struct bdi_writeback *wb,
529                                 struct wb_writeback_work *work)
530 {
531         struct writeback_control wbc = {
532                 .sync_mode              = work->sync_mode,
533                 .tagged_writepages      = work->tagged_writepages,
534                 .for_kupdate            = work->for_kupdate,
535                 .for_background         = work->for_background,
536                 .range_cyclic           = work->range_cyclic,
537                 .range_start            = 0,
538                 .range_end              = LLONG_MAX,
539         };
540         unsigned long start_time = jiffies;
541         long write_chunk;
542         long wrote = 0;  /* count both pages and inodes */
543
544         while (!list_empty(&wb->b_io)) {
545                 struct inode *inode = wb_inode(wb->b_io.prev);
546
547                 if (inode->i_sb != sb) {
548                         if (work->sb) {
549                                 /*
550                                  * We only want to write back data for this
551                                  * superblock, move all inodes not belonging
552                                  * to it back onto the dirty list.
553                                  */
554                                 redirty_tail(inode, wb);
555                                 continue;
556                         }
557
558                         /*
559                          * The inode belongs to a different superblock.
560                          * Bounce back to the caller to unpin this and
561                          * pin the next superblock.
562                          */
563                         break;
564                 }
565
566                 /*
567                  * Don't bother with new inodes or inodes beeing freed, first
568                  * kind does not need peridic writeout yet, and for the latter
569                  * kind writeout is handled by the freer.
570                  */
571                 spin_lock(&inode->i_lock);
572                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
573                         spin_unlock(&inode->i_lock);
574                         redirty_tail(inode, wb);
575                         continue;
576                 }
577                 __iget(inode);
578                 write_chunk = writeback_chunk_size(wb->bdi, work);
579                 wbc.nr_to_write = write_chunk;
580                 wbc.pages_skipped = 0;
581
582                 writeback_single_inode(inode, wb, &wbc);
583
584                 work->nr_pages -= write_chunk - wbc.nr_to_write;
585                 wrote += write_chunk - wbc.nr_to_write;
586                 if (!(inode->i_state & I_DIRTY))
587                         wrote++;
588                 if (wbc.pages_skipped) {
589                         /*
590                          * writeback is not making progress due to locked
591                          * buffers.  Skip this inode for now.
592                          */
593                         redirty_tail(inode, wb);
594                 }
595                 spin_unlock(&inode->i_lock);
596                 spin_unlock(&wb->list_lock);
597                 iput(inode);
598                 cond_resched();
599                 spin_lock(&wb->list_lock);
600                 /*
601                  * bail out to wb_writeback() often enough to check
602                  * background threshold and other termination conditions.
603                  */
604                 if (wrote) {
605                         if (time_is_before_jiffies(start_time + HZ / 10UL))
606                                 break;
607                         if (work->nr_pages <= 0)
608                                 break;
609                 }
610         }
611         return wrote;
612 }
613
614 static long __writeback_inodes_wb(struct bdi_writeback *wb,
615                                   struct wb_writeback_work *work)
616 {
617         unsigned long start_time = jiffies;
618         long wrote = 0;
619
620         while (!list_empty(&wb->b_io)) {
621                 struct inode *inode = wb_inode(wb->b_io.prev);
622                 struct super_block *sb = inode->i_sb;
623
624                 if (!grab_super_passive(sb)) {
625                         /*
626                          * grab_super_passive() may fail consistently due to
627                          * s_umount being grabbed by someone else. Don't use
628                          * requeue_io() to avoid busy retrying the inode/sb.
