ext4: tidy up a void argument in inode.c
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54                                               loff_t new_size)
55 {
56         return jbd2_journal_begin_ordered_truncate(
57                                         EXT4_SB(inode->i_sb)->s_journal,
58                                         &EXT4_I(inode)->jinode,
59                                         new_size);
60 }
61
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
64                                    struct buffer_head *bh_result, int create);
65 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
66 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
67 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
68 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
69
70 /*
71  * Test whether an inode is a fast symlink.
72  */
73 static int ext4_inode_is_fast_symlink(struct inode *inode)
74 {
75         int ea_blocks = EXT4_I(inode)->i_file_acl ?
76                 (inode->i_sb->s_blocksize >> 9) : 0;
77
78         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
79 }
80
81 /*
82  * Work out how many blocks we need to proceed with the next chunk of a
83  * truncate transaction.
84  */
85 static unsigned long blocks_for_truncate(struct inode *inode)
86 {
87         ext4_lblk_t needed;
88
89         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
90
91         /* Give ourselves just enough room to cope with inodes in which
92          * i_blocks is corrupt: we've seen disk corruptions in the past
93          * which resulted in random data in an inode which looked enough
94          * like a regular file for ext4 to try to delete it.  Things
95          * will go a bit crazy if that happens, but at least we should
96          * try not to panic the whole kernel. */
97         if (needed < 2)
98                 needed = 2;
99
100         /* But we need to bound the transaction so we don't overflow the
101          * journal. */
102         if (needed > EXT4_MAX_TRANS_DATA)
103                 needed = EXT4_MAX_TRANS_DATA;
104
105         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
106 }
107
108 /*
109  * Truncate transactions can be complex and absolutely huge.  So we need to
110  * be able to restart the transaction at a conventient checkpoint to make
111  * sure we don't overflow the journal.
112  *
113  * start_transaction gets us a new handle for a truncate transaction,
114  * and extend_transaction tries to extend the existing one a bit.  If
115  * extend fails, we need to propagate the failure up and restart the
116  * transaction in the top-level truncate loop. --sct
117  */
118 static handle_t *start_transaction(struct inode *inode)
119 {
120         handle_t *result;
121
122         result = ext4_journal_start(inode, blocks_for_truncate(inode));
123         if (!IS_ERR(result))
124                 return result;
125
126         ext4_std_error(inode->i_sb, PTR_ERR(result));
127         return result;
128 }
129
130 /*
131  * Try to extend this transaction for the purposes of truncation.
132  *
133  * Returns 0 if we managed to create more room.  If we can't create more
134  * room, and the transaction must be restarted we return 1.
135  */
136 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
137 {
138         if (!ext4_handle_valid(handle))
139                 return 0;
140         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
141                 return 0;
142         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
143                 return 0;
144         return 1;
145 }
146
147 /*
148  * Restart the transaction associated with *handle.  This does a commit,
149  * so before we call here everything must be consistently dirtied against
150  * this transaction.
151  */
152 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
153                                  int nblocks)
154 {
155         int ret;
156
157         /*
158          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
159          * moment, get_block can be called only for blocks inside i_size since
160          * page cache has been already dropped and writes are blocked by
161          * i_mutex. So we can safely drop the i_data_sem here.
162          */
163         BUG_ON(EXT4_JOURNAL(inode) == NULL);
164         jbd_debug(2, "restarting handle %p\n", handle);
165         up_write(&EXT4_I(inode)->i_data_sem);
166         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
167         down_write(&EXT4_I(inode)->i_data_sem);
168         ext4_discard_preallocations(inode);
169
170         return ret;
171 }
172
173 /*
174  * Called at the last iput() if i_nlink is zero.
175  */
176 void ext4_evict_inode(struct inode *inode)
177 {
178         handle_t *handle;
179         int err;
180
181         if (inode->i_nlink) {
182                 truncate_inode_pages(&inode->i_data, 0);
183                 goto no_delete;
184         }
185
186         if (!is_bad_inode(inode))
187                 dquot_initialize(inode);
188
189         if (ext4_should_order_data(inode))
190                 ext4_begin_ordered_truncate(inode, 0);
191         truncate_inode_pages(&inode->i_data, 0);
192
193         if (is_bad_inode(inode))
194                 goto no_delete;
195
196         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
197         if (IS_ERR(handle)) {
198                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
199                 /*
200                  * If we're going to skip the normal cleanup, we still need to
201                  * make sure that the in-core orphan linked list is properly
202                  * cleaned up.
203                  */
204                 ext4_orphan_del(NULL, inode);
205                 goto no_delete;
206         }
207
208         if (IS_SYNC(inode))
209                 ext4_handle_sync(handle);
210         inode->i_size = 0;
211         err = ext4_mark_inode_dirty(handle, inode);
212         if (err) {
213                 ext4_warning(inode->i_sb,
214                              "couldn't mark inode dirty (err %d)", err);
215                 goto stop_handle;
216         }
217         if (inode->i_blocks)
218                 ext4_truncate(inode);
219
220         /*
221          * ext4_ext_truncate() doesn't reserve any slop when it
222          * restarts journal transactions; therefore there may not be
223          * enough credits left in the handle to remove the inode from
224          * the orphan list and set the dtime field.
225          */
226         if (!ext4_handle_has_enough_credits(handle, 3)) {
227                 err = ext4_journal_extend(handle, 3);
228                 if (err > 0)
229                         err = ext4_journal_restart(handle, 3);
230                 if (err != 0) {
231                         ext4_warning(inode->i_sb,
232                                      "couldn't extend journal (err %d)", err);
233                 stop_handle:
234                         ext4_journal_stop(handle);
235                         ext4_orphan_del(NULL, inode);
236                         goto no_delete;
237                 }
238         }
239
240         /*
241          * Kill off the orphan record which ext4_truncate created.
242          * AKPM: I think this can be inside the above `if'.
243          * Note that ext4_orphan_del() has to be able to cope with the
244          * deletion of a non-existent orphan - this is because we don't
245          * know if ext4_truncate() actually created an orphan record.
246          * (Well, we could do this if we need to, but heck - it works)
247          */
248         ext4_orphan_del(handle, inode);
249         EXT4_I(inode)->i_dtime  = get_seconds();
250
251         /*
252          * One subtle ordering requirement: if anything has gone wrong
253          * (transaction abort, IO errors, whatever), then we can still
254          * do these next steps (the fs will already have been marked as
255          * having errors), but we can't free the inode if the mark_dirty
256          * fails.
257          */
258         if (ext4_mark_inode_dirty(handle, inode))
259                 /* If that failed, just do the required in-core inode clear. */
260                 ext4_clear_inode(inode);
261         else
262                 ext4_free_inode(handle, inode);
263         ext4_journal_stop(handle);
264         return;
265 no_delete:
266         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
267 }
268
269 typedef struct {
270         __le32  *p;
271         __le32  key;
272         struct buffer_head *bh;
273 } Indirect;
274
275 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
276 {
277         p->key = *(p->p = v);
278         p->bh = bh;
279 }
280
281 /**
282  *      ext4_block_to_path - parse the block number into array of offsets
283  *      @inode: inode in question (we are only interested in its superblock)
284  *      @i_block: block number to be parsed
285  *      @offsets: array to store the offsets in
286  *      @boundary: set this non-zero if the referred-to block is likely to be
287  *             followed (on disk) by an indirect block.
288  *
289  *      To store the locations of file's data ext4 uses a data structure common
290  *      for UNIX filesystems - tree of pointers anchored in the inode, with
291  *      data blocks at leaves and indirect blocks in intermediate nodes.
292  *      This function translates the block number into path in that tree -
293  *      return value is the path length and @offsets[n] is the offset of
294  *      pointer to (n+1)th node in the nth one. If @block is out of range
295  *      (negative or too large) warning is printed and zero returned.
296  *
297  *      Note: function doesn't find node addresses, so no IO is needed. All
298  *      we need to know is the capacity of indirect blocks (taken from the
299  *      inode->i_sb).
300  */
301
302 /*
303  * Portability note: the last comparison (check that we fit into triple
304  * indirect block) is spelled differently, because otherwise on an
305  * architecture with 32-bit longs and 8Kb pages we might get into trouble
306  * if our filesystem had 8Kb blocks. We might use long long, but that would
307  * kill us on x86. Oh, well, at least the sign propagation does not matter -
308  * i_block would have to be negative in the very beginning, so we would not
309  * get there at all.
310  */
311
312 static int ext4_block_to_path(struct inode *inode,
313                               ext4_lblk_t i_block,
314                               ext4_lblk_t offsets[4], int *boundary)
315 {
316         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
317         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
318         const long direct_blocks = EXT4_NDIR_BLOCKS,
319                 indirect_blocks = ptrs,
320                 double_blocks = (1 << (ptrs_bits * 2));
321         int n = 0;
322         int final = 0;
323
324         if (i_block < direct_blocks) {
325                 offsets[n++] = i_block;
326                 final = direct_blocks;
327         } else if ((i_block -= direct_blocks) < indirect_blocks) {
328                 offsets[n++] = EXT4_IND_BLOCK;
329                 offsets[n++] = i_block;
330                 final = ptrs;
331         } else if ((i_block -= indirect_blocks) < double_blocks) {
332                 offsets[n++] = EXT4_DIND_BLOCK;
333                 offsets[n++] = i_block >> ptrs_bits;
334                 offsets[n++] = i_block & (ptrs - 1);
335                 final = ptrs;
336         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
337                 offsets[n++] = EXT4_TIND_BLOCK;
338                 offsets[n++] = i_block >> (ptrs_bits * 2);
339                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
340                 offsets[n++] = i_block & (ptrs - 1);
341                 final = ptrs;
342         } else {
343                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
344                              i_block + direct_blocks +
345                              indirect_blocks + double_blocks, inode->i_ino);
346         }
347         if (boundary)
348                 *boundary = final - 1 - (i_block & (ptrs - 1));
349         return n;
350 }
351
352 static int __ext4_check_blockref(const char *function, unsigned int line,
353                                  struct inode *inode,
354                                  __le32 *p, unsigned int max)
355 {
356         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
357         __le32 *bref = p;
358         unsigned int blk;
359
360         while (bref < p+max) {
361                 blk = le32_to_cpu(*bref++);
362                 if (blk &&
363                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
364                                                     blk, 1))) {
365                         es->s_last_error_block = cpu_to_le64(blk);
366                         ext4_error_inode(inode, function, line, blk,
367                                          "invalid block");
368                         return -EIO;
369                 }
370         }
371         return 0;
372 }
373
374
375 #define ext4_check_indirect_blockref(inode, bh)                         \
376         __ext4_check_blockref(__func__, __LINE__, inode,                \
377                               (__le32 *)(bh)->b_data,                   \
378                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
379
380 #define ext4_check_inode_blockref(inode)                                \
381         __ext4_check_blockref(__func__, __LINE__, inode,                \
382                               EXT4_I(inode)->i_data,                    \
383                               EXT4_NDIR_BLOCKS)
384
385 /**
386  *      ext4_get_branch - read the chain of indirect blocks leading to data
387  *      @inode: inode in question
388  *      @depth: depth of the chain (1 - direct pointer, etc.)
389  *      @offsets: offsets of pointers in inode/indirect blocks
390  *      @chain: place to store the result
391  *      @err: here we store the error value
392  *
393  *      Function fills the array of triples <key, p, bh> and returns %NULL
394  *      if everything went OK or the pointer to the last filled triple
395  *      (incomplete one) otherwise. Upon the return chain[i].key contains
396  *      the number of (i+1)-th block in the chain (as it is stored in memory,
397  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
398  *      number (it points into struct inode for i==0 and into the bh->b_data
399  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
400  *      block for i>0 and NULL for i==0. In other words, it holds the block
401  *      numbers of the chain, addresses they were taken from (and where we can
402  *      verify that chain did not change) and buffer_heads hosting these
403  *      numbers.
404  *
405  *      Function stops when it stumbles upon zero pointer (absent block)
406  *              (pointer to last triple returned, *@err == 0)
407  *      or when it gets an IO error reading an indirect block
408  *              (ditto, *@err == -EIO)
409  *      or when it reads all @depth-1 indirect blocks successfully and finds
410  *      the whole chain, all way to the data (returns %NULL, *err == 0).
411  *
412  *      Need to be called with
413  *      down_read(&EXT4_I(inode)->i_data_sem)
414  */
415 static Indirect *ext4_get_branch(struct inode *inode, int depth,
416                                  ext4_lblk_t  *offsets,
417                                  Indirect chain[4], int *err)
418 {
419         struct super_block *sb = inode->i_sb;
420         Indirect *p = chain;
421         struct buffer_head *bh;
422
423         *err = 0;
424         /* i_data is not going away, no lock needed */
425         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
426         if (!p->key)
427                 goto no_block;
428         while (--depth) {
429                 bh = sb_getblk(sb, le32_to_cpu(p->key));
430                 if (unlikely(!bh))
431                         goto failure;
432
433                 if (!bh_uptodate_or_lock(bh)) {
434                         if (bh_submit_read(bh) < 0) {
435                                 put_bh(bh);
436                                 goto failure;
437                         }
438                         /* validate block references */
439                         if (ext4_check_indirect_blockref(inode, bh)) {
440                                 put_bh(bh);
441                                 goto failure;
442                         }
443                 }
444
445                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
446                 /* Reader: end */
447                 if (!p->key)
448                         goto no_block;
449         }
450         return NULL;
451
452 failure:
453         *err = -EIO;
454 no_block:
455         return p;
456 }
457
458 /**
459  *      ext4_find_near - find a place for allocation with sufficient locality
460  *      @inode: owner
461  *      @ind: descriptor of indirect block.
462  *
463  *      This function returns the preferred place for block allocation.
464  *      It is used when heuristic for sequential allocation fails.
465  *      Rules are:
466  *        + if there is a block to the left of our position - allocate near it.
467  *        + if pointer will live in indirect block - allocate near that block.
468  *        + if pointer will live in inode - allocate in the same
469  *          cylinder group.
470  *
471  * In the latter case we colour the starting block by the callers PID to
472  * prevent it from clashing with concurrent allocations for a different inode
473  * in the same block group.   The PID is used here so that functionally related
474  * files will be close-by on-disk.
475  *
476  *      Caller must make sure that @ind is valid and will stay that way.
477  */
478 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
479 {
480         struct ext4_inode_info *ei = EXT4_I(inode);
481         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
482         __le32 *p;
483         ext4_fsblk_t bg_start;
484         ext4_fsblk_t last_block;
485         ext4_grpblk_t colour;
486         ext4_group_t block_group;
487         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
488
489         /* Try to find previous block */
490         for (p = ind->p - 1; p >= start; p--) {
491                 if (*p)
492                         return le32_to_cpu(*p);
493         }
494
495         /* No such thing, so let's try location of indirect block */
496         if (ind->bh)
497                 return ind->bh->b_blocknr;
498
499         /*
500          * It is going to be referred to from the inode itself? OK, just put it
501          * into the same cylinder group then.
502          */
503         block_group = ei->i_block_group;
504         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
505                 block_group &= ~(flex_size-1);
506                 if (S_ISREG(inode->i_mode))
507                         block_group++;
508         }
509         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
510         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
511
512         /*
513          * If we are doing delayed allocation, we don't need take
514          * colour into account.
515          */
516         if (test_opt(inode->i_sb, DELALLOC))
517                 return bg_start;
518
519         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
520                 colour = (current->pid % 16) *
521                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
522         else
523                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
524         return bg_start + colour;
525 }
526
527 /**
528  *      ext4_find_goal - find a preferred place for allocation.
529  *      @inode: owner
530  *      @block:  block we want
531  *      @partial: pointer to the last triple within a chain
532  *
533  *      Normally this function find the preferred place for block allocation,
534  *      returns it.
535  *      Because this is only used for non-extent files, we limit the block nr
536  *      to 32 bits.
537  */
538 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
539                                    Indirect *partial)
540 {
541         ext4_fsblk_t goal;
542
543         /*
544          * XXX need to get goal block from mballoc's data structures
545          */
546
547         goal = ext4_find_near(inode, partial);
548         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
549         return goal;
550 }
551
552 /**
553  *      ext4_blks_to_allocate: Look up the block map and count the number
554  *      of direct blocks need to be allocated for the given branch.
555  *
556  *      @branch: chain of indirect blocks
557  *      @k: number of blocks need for indirect blocks
558  *      @blks: number of data blocks to be mapped.
559  *      @blocks_to_boundary:  the offset in the indirect block
560  *
561  *      return the total number of blocks to be allocate, including the
562  *      direct and indirect blocks.
563  */
564 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
565                                  int blocks_to_boundary)
566 {
567         unsigned int count = 0;
568
569         /*
570          * Simple case, [t,d]Indirect block(s) has not allocated yet
571          * then it's clear blocks on that path have not allocated
572          */
573         if (k > 0) {
574                 /* right now we don't handle cross boundary allocation */
575                 if (blks < blocks_to_boundary + 1)
576                         count += blks;
577                 else
578                         count += blocks_to_boundary + 1;
579                 return count;
580         }
581
582         count++;
583         while (count < blks && count <= blocks_to_boundary &&
584                 le32_to_cpu(*(branch[0].p + count)) == 0) {
585                 count++;
586         }
587         return count;
588 }
589
590 /**
591  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
592  *      @indirect_blks: the number of blocks need to allocate for indirect
593  *                      blocks
594  *
595  *      @new_blocks: on return it will store the new block numbers for
596  *      the indirect blocks(if needed) and the first direct block,
597  *      @blks:  on return it will store the total number of allocated
598  *              direct blocks
599  */
600 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
601                              ext4_lblk_t iblock, ext4_fsblk_t goal,
602                              int indirect_blks, int blks,
603                              ext4_fsblk_t new_blocks[4], int *err)
604 {
605         struct ext4_allocation_request ar;
606         int target, i;
607         unsigned long count = 0, blk_allocated = 0;
608         int index = 0;
609         ext4_fsblk_t current_block = 0;
610         int ret = 0;
611
612         /*
613          * Here we try to allocate the requested multiple blocks at once,
614          * on a best-effort basis.
615          * To build a branch, we should allocate blocks for
616          * the indirect blocks(if not allocated yet), and at least
617          * the first direct block of this branch.  That's the
618          * minimum number of blocks need to allocate(required)
619          */
620         /* first we try to allocate the indirect blocks */
621         target = indirect_blks;
622         while (target > 0) {
623                 count = target;
624                 /* allocating blocks for indirect blocks and direct blocks */
625                 current_block = ext4_new_meta_blocks(handle, inode,
626                                                         goal, &count, err);
627                 if (*err)
628                         goto failed_out;
629
630                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
631                         EXT4_ERROR_INODE(inode,
632                                          "current_block %llu + count %lu > %d!",
633                                          current_block, count,
634                                          EXT4_MAX_BLOCK_FILE_PHYS);
635                         *err = -EIO;
636                         goto failed_out;
637                 }
638
639                 target -= count;
640                 /* allocate blocks for indirect blocks */
641                 while (index < indirect_blks && count) {
642                         new_blocks[index++] = current_block++;
643                         count--;
644                 }
645                 if (count > 0) {
646                         /*
647                          * save the new block number
648                          * for the first direct block
649                          */
650                         new_blocks[index] = current_block;
651                         printk(KERN_INFO "%s returned more blocks than "
652                                                 "requested\n", __func__);
653                         WARN_ON(1);
654                         break;
655                 }
656         }
657
658         target = blks - count ;
659         blk_allocated = count;
660         if (!target)
661                 goto allocated;
662         /* Now allocate data blocks */
663         memset(&ar, 0, sizeof(ar));
664         ar.inode = inode;
665         ar.goal = goal;
666         ar.len = target;
667         ar.logical = iblock;
668         if (S_ISREG(inode->i_mode))
669                 /* enable in-core preallocation only for regular files */
670                 ar.flags = EXT4_MB_HINT_DATA;
671
672         current_block = ext4_mb_new_blocks(handle, &ar, err);
673         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
674                 EXT4_ERROR_INODE(inode,
675                                  "current_block %llu + ar.len %d > %d!",
676                                  current_block, ar.len,
677                                  EXT4_MAX_BLOCK_FILE_PHYS);
678                 *err = -EIO;
679                 goto failed_out;
680         }
681
682         if (*err && (target == blks)) {
683                 /*
684                  * if the allocation failed and we didn't allocate
685                  * any blocks before
686                  */
687                 goto failed_out;
688         }
689         if (!*err) {
690                 if (target == blks) {
691                         /*
692                          * save the new block number
693                          * for the first direct block
694                          */
695                         new_blocks[index] = current_block;
696                 }
697                 blk_allocated += ar.len;
698         }
699 allocated:
700         /* total number of blocks allocated for direct blocks */
701         ret = blk_allocated;
702         *err = 0;
703         return ret;
704 failed_out:
705         for (i = 0; i < index; i++)
706                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
707         return ret;
708 }
709
710 /**
711  *      ext4_alloc_branch - allocate and set up a chain of blocks.
712  *      @inode: owner
713  *      @indirect_blks: number of allocated indirect blocks
714  *      @blks: number of allocated direct blocks
715  *      @offsets: offsets (in the blocks) to store the pointers to next.
716  *      @branch: place to store the chain in.
717  *
718  *      This function allocates blocks, zeroes out all but the last one,
719  *      links them into chain and (if we are synchronous) writes them to disk.
720  *      In other words, it prepares a branch that can be spliced onto the
721  *      inode. It stores the information about that chain in the branch[], in
722  *      the same format as ext4_get_branch() would do. We are calling it after
723  *      we had read the existing part of chain and partial points to the last
724  *      triple of that (one with zero ->key). Upon the exit we have the same
725  *      picture as after the successful ext4_get_block(), except that in one
726  *      place chain is disconnected - *branch->p is still zero (we did not
727  *      set the last link), but branch->key contains the number that should
728  *      be placed into *branch->p to fill that gap.
729  *
730  *      If allocation fails we free all blocks we've allocated (and forget
731  *      their buffer_heads) and return the error value the from failed
732  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
733  *      as described above and return 0.
734  */
735 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
736                              ext4_lblk_t iblock, int indirect_blks,
737                              int *blks, ext4_fsblk_t goal,
738                              ext4_lblk_t *offsets, Indirect *branch)
739 {
740         int blocksize = inode->i_sb->s_blocksize;
741         int i, n = 0;
742         int err = 0;
743         struct buffer_head *bh;
744         int num;
745         ext4_fsblk_t new_blocks[4];
746         ext4_fsblk_t current_block;
747
748         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
749                                 *blks, new_blocks, &err);
750         if (err)
751                 return err;
752
753         branch[0].key = cpu_to_le32(new_blocks[0]);
754         /*
755          * metadata blocks and data blocks are allocated.
756          */
757         for (n = 1; n <= indirect_blks;  n++) {
758                 /*
759                  * Get buffer_head for parent block, zero it out
760                  * and set the pointer to new one, then send
761                  * parent to disk.
762                  */
763                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
764                 if (unlikely(!bh)) {
765                         err = -EIO;
766                         goto failed;
767                 }
768
769                 branch[n].bh = bh;
770                 lock_buffer(bh);
771                 BUFFER_TRACE(bh, "call get_create_access");
772                 err = ext4_journal_get_create_access(handle, bh);
773                 if (err) {
774                         /* Don't brelse(bh) here; it's done in
775                          * ext4_journal_forget() below */
776                         unlock_buffer(bh);
777                         goto failed;
778                 }
779
780                 memset(bh->b_data, 0, blocksize);
781                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
782                 branch[n].key = cpu_to_le32(new_blocks[n]);
783                 *branch[n].p = branch[n].key;
784                 if (n == indirect_blks) {
785                         current_block = new_blocks[n];
786                         /*
787                          * End of chain, update the last new metablock of
788                          * the chain to point to the new allocated
789                          * data blocks numbers
790                          */
791                         for (i = 1; i < num; i++)
792                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
793                 }
794                 BUFFER_TRACE(bh, "marking uptodate");
795                 set_buffer_uptodate(bh);
796                 unlock_buffer(bh);
797
798                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799                 err = ext4_handle_dirty_metadata(handle, inode, bh);
800                 if (err)
801                         goto failed;
802         }
803         *blks = num;
804         return err;
805 failed:
806         /* Allocation failed, free what we already allocated */
807         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
808         for (i = 1; i <= n ; i++) {
809                 /*
810                  * branch[i].bh is newly allocated, so there is no
811                  * need to revoke the block, which is why we don't
812                  * need to set EXT4_FREE_BLOCKS_METADATA.
813                  */
814                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
815                                  EXT4_FREE_BLOCKS_FORGET);
816         }
817         for (i = n+1; i < indirect_blks; i++)
818                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
819
820         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
821
822         return err;
823 }
824
825 /**
826  * ext4_splice_branch - splice the allocated branch onto inode.
827  * @inode: owner
828  * @block: (logical) number of block we are adding
829  * @chain: chain of indirect blocks (with a missing link - see
830  *      ext4_alloc_branch)
831  * @where: location of missing link
832  * @num:   number of indirect blocks we are adding
833  * @blks:  number of direct blocks we are adding
834  *
835  * This function fills the missing link and does all housekeeping needed in
836  * inode (->i_blocks, etc.). In case of success we end up with the full
837  * chain to new block and return 0.
838  */
839 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
840                               ext4_lblk_t block, Indirect *where, int num,
841                               int blks)
842 {
843         int i;
844         int err = 0;
845         ext4_fsblk_t current_block;
846
847         /*
848          * If we're splicing into a [td]indirect block (as opposed to the
849          * inode) then we need to get write access to the [td]indirect block
850          * before the splice.
851          */
852         if (where->bh) {
853                 BUFFER_TRACE(where->bh, "get_write_access");
854                 err = ext4_journal_get_write_access(handle, where->bh);
855                 if (err)
856                         goto err_out;
857         }
858         /* That's it */
859
860         *where->p = where->key;
861
862         /*
863          * Update the host buffer_head or inode to point to more just allocated
864          * direct blocks blocks
865          */
866         if (num == 0 && blks > 1) {
867                 current_block = le32_to_cpu(where->key) + 1;
868                 for (i = 1; i < blks; i++)
869                         *(where->p + i) = cpu_to_le32(current_block++);
870         }
871
872         /* We are done with atomic stuff, now do the rest of housekeeping */
873         /* had we spliced it onto indirect block? */
874         if (where->bh) {
875                 /*
876                  * If we spliced it onto an indirect block, we haven't
877                  * altered the inode.  Note however that if it is being spliced
878                  * onto an indirect block at the very end of the file (the
879                  * file is growing) then we *will* alter the inode to reflect
880                  * the new i_size.  But that is not done here - it is done in
881                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
882                  */
883                 jbd_debug(5, "splicing indirect only\n");
884                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
885                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
886                 if (err)
887                         goto err_out;
888         } else {
889                 /*
890                  * OK, we spliced it into the inode itself on a direct block.
891                  */
892                 ext4_mark_inode_dirty(handle, inode);
893                 jbd_debug(5, "splicing direct\n");
894         }
895         return err;
896
897 err_out:
898         for (i = 1; i <= num; i++) {
899                 /*
900                  * branch[i].bh is newly allocated, so there is no
901                  * need to revoke the block, which is why we don't
902                  * need to set EXT4_FREE_BLOCKS_METADATA.
903                  */
904                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
905                                  EXT4_FREE_BLOCKS_FORGET);
906         }
907         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
908                          blks, 0);
909
910         return err;
911 }
912
913 /*
914  * The ext4_ind_map_blocks() function handles non-extents inodes
915  * (i.e., using the traditional indirect/double-indirect i_blocks
916  * scheme) for ext4_map_blocks().
917  *
918  * Allocation strategy is simple: if we have to allocate something, we will
919  * have to go the whole way to leaf. So let's do it before attaching anything
920  * to tree, set linkage between the newborn blocks, write them if sync is
921  * required, recheck the path, free and repeat if check fails, otherwise
922  * set the last missing link (that will protect us from any truncate-generated
923  * removals - all blocks on the path are immune now) and possibly force the
924  * write on the parent block.
925  * That has a nice additional property: no special recovery from the failed
926  * allocations is needed - we simply release blocks and do not touch anything
927  * reachable from inode.
928  *
929  * `handle' can be NULL if create == 0.
930  *
931  * return > 0, # of blocks mapped or allocated.
932  * return = 0, if plain lookup failed.
933  * return < 0, error case.
934  *
935  * The ext4_ind_get_blocks() function should be called with
936  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
937  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
938  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
939  * blocks.
940  */
941 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
942                                struct ext4_map_blocks *map,
943                                int flags)
944 {
945         int err = -EIO;
946         ext4_lblk_t offsets[4];
947         Indirect chain[4];
948         Indirect *partial;
949         ext4_fsblk_t goal;
950         int indirect_blks;
951         int blocks_to_boundary = 0;
952         int depth;
953         int count = 0;
954         ext4_fsblk_t first_block = 0;
955
956         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
957         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
958         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
959                                    &blocks_to_boundary);
960
961         if (depth == 0)
962                 goto out;
963
964         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
965
966         /* Simplest case - block found, no allocation needed */
967         if (!partial) {
968                 first_block = le32_to_cpu(chain[depth - 1].key);
969                 count++;
970                 /*map more blocks*/
971                 while (count < map->m_len && count <= blocks_to_boundary) {
972                         ext4_fsblk_t blk;
973
974                         blk = le32_to_cpu(*(chain[depth-1].p + count));
975
976                         if (blk == first_block + count)
977                                 count++;
978                         else
979                                 break;
980                 }
981                 goto got_it;
982         }
983
984         /* Next simple case - plain lookup or failed read of indirect block */
985         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
986                 goto cleanup;
987
988         /*
989          * Okay, we need to do block allocation.
990         */
991         goal = ext4_find_goal(inode, map->m_lblk, partial);
992
993         /* the number of blocks need to allocate for [d,t]indirect blocks */
994         indirect_blks = (chain + depth) - partial - 1;
995
996         /*
997          * Next look up the indirect map to count the totoal number of
998          * direct blocks to allocate for this branch.
999          */
1000         count = ext4_blks_to_allocate(partial, indirect_blks,
1001                                       map->m_len, blocks_to_boundary);
1002         /*
1003          * Block out ext4_truncate while we alter the tree
1004          */
1005         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1006                                 &count, goal,
1007                                 offsets + (partial - chain), partial);
1008
1009         /*
1010          * The ext4_splice_branch call will free and forget any buffers
1011          * on the new chain if there is a failure, but that risks using
1012          * up transaction credits, especially for bitmaps where the
1013          * credits cannot be returned.  Can we handle this somehow?  We
1014          * may need to return -EAGAIN upwards in the worst case.  --sct
1015          */
1016         if (!err)
1017                 err = ext4_splice_branch(handle, inode, map->m_lblk,
1018                                          partial, indirect_blks, count);
1019         if (err)
1020                 goto cleanup;
1021
1022         map->m_flags |= EXT4_MAP_NEW;
1023
1024         ext4_update_inode_fsync_trans(handle, inode, 1);
1025 got_it:
1026         map->m_flags |= EXT4_MAP_MAPPED;
1027         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1028         map->m_len = count;
1029         if (count > blocks_to_boundary)
1030                 map->m_flags |= EXT4_MAP_BOUNDARY;
1031         err = count;
1032         /* Clean up and exit */
1033         partial = chain + depth - 1;    /* the whole chain */
1034 cleanup:
1035         while (partial > chain) {
1036                 BUFFER_TRACE(partial->bh, "call brelse");
1037                 brelse(partial->bh);
1038                 partial--;
1039         }
1040 out:
1041         return err;
1042 }
1043
1044 #ifdef CONFIG_QUOTA
1045 qsize_t *ext4_get_reserved_space(struct inode *inode)
1046 {
1047         return &EXT4_I(inode)->i_reserved_quota;
1048 }
1049 #endif
1050
1051 /*
1052  * Calculate the number of metadata blocks need to reserve
1053  * to allocate a new block at @lblocks for non extent file based file
1054  */
1055 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1056                                               sector_t lblock)
1057 {
1058         struct ext4_inode_info *ei = EXT4_I(inode);
1059         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1060         int blk_bits;
1061
1062         if (lblock < EXT4_NDIR_BLOCKS)
1063                 return 0;
1064
1065         lblock -= EXT4_NDIR_BLOCKS;
1066
1067         if (ei->i_da_metadata_calc_len &&
1068             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1069                 ei->i_da_metadata_calc_len++;
1070                 return 0;
1071         }
1072         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1073         ei->i_da_metadata_calc_len = 1;
1074         blk_bits = order_base_2(lblock);
1075         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1076 }
1077
1078 /*
1079  * Calculate the number of metadata blocks need to reserve
1080  * to allocate a block located at @lblock
1081  */
1082 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1083 {
1084         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1085                 return ext4_ext_calc_metadata_amount(inode, lblock);
1086
1087         return ext4_indirect_calc_metadata_amount(inode, lblock);
1088 }
1089
1090 /*
1091  * Called with i_data_sem down, which is important since we can call
1092  * ext4_discard_preallocations() from here.