629                          */
630                         redirty_tail(inode, wb);
631                         continue;
632                 }
633                 wrote += writeback_sb_inodes(sb, wb, work);
634                 drop_super(sb);
635
636                 /* refer to the same tests at the end of writeback_sb_inodes */
637                 if (wrote) {
638                         if (time_is_before_jiffies(start_time + HZ / 10UL))
639                                 break;
640                         if (work->nr_pages <= 0)
641                                 break;
642                 }
643         }
644         /* Leave any unwritten inodes on b_io */
645         return wrote;
646 }
647
648 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
649                                 enum wb_reason reason)
650 {
651         struct wb_writeback_work work = {
652                 .nr_pages       = nr_pages,
653                 .sync_mode      = WB_SYNC_NONE,
654                 .range_cyclic   = 1,
655                 .reason         = reason,
656         };
657
658         spin_lock(&wb->list_lock);
659         if (list_empty(&wb->b_io))
660                 queue_io(wb, &work);
661         __writeback_inodes_wb(wb, &work);
662         spin_unlock(&wb->list_lock);
663
664         return nr_pages - work.nr_pages;
665 }
666
667 static bool over_bground_thresh(struct backing_dev_info *bdi)
668 {
669         unsigned long background_thresh, dirty_thresh;
670
671         global_dirty_limits(&background_thresh, &dirty_thresh);
672
673         if (global_page_state(NR_FILE_DIRTY) +
674             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
675                 return true;
676
677         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
678                                 bdi_dirty_limit(bdi, background_thresh))
679                 return true;
680
681         return false;
682 }
683
684 /*
685  * Called under wb->list_lock. If there are multiple wb per bdi,
686  * only the flusher working on the first wb should do it.
687  */
688 static void wb_update_bandwidth(struct bdi_writeback *wb,
689                                 unsigned long start_time)
690 {
691         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
692 }
693
694 /*
695  * Explicit flushing or periodic writeback of "old" data.
696  *
697  * Define "old": the first time one of an inode's pages is dirtied, we mark the
698  * dirtying-time in the inode's address_space.  So this periodic writeback code
699  * just walks the superblock inode list, writing back any inodes which are
700  * older than a specific point in time.
701  *
702  * Try to run once per dirty_writeback_interval.  But if a writeback event
703  * takes longer than a dirty_writeback_interval interval, then leave a
704  * one-second gap.
705  *
706  * older_than_this takes precedence over nr_to_write.  So we'll only write back
707  * all dirty pages if they are all attached to "old" mappings.
708  */
709 static long wb_writeback(struct bdi_writeback *wb,
710                          struct wb_writeback_work *work)
711 {
712         unsigned long wb_start = jiffies;
713         long nr_pages = work->nr_pages;
714         unsigned long oldest_jif;
715         struct inode *inode;
716         long progress;
717
718         oldest_jif = jiffies;
719         work->older_than_this = &oldest_jif;
720
721         spin_lock(&wb->list_lock);
722         for (;;) {
723                 /*
724                  * Stop writeback when nr_pages has been consumed
725                  */
726                 if (work->nr_pages <= 0)
727                         break;
728
729                 /*
730                  * Background writeout and kupdate-style writeback may
731                  * run forever. Stop them if there is other work to do
732                  * so that e.g. sync can proceed. They'll be restarted
733                  * after the other works are all done.
734                  */
735                 if ((work->for_background || work->for_kupdate) &&
736                     !list_empty(&wb->bdi->work_list))
737                         break;
738
739                 /*
740                  * For background writeout, stop when we are below the
741                  * background dirty threshold
742                  */
743                 if (work->for_background && !over_bground_thresh(wb->bdi))
744                         break;
745
746                 if (work->for_kupdate) {
747                         oldest_jif = jiffies -
748                                 msecs_to_jiffies(dirty_expire_interval * 10);
749                         work->older_than_this = &oldest_jif;
750                 }
751
752                 trace_writeback_start(wb->bdi, work);
753                 if (list_empty(&wb->b_io))
754                         queue_io(wb, work);
755                 if (work->sb)
756                         progress = writeback_sb_inodes(work->sb, wb, work);
757                 else
758                         progress = __writeback_inodes_wb(wb, work);
759                 trace_writeback_written(wb->bdi, work);
760
761                 wb_update_bandwidth(wb, wb_start);
762
763                 /*
764                  * Did we write something? Try for more
765                  *
766                  * Dirty inodes are moved to b_io for writeback in batches.
767                  * The completion of the current batch does not necessarily
768                  * mean the overall work is done. So we keep looping as long
769                  * as made some progress on cleaning pages or inodes.