1093  */
1094 void ext4_da_update_reserve_space(struct inode *inode,
1095                                         int used, int quota_claim)
1096 {
1097         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1098         struct ext4_inode_info *ei = EXT4_I(inode);
1099
1100         spin_lock(&ei->i_block_reservation_lock);
1101         trace_ext4_da_update_reserve_space(inode, used);
1102         if (unlikely(used > ei->i_reserved_data_blocks)) {
1103                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1104                          "with only %d reserved data blocks\n",
1105                          __func__, inode->i_ino, used,
1106                          ei->i_reserved_data_blocks);
1107                 WARN_ON(1);
1108                 used = ei->i_reserved_data_blocks;
1109         }
1110
1111         /* Update per-inode reservations */
1112         ei->i_reserved_data_blocks -= used;
1113         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1114         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1115                            used + ei->i_allocated_meta_blocks);
1116         ei->i_allocated_meta_blocks = 0;
1117
1118         if (ei->i_reserved_data_blocks == 0) {
1119                 /*
1120                  * We can release all of the reserved metadata blocks
1121                  * only when we have written all of the delayed
1122                  * allocation blocks.
1123                  */
1124                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1125                                    ei->i_reserved_meta_blocks);
1126                 ei->i_reserved_meta_blocks = 0;
1127                 ei->i_da_metadata_calc_len = 0;
1128         }
1129         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1130
1131         /* Update quota subsystem for data blocks */
1132         if (quota_claim)
1133                 dquot_claim_block(inode, used);
1134         else {
1135                 /*
1136                  * We did fallocate with an offset that is already delayed
1137                  * allocated. So on delayed allocated writeback we should
1138                  * not re-claim the quota for fallocated blocks.
1139                  */
1140                 dquot_release_reservation_block(inode, used);
1141         }
1142
1143         /*
1144          * If we have done all the pending block allocations and if
1145          * there aren't any writers on the inode, we can discard the
1146          * inode's preallocations.
1147          */
1148         if ((ei->i_reserved_data_blocks == 0) &&
1149             (atomic_read(&inode->i_writecount) == 0))
1150                 ext4_discard_preallocations(inode);
1151 }
1152
1153 static int __check_block_validity(struct inode *inode, const char *func,
1154                                 unsigned int line,
1155                                 struct ext4_map_blocks *map)
1156 {
1157         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1158                                    map->m_len)) {
1159                 ext4_error_inode(inode, func, line, map->m_pblk,
1160                                  "lblock %lu mapped to illegal pblock "
1161                                  "(length %d)", (unsigned long) map->m_lblk,
1162                                  map->m_len);
1163                 return -EIO;
1164         }
1165         return 0;
1166 }
1167
1168 #define check_block_validity(inode, map)        \
1169         __check_block_validity((inode), __func__, __LINE__, (map))
1170
1171 /*
1172  * Return the number of contiguous dirty pages in a given inode
1173  * starting at page frame idx.
1174  */
1175 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1176                                     unsigned int max_pages)
1177 {
1178         struct address_space *mapping = inode->i_mapping;
1179         pgoff_t index;
1180         struct pagevec pvec;
1181         pgoff_t num = 0;
1182         int i, nr_pages, done = 0;
1183
1184         if (max_pages == 0)
1185                 return 0;
1186         pagevec_init(&pvec, 0);
1187         while (!done) {
1188                 index = idx;
1189                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1190                                               PAGECACHE_TAG_DIRTY,
1191                                               (pgoff_t)PAGEVEC_SIZE);
1192                 if (nr_pages == 0)
1193                         break;
1194                 for (i = 0; i < nr_pages; i++) {
1195                         struct page *page = pvec.pages[i];
1196                         struct buffer_head *bh, *head;
1197
1198                         lock_page(page);
1199                         if (unlikely(page->mapping != mapping) ||
1200                             !PageDirty(page) ||
1201                             PageWriteback(page) ||
1202                             page->index != idx) {
1203                                 done = 1;
1204                                 unlock_page(page);
1205                                 break;
1206                         }
1207                         if (page_has_buffers(page)) {
1208                                 bh = head = page_buffers(page);
1209                                 do {
1210                                         if (!buffer_delay(bh) &&
1211                                             !buffer_unwritten(bh))
1212                                                 done = 1;
1213                                         bh = bh->b_this_page;
1214                                 } while (!done && (bh != head));
1215                         }
1216                         unlock_page(page);
1217                         if (done)
1218                                 break;
1219                         idx++;
1220                         num++;
1221                         if (num >= max_pages) {
1222                                 done = 1;
1223                                 break;
1224                         }
1225                 }
1226                 pagevec_release(&pvec);
1227         }
1228         return num;
1229 }
1230
1231 /*
1232  * The ext4_map_blocks() function tries to look up the requested blocks,
1233  * and returns if the blocks are already mapped.
1234  *
1235  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1236  * and store the allocated blocks in the result buffer head and mark it
1237  * mapped.
1238  *
1239  * If file type is extents based, it will call ext4_ext_map_blocks(),
1240  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1241  * based files
1242  *
1243  * On success, it returns the number of blocks being mapped or allocate.
1244  * if create==0 and the blocks are pre-allocated and uninitialized block,
1245  * the result buffer head is unmapped. If the create ==1, it will make sure
1246  * the buffer head is mapped.
1247  *
1248  * It returns 0 if plain look up failed (blocks have not been allocated), in
1249  * that casem, buffer head is unmapped
1250  *
1251  * It returns the error in case of allocation failure.
1252  */
1253 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1254                     struct ext4_map_blocks *map, int flags)
1255 {
1256         int retval;
1257
1258         map->m_flags = 0;
1259         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1260                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1261                   (unsigned long) map->m_lblk);
1262         /*
1263          * Try to see if we can get the block without requesting a new
1264          * file system block.
1265          */
1266         down_read((&EXT4_I(inode)->i_data_sem));
1267         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1268                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1269         } else {
1270                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1271         }
1272         up_read((&EXT4_I(inode)->i_data_sem));
1273
1274         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1275                 int ret = check_block_validity(inode, map);
1276                 if (ret != 0)
1277                         return ret;
1278         }
1279
1280         /* If it is only a block(s) look up */
1281         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1282                 return retval;
1283
1284         /*
1285          * Returns if the blocks have already allocated
1286          *
1287          * Note that if blocks have been preallocated
1288          * ext4_ext_get_block() returns th create = 0
1289          * with buffer head unmapped.
1290          */
1291         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1292                 return retval;
1293
1294         /*
1295          * When we call get_blocks without the create flag, the
1296          * BH_Unwritten flag could have gotten set if the blocks
1297          * requested were part of a uninitialized extent.  We need to
1298          * clear this flag now that we are committed to convert all or
1299          * part of the uninitialized extent to be an initialized
1300          * extent.  This is because we need to avoid the combination
1301          * of BH_Unwritten and BH_Mapped flags being simultaneously
1302          * set on the buffer_head.
1303          */
1304         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1305
1306         /*
1307          * New blocks allocate and/or writing to uninitialized extent
1308          * will possibly result in updating i_data, so we take
1309          * the write lock of i_data_sem, and call get_blocks()
1310          * with create == 1 flag.
1311          */
1312         down_write((&EXT4_I(inode)->i_data_sem));
1313
1314         /*
1315          * if the caller is from delayed allocation writeout path
1316          * we have already reserved fs blocks for allocation
1317          * let the underlying get_block() function know to
1318          * avoid double accounting
1319          */
1320         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1321                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1322         /*
1323          * We need to check for EXT4 here because migrate
1324          * could have changed the inode type in between
1325          */
1326         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1327                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1328         } else {
1329                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1330
1331                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1332                         /*
1333                          * We allocated new blocks which will result in
1334                          * i_data's format changing.  Force the migrate
1335                          * to fail by clearing migrate flags
1336                          */
1337                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1338                 }
1339
1340                 /*
1341                  * Update reserved blocks/metadata blocks after successful
1342                  * block allocation which had been deferred till now. We don't
1343                  * support fallocate for non extent files. So we can update
1344                  * reserve space here.
1345                  */
1346                 if ((retval > 0) &&
1347                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1348                         ext4_da_update_reserve_space(inode, retval, 1);
1349         }
1350         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1351                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1352
1353         up_write((&EXT4_I(inode)->i_data_sem));
1354         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1355                 int ret = check_block_validity(inode, map);
1356                 if (ret != 0)
1357                         return ret;
1358         }
1359         return retval;
1360 }
1361
1362 /* Maximum number of blocks we map for direct IO at once. */
1363 #define DIO_MAX_BLOCKS 4096
1364
1365 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1366                            struct buffer_head *bh, int flags)
1367 {
1368         handle_t *handle = ext4_journal_current_handle();
1369         struct ext4_map_blocks map;
1370         int ret = 0, started = 0;
1371         int dio_credits;
1372
1373         map.m_lblk = iblock;
1374         map.m_len = bh->b_size >> inode->i_blkbits;
1375
1376         if (flags && !handle) {
1377                 /* Direct IO write... */
1378                 if (map.m_len > DIO_MAX_BLOCKS)
1379                         map.m_len = DIO_MAX_BLOCKS;
1380                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1381                 handle = ext4_journal_start(inode, dio_credits);
1382                 if (IS_ERR(handle)) {
1383                         ret = PTR_ERR(handle);
1384                         return ret;
1385                 }
1386                 started = 1;
1387         }
1388
1389         ret = ext4_map_blocks(handle, inode, &map, flags);
1390         if (ret > 0) {
1391                 map_bh(bh, inode->i_sb, map.m_pblk);
1392                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1393                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1394                 ret = 0;
1395         }
1396         if (started)
1397                 ext4_journal_stop(handle);
1398         return ret;
1399 }
1400
1401 int ext4_get_block(struct inode *inode, sector_t iblock,
1402                    struct buffer_head *bh, int create)
1403 {
1404         return _ext4_get_block(inode, iblock, bh,
1405                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1406 }
1407
1408 /*
1409  * `handle' can be NULL if create is zero
1410  */
1411 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1412                                 ext4_lblk_t block, int create, int *errp)
1413 {
1414         struct ext4_map_blocks map;
1415         struct buffer_head *bh;
1416         int fatal = 0, err;
1417
1418         J_ASSERT(handle != NULL || create == 0);
1419
1420         map.m_lblk = block;
1421         map.m_len = 1;
1422         err = ext4_map_blocks(handle, inode, &map,
1423                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1424
1425         if (err < 0)
1426                 *errp = err;
1427         if (err <= 0)
1428                 return NULL;
1429         *errp = 0;
1430
1431         bh = sb_getblk(inode->i_sb, map.m_pblk);
1432         if (!bh) {
1433                 *errp = -EIO;
1434                 return NULL;
1435         }
1436         if (map.m_flags & EXT4_MAP_NEW) {
1437                 J_ASSERT(create != 0);
1438                 J_ASSERT(handle != NULL);
1439
1440                 /*
1441                  * Now that we do not always journal data, we should
1442                  * keep in mind whether this should always journal the
1443                  * new buffer as metadata.  For now, regular file
1444                  * writes use ext4_get_block instead, so it's not a
1445                  * problem.
1446                  */
1447                 lock_buffer(bh);
1448                 BUFFER_TRACE(bh, "call get_create_access");
1449                 fatal = ext4_journal_get_create_access(handle, bh);
1450                 if (!fatal && !buffer_uptodate(bh)) {
1451                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1452                         set_buffer_uptodate(bh);
1453                 }
1454                 unlock_buffer(bh);
1455                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1456                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1457                 if (!fatal)
1458                         fatal = err;
1459         } else {
1460                 BUFFER_TRACE(bh, "not a new buffer");
1461         }
1462         if (fatal) {
1463                 *errp = fatal;
1464                 brelse(bh);
1465                 bh = NULL;
1466         }
1467         return bh;
1468 }
1469
1470 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1471                                ext4_lblk_t block, int create, int *err)
1472 {
1473         struct buffer_head *bh;
1474
1475         bh = ext4_getblk(handle, inode, block, create, err);
1476         if (!bh)
1477                 return bh;
1478         if (buffer_uptodate(bh))
1479                 return bh;
1480         ll_rw_block(READ_META, 1, &bh);
1481         wait_on_buffer(bh);
1482         if (buffer_uptodate(bh))
1483                 return bh;
1484         put_bh(bh);
1485         *err = -EIO;
1486         return NULL;
1487 }
1488
1489 static int walk_page_buffers(handle_t *handle,
1490                              struct buffer_head *head,
1491                              unsigned from,
1492                              unsigned to,
1493                              int *partial,
1494                              int (*fn)(handle_t *handle,
1495                                        struct buffer_head *bh))
1496 {
1497         struct buffer_head *bh;
1498         unsigned block_start, block_end;
1499         unsigned blocksize = head->b_size;
1500         int err, ret = 0;
1501         struct buffer_head *next;
1502
1503         for (bh = head, block_start = 0;
1504              ret == 0 && (bh != head || !block_start);
1505              block_start = block_end, bh = next) {
1506                 next = bh->b_this_page;
1507                 block_end = block_start + blocksize;
1508                 if (block_end <= from || block_start >= to) {
1509                         if (partial && !buffer_uptodate(bh))
1510                                 *partial = 1;
1511                         continue;
1512                 }
1513                 err = (*fn)(handle, bh);
1514                 if (!ret)
1515                         ret = err;
1516         }
1517         return ret;
1518 }
1519
1520 /*
1521  * To preserve ordering, it is essential that the hole instantiation and
1522  * the data write be encapsulated in a single transaction.  We cannot
1523  * close off a transaction and start a new one between the ext4_get_block()
1524  * and the commit_write().  So doing the jbd2_journal_start at the start of
1525  * prepare_write() is the right place.
1526  *
1527  * Also, this function can nest inside ext4_writepage() ->
1528  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1529  * has generated enough buffer credits to do the whole page.  So we won't
1530  * block on the journal in that case, which is good, because the caller may
1531  * be PF_MEMALLOC.
1532  *
1533  * By accident, ext4 can be reentered when a transaction is open via
1534  * quota file writes.  If we were to commit the transaction while thus
1535  * reentered, there can be a deadlock - we would be holding a quota
1536  * lock, and the commit would never complete if another thread had a
1537  * transaction open and was blocking on the quota lock - a ranking
1538  * violation.
1539  *
1540  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1541  * will _not_ run commit under these circumstances because handle->h_ref
1542  * is elevated.  We'll still have enough credits for the tiny quotafile
1543  * write.
1544  */
1545 static int do_journal_get_write_access(handle_t *handle,
1546                                        struct buffer_head *bh)
1547 {
1548         int dirty = buffer_dirty(bh);
1549         int ret;
1550
1551         if (!buffer_mapped(bh) || buffer_freed(bh))
1552                 return 0;
1553         /*
1554          * __block_prepare_write() could have dirtied some buffers. Clean
1555          * the dirty bit as jbd2_journal_get_write_access() could complain
1556          * otherwise about fs integrity issues. Setting of the dirty bit
1557          * by __block_prepare_write() isn't a real problem here as we clear
1558          * the bit before releasing a page lock and thus writeback cannot
1559          * ever write the buffer.
1560          */
1561         if (dirty)
1562                 clear_buffer_dirty(bh);
1563         ret = ext4_journal_get_write_access(handle, bh);
1564         if (!ret && dirty)
1565                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1566         return ret;
1567 }
1568
1569 /*
1570  * Truncate blocks that were not used by write. We have to truncate the
1571  * pagecache as well so that corresponding buffers get properly unmapped.
1572  */
1573 static void ext4_truncate_failed_write(struct inode *inode)
1574 {
1575         truncate_inode_pages(inode->i_mapping, inode->i_size);
1576         ext4_truncate(inode);
1577 }
1578
1579 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1580                    struct buffer_head *bh_result, int create);
1581 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1582                             loff_t pos, unsigned len, unsigned flags,
1583                             struct page **pagep, void **fsdata)
1584 {
1585         struct inode *inode = mapping->host;
1586         int ret, needed_blocks;
1587         handle_t *handle;
1588         int retries = 0;
1589         struct page *page;
1590         pgoff_t index;
1591         unsigned from, to;
1592
1593         trace_ext4_write_begin(inode, pos, len, flags);
1594         /*
1595          * Reserve one block more for addition to orphan list in case
1596          * we allocate blocks but write fails for some reason
1597          */
1598         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1599         index = pos >> PAGE_CACHE_SHIFT;
1600         from = pos & (PAGE_CACHE_SIZE - 1);
1601         to = from + len;
1602
1603 retry:
1604         handle = ext4_journal_start(inode, needed_blocks);
1605         if (IS_ERR(handle)) {
1606                 ret = PTR_ERR(handle);
1607                 goto out;
1608         }
1609
1610         /* We cannot recurse into the filesystem as the transaction is already
1611          * started */
1612         flags |= AOP_FLAG_NOFS;
1613
1614         page = grab_cache_page_write_begin(mapping, index, flags);
1615         if (!page) {
1616                 ext4_journal_stop(handle);
1617                 ret = -ENOMEM;
1618                 goto out;
1619         }
1620         *pagep = page;
1621
1622         if (ext4_should_dioread_nolock(inode))
1623                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1624         else
1625                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1626
1627         if (!ret && ext4_should_journal_data(inode)) {
1628                 ret = walk_page_buffers(handle, page_buffers(page),
1629                                 from, to, NULL, do_journal_get_write_access);
1630         }
1631
1632         if (ret) {
1633                 unlock_page(page);
1634                 page_cache_release(page);
1635                 /*
1636                  * __block_write_begin may have instantiated a few blocks
1637                  * outside i_size.  Trim these off again. Don't need
1638                  * i_size_read because we hold i_mutex.