770                  */
771                 if (progress)
772                         continue;
773                 /*
774                  * No more inodes for IO, bail
775                  */
776                 if (list_empty(&wb->b_more_io))
777                         break;
778                 /*
779                  * Nothing written. Wait for some inode to
780                  * become available for writeback. Otherwise
781                  * we'll just busyloop.
782                  */
783                 if (!list_empty(&wb->b_more_io))  {
784                         trace_writeback_wait(wb->bdi, work);
785                         inode = wb_inode(wb->b_more_io.prev);
786                         spin_lock(&inode->i_lock);
787                         inode_wait_for_writeback(inode, wb);
788                         spin_unlock(&inode->i_lock);
789                 }
790         }
791         spin_unlock(&wb->list_lock);
792
793         return nr_pages - work->nr_pages;
794 }
795
796 /*
797  * Return the next wb_writeback_work struct that hasn't been processed yet.
798  */
799 static struct wb_writeback_work *
800 get_next_work_item(struct backing_dev_info *bdi)
801 {
802         struct wb_writeback_work *work = NULL;
803
804         spin_lock_bh(&bdi->wb_lock);
805         if (!list_empty(&bdi->work_list)) {
806                 work = list_entry(bdi->work_list.next,
807                                   struct wb_writeback_work, list);
808                 list_del_init(&work->list);
809         }
810         spin_unlock_bh(&bdi->wb_lock);
811         return work;
812 }
813
814 /*
815  * Add in the number of potentially dirty inodes, because each inode
816  * write can dirty pagecache in the underlying blockdev.
817  */
818 static unsigned long get_nr_dirty_pages(void)
819 {
820         return global_page_state(NR_FILE_DIRTY) +
821                 global_page_state(NR_UNSTABLE_NFS) +
822                 get_nr_dirty_inodes();
823 }
824
825 static long wb_check_background_flush(struct bdi_writeback *wb)
826 {
827         if (over_bground_thresh(wb->bdi)) {
828
829                 struct wb_writeback_work work = {
830                         .nr_pages       = LONG_MAX,
831                         .sync_mode      = WB_SYNC_NONE,
832                         .for_background = 1,
833                         .range_cyclic   = 1,
834                         .reason         = WB_REASON_BACKGROUND,
835                 };
836
837                 return wb_writeback(wb, &work);
838         }
839
840         return 0;
841 }
842
843 static long wb_check_old_data_flush(struct bdi_writeback *wb)
844 {
845         unsigned long expired;
846         long nr_pages;
847
848         /*
849          * When set to zero, disable periodic writeback
850          */
851         if (!dirty_writeback_interval)
852                 return 0;
853
854         expired = wb->last_old_flush +
855                         msecs_to_jiffies(dirty_writeback_interval * 10);
856         if (time_before(jiffies, expired))
857                 return 0;
858
859         wb->last_old_flush = jiffies;
860         nr_pages = get_nr_dirty_pages();
861
862         if (nr_pages) {
863                 struct wb_writeback_work work = {
864                         .nr_pages       = nr_pages,
865                         .sync_mode      = WB_SYNC_NONE,
866                         .for_kupdate    = 1,
867                         .range_cyclic   = 1,
868                         .reason         = WB_REASON_PERIODIC,
869                 };
870
871                 return wb_writeback(wb, &work);
872         }
873
874         return 0;
875 }
876
877 /*
878  * Retrieve work items and do the writeback they describe
879  */
880 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
881 {
882         struct backing_dev_info *bdi = wb->bdi;
883         struct wb_writeback_work *work;
884         long wrote = 0;
885
886         set_bit(BDI_writeback_running, &wb->bdi->state);
887         while ((work = get_next_work_item(bdi)) != NULL) {
888                 /*
889                  * Override sync mode, in case we must wait for completion
890                  * because this thread is exiting now.