1639                  *
1640                  * Add inode to orphan list in case we crash before
1641                  * truncate finishes
1642                  */
1643                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1644                         ext4_orphan_add(handle, inode);
1645
1646                 ext4_journal_stop(handle);
1647                 if (pos + len > inode->i_size) {
1648                         ext4_truncate_failed_write(inode);
1649                         /*
1650                          * If truncate failed early the inode might
1651                          * still be on the orphan list; we need to
1652                          * make sure the inode is removed from the
1653                          * orphan list in that case.
1654                          */
1655                         if (inode->i_nlink)
1656                                 ext4_orphan_del(NULL, inode);
1657                 }
1658         }
1659
1660         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1661                 goto retry;
1662 out:
1663         return ret;
1664 }
1665
1666 /* For write_end() in data=journal mode */
1667 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1668 {
1669         if (!buffer_mapped(bh) || buffer_freed(bh))
1670                 return 0;
1671         set_buffer_uptodate(bh);
1672         return ext4_handle_dirty_metadata(handle, NULL, bh);
1673 }
1674
1675 static int ext4_generic_write_end(struct file *file,
1676                                   struct address_space *mapping,
1677                                   loff_t pos, unsigned len, unsigned copied,
1678                                   struct page *page, void *fsdata)
1679 {
1680         int i_size_changed = 0;
1681         struct inode *inode = mapping->host;
1682         handle_t *handle = ext4_journal_current_handle();
1683
1684         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1685
1686         /*
1687          * No need to use i_size_read() here, the i_size
1688          * cannot change under us because we hold i_mutex.
1689          *
1690          * But it's important to update i_size while still holding page lock:
1691          * page writeout could otherwise come in and zero beyond i_size.
1692          */
1693         if (pos + copied > inode->i_size) {
1694                 i_size_write(inode, pos + copied);
1695                 i_size_changed = 1;
1696         }
1697
1698         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1699                 /* We need to mark inode dirty even if
1700                  * new_i_size is less that inode->i_size
1701                  * bu greater than i_disksize.(hint delalloc)
1702                  */
1703                 ext4_update_i_disksize(inode, (pos + copied));
1704                 i_size_changed = 1;
1705         }
1706         unlock_page(page);
1707         page_cache_release(page);
1708
1709         /*
1710          * Don't mark the inode dirty under page lock. First, it unnecessarily
1711          * makes the holding time of page lock longer. Second, it forces lock
1712          * ordering of page lock and transaction start for journaling
1713          * filesystems.
1714          */
1715         if (i_size_changed)
1716                 ext4_mark_inode_dirty(handle, inode);
1717
1718         return copied;
1719 }
1720
1721 /*
1722  * We need to pick up the new inode size which generic_commit_write gave us
1723  * `file' can be NULL - eg, when called from page_symlink().
1724  *
1725  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1726  * buffers are managed internally.
1727  */
1728 static int ext4_ordered_write_end(struct file *file,
1729                                   struct address_space *mapping,
1730                                   loff_t pos, unsigned len, unsigned copied,
1731                                   struct page *page, void *fsdata)
1732 {
1733         handle_t *handle = ext4_journal_current_handle();
1734         struct inode *inode = mapping->host;
1735         int ret = 0, ret2;
1736
1737         trace_ext4_ordered_write_end(inode, pos, len, copied);
1738         ret = ext4_jbd2_file_inode(handle, inode);
1739
1740         if (ret == 0) {
1741                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1742                                                         page, fsdata);
1743                 copied = ret2;
1744                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1745                         /* if we have allocated more blocks and copied
1746                          * less. We will have blocks allocated outside
1747                          * inode->i_size. So truncate them
1748                          */
1749                         ext4_orphan_add(handle, inode);
1750                 if (ret2 < 0)
1751                         ret = ret2;
1752         }
1753         ret2 = ext4_journal_stop(handle);
1754         if (!ret)
1755                 ret = ret2;
1756
1757         if (pos + len > inode->i_size) {
1758                 ext4_truncate_failed_write(inode);
1759                 /*
1760                  * If truncate failed early the inode might still be
1761                  * on the orphan list; we need to make sure the inode
1762                  * is removed from the orphan list in that case.
1763                  */
1764                 if (inode->i_nlink)
1765                         ext4_orphan_del(NULL, inode);
1766         }
1767
1768
1769         return ret ? ret : copied;
1770 }
1771
1772 static int ext4_writeback_write_end(struct file *file,
1773                                     struct address_space *mapping,
1774                                     loff_t pos, unsigned len, unsigned copied,
1775                                     struct page *page, void *fsdata)
1776 {
1777         handle_t *handle = ext4_journal_current_handle();
1778         struct inode *inode = mapping->host;
1779         int ret = 0, ret2;
1780
1781         trace_ext4_writeback_write_end(inode, pos, len, copied);
1782         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1783                                                         page, fsdata);
1784         copied = ret2;
1785         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1786                 /* if we have allocated more blocks and copied
1787                  * less. We will have blocks allocated outside
1788                  * inode->i_size. So truncate them
1789                  */
1790                 ext4_orphan_add(handle, inode);
1791
1792         if (ret2 < 0)
1793                 ret = ret2;
1794
1795         ret2 = ext4_journal_stop(handle);
1796         if (!ret)
1797                 ret = ret2;
1798
1799         if (pos + len > inode->i_size) {
1800                 ext4_truncate_failed_write(inode);
1801                 /*
1802                  * If truncate failed early the inode might still be
1803                  * on the orphan list; we need to make sure the inode
1804                  * is removed from the orphan list in that case.
1805                  */
1806                 if (inode->i_nlink)
1807                         ext4_orphan_del(NULL, inode);
1808         }
1809
1810         return ret ? ret : copied;
1811 }
1812
1813 static int ext4_journalled_write_end(struct file *file,
1814                                      struct address_space *mapping,
1815                                      loff_t pos, unsigned len, unsigned copied,
1816                                      struct page *page, void *fsdata)
1817 {
1818         handle_t *handle = ext4_journal_current_handle();
1819         struct inode *inode = mapping->host;
1820         int ret = 0, ret2;
1821         int partial = 0;
1822         unsigned from, to;
1823         loff_t new_i_size;
1824
1825         trace_ext4_journalled_write_end(inode, pos, len, copied);
1826         from = pos & (PAGE_CACHE_SIZE - 1);
1827         to = from + len;
1828
1829         if (copied < len) {
1830                 if (!PageUptodate(page))
1831                         copied = 0;
1832                 page_zero_new_buffers(page, from+copied, to);
1833         }
1834
1835         ret = walk_page_buffers(handle, page_buffers(page), from,
1836                                 to, &partial, write_end_fn);
1837         if (!partial)
1838                 SetPageUptodate(page);
1839         new_i_size = pos + copied;
1840         if (new_i_size > inode->i_size)
1841                 i_size_write(inode, pos+copied);
1842         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1843         if (new_i_size > EXT4_I(inode)->i_disksize) {
1844                 ext4_update_i_disksize(inode, new_i_size);
1845                 ret2 = ext4_mark_inode_dirty(handle, inode);
1846                 if (!ret)
1847                         ret = ret2;
1848         }
1849
1850         unlock_page(page);
1851         page_cache_release(page);
1852         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1853                 /* if we have allocated more blocks and copied
1854                  * less. We will have blocks allocated outside
1855                  * inode->i_size. So truncate them
1856                  */
1857                 ext4_orphan_add(handle, inode);
1858
1859         ret2 = ext4_journal_stop(handle);
1860         if (!ret)
1861                 ret = ret2;
1862         if (pos + len > inode->i_size) {
1863                 ext4_truncate_failed_write(inode);
1864                 /*
1865                  * If truncate failed early the inode might still be
1866                  * on the orphan list; we need to make sure the inode
1867                  * is removed from the orphan list in that case.
1868                  */
1869                 if (inode->i_nlink)
1870                         ext4_orphan_del(NULL, inode);
1871         }
1872
1873         return ret ? ret : copied;
1874 }
1875
1876 /*
1877  * Reserve a single block located at lblock
1878  */
1879 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1880 {
1881         int retries = 0;
1882         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1883         struct ext4_inode_info *ei = EXT4_I(inode);
1884         unsigned long md_needed;
1885         int ret;
1886
1887         /*
1888          * recalculate the amount of metadata blocks to reserve
1889          * in order to allocate nrblocks
1890          * worse case is one extent per block
1891          */
1892 repeat:
1893         spin_lock(&ei->i_block_reservation_lock);
1894         md_needed = ext4_calc_metadata_amount(inode, lblock);
1895         trace_ext4_da_reserve_space(inode, md_needed);
1896         spin_unlock(&ei->i_block_reservation_lock);
1897
1898         /*
1899          * We will charge metadata quota at writeout time; this saves
1900          * us from metadata over-estimation, though we may go over by
1901          * a small amount in the end.  Here we just reserve for data.
1902          */
1903         ret = dquot_reserve_block(inode, 1);
1904         if (ret)
1905                 return ret;
1906         /*
1907          * We do still charge estimated metadata to the sb though;
1908          * we cannot afford to run out of free blocks.
1909          */
1910         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1911                 dquot_release_reservation_block(inode, 1);
1912                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1913                         yield();
1914                         goto repeat;
1915                 }
1916                 return -ENOSPC;
1917         }
1918         spin_lock(&ei->i_block_reservation_lock);
1919         ei->i_reserved_data_blocks++;
1920         ei->i_reserved_meta_blocks += md_needed;
1921         spin_unlock(&ei->i_block_reservation_lock);
1922
1923         return 0;       /* success */
1924 }
1925
1926 static void ext4_da_release_space(struct inode *inode, int to_free)
1927 {
1928         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1929         struct ext4_inode_info *ei = EXT4_I(inode);
1930
1931         if (!to_free)
1932                 return;         /* Nothing to release, exit */
1933
1934         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1935
1936         trace_ext4_da_release_space(inode, to_free);
1937         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1938                 /*
1939                  * if there aren't enough reserved blocks, then the
1940                  * counter is messed up somewhere.  Since this
1941                  * function is called from invalidate page, it's
1942                  * harmless to return without any action.
1943                  */
1944                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1945                          "ino %lu, to_free %d with only %d reserved "
1946                          "data blocks\n", inode->i_ino, to_free,
1947                          ei->i_reserved_data_blocks);
1948                 WARN_ON(1);
1949                 to_free = ei->i_reserved_data_blocks;
1950         }
1951         ei->i_reserved_data_blocks -= to_free;
1952
1953         if (ei->i_reserved_data_blocks == 0) {
1954                 /*
1955                  * We can release all of the reserved metadata blocks
1956                  * only when we have written all of the delayed
1957                  * allocation blocks.
1958                  */
1959                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1960                                    ei->i_reserved_meta_blocks);
1961                 ei->i_reserved_meta_blocks = 0;
1962                 ei->i_da_metadata_calc_len = 0;
1963         }
1964
1965         /* update fs dirty data blocks counter */
1966         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1967
1968         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1969
1970         dquot_release_reservation_block(inode, to_free);
1971 }
1972
1973 static void ext4_da_page_release_reservation(struct page *page,
1974                                              unsigned long offset)
1975 {
1976         int to_release = 0;
1977         struct buffer_head *head, *bh;
1978         unsigned int curr_off = 0;
1979
1980         head = page_buffers(page);
1981         bh = head;
1982         do {
1983                 unsigned int next_off = curr_off + bh->b_size;
1984
1985                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1986                         to_release++;
1987                         clear_buffer_delay(bh);
1988                 }
1989                 curr_off = next_off;
1990         } while ((bh = bh->b_this_page) != head);
1991         ext4_da_release_space(page->mapping->host, to_release);
1992 }
1993
1994 /*
1995  * Delayed allocation stuff
1996  */
1997
1998 /*
1999  * mpage_da_submit_io - walks through extent of pages and try to write
2000  * them with writepage() call back
2001  *
2002  * @mpd->inode: inode
2003  * @mpd->first_page: first page of the extent
2004  * @mpd->next_page: page after the last page of the extent
2005  *
2006  * By the time mpage_da_submit_io() is called we expect all blocks
2007  * to be allocated. this may be wrong if allocation failed.
2008  *
2009  * As pages are already locked by write_cache_pages(), we can't use it
2010  */
2011 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2012                               struct ext4_map_blocks *map)
2013 {
2014         struct pagevec pvec;
2015         unsigned long index, end;
2016         int ret = 0, err, nr_pages, i;
2017         struct inode *inode = mpd->inode;
2018         struct address_space *mapping = inode->i_mapping;
2019         loff_t size = i_size_read(inode);
2020         unsigned int len, block_start;
2021         struct buffer_head *bh, *page_bufs = NULL;
2022         int journal_data = ext4_should_journal_data(inode);
2023         sector_t pblock = 0, cur_logical = 0;
2024         struct ext4_io_submit io_submit;
2025
2026         BUG_ON(mpd->next_page <= mpd->first_page);
2027         memset(&io_submit, 0, sizeof(io_submit));
2028         /*
2029          * We need to start from the first_page to the next_page - 1
2030          * to make sure we also write the mapped dirty buffer_heads.
2031          * If we look at mpd->b_blocknr we would only be looking
2032          * at the currently mapped buffer_heads.
2033          */
2034         index = mpd->first_page;
2035         end = mpd->next_page - 1;
2036
2037         pagevec_init(&pvec, 0);
2038         while (index <= end) {
2039                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2040                 if (nr_pages == 0)
2041                         break;
2042                 for (i = 0; i < nr_pages; i++) {
2043                         int commit_write = 0, redirty_page = 0;
2044                         struct page *page = pvec.pages[i];
2045
2046                         index = page->index;
2047                         if (index > end)
2048                                 break;
2049
2050                         if (index == size >> PAGE_CACHE_SHIFT)
2051                                 len = size & ~PAGE_CACHE_MASK;
2052                         else
2053                                 len = PAGE_CACHE_SIZE;
2054                         if (map) {
2055                                 cur_logical = index << (PAGE_CACHE_SHIFT -
2056                                                         inode->i_blkbits);
2057                                 pblock = map->m_pblk + (cur_logical -
2058                                                         map->m_lblk);
2059                         }
2060                         index++;
2061
2062                         BUG_ON(!PageLocked(page));
2063                         BUG_ON(PageWriteback(page));
2064
2065                         /*
2066                          * If the page does not have buffers (for
2067                          * whatever reason), try to create them using
2068                          * block_prepare_write.  If this fails,
2069                          * redirty the page and move on.
2070                          */
2071                         if (!page_has_buffers(page)) {
2072                                 if (block_prepare_write(page, 0, len,
2073                                                 noalloc_get_block_write)) {
2074                                 redirty_page:
2075                                         redirty_page_for_writepage(mpd->wbc,
2076                                                                    page);
2077                                         unlock_page(page);
2078                                         continue;
2079                                 }
2080                                 commit_write = 1;
2081                         }
2082
2083                         bh = page_bufs = page_buffers(page);
2084                         block_start = 0;
2085                         do {
2086                                 if (!bh)
2087                                         goto redirty_page;
2088                                 if (map && (cur_logical >= map->m_lblk) &&
2089                                     (cur_logical <= (map->m_lblk +
2090                                                      (map->m_len - 1)))) {
2091                                         if (buffer_delay(bh)) {
2092                                                 clear_buffer_delay(bh);
2093                                                 bh->b_blocknr = pblock;
2094                                         }
2095                                         if (buffer_unwritten(bh) ||
2096                                             buffer_mapped(bh))
2097                                                 BUG_ON(bh->b_blocknr != pblock);
2098                                         if (map->m_flags & EXT4_MAP_UNINIT)
2099                                                 set_buffer_uninit(bh);
2100                                         clear_buffer_unwritten(bh);
2101                                 }
2102
2103                                 /* redirty page if block allocation undone */
2104                                 if (buffer_delay(bh) || buffer_unwritten(bh))
2105                                         redirty_page = 1;
2106                                 bh = bh->b_this_page;
2107                                 block_start += bh->b_size;
2108                                 cur_logical++;
2109                                 pblock++;
2110                         } while (bh != page_bufs);
2111
2112                         if (redirty_page)
2113                                 goto redirty_page;
2114
2115                         if (commit_write)
2116                                 /* mark the buffer_heads as dirty & uptodate */
2117                                 block_commit_write(page, 0, len);
2118
2119                         /*
2120                          * Delalloc doesn't support data journalling,
2121                          * but eventually maybe we'll lift this
2122                          * restriction.