891                  */
892                 if (force_wait)
893                         work->sync_mode = WB_SYNC_ALL;
894
895                 trace_writeback_exec(bdi, work);
896
897                 wrote += wb_writeback(wb, work);
898
899                 /*
900                  * Notify the caller of completion if this is a synchronous
901                  * work item, otherwise just free it.
902                  */
903                 if (work->done)
904                         complete(work->done);
905                 else
906                         kfree(work);
907         }
908
909         /*
910          * Check for periodic writeback, kupdated() style
911          */
912         wrote += wb_check_old_data_flush(wb);
913         wrote += wb_check_background_flush(wb);
914         clear_bit(BDI_writeback_running, &wb->bdi->state);
915
916         return wrote;
917 }
918
919 /*
920  * Handle writeback of dirty data for the device backed by this bdi. Also
921  * wakes up periodically and does kupdated style flushing.
922  */
923 int bdi_writeback_thread(void *data)
924 {
925         struct bdi_writeback *wb = data;
926         struct backing_dev_info *bdi = wb->bdi;
927         long pages_written;
928
929         current->flags |= PF_SWAPWRITE;
930         set_freezable();
931         wb->last_active = jiffies;
932
933         /*
934          * Our parent may run at a different priority, just set us to normal
935          */
936         set_user_nice(current, 0);
937
938         trace_writeback_thread_start(bdi);
939
940         while (!kthread_should_stop()) {
941                 /*
942                  * Remove own delayed wake-up timer, since we are already awake
943                  * and we'll take care of the preriodic write-back.
944                  */
945                 del_timer(&wb->wakeup_timer);
946
947                 pages_written = wb_do_writeback(wb, 0);
948
949                 trace_writeback_pages_written(pages_written);
950
951                 if (pages_written)
952                         wb->last_active = jiffies;
953
954                 set_current_state(TASK_INTERRUPTIBLE);
955                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
956                         __set_current_state(TASK_RUNNING);
957                         continue;
958                 }
959
960                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
961                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
962                 else {
963                         /*
964                          * We have nothing to do, so can go sleep without any
965                          * timeout and save power. When a work is queued or
966                          * something is made dirty - we will be woken up.
967                          */
968                         schedule();
969                 }
970
971                 try_to_freeze();
972         }
973
974         /* Flush any work that raced with us exiting */
975         if (!list_empty(&bdi->work_list))
976                 wb_do_writeback(wb, 1);
977
978         trace_writeback_thread_stop(bdi);
979         return 0;
980 }
981
982
983 /*
984  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
985  * the whole world.
986  */
987 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
988 {
989         struct backing_dev_info *bdi;
990
991         if (!nr_pages) {
992                 nr_pages = global_page_state(NR_FILE_DIRTY) +
993                                 global_page_state(NR_UNSTABLE_NFS);
994         }
995
996         rcu_read_lock();
997         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
998                 if (!bdi_has_dirty_io(bdi))
999                         continue;
1000                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1001         }
1002         rcu_read_unlock();
1003 }
1004
1005 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1006 {
1007         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1008                 struct dentry *dentry;
1009                 const char *name = "?";
1010
1011                 dentry = d_find_alias(inode);
1012                 if (dentry) {
1013                         spin_lock(&dentry->d_lock);
1014                         name = (const char *) dentry->d_name.name;
1015                 }
1016                 printk(KERN_DEBUG
1017                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1018                        current->comm, task_pid_nr(current), inode->i_ino,
1019                        name, inode->i_sb->s_id);
1020                 if (dentry) {
1021                         spin_unlock(&dentry->d_lock);
1022                         dput(dentry);
1023                 }
1024         }
1025 }
1026
1027 /**
1028  *      __mark_inode_dirty -    internal function
1029  *      @inode: inode to mark
1030  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1031  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1032  *      mark_inode_dirty_sync.
1033  *
1034  * Put the inode on the super block's dirty list.
1035  *
1036  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1037  * dirty list only if it is hashed or if it refers to a blockdev.
1038  * If it was not hashed, it will never be added to the dirty list
1039  * even if it is later hashed, as it will have been marked dirty already.
1040  *
1041  * In short, make sure you hash any inodes _before_ you start marking
1042  * them dirty.