2123                          */
2124                         if (unlikely(journal_data && PageChecked(page)))
2125                                 err = __ext4_journalled_writepage(page, len);
2126                         else
2127                                 err = ext4_bio_write_page(&io_submit, page,
2128                                                           len, mpd->wbc);
2129
2130                         if (!err)
2131                                 mpd->pages_written++;
2132                         /*
2133                          * In error case, we have to continue because
2134                          * remaining pages are still locked
2135                          */
2136                         if (ret == 0)
2137                                 ret = err;
2138                 }
2139                 pagevec_release(&pvec);
2140         }
2141         ext4_io_submit(&io_submit);
2142         return ret;
2143 }
2144
2145 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2146                                         sector_t logical, long blk_cnt)
2147 {
2148         int nr_pages, i;
2149         pgoff_t index, end;
2150         struct pagevec pvec;
2151         struct inode *inode = mpd->inode;
2152         struct address_space *mapping = inode->i_mapping;
2153
2154         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2155         end   = (logical + blk_cnt - 1) >>
2156                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2157         while (index <= end) {
2158                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2159                 if (nr_pages == 0)
2160                         break;
2161                 for (i = 0; i < nr_pages; i++) {
2162                         struct page *page = pvec.pages[i];
2163                         if (page->index > end)
2164                                 break;
2165                         BUG_ON(!PageLocked(page));
2166                         BUG_ON(PageWriteback(page));
2167                         block_invalidatepage(page, 0);
2168                         ClearPageUptodate(page);
2169                         unlock_page(page);
2170                 }
2171                 index = pvec.pages[nr_pages - 1]->index + 1;
2172                 pagevec_release(&pvec);
2173         }
2174         return;
2175 }
2176
2177 static void ext4_print_free_blocks(struct inode *inode)
2178 {
2179         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2180         printk(KERN_CRIT "Total free blocks count %lld\n",
2181                ext4_count_free_blocks(inode->i_sb));
2182         printk(KERN_CRIT "Free/Dirty block details\n");
2183         printk(KERN_CRIT "free_blocks=%lld\n",
2184                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2185         printk(KERN_CRIT "dirty_blocks=%lld\n",
2186                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2187         printk(KERN_CRIT "Block reservation details\n");
2188         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2189                EXT4_I(inode)->i_reserved_data_blocks);
2190         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2191                EXT4_I(inode)->i_reserved_meta_blocks);
2192         return;
2193 }
2194
2195 /*
2196  * mpage_da_map_and_submit - go through given space, map them
2197  *       if necessary, and then submit them for I/O
2198  *
2199  * @mpd - bh describing space
2200  *
2201  * The function skips space we know is already mapped to disk blocks.
2202  *
2203  */
2204 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2205 {
2206         int err, blks, get_blocks_flags;
2207         struct ext4_map_blocks map, *mapp = NULL;
2208         sector_t next = mpd->b_blocknr;
2209         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2210         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2211         handle_t *handle = NULL;
2212
2213         /*
2214          * If the blocks are mapped already, or we couldn't accumulate
2215          * any blocks, then proceed immediately to the submission stage.
2216          */
2217         if ((mpd->b_size == 0) ||
2218             ((mpd->b_state  & (1 << BH_Mapped)) &&
2219              !(mpd->b_state & (1 << BH_Delay)) &&
2220              !(mpd->b_state & (1 << BH_Unwritten))))
2221                 goto submit_io;
2222
2223         handle = ext4_journal_current_handle();
2224         BUG_ON(!handle);
2225
2226         /*
2227          * Call ext4_map_blocks() to allocate any delayed allocation
2228          * blocks, or to convert an uninitialized extent to be
2229          * initialized (in the case where we have written into
2230          * one or more preallocated blocks).
2231          *
2232          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2233          * indicate that we are on the delayed allocation path.  This
2234          * affects functions in many different parts of the allocation
2235          * call path.  This flag exists primarily because we don't
2236          * want to change *many* call functions, so ext4_map_blocks()
2237          * will set the magic i_delalloc_reserved_flag once the
2238          * inode's allocation semaphore is taken.
2239          *
2240          * If the blocks in questions were delalloc blocks, set
2241          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2242          * variables are updated after the blocks have been allocated.
2243          */
2244         map.m_lblk = next;
2245         map.m_len = max_blocks;
2246         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2247         if (ext4_should_dioread_nolock(mpd->inode))
2248                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2249         if (mpd->b_state & (1 << BH_Delay))
2250                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2251
2252         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2253         if (blks < 0) {
2254                 struct super_block *sb = mpd->inode->i_sb;
2255
2256                 err = blks;
2257                 /*
2258                  * If get block returns EAGAIN or ENOSPC and there
2259                  * appears to be free blocks we will call
2260                  * ext4_writepage() for all of the pages which will
2261                  * just redirty the pages.
2262                  */
2263                 if (err == -EAGAIN)
2264                         goto submit_io;
2265
2266                 if (err == -ENOSPC &&
2267                     ext4_count_free_blocks(sb)) {
2268                         mpd->retval = err;
2269                         goto submit_io;
2270                 }
2271
2272                 /*
2273                  * get block failure will cause us to loop in
2274                  * writepages, because a_ops->writepage won't be able
2275                  * to make progress. The page will be redirtied by
2276                  * writepage and writepages will again try to write
2277                  * the same.
2278                  */
2279                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2280                         ext4_msg(sb, KERN_CRIT,
2281                                  "delayed block allocation failed for inode %lu "
2282                                  "at logical offset %llu with max blocks %zd "
2283                                  "with error %d", mpd->inode->i_ino,
2284                                  (unsigned long long) next,
2285                                  mpd->b_size >> mpd->inode->i_blkbits, err);
2286                         ext4_msg(sb, KERN_CRIT,
2287                                 "This should not happen!! Data will be lost\n");
2288                         if (err == -ENOSPC)
2289                                 ext4_print_free_blocks(mpd->inode);
2290                 }
2291                 /* invalidate all the pages */
2292                 ext4_da_block_invalidatepages(mpd, next,
2293                                 mpd->b_size >> mpd->inode->i_blkbits);
2294                 return;
2295         }
2296         BUG_ON(blks == 0);
2297
2298         mapp = &map;
2299         if (map.m_flags & EXT4_MAP_NEW) {
2300                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2301                 int i;
2302
2303                 for (i = 0; i < map.m_len; i++)
2304                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2305         }
2306
2307         if (ext4_should_order_data(mpd->inode)) {
2308                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2309                 if (err)
2310                         /* This only happens if the journal is aborted */
2311                         return;
2312         }
2313
2314         /*
2315          * Update on-disk size along with block allocation.
2316          */
2317         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2318         if (disksize > i_size_read(mpd->inode))
2319                 disksize = i_size_read(mpd->inode);
2320         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2321                 ext4_update_i_disksize(mpd->inode, disksize);
2322                 err = ext4_mark_inode_dirty(handle, mpd->inode);
2323                 if (err)
2324                         ext4_error(mpd->inode->i_sb,
2325                                    "Failed to mark inode %lu dirty",
2326                                    mpd->inode->i_ino);
2327         }
2328
2329 submit_io:
2330         mpage_da_submit_io(mpd, mapp);
2331         mpd->io_done = 1;
2332 }
2333
2334 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2335                 (1 << BH_Delay) | (1 << BH_Unwritten))
2336
2337 /*
2338  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2339  *
2340  * @mpd->lbh - extent of blocks
2341  * @logical - logical number of the block in the file
2342  * @bh - bh of the block (used to access block's state)
2343  *
2344  * the function is used to collect contig. blocks in same state
2345  */
2346 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2347                                    sector_t logical, size_t b_size,
2348                                    unsigned long b_state)
2349 {
2350         sector_t next;
2351         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2352
2353         /*
2354          * XXX Don't go larger than mballoc is willing to allocate
2355          * This is a stopgap solution.  We eventually need to fold
2356          * mpage_da_submit_io() into this function and then call
2357          * ext4_map_blocks() multiple times in a loop
2358          */
2359         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2360                 goto flush_it;
2361
2362         /* check if thereserved journal credits might overflow */
2363         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2364                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2365                         /*
2366                          * With non-extent format we are limited by the journal
2367                          * credit available.  Total credit needed to insert
2368                          * nrblocks contiguous blocks is dependent on the
2369                          * nrblocks.  So limit nrblocks.
2370                          */
2371                         goto flush_it;
2372                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2373                                 EXT4_MAX_TRANS_DATA) {
2374                         /*
2375                          * Adding the new buffer_head would make it cross the
2376                          * allowed limit for which we have journal credit
2377                          * reserved. So limit the new bh->b_size
2378                          */
2379                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2380                                                 mpd->inode->i_blkbits;
2381                         /* we will do mpage_da_submit_io in the next loop */
2382                 }
2383         }
2384         /*
2385          * First block in the extent
2386          */
2387         if (mpd->b_size == 0) {
2388                 mpd->b_blocknr = logical;
2389                 mpd->b_size = b_size;
2390                 mpd->b_state = b_state & BH_FLAGS;
2391                 return;
2392         }
2393
2394         next = mpd->b_blocknr + nrblocks;
2395         /*
2396          * Can we merge the block to our big extent?
2397          */
2398         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2399                 mpd->b_size += b_size;
2400                 return;
2401         }
2402
2403 flush_it:
2404         /*
2405          * We couldn't merge the block to our extent, so we
2406          * need to flush current  extent and start new one
2407          */
2408         mpage_da_map_and_submit(mpd);
2409         return;
2410 }
2411
2412 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2413 {
2414         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2415 }
2416
2417 /*
2418  * __mpage_da_writepage - finds extent of pages and blocks
2419  *
2420  * @page: page to consider
2421  * @wbc: not used, we just follow rules
2422  * @data: context
2423  *
2424  * The function finds extents of pages and scan them for all blocks.
2425  */
2426 static int __mpage_da_writepage(struct page *page,
2427                                 struct writeback_control *wbc,
2428                                 struct mpage_da_data *mpd)
2429 {
2430         struct inode *inode = mpd->inode;
2431         struct buffer_head *bh, *head;
2432         sector_t logical;
2433
2434         /*
2435          * Can we merge this page to current extent?
2436          */
2437         if (mpd->next_page != page->index) {
2438                 /*
2439                  * Nope, we can't. So, we map non-allocated blocks
2440                  * and start IO on them
2441                  */
2442                 if (mpd->next_page != mpd->first_page) {
2443                         mpage_da_map_and_submit(mpd);
2444                         /*
2445                          * skip rest of the page in the page_vec
2446                          */
2447                         redirty_page_for_writepage(wbc, page);
2448                         unlock_page(page);
2449                         return MPAGE_DA_EXTENT_TAIL;
2450                 }
2451
2452                 /*
2453                  * Start next extent of pages ...
2454                  */
2455                 mpd->first_page = page->index;
2456
2457                 /*
2458                  * ... and blocks
2459                  */
2460                 mpd->b_size = 0;
2461                 mpd->b_state = 0;
2462                 mpd->b_blocknr = 0;
2463         }
2464
2465         mpd->next_page = page->index + 1;
2466         logical = (sector_t) page->index <<
2467                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2468
2469         if (!page_has_buffers(page)) {
2470                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2471                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2472                 if (mpd->io_done)
2473                         return MPAGE_DA_EXTENT_TAIL;
2474         } else {
2475                 /*
2476                  * Page with regular buffer heads, just add all dirty ones
2477                  */
2478                 head = page_buffers(page);
2479                 bh = head;
2480                 do {
2481                         BUG_ON(buffer_locked(bh));
2482                         /*
2483                          * We need to try to allocate
2484                          * unmapped blocks in the same page.
2485                          * Otherwise we won't make progress
2486                          * with the page in ext4_writepage
2487                          */
2488                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2489                                 mpage_add_bh_to_extent(mpd, logical,
2490                                                        bh->b_size,
2491                                                        bh->b_state);
2492                                 if (mpd->io_done)
2493                                         return MPAGE_DA_EXTENT_TAIL;
2494                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2495                                 /*
2496                                  * mapped dirty buffer. We need to update
2497                                  * the b_state because we look at
2498                                  * b_state in mpage_da_map_blocks. We don't
2499                                  * update b_size because if we find an
2500                                  * unmapped buffer_head later we need to
2501                                  * use the b_state flag of that buffer_head.
2502                                  */
2503                                 if (mpd->b_size == 0)
2504                                         mpd->b_state = bh->b_state & BH_FLAGS;
2505                         }
2506                         logical++;
2507                 } while ((bh = bh->b_this_page) != head);
2508         }
2509
2510         return 0;
2511 }
2512
2513 /*
2514  * This is a special get_blocks_t callback which is used by
2515  * ext4_da_write_begin().  It will either return mapped block or
2516  * reserve space for a single block.
2517  *
2518  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2519  * We also have b_blocknr = -1 and b_bdev initialized properly
2520  *
2521  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2522  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2523  * initialized properly.
2524  */
2525 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2526                                   struct buffer_head *bh, int create)
2527 {
2528         struct ext4_map_blocks map;
2529         int ret = 0;
2530         sector_t invalid_block = ~((sector_t) 0xffff);
2531
2532         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2533                 invalid_block = ~0;
2534
2535         BUG_ON(create == 0);
2536         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2537
2538         map.m_lblk = iblock;
2539         map.m_len = 1;
2540
2541         /*
2542          * first, we need to know whether the block is allocated already
2543          * preallocated blocks are unmapped but should treated
2544          * the same as allocated blocks.
2545          */
2546         ret = ext4_map_blocks(NULL, inode, &map, 0);
2547         if (ret < 0)
2548                 return ret;
2549         if (ret == 0) {
2550                 if (buffer_delay(bh))
2551                         return 0; /* Not sure this could or should happen */
2552                 /*
2553                  * XXX: __block_prepare_write() unmaps passed block,
2554                  * is it OK?
2555                  */
2556                 ret = ext4_da_reserve_space(inode, iblock);
2557                 if (ret)
2558                         /* not enough space to reserve */
2559                         return ret;
2560
2561                 map_bh(bh, inode->i_sb, invalid_block);
2562                 set_buffer_new(bh);
2563                 set_buffer_delay(bh);
2564                 return 0;
2565         }
2566
2567         map_bh(bh, inode->i_sb, map.m_pblk);
2568         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2569
2570         if (buffer_unwritten(bh)) {
2571                 /* A delayed write to unwritten bh should be marked
2572                  * new and mapped.  Mapped ensures that we don't do
2573                  * get_block multiple times when we write to the same
2574                  * offset and new ensures that we do proper zero out
2575                  * for partial write.
2576                  */
2577                 set_buffer_new(bh);
2578                 set_buffer_mapped(bh);
2579         }
2580         return 0;
2581 }
2582
2583 /*
2584  * This function is used as a standard get_block_t calback function
2585  * when there is no desire to allocate any blocks.  It is used as a
2586  * callback function for block_prepare_write() and block_write_full_page().
2587  * These functions should only try to map a single block at a time.
2588  *
2589  * Since this function doesn't do block allocations even if the caller
2590  * requests it by passing in create=1, it is critically important that
2591  * any caller checks to make sure that any buffer heads are returned
2592  * by this function are either all already mapped or marked for
2593  * delayed allocation before calling  block_write_full_page().  Otherwise,
2594  * b_blocknr could be left unitialized, and the page write functions will
2595  * be taken by surprise.