1043  *
1044  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1045  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1046  * the kernel-internal blockdev inode represents the dirtying time of the
1047  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1048  * page->mapping->host, so the page-dirtying time is recorded in the internal
1049  * blockdev inode.
1050  */
1051 void __mark_inode_dirty(struct inode *inode, int flags)
1052 {
1053         struct super_block *sb = inode->i_sb;
1054         struct backing_dev_info *bdi = NULL;
1055
1056         /*
1057          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1058          * dirty the inode itself
1059          */
1060         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1061                 if (sb->s_op->dirty_inode)
1062                         sb->s_op->dirty_inode(inode, flags);
1063         }
1064
1065         /*
1066          * make sure that changes are seen by all cpus before we test i_state
1067          * -- mikulas
1068          */
1069         smp_mb();
1070
1071         /* avoid the locking if we can */
1072         if ((inode->i_state & flags) == flags)
1073                 return;
1074
1075         if (unlikely(block_dump))
1076                 block_dump___mark_inode_dirty(inode);
1077
1078         spin_lock(&inode->i_lock);
1079         if ((inode->i_state & flags) != flags) {
1080                 const int was_dirty = inode->i_state & I_DIRTY;
1081
1082                 inode->i_state |= flags;
1083
1084                 /*
1085                  * If the inode is being synced, just update its dirty state.
1086                  * The unlocker will place the inode on the appropriate
1087                  * superblock list, based upon its state.
1088                  */
1089                 if (inode->i_state & I_SYNC)
1090                         goto out_unlock_inode;
1091
1092                 /*
1093                  * Only add valid (hashed) inodes to the superblock's
1094                  * dirty list.  Add blockdev inodes as well.
1095                  */
1096                 if (!S_ISBLK(inode->i_mode)) {
1097                         if (inode_unhashed(inode))
1098                                 goto out_unlock_inode;
1099                 }
1100                 if (inode->i_state & I_FREEING)
1101                         goto out_unlock_inode;
1102
1103                 /*
1104                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1105                  * reposition it (that would break b_dirty time-ordering).
1106                  */
1107                 if (!was_dirty) {
1108                         bool wakeup_bdi = false;
1109                         bdi = inode_to_bdi(inode);
1110
1111                         if (bdi_cap_writeback_dirty(bdi)) {
1112                                 WARN(!test_bit(BDI_registered, &bdi->state),
1113                                      "bdi-%s not registered\n", bdi->name);
1114
1115                                 /*
1116                                  * If this is the first dirty inode for this
1117                                  * bdi, we have to wake-up the corresponding
1118                                  * bdi thread to make sure background
1119                                  * write-back happens later.
1120                                  */
1121                                 if (!wb_has_dirty_io(&bdi->wb))
1122                                         wakeup_bdi = true;
1123                         }
1124
1125                         spin_unlock(&inode->i_lock);
1126                         spin_lock(&bdi->wb.list_lock);
1127                         inode->dirtied_when = jiffies;
1128                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1129                         spin_unlock(&bdi->wb.list_lock);
1130
1131                         if (wakeup_bdi)
1132                                 bdi_wakeup_thread_delayed(bdi);
1133                         return;
1134                 }
1135         }
1136 out_unlock_inode:
1137         spin_unlock(&inode->i_lock);
1138
1139 }
1140 EXPORT_SYMBOL(__mark_inode_dirty);
1141
1142 /*
1143  * Write out a superblock's list of dirty inodes.  A wait will be performed
1144  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1145  *
1146  * If older_than_this is non-NULL, then only write out inodes which
1147  * had their first dirtying at a time earlier than *older_than_this.
1148  *
1149  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1150  * This function assumes that the blockdev superblock's inodes are backed by
1151  * a variety of queues, so all inodes are searched.  For other superblocks,
1152  * assume that all inodes are backed by the same queue.
1153  *
1154  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1155  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1156  * on the writer throttling path, and we get decent balancing between many
1157  * throttled threads: we don't want them all piling up on inode_sync_wait.
1158  */
1159 static void wait_sb_inodes(struct super_block *sb)
1160 {
1161         struct inode *inode, *old_inode = NULL;
1162
1163         /*
1164          * We need to be protected against the filesystem going from
1165          * r/o to r/w or vice versa.
1166          */
1167         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1168
1169         spin_lock(&inode_sb_list_lock);
1170
1171         /*
1172          * Data integrity sync. Must wait for all pages under writeback,
1173          * because there may have been pages dirtied before our sync
1174          * call, but which had writeout started before we write it out.
1175          * In which case, the inode may not be on the dirty list, but
1176          * we still have to wait for that writeout.
1177          */
1178         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1179                 struct address_space *mapping = inode->i_mapping;
1180
1181                 spin_lock(&inode->i_lock);
1182                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1183                     (mapping->nrpages == 0)) {
1184                         spin_unlock(&inode->i_lock);
1185                         continue;
1186                 }
1187                 __iget(inode);
1188                 spin_unlock(&inode->i_lock);
1189                 spin_unlock(&inode_sb_list_lock);
1190
1191                 /*
1192                  * We hold a reference to 'inode' so it couldn't have been
1193                  * removed from s_inodes list while we dropped the
1194                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1195                  * be holding the last reference and we cannot iput it under
1196                  * inode_sb_list_lock. So we keep the reference and iput it
1197                  * later.
1198                  */
1199                 iput(old_inode);
1200                 old_inode = inode;
1201
1202                 filemap_fdatawait(mapping);
1203
1204                 cond_resched();
1205
1206                 spin_lock(&inode_sb_list_lock);
1207         }
1208         spin_unlock(&inode_sb_list_lock);
1209         iput(old_inode);
1210 }
1211
1212 /**
1213  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1214  * @sb: the superblock
1215  * @nr: the number of pages to write
1216  * @reason: reason why some writeback work initiated
1217  *
1218  * Start writeback on some inodes on this super_block. No guarantees are made
1219  * on how many (if any) will be written, and this function does not wait
1220  * for IO completion of submitted IO.
1221  */
1222 void writeback_inodes_sb_nr(struct super_block *sb,
1223                             unsigned long nr,
1224                             enum wb_reason reason)
1225 {
1226         DECLARE_COMPLETION_ONSTACK(done);
1227         struct wb_writeback_work work = {
1228                 .sb                     = sb,
1229                 .sync_mode              = WB_SYNC_NONE,
1230                 .tagged_writepages      = 1,
1231                 .done                   = &done,
1232                 .nr_pages               = nr,
1233                 .reason                 = reason,
1234         };
1235
1236         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1237         bdi_queue_work(sb->s_bdi, &work);
1238         wait_for_completion(&done);
1239 }
1240 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1241
1242 /**
1243  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1244  * @sb: the superblock
1245  * @reason: reason why some writeback work was initiated
1246  *
1247  * Start writeback on some inodes on this super_block. No guarantees are made
1248  * on how many (if any) will be written, and this function does not wait
1249  * for IO completion of submitted IO.
1250  */
1251 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1252 {
1253         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1254 }
1255 EXPORT_SYMBOL(writeback_inodes_sb);
1256
1257 /**
1258  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1259  * @sb: the superblock
1260  * @reason: reason why some writeback work was initiated
1261  *
1262  * Invoke writeback_inodes_sb if no writeback is currently underway.
1263  * Returns 1 if writeback was started, 0 if not.
1264  */
1265 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1266 {
1267         if (!writeback_in_progress(sb->s_bdi)) {
1268                 down_read(&sb->s_umount);
1269                 writeback_inodes_sb(sb, reason);
1270                 up_read(&sb->s_umount);
1271                 return 1;
1272         } else
1273                 return 0;
1274 }
1275 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1276
1277 /**
1278  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1279  * @sb: the superblock
1280  * @nr: the number of pages to write
1281  * @reason: reason why some writeback work was initiated
1282  *
1283  * Invoke writeback_inodes_sb if no writeback is currently underway.
1284  * Returns 1 if writeback was started, 0 if not.