2596  */
2597 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2598                                    struct buffer_head *bh_result, int create)
2599 {
2600         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2601         return _ext4_get_block(inode, iblock, bh_result, 0);
2602 }
2603
2604 static int bget_one(handle_t *handle, struct buffer_head *bh)
2605 {
2606         get_bh(bh);
2607         return 0;
2608 }
2609
2610 static int bput_one(handle_t *handle, struct buffer_head *bh)
2611 {
2612         put_bh(bh);
2613         return 0;
2614 }
2615
2616 static int __ext4_journalled_writepage(struct page *page,
2617                                        unsigned int len)
2618 {
2619         struct address_space *mapping = page->mapping;
2620         struct inode *inode = mapping->host;
2621         struct buffer_head *page_bufs;
2622         handle_t *handle = NULL;
2623         int ret = 0;
2624         int err;
2625
2626         ClearPageChecked(page);
2627         page_bufs = page_buffers(page);
2628         BUG_ON(!page_bufs);
2629         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2630         /* As soon as we unlock the page, it can go away, but we have
2631          * references to buffers so we are safe */
2632         unlock_page(page);
2633
2634         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2635         if (IS_ERR(handle)) {
2636                 ret = PTR_ERR(handle);
2637                 goto out;
2638         }
2639
2640         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2641                                 do_journal_get_write_access);
2642
2643         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2644                                 write_end_fn);
2645         if (ret == 0)
2646                 ret = err;
2647         err = ext4_journal_stop(handle);
2648         if (!ret)
2649                 ret = err;
2650
2651         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2652         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2653 out:
2654         return ret;
2655 }
2656
2657 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2658 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2659
2660 /*
2661  * Note that we don't need to start a transaction unless we're journaling data
2662  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2663  * need to file the inode to the transaction's list in ordered mode because if
2664  * we are writing back data added by write(), the inode is already there and if
2665  * we are writing back data modified via mmap(), noone guarantees in which
2666  * transaction the data will hit the disk. In case we are journaling data, we
2667  * cannot start transaction directly because transaction start ranks above page
2668  * lock so we have to do some magic.
2669  *
2670  * This function can get called via...
2671  *   - ext4_da_writepages after taking page lock (have journal handle)
2672  *   - journal_submit_inode_data_buffers (no journal handle)
2673  *   - shrink_page_list via pdflush (no journal handle)
2674  *   - grab_page_cache when doing write_begin (have journal handle)
2675  *
2676  * We don't do any block allocation in this function. If we have page with
2677  * multiple blocks we need to write those buffer_heads that are mapped. This
2678  * is important for mmaped based write. So if we do with blocksize 1K
2679  * truncate(f, 1024);
2680  * a = mmap(f, 0, 4096);
2681  * a[0] = 'a';
2682  * truncate(f, 4096);
2683  * we have in the page first buffer_head mapped via page_mkwrite call back
2684  * but other bufer_heads would be unmapped but dirty(dirty done via the
2685  * do_wp_page). So writepage should write the first block. If we modify
2686  * the mmap area beyond 1024 we will again get a page_fault and the
2687  * page_mkwrite callback will do the block allocation and mark the
2688  * buffer_heads mapped.
2689  *
2690  * We redirty the page if we have any buffer_heads that is either delay or
2691  * unwritten in the page.
2692  *
2693  * We can get recursively called as show below.
2694  *
2695  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2696  *              ext4_writepage()
2697  *
2698  * But since we don't do any block allocation we should not deadlock.
2699  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2700  */
2701 static int ext4_writepage(struct page *page,
2702                           struct writeback_control *wbc)
2703 {
2704         int ret = 0, commit_write = 0;
2705         loff_t size;
2706         unsigned int len;
2707         struct buffer_head *page_bufs = NULL;
2708         struct inode *inode = page->mapping->host;
2709
2710         trace_ext4_writepage(inode, page);
2711         size = i_size_read(inode);
2712         if (page->index == size >> PAGE_CACHE_SHIFT)
2713                 len = size & ~PAGE_CACHE_MASK;
2714         else
2715                 len = PAGE_CACHE_SIZE;
2716
2717         /*
2718          * If the page does not have buffers (for whatever reason),
2719          * try to create them using block_prepare_write.  If this
2720          * fails, redirty the page and move on.
2721          */
2722         if (!page_buffers(page)) {
2723                 if (block_prepare_write(page, 0, len,
2724                                         noalloc_get_block_write)) {
2725                 redirty_page:
2726                         redirty_page_for_writepage(wbc, page);
2727                         unlock_page(page);
2728                         return 0;
2729                 }
2730                 commit_write = 1;
2731         }
2732         page_bufs = page_buffers(page);
2733         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2734                               ext4_bh_delay_or_unwritten)) {
2735                 /*
2736                  * We don't want to do block allocation So redirty the
2737                  * page and return We may reach here when we do a
2738                  * journal commit via
2739                  * journal_submit_inode_data_buffers.  If we don't
2740                  * have mapping block we just ignore them. We can also
2741                  * reach here via shrink_page_list
2742                  */
2743                 goto redirty_page;
2744         }
2745         if (commit_write)
2746                 /* now mark the buffer_heads as dirty and uptodate */
2747                 block_commit_write(page, 0, len);
2748
2749         if (PageChecked(page) && ext4_should_journal_data(inode))
2750                 /*
2751                  * It's mmapped pagecache.  Add buffers and journal it.  There
2752                  * doesn't seem much point in redirtying the page here.
2753                  */
2754                 return __ext4_journalled_writepage(page, len);
2755
2756         if (buffer_uninit(page_bufs)) {
2757                 ext4_set_bh_endio(page_bufs, inode);
2758                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2759                                             wbc, ext4_end_io_buffer_write);
2760         } else
2761                 ret = block_write_full_page(page, noalloc_get_block_write,
2762                                             wbc);
2763
2764         return ret;
2765 }
2766
2767 /*
2768  * This is called via ext4_da_writepages() to
2769  * calulate the total number of credits to reserve to fit
2770  * a single extent allocation into a single transaction,
2771  * ext4_da_writpeages() will loop calling this before
2772  * the block allocation.
2773  */
2774
2775 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2776 {
2777         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2778
2779         /*
2780          * With non-extent format the journal credit needed to
2781          * insert nrblocks contiguous block is dependent on
2782          * number of contiguous block. So we will limit
2783          * number of contiguous block to a sane value
2784          */
2785         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2786             (max_blocks > EXT4_MAX_TRANS_DATA))
2787                 max_blocks = EXT4_MAX_TRANS_DATA;
2788
2789         return ext4_chunk_trans_blocks(inode, max_blocks);
2790 }
2791
2792 /*
2793  * write_cache_pages_da - walk the list of dirty pages of the given
2794  * address space and call the callback function (which usually writes
2795  * the pages).
2796  *
2797  * This is a forked version of write_cache_pages().  Differences:
2798  *      Range cyclic is ignored.
2799  *      no_nrwrite_index_update is always presumed true
2800  */
2801 static int write_cache_pages_da(struct address_space *mapping,
2802                                 struct writeback_control *wbc,
2803                                 struct mpage_da_data *mpd)
2804 {
2805         int ret = 0;
2806         int done = 0;
2807         struct pagevec pvec;
2808         int nr_pages;
2809         pgoff_t index;
2810         pgoff_t end;            /* Inclusive */
2811         long nr_to_write = wbc->nr_to_write;
2812
2813         pagevec_init(&pvec, 0);
2814         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2815         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2816
2817         while (!done && (index <= end)) {
2818                 int i;
2819
2820                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2821                               PAGECACHE_TAG_DIRTY,
2822                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2823                 if (nr_pages == 0)
2824                         break;
2825
2826                 for (i = 0; i < nr_pages; i++) {
2827                         struct page *page = pvec.pages[i];
2828
2829                         /*
2830                          * At this point, the page may be truncated or
2831                          * invalidated (changing page->mapping to NULL), or
2832                          * even swizzled back from swapper_space to tmpfs file
2833                          * mapping. However, page->index will not change
2834                          * because we have a reference on the page.
2835                          */
2836                         if (page->index > end) {
2837                                 done = 1;
2838                                 break;
2839                         }
2840
2841                         lock_page(page);
2842
2843                         /*
2844                          * Page truncated or invalidated. We can freely skip it
2845                          * then, even for data integrity operations: the page
2846                          * has disappeared concurrently, so there could be no
2847                          * real expectation of this data interity operation
2848                          * even if there is now a new, dirty page at the same
2849                          * pagecache address.
2850                          */
2851                         if (unlikely(page->mapping != mapping)) {
2852 continue_unlock:
2853                                 unlock_page(page);
2854                                 continue;
2855                         }
2856
2857                         if (!PageDirty(page)) {
2858                                 /* someone wrote it for us */
2859                                 goto continue_unlock;
2860                         }
2861
2862                         if (PageWriteback(page)) {
2863                                 if (wbc->sync_mode != WB_SYNC_NONE)
2864                                         wait_on_page_writeback(page);
2865                                 else
2866                                         goto continue_unlock;
2867                         }
2868
2869                         BUG_ON(PageWriteback(page));
2870                         if (!clear_page_dirty_for_io(page))
2871                                 goto continue_unlock;
2872
2873                         ret = __mpage_da_writepage(page, wbc, mpd);
2874                         if (unlikely(ret)) {
2875                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2876                                         unlock_page(page);
2877                                         ret = 0;
2878                                 } else {
2879                                         done = 1;
2880                                         break;
2881                                 }
2882                         }
2883
2884                         if (nr_to_write > 0) {
2885                                 nr_to_write--;
2886                                 if (nr_to_write == 0 &&
2887                                     wbc->sync_mode == WB_SYNC_NONE) {
2888                                         /*
2889                                          * We stop writing back only if we are
2890                                          * not doing integrity sync. In case of
2891                                          * integrity sync we have to keep going
2892                                          * because someone may be concurrently
2893                                          * dirtying pages, and we might have
2894                                          * synced a lot of newly appeared dirty
2895                                          * pages, but have not synced all of the
2896                                          * old dirty pages.
2897                                          */
2898                                         done = 1;
2899                                         break;
2900                                 }
2901                         }
2902                 }
2903                 pagevec_release(&pvec);
2904                 cond_resched();
2905         }
2906         return ret;
2907 }
2908
2909
2910 static int ext4_da_writepages(struct address_space *mapping,
2911                               struct writeback_control *wbc)
2912 {
2913         pgoff_t index;
2914         int range_whole = 0;
2915         handle_t *handle = NULL;
2916         struct mpage_da_data mpd;
2917         struct inode *inode = mapping->host;
2918         int pages_written = 0;
2919         long pages_skipped;
2920         unsigned int max_pages;
2921         int range_cyclic, cycled = 1, io_done = 0;
2922         int needed_blocks, ret = 0;
2923         long desired_nr_to_write, nr_to_writebump = 0;
2924         loff_t range_start = wbc->range_start;
2925         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2926
2927         trace_ext4_da_writepages(inode, wbc);
2928
2929         /*
2930          * No pages to write? This is mainly a kludge to avoid starting
2931          * a transaction for special inodes like journal inode on last iput()
2932          * because that could violate lock ordering on umount
2933          */
2934         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2935                 return 0;
2936
2937         /*
2938          * If the filesystem has aborted, it is read-only, so return
2939          * right away instead of dumping stack traces later on that
2940          * will obscure the real source of the problem.  We test
2941          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2942          * the latter could be true if the filesystem is mounted
2943          * read-only, and in that case, ext4_da_writepages should
2944          * *never* be called, so if that ever happens, we would want
2945          * the stack trace.
2946          */
2947         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2948                 return -EROFS;
2949
2950         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2951                 range_whole = 1;
2952
2953         range_cyclic = wbc->range_cyclic;
2954         if (wbc->range_cyclic) {
2955                 index = mapping->writeback_index;
2956                 if (index)
2957                         cycled = 0;
2958                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2959                 wbc->range_end  = LLONG_MAX;
2960                 wbc->range_cyclic = 0;
2961         } else
2962                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2963
2964         /*
2965          * This works around two forms of stupidity.  The first is in
2966          * the writeback code, which caps the maximum number of pages
2967          * written to be 1024 pages.  This is wrong on multiple
2968          * levels; different architectues have a different page size,
2969          * which changes the maximum amount of data which gets
2970          * written.  Secondly, 4 megabytes is way too small.  XFS
2971          * forces this value to be 16 megabytes by multiplying
2972          * nr_to_write parameter by four, and then relies on its
2973          * allocator to allocate larger extents to make them
2974          * contiguous.  Unfortunately this brings us to the second
2975          * stupidity, which is that ext4's mballoc code only allocates
2976          * at most 2048 blocks.  So we force contiguous writes up to
2977          * the number of dirty blocks in the inode, or
2978          * sbi->max_writeback_mb_bump whichever is smaller.
2979          */
2980         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2981         if (!range_cyclic && range_whole) {
2982                 if (wbc->nr_to_write == LONG_MAX)
2983                         desired_nr_to_write = wbc->nr_to_write;
2984                 else
2985                         desired_nr_to_write = wbc->nr_to_write * 8;
2986         } else
2987                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2988                                                            max_pages);
2989         if (desired_nr_to_write > max_pages)
2990                 desired_nr_to_write = max_pages;
2991
2992         if (wbc->nr_to_write < desired_nr_to_write) {
2993                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2994                 wbc->nr_to_write = desired_nr_to_write;
2995         }
2996
2997         mpd.wbc = wbc;
2998         mpd.inode = mapping->host;
2999
3000         pages_skipped = wbc->pages_skipped;
3001
3002 retry:
3003         while (!ret && wbc->nr_to_write > 0) {
3004
3005                 /*
3006                  * we  insert one extent at a time. So we need
3007                  * credit needed for single extent allocation.
3008                  * journalled mode is currently not supported
3009                  * by delalloc
3010                  */
3011                 BUG_ON(ext4_should_journal_data(inode));
3012                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3013
3014                 /* start a new transaction*/
3015                 handle = ext4_journal_start(inode, needed_blocks);
3016                 if (IS_ERR(handle)) {
3017                         ret = PTR_ERR(handle);
3018                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3019                                "%ld pages, ino %lu; err %d", __func__,
3020                                 wbc->nr_to_write, inode->i_ino, ret);
3021                         goto out_writepages;
3022                 }
3023
3024                 /*
3025                  * Now call __mpage_da_writepage to find the next
3026                  * contiguous region of logical blocks that need
3027                  * blocks to be allocated by ext4.  We don't actually
3028                  * submit the blocks for I/O here, even though
3029                  * write_cache_pages thinks it will, and will set the
3030                  * pages as clean for write before calling
3031                  * __mpage_da_writepage().
3032                  */
3033                 mpd.b_size = 0;
3034                 mpd.b_state = 0;
3035                 mpd.b_blocknr = 0;
3036                 mpd.first_page = 0;
3037                 mpd.next_page = 0;
3038                 mpd.io_done = 0;
3039                 mpd.pages_written = 0;
3040                 mpd.retval = 0;
3041                 ret = write_cache_pages_da(mapping, wbc, &mpd);
3042                 /*
3043                  * If we have a contiguous extent of pages and we
3044                  * haven't done the I/O yet, map the blocks and submit
3045                  * them for I/O.
3046                  */
3047                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3048                         mpage_da_map_and_submit(&mpd);
3049                         ret = MPAGE_DA_EXTENT_TAIL;
3050                 }
3051                 trace_ext4_da_write_pages(inode, &mpd);
3052                 wbc->nr_to_write -= mpd.pages_written;
3053
3054                 ext4_journal_stop(handle);
3055
3056                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3057                         /* commit the transaction which would
3058                          * free blocks released in the transaction
3059                          * and try again
3060                          */
3061                         jbd2_journal_force_commit_nested(sbi->s_journal);
3062                         wbc->pages_skipped = pages_skipped;
3063                         ret = 0;
3064                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3065                         /*
3066                          * got one extent now try with
3067                          * rest of the pages
3068                          */
3069                         pages_written += mpd.pages_written;
3070                         wbc->pages_skipped = pages_skipped;
3071                         ret = 0;
3072                         io_done = 1;
3073                 } else if (wbc->nr_to_write)
3074                         /*
3075                          * There is no more writeout needed
3076                          * or we requested for a noblocking writeout
3077                          * and we found the device congested
3078                          */
3079                         break;
3080         }
3081         if (!io_done && !cycled) {
3082                 cycled = 1;
3083                 index = 0;
3084                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3085                 wbc->range_end  = mapping->writeback_index - 1;
3086                 goto retry;
3087         }
3088         if (pages_skipped != wbc->pages_skipped)
3089                 ext4_msg(inode->i_sb, KERN_CRIT,
3090                          "This should not happen leaving %s "
3091                          "with nr_to_write = %ld ret = %d",
3092                          __func__, wbc->nr_to_write, ret);
3093
3094         /* Update index */
3095         index += pages_written;
3096         wbc->range_cyclic = range_cyclic;
3097         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3098                 /*
3099                  * set the writeback_index so that range_cyclic
3100                  * mode will write it back later
3101                  */
3102                 mapping->writeback_index = index;
3103
3104 out_writepages:
3105         wbc->nr_to_write -= nr_to_writebump;
3106         wbc->range_start = range_start;
3107         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3108         return ret;
3109 }
3110
3111 #define FALL_BACK_TO_NONDELALLOC 1
3112 static int ext4_nonda_switch(struct super_block *sb)
3113 {
3114         s64 free_blocks, dirty_blocks;
3115         struct ext4_sb_info *sbi = EXT4_SB(sb);
3116
3117         /*
3118          * switch to non delalloc mode if we are running low
3119          * on free block. The free block accounting via percpu
3120          * counters can get slightly wrong with percpu_counter_batch getting
3121          * accumulated on each CPU without updating global counters
3122          * Delalloc need an accurate free block accounting. So switch
3123          * to non delalloc when we are near to error range.
3124          */
3125         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3126         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3127         if (2 * free_blocks < 3 * dirty_blocks ||
3128                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3129                 /*
3130                  * free block count is less than 150% of dirty blocks
3131                  * or free blocks is less than watermark
3132                  */
3133                 return 1;
3134         }
3135         /*
3136          * Even if we don't switch but are nearing capacity,
3137          * start pushing delalloc when 1/2 of free blocks are dirty.
3138          */
3139         if (free_blocks < 2 * dirty_blocks)
3140                 writeback_inodes_sb_if_idle(sb);
3141
3142         return 0;
3143 }
3144
3145 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3146                                loff_t pos, unsigned len, unsigned flags,
3147                                struct page **pagep, void **fsdata)
3148 {
3149         int ret, retries = 0;
3150         struct page *page;
3151         pgoff_t index;
3152         struct inode *inode = mapping->host;
3153         handle_t *handle;
3154
3155         index = pos >> PAGE_CACHE_SHIFT;
3156
3157         if (ext4_nonda_switch(inode->i_sb)) {
3158                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3159                 return ext4_write_begin(file, mapping, pos,
3160                                         len, flags, pagep, fsdata);
3161         }
3162         *fsdata = (void *)0;
3163         trace_ext4_da_write_begin(inode, pos, len, flags);
3164 retry:
3165         /*
3166          * With delayed allocation, we don't log the i_disksize update
3167          * if there is delayed block allocation. But we still need
3168          * to journalling the i_disksize update if writes to the end
3169          * of file which has an already mapped buffer.
3170          */
3171         handle = ext4_journal_start(inode, 1);
3172         if (IS_ERR(handle)) {
3173                 ret = PTR_ERR(handle);
3174                 goto out;
3175         }
3176         /* We cannot recurse into the filesystem as the transaction is already
3177          * started */
3178         flags |= AOP_FLAG_NOFS;
3179
3180         page = grab_cache_page_write_begin(mapping, index, flags);
3181         if (!page) {
3182                 ext4_journal_stop(handle);
3183                 ret = -ENOMEM;
3184                 goto out;
3185         }
3186         *pagep = page;
3187
3188         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3189         if (ret < 0) {
3190                 unlock_page(page);
3191                 ext4_journal_stop(handle);
3192                 page_cache_release(page);
3193                 /*
3194                  * block_write_begin may have instantiated a few blocks
3195                  * outside i_size.  Trim these off again. Don't need
3196                  * i_size_read because we hold i_mutex.
3197                  */
3198                 if (pos + len > inode->i_size)
3199                         ext4_truncate_failed_write(inode);
3200         }
3201
3202         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3203                 goto retry;
3204 out:
3205         return ret;
3206 }
3207
3208 /*
3209  * Check if we should update i_disksize
3210  * when write to the end of file but not require block allocation
3211  */
3212 static int ext4_da_should_update_i_disksize(struct page *page,
3213                                             unsigned long offset)
3214 {
3215         struct buffer_head *bh;
3216         struct inode *inode = page->mapping->host;
3217         unsigned int idx;
3218         int i;
3219
3220         bh = page_buffers(page);
3221         idx = offset >> inode->i_blkbits;
3222
3223         for (i = 0; i < idx; i++)
3224                 bh = bh->b_this_page;
3225
3226         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3227                 return 0;
3228         return 1;
3229 }
3230
3231 static int ext4_da_write_end(struct file *file,
3232                              struct address_space *mapping,
3233                              loff_t pos, unsigned len, unsigned copied,
3234                              struct page *page, void *fsdata)
3235 {
3236         struct inode *inode = mapping->host;
3237         int ret = 0, ret2;
3238         handle_t *handle = ext4_journal_current_handle();
3239         loff_t new_i_size;
3240         unsigned long start, end;
3241         int write_mode = (int)(unsigned long)fsdata;
3242
3243         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3244                 if (ext4_should_order_data(inode)) {
3245                         return ext4_ordered_write_end(file, mapping, pos,
3246                                         len, copied, page, fsdata);
3247                 } else if (ext4_should_writeback_data(inode)) {
3248                         return ext4_writeback_write_end(file, mapping, pos,
3249                                         len, copied, page, fsdata);
3250                 } else {
3251                         BUG();
3252                 }
3253         }
3254
3255         trace_ext4_da_write_end(inode, pos, len, copied);
3256         start = pos & (PAGE_CACHE_SIZE - 1);
3257         end = start + copied - 1;
3258
3259         /*
3260          * generic_write_end() will run mark_inode_dirty() if i_size
3261          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3262          * into that.
3263          */
3264
3265         new_i_size = pos + copied;
3266         if (new_i_size > EXT4_I(inode)->i_disksize) {
3267                 if (ext4_da_should_update_i_disksize(page, end)) {
3268                         down_write(&EXT4_I(inode)->i_data_sem);
3269                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3270                                 /*
3271                                  * Updating i_disksize when extending file
3272                                  * without needing block allocation
3273                                  */
3274                                 if (ext4_should_order_data(inode))
3275                                         ret = ext4_jbd2_file_inode(handle,
3276                                                                    inode);
3277
3278                                 EXT4_I(inode)->i_disksize = new_i_size;
3279                         }
3280                         up_write(&EXT4_I(inode)->i_data_sem);
3281                         /* We need to mark inode dirty even if
3282                          * new_i_size is less that inode->i_size
3283                          * bu greater than i_disksize.(hint delalloc)
3284                          */
3285                         ext4_mark_inode_dirty(handle, inode);
3286                 }
3287         }
3288         ret2 = generic_write_end(file, mapping, pos, len, copied,
3289                                                         page, fsdata);
3290         copied = ret2;
3291         if (ret2 < 0)
3292                 ret = ret2;
3293         ret2 = ext4_journal_stop(handle);
3294         if (!ret)
3295                 ret = ret2;
3296
3297         return ret ? ret : copied;
3298 }
3299
3300 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3301 {
3302         /*
3303          * Drop reserved blocks
3304          */
3305         BUG_ON(!PageLocked(page));
3306         if (!page_has_buffers(page))
3307                 goto out;
3308
3309         ext4_da_page_release_reservation(page, offset);
3310
3311 out:
3312         ext4_invalidatepage(page, offset);
3313
3314         return;
3315 }
3316
3317 /*
3318  * Force all delayed allocation blocks to be allocated for a given inode.
3319  */
3320 int ext4_alloc_da_blocks(struct inode *inode)
3321 {
3322         trace_ext4_alloc_da_blocks(inode);
3323
3324         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3325             !EXT4_I(inode)->i_reserved_meta_blocks)
3326                 return 0;
3327
3328         /*
3329          * We do something simple for now.  The filemap_flush() will
3330          * also start triggering a write of the data blocks, which is
3331          * not strictly speaking necessary (and for users of
3332          * laptop_mode, not even desirable).  However, to do otherwise
3333          * would require replicating code paths in:
3334          *
3335          * ext4_da_writepages() ->
3336          *    write_cache_pages() ---> (via passed in callback function)
3337          *        __mpage_da_writepage() -->
3338          *           mpage_add_bh_to_extent()
3339          *           mpage_da_map_blocks()
3340          *
3341          * The problem is that write_cache_pages(), located in
3342          * mm/page-writeback.c, marks pages clean in preparation for
3343          * doing I/O, which is not desirable if we're not planning on
3344          * doing I/O at all.
3345          *
3346          * We could call write_cache_pages(), and then redirty all of
3347          * the pages by calling redirty_page_for_writeback() but that
3348          * would be ugly in the extreme.  So instead we would need to
3349          * replicate parts of the code in the above functions,
3350          * simplifying them becuase we wouldn't actually intend to
3351          * write out the pages, but rather only collect contiguous
3352          * logical block extents, call the multi-block allocator, and
3353          * then update the buffer heads with the block allocations.
3354          *
3355          * For now, though, we'll cheat by calling filemap_flush(),
3356          * which will map the blocks, and start the I/O, but not
3357          * actually wait for the I/O to complete.
3358          */
3359         return filemap_flush(inode->i_mapping);
3360 }
3361
3362 /*
3363  * bmap() is special.  It gets used by applications such as lilo and by
3364  * the swapper to find the on-disk block of a specific piece of data.
3365  *
3366  * Naturally, this is dangerous if the block concerned is still in the
3367  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3368  * filesystem and enables swap, then they may get a nasty shock when the
3369  * data getting swapped to that swapfile suddenly gets overwritten by
3370  * the original zero's written out previously to the journal and
3371  * awaiting writeback in the kernel's buffer cache.
3372  *
3373  * So, if we see any bmap calls here on a modified, data-journaled file,
3374  * take extra steps to flush any blocks which might be in the cache.
3375  */
3376 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3377 {
3378         struct inode *inode = mapping->host;
3379         journal_t *journal;
3380         int err;
3381
3382         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3383                         test_opt(inode->i_sb, DELALLOC)) {
3384                 /*
3385                  * With delalloc we want to sync the file
3386                  * so that we can make sure we allocate
3387                  * blocks for file
3388                  */
3389                 filemap_write_and_wait(mapping);
3390         }
3391
3392         if (EXT4_JOURNAL(inode) &&
3393             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3394                 /*
3395                  * This is a REALLY heavyweight approach, but the use of
3396                  * bmap on dirty files is expected to be extremely rare:
3397                  * only if we run lilo or swapon on a freshly made file
3398                  * do we expect this to happen.
3399                  *
3400                  * (bmap requires CAP_SYS_RAWIO so this does not
3401                  * represent an unprivileged user DOS attack --- we'd be
3402                  * in trouble if mortal users could trigger this path at
3403                  * will.)
3404                  *
3405                  * NB. EXT4_STATE_JDATA is not set on files other than
3406                  * regular files.  If somebody wants to bmap a directory
3407                  * or symlink and gets confused because the buffer
3408                  * hasn't yet been flushed to disk, they deserve
3409                  * everything they get.
3410                  */
3411
3412                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3413                 journal = EXT4_JOURNAL(inode);
3414                 jbd2_journal_lock_updates(journal);
3415                 err = jbd2_journal_flush(journal);
3416                 jbd2_journal_unlock_updates(journal);
3417
3418                 if (err)
3419                         return 0;
3420         }
3421
3422         return generic_block_bmap(mapping, block, ext4_get_block);
3423 }
3424
3425 static int ext4_readpage(struct file *file, struct page *page)
3426 {
3427         return mpage_readpage(page, ext4_get_block);
3428 }
3429
3430 static int
3431 ext4_readpages(struct file *file, struct address_space *mapping,
3432                 struct list_head *pages, unsigned nr_pages)
3433 {
3434         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3435 }
3436
3437 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3438 {
3439         struct buffer_head *head, *bh;
3440         unsigned int curr_off = 0;
3441
3442         if (!page_has_buffers(page))
3443                 return;
3444         head = bh = page_buffers(page);
3445         do {
3446                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3447                                         && bh->b_private) {
3448                         ext4_free_io_end(bh->b_private);
3449                         bh->b_private = NULL;
3450                         bh->b_end_io = NULL;
3451                 }
3452                 curr_off = curr_off + bh->b_size;
3453                 bh = bh->b_this_page;
3454         } while (bh != head);
3455 }
3456
3457 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3458 {
3459         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3460
3461         /*
3462          * free any io_end structure allocated for buffers to be discarded
3463          */
3464         if (ext4_should_dioread_nolock(page->mapping->host))
3465                 ext4_invalidatepage_free_endio(page, offset);
3466         /*
3467          * If it's a full truncate we just forget about the pending dirtying
3468          */
3469         if (offset == 0)
3470                 ClearPageChecked(page);
3471
3472         if (journal)
3473                 jbd2_journal_invalidatepage(journal, page, offset);
3474         else
3475                 block_invalidatepage(page, offset);
3476 }
3477
3478 static int ext4_releasepage(struct page *page, gfp_t wait)
3479 {
3480         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3481
3482         WARN_ON(PageChecked(page));
3483         if (!page_has_buffers(page))
3484                 return 0;
3485         if (journal)
3486                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3487         else
3488                 return try_to_free_buffers(page);
3489 }
3490
3491 /*
3492  * O_DIRECT for ext3 (or indirect map) based files
3493  *
3494  * If the O_DIRECT write will extend the file then add this inode to the
3495  * orphan list.  So recovery will truncate it back to the original size
3496  * if the machine crashes during the write.
3497  *
3498  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3499  * crashes then stale disk data _may_ be exposed inside the file. But current
3500  * VFS code falls back into buffered path in that case so we are safe.
3501  */
3502 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3503                               const struct iovec *iov, loff_t offset,
3504                               unsigned long nr_segs)
3505 {
3506         struct file *file = iocb->ki_filp;
3507         struct inode *inode = file->f_mapping->host;
3508         struct ext4_inode_info *ei = EXT4_I(inode);
3509         handle_t *handle;
3510         ssize_t ret;
3511         int orphan = 0;
3512         size_t count = iov_length(iov, nr_segs);
3513         int retries = 0;
3514
3515         if (rw == WRITE) {
3516                 loff_t final_size = offset + count;
3517
3518                 if (final_size > inode->i_size) {
3519                         /* Credits for sb + inode write */
3520                         handle = ext4_journal_start(inode, 2);
3521                         if (IS_ERR(handle)) {
3522                                 ret = PTR_ERR(handle);
3523                                 goto out;
3524                         }
3525                         ret = ext4_orphan_add(handle, inode);
3526                         if (ret) {
3527                                 ext4_journal_stop(handle);
3528                                 goto out;
3529                         }
3530                         orphan = 1;
3531                         ei->i_disksize = inode->i_size;
3532                         ext4_journal_stop(handle);
3533                 }
3534         }
3535
3536 retry:
3537         if (rw == READ && ext4_should_dioread_nolock(inode))
3538                 ret = __blockdev_direct_IO(rw, iocb, inode,
3539                                  inode->i_sb->s_bdev, iov,
3540                                  offset, nr_segs,
3541                                  ext4_get_block, NULL, NULL, 0);
3542         else {
3543                 ret = blockdev_direct_IO(rw, iocb, inode,
3544                                  inode->i_sb->s_bdev, iov,
3545                                  offset, nr_segs,
3546                                  ext4_get_block, NULL);
3547
3548                 if (unlikely((rw & WRITE) && ret < 0)) {
3549                         loff_t isize = i_size_read(inode);
3550                         loff_t end = offset + iov_length(iov, nr_segs);
3551
3552                         if (end > isize)
3553                                 vmtruncate(inode, isize);
3554                 }
3555         }
3556         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3557                 goto retry;
3558
3559         if (orphan) {
3560                 int err;
3561
3562                 /* Credits for sb + inode write */
3563                 handle = ext4_journal_start(inode, 2);
3564                 if (IS_ERR(handle)) {
3565                         /* This is really bad luck. We've written the data
3566                          * but cannot extend i_size. Bail out and pretend
3567                          * the write failed... */
3568                         ret = PTR_ERR(handle);
3569                         if (inode->i_nlink)
3570                                 ext4_orphan_del(NULL, inode);
3571
3572                         goto out;
3573                 }
3574                 if (inode->i_nlink)
3575                         ext4_orphan_del(handle, inode);
3576                 if (ret > 0) {
3577                         loff_t end = offset + ret;
3578                         if (end > inode->i_size) {
3579                                 ei->i_disksize = end;
3580                                 i_size_write(inode, end);
3581                                 /*
3582                                  * We're going to return a positive `ret'
3583                                  * here due to non-zero-length I/O, so there's
3584                                  * no way of reporting error returns from
3585                                  * ext4_mark_inode_dirty() to userspace.  So
3586                                  * ignore it.
3587                                  */
3588                                 ext4_mark_inode_dirty(handle, inode);
3589                         }
3590                 }
3591                 err = ext4_journal_stop(handle);
3592                 if (ret == 0)
3593                         ret = err;
3594         }
3595 out:
3596         return ret;
3597 }
3598
3599 /*
3600  * ext4_get_block used when preparing for a DIO write or buffer write.
3601  * We allocate an uinitialized extent if blocks haven't been allocated.
3602  * The extent will be converted to initialized after the IO is complete.
3603  */
3604 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3605                    struct buffer_head *bh_result, int create)
3606 {
3607         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3608                    inode->i_ino, create);
3609         return _ext4_get_block(inode, iblock, bh_result,
3610                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3611 }
3612
3613 static void dump_completed_IO(struct inode * inode)
3614 {
3615 #ifdef  EXT4_DEBUG
3616         struct list_head *cur, *before, *after;
3617         ext4_io_end_t *io, *io0, *io1;
3618         unsigned long flags;
3619
3620         if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3621                 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3622                 return;
3623         }
3624
3625         ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3626         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3627         list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3628                 cur = &io->list;
3629                 before = cur->prev;
3630                 io0 = container_of(before, ext4_io_end_t, list);
3631                 after = cur->next;
3632                 io1 = container_of(after, ext4_io_end_t, list);
3633
3634                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3635                             io, inode->i_ino, io0, io1);
3636         }
3637         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3638 #endif
3639 }
3640
3641 /*
3642  * This function is called from ext4_sync_file().
3643  *
3644  * When IO is completed, the work to convert unwritten extents to
3645  * written is queued on workqueue but may not get immediately
3646  * scheduled. When fsync is called, we need to ensure the
3647  * conversion is complete before fsync returns.
3648  * The inode keeps track of a list of pending/completed IO that
3649  * might needs to do the conversion. This function walks through
3650  * the list and convert the related unwritten extents for completed IO
3651  * to written.
3652  * The function return the number of pending IOs on success.
3653  */
3654 int flush_completed_IO(struct inode *inode)
3655 {
3656         ext4_io_end_t *io;
3657         struct ext4_inode_info *ei = EXT4_I(inode);
3658         unsigned long flags;
3659         int ret = 0;
3660         int ret2 = 0;
3661
3662         if (list_empty(&ei->i_completed_io_list))
3663                 return ret;
3664
3665         dump_completed_IO(inode);
3666         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3667         while (!list_empty(&ei->i_completed_io_list)){
3668                 io = list_entry(ei->i_completed_io_list.next,
3669                                 ext4_io_end_t, list);
3670                 /*
3671                  * Calling ext4_end_io_nolock() to convert completed
3672                  * IO to written.
3673                  *
3674                  * When ext4_sync_file() is called, run_queue() may already
3675                  * about to flush the work corresponding to this io structure.
3676                  * It will be upset if it founds the io structure related
3677                  * to the work-to-be schedule is freed.
3678                  *
3679                  * Thus we need to keep the io structure still valid here after
3680                  * convertion finished. The io structure has a flag to
3681                  * avoid double converting from both fsync and background work
3682                  * queue work.
3683                  */
3684                 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3685                 ret = ext4_end_io_nolock(io);
3686                 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3687                 if (ret < 0)
3688                         ret2 = ret;
3689                 else
3690                         list_del_init(&io->list);
3691         }
3692         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3693         return (ret2 < 0) ? ret2 : 0;
3694 }
3695
3696 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3697                             ssize_t size, void *private, int ret,
3698                             bool is_async)
3699 {
3700         ext4_io_end_t *io_end = iocb->private;
3701         struct workqueue_struct *wq;
3702         unsigned long flags;
3703         struct ext4_inode_info *ei;
3704
3705         /* if not async direct IO or dio with 0 bytes write, just return */
3706         if (!io_end || !size)
3707                 goto out;
3708
3709         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3710                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3711                   iocb->private, io_end->inode->i_ino, iocb, offset,
3712                   size);
3713
3714         /* if not aio dio with unwritten extents, just free io and return */
3715         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3716                 ext4_free_io_end(io_end);
3717                 iocb->private = NULL;
3718 out:
3719                 if (is_async)
3720                         aio_complete(iocb, ret, 0);
3721                 return;
3722         }
3723
3724         io_end->offset = offset;
3725         io_end->size = size;
3726         if (is_async) {
3727                 io_end->iocb = iocb;
3728                 io_end->result = ret;
3729         }
3730         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3731
3732         /* Add the io_end to per-inode completed aio dio list*/
3733         ei = EXT4_I(io_end->inode);
3734         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3735         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3736         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3737
3738         /* queue the work to convert unwritten extents to written */
3739         queue_work(wq, &io_end->work);
3740         iocb->private = NULL;
3741 }
3742
3743 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3744 {
3745         ext4_io_end_t *io_end = bh->b_private;
3746         struct workqueue_struct *wq;
3747         struct inode *inode;
3748         unsigned long flags;
3749
3750         if (!test_clear_buffer_uninit(bh) || !io_end)
3751                 goto out;
3752
3753         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3754                 printk("sb umounted, discard end_io request for inode %lu\n",
3755                         io_end->inode->i_ino);
3756                 ext4_free_io_end(io_end);
3757                 goto out;
3758         }
3759
3760         io_end->flag = EXT4_IO_END_UNWRITTEN;
3761         inode = io_end->inode;
3762
3763         /* Add the io_end to per-inode completed io list*/
3764         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3765         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3766         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3767
3768         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3769         /* queue the work to convert unwritten extents to written */
3770         queue_work(wq, &io_end->work);
3771 out:
3772         bh->b_private = NULL;
3773         bh->b_end_io = NULL;
3774         clear_buffer_uninit(bh);
3775         end_buffer_async_write(bh, uptodate);
3776 }
3777
3778 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3779 {
3780         ext4_io_end_t *io_end;
3781         struct page *page = bh->b_page;
3782         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3783         size_t size = bh->b_size;
3784
3785 retry:
3786         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3787         if (!io_end) {
3788                 if (printk_ratelimit())
3789                         printk(KERN_WARNING "%s: allocation fail\n", __func__);
3790                 schedule();
3791                 goto retry;
3792         }
3793         io_end->offset = offset;
3794         io_end->size = size;
3795         /*
3796          * We need to hold a reference to the page to make sure it
3797          * doesn't get evicted before ext4_end_io_work() has a chance
3798          * to convert the extent from written to unwritten.
3799          */
3800         io_end->page = page;
3801         get_page(io_end->page);
3802
3803         bh->b_private = io_end;
3804         bh->b_end_io = ext4_end_io_buffer_write;
3805         return 0;
3806 }
3807
3808 /*
3809  * For ext4 extent files, ext4 will do direct-io write to holes,
3810  * preallocated extents, and those write extend the file, no need to
3811  * fall back to buffered IO.
3812  *
3813  * For holes, we fallocate those blocks, mark them as unintialized
3814  * If those blocks were preallocated, we mark sure they are splited, but
3815  * still keep the range to write as unintialized.
3816  *
3817  * The unwrritten extents will be converted to written when DIO is completed.
3818  * For async direct IO, since the IO may still pending when return, we
3819  * set up an end_io call back function, which will do the convertion
3820  * when async direct IO completed.
3821  *
3822  * If the O_DIRECT write will extend the file then add this inode to the
3823  * orphan list.  So recovery will truncate it back to the original size
3824  * if the machine crashes during the write.
3825  *
3826  */
3827 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3828                               const struct iovec *iov, loff_t offset,
3829                               unsigned long nr_segs)
3830 {
3831         struct file *file = iocb->ki_filp;
3832         struct inode *inode = file->f_mapping->host;
3833         ssize_t ret;
3834         size_t count = iov_length(iov, nr_segs);
3835
3836         loff_t final_size = offset + count;
3837         if (rw == WRITE && final_size <= inode->i_size) {
3838                 /*
3839                  * We could direct write to holes and fallocate.
3840                  *
3841                  * Allocated blocks to fill the hole are marked as uninitialized
3842                  * to prevent paralel buffered read to expose the stale data
3843                  * before DIO complete the data IO.
3844                  *
3845                  * As to previously fallocated extents, ext4 get_block
3846                  * will just simply mark the buffer mapped but still
3847                  * keep the extents uninitialized.
3848                  *
3849                  * for non AIO case, we will convert those unwritten extents
3850                  * to written after return back from blockdev_direct_IO.
3851                  *
3852                  * for async DIO, the conversion needs to be defered when
3853                  * the IO is completed. The ext4 end_io callback function
3854                  * will be called to take care of the conversion work.
3855                  * Here for async case, we allocate an io_end structure to
3856                  * hook to the iocb.
3857                  */
3858                 iocb->private = NULL;
3859                 EXT4_I(inode)->cur_aio_dio = NULL;
3860                 if (!is_sync_kiocb(iocb)) {
3861                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3862                         if (!iocb->private)
3863                                 return -ENOMEM;
3864                         /*
3865                          * we save the io structure for current async
3866                          * direct IO, so that later ext4_map_blocks()
3867                          * could flag the io structure whether there
3868                          * is a unwritten extents needs to be converted
3869                          * when IO is completed.
3870                          */
3871                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3872                 }
3873
3874                 ret = blockdev_direct_IO(rw, iocb, inode,
3875                                          inode->i_sb->s_bdev, iov,
3876                                          offset, nr_segs,
3877                                          ext4_get_block_write,
3878                                          ext4_end_io_dio);
3879                 if (iocb->private)
3880                         EXT4_I(inode)->cur_aio_dio = NULL;
3881                 /*
3882                  * The io_end structure takes a reference to the inode,
3883                  * that structure needs to be destroyed and the
3884                  * reference to the inode need to be dropped, when IO is
3885                  * complete, even with 0 byte write, or failed.
3886                  *
3887                  * In the successful AIO DIO case, the io_end structure will be
3888                  * desctroyed and the reference to the inode will be dropped
3889                  * after the end_io call back function is called.
3890                  *
3891                  * In the case there is 0 byte write, or error case, since
3892                  * VFS direct IO won't invoke the end_io call back function,
3893                  * we need to free the end_io structure here.
3894                  */
3895                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3896                         ext4_free_io_end(iocb->private);
3897                         iocb->private = NULL;
3898                 } else if (ret > 0 && ext4_test_inode_state(inode,
3899                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3900                         int err;
3901                         /*
3902                          * for non AIO case, since the IO is already
3903                          * completed, we could do the convertion right here
3904                          */
3905                         err = ext4_convert_unwritten_extents(inode,
3906                                                              offset, ret);
3907                         if (err < 0)
3908                                 ret = err;
3909                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3910                 }
3911                 return ret;
3912         }
3913
3914         /* for write the the end of file case, we fall back to old way */
3915         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3916 }
3917
3918 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3919                               const struct iovec *iov, loff_t offset,
3920                               unsigned long nr_segs)
3921 {
3922         struct file *file = iocb->ki_filp;
3923         struct inode *inode = file->f_mapping->host;
3924
3925         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3926                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3927
3928         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3929 }
3930
3931 /*
3932  * Pages can be marked dirty completely asynchronously from ext4's journalling
3933  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3934  * much here because ->set_page_dirty is called under VFS locks.  The page is
3935  * not necessarily locked.
3936  *
3937  * We cannot just dirty the page and leave attached buffers clean, because the
3938  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3939  * or jbddirty because all the journalling code will explode.
3940  *
3941  * So what we do is to mark the page "pending dirty" and next time writepage
3942  * is called, propagate that into the buffers appropriately.
3943  */
3944 static int ext4_journalled_set_page_dirty(struct page *page)
3945 {
3946         SetPageChecked(page);
3947         return __set_page_dirty_nobuffers(page);
3948 }
3949
3950 static const struct address_space_operations ext4_ordered_aops = {
3951         .readpage               = ext4_readpage,
3952         .readpages              = ext4_readpages,
3953         .writepage              = ext4_writepage,
3954         .sync_page              = block_sync_page,
3955         .write_begin            = ext4_write_begin,
3956         .write_end              = ext4_ordered_write_end,
3957         .bmap                   = ext4_bmap,
3958         .invalidatepage         = ext4_invalidatepage,
3959         .releasepage            = ext4_releasepage,
3960         .direct_IO              = ext4_direct_IO,
3961         .migratepage            = buffer_migrate_page,
3962         .is_partially_uptodate  = block_is_partially_uptodate,
3963         .error_remove_page      = generic_error_remove_page,
3964 };
3965
3966 static const struct address_space_operations ext4_writeback_aops = {
3967         .readpage               = ext4_readpage,
3968         .readpages              = ext4_readpages,
3969         .writepage              = ext4_writepage,
3970         .sync_page              = block_sync_page,
3971         .write_begin            = ext4_write_begin,
3972         .write_end              = ext4_writeback_write_end,
3973         .bmap                   = ext4_bmap,
3974         .invalidatepage         = ext4_invalidatepage,
3975         .releasepage            = ext4_releasepage,
3976         .direct_IO              = ext4_direct_IO,
3977         .migratepage            = buffer_migrate_page,
3978         .is_partially_uptodate  = block_is_partially_uptodate,
3979         .error_remove_page      = generic_error_remove_page,
3980 };
3981
3982 static const struct address_space_operations ext4_journalled_aops = {
3983         .readpage               = ext4_readpage,
3984         .readpages              = ext4_readpages,
3985         .writepage              = ext4_writepage,
3986         .sync_page              = block_sync_page,
3987         .write_begin            = ext4_write_begin,
3988         .write_end              = ext4_journalled_write_end,
3989         .set_page_dirty         = ext4_journalled_set_page_dirty,
3990         .bmap                   = ext4_bmap,
3991         .invalidatepage         = ext4_invalidatepage,
3992         .releasepage            = ext4_releasepage,
3993         .is_partially_uptodate  = block_is_partially_uptodate,
3994         .error_remove_page      = generic_error_remove_page,
3995 };
3996
3997 static const struct address_space_operations ext4_da_aops = {
3998         .readpage               = ext4_readpage,
3999         .readpages              = ext4_readpages,
4000         .writepage              = ext4_writepage,
4001         .writepages             = ext4_da_writepages,
4002         .sync_page              = block_sync_page,
4003         .write_begin            = ext4_da_write_begin,
4004         .write_end              = ext4_da_write_end,
4005         .bmap                   = ext4_bmap,
4006         .invalidatepage         = ext4_da_invalidatepage,
4007         .releasepage            = ext4_releasepage,
4008         .direct_IO              = ext4_direct_IO,
4009         .migratepage            = buffer_migrate_page,
4010         .is_partially_uptodate  = block_is_partially_uptodate,
4011         .error_remove_page      = generic_error_remove_page,
4012 };
4013
4014 void ext4_set_aops(struct inode *inode)
4015 {
4016         if (ext4_should_order_data(inode) &&
4017                 test_opt(inode->i_sb, DELALLOC))
4018                 inode->i_mapping->a_ops = &ext4_da_aops;
4019         else if (ext4_should_order_data(inode))
4020                 inode->i_mapping->a_ops = &ext4_ordered_aops;
4021         else if (ext4_should_writeback_data(inode) &&
4022                  test_opt(inode->i_sb, DELALLOC))
4023                 inode->i_mapping->a_ops = &ext4_da_aops;
4024         else if (ext4_should_writeback_data(inode))
4025                 inode->i_mapping->a_ops = &ext4_writeback_aops;
4026         else
4027                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4028 }
4029
4030 /*
4031  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4032  * up to the end of the block which corresponds to `from'.
4033  * This required during truncate. We need to physically zero the tail end
4034  * of that block so it doesn't yield old data if the file is later grown.
4035  */
4036 int ext4_block_truncate_page(handle_t *handle,
4037                 struct address_space *mapping, loff_t from)
4038 {
4039         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4040         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4041         unsigned blocksize, length, pos;
4042         ext4_lblk_t iblock;
4043         struct inode *inode = mapping->host;
4044         struct buffer_head *bh;
4045         struct page *page;
4046         int err = 0;
4047
4048         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4049                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
4050         if (!page)
4051                 return -EINVAL;
4052
4053         blocksize = inode->i_sb->s_blocksize;
4054         length = blocksize - (offset & (blocksize - 1));
4055         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4056
4057         if (!page_has_buffers(page))
4058                 create_empty_buffers(page, blocksize, 0);
4059
4060         /* Find the buffer that contains "offset" */
4061         bh = page_buffers(page);
4062         pos = blocksize;
4063         while (offset >= pos) {
4064                 bh = bh->b_this_page;
4065                 iblock++;
4066                 pos += blocksize;
4067         }
4068
4069         err = 0;
4070         if (buffer_freed(bh)) {
4071                 BUFFER_TRACE(bh, "freed: skip");
4072                 goto unlock;
4073         }
4074
4075         if (!buffer_mapped(bh)) {
4076                 BUFFER_TRACE(bh, "unmapped");
4077                 ext4_get_block(inode, iblock, bh, 0);
4078                 /* unmapped? It's a hole - nothing to do */
4079                 if (!buffer_mapped(bh)) {
4080                         BUFFER_TRACE(bh