1285  */
1286 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1287                                    unsigned long nr,
1288                                    enum wb_reason reason)
1289 {
1290         if (!writeback_in_progress(sb->s_bdi)) {
1291                 down_read(&sb->s_umount);
1292                 writeback_inodes_sb_nr(sb, nr, reason);
1293                 up_read(&sb->s_umount);
1294                 return 1;
1295         } else
1296                 return 0;
1297 }
1298 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1299
1300 /**
1301  * sync_inodes_sb       -       sync sb inode pages
1302  * @sb: the superblock
1303  *
1304  * This function writes and waits on any dirty inode belonging to this
1305  * super_block.
1306  */
1307 void sync_inodes_sb(struct super_block *sb)
1308 {
1309         DECLARE_COMPLETION_ONSTACK(done);
1310         struct wb_writeback_work work = {
1311                 .sb             = sb,
1312                 .sync_mode      = WB_SYNC_ALL,
1313                 .nr_pages       = LONG_MAX,
1314                 .range_cyclic   = 0,
1315                 .done           = &done,
1316                 .reason         = WB_REASON_SYNC,
1317         };
1318
1319         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1320
1321         bdi_queue_work(sb->s_bdi, &work);
1322         wait_for_completion(&done);
1323
1324         wait_sb_inodes(sb);
1325 }
1326 EXPORT_SYMBOL(sync_inodes_sb);
1327
1328 /**
1329  * write_inode_now      -       write an inode to disk
1330  * @inode: inode to write to disk
1331  * @sync: whether the write should be synchronous or not
1332  *
1333  * This function commits an inode to disk immediately if it is dirty. This is
1334  * primarily needed by knfsd.
1335  *
1336  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1337  */
1338 int write_inode_now(struct inode *inode, int sync)
1339 {
1340         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1341         int ret;
1342         struct writeback_control wbc = {
1343                 .nr_to_write = LONG_MAX,
1344                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1345                 .range_start = 0,
1346                 .range_end = LLONG_MAX,
1347         };
1348
1349         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1350                 wbc.nr_to_write = 0;
1351
1352         might_sleep();
1353         spin_lock(&wb->list_lock);
1354         spin_lock(&inode->i_lock);
1355         ret = writeback_single_inode(inode, wb, &wbc);
1356         spin_unlock(&inode->i_lock);
1357         spin_unlock(&wb->list_lock);
1358         if (sync)
1359                 inode_sync_wait(inode);
1360         return ret;
1361 }
1362 EXPORT_SYMBOL(write_inode_now);
1363
1364 /**
1365  * sync_inode - write an inode and its pages to disk.
1366  * @inode: the inode to sync
1367  * @wbc: controls the writeback mode
1368  *
1369  * sync_inode() will write an inode and its pages to disk.  It will also
1370  * correctly update the inode on its superblock's dirty inode lists and will
1371  * update inode->i_state.
1372  *
1373  * The caller must have a ref on the inode.
1374  */
1375 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1376 {
1377         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1378         int ret;
1379
1380         spin_lock(&wb->list_lock);
1381         spin_lock(&inode->i_lock);
1382         ret = writeback_single_inode(inode, wb, wbc);
1383         spin_unlock(&inode->i_lock);
1384         spin_unlock(&wb->list_lock);
1385         return ret;
1386 }
1387 EXPORT_SYMBOL(sync_inode);
1388
1389 /**
1390  * sync_inode_metadata - write an inode to disk
1391  * @inode: the inode to sync
1392  * @wait: wait for I/O to complete.
1393  *
1394  * Write an inode to disk and adjust its dirty state after completion.
1395  *
1396  * Note: only writes the actual inode, no associated data or other metadata.
1397  */
1398 int sync_inode_metadata(struct inode *inode, int wait)
1399 {
1400         struct writeback_control wbc = {
1401                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1402                 .nr_to_write = 0, /* metadata-only */
1403         };
1404
1405         return sync_inode(inode, &wbc);
1406 }
1407 EXPORT_SYMBOL(sync_inode_metadata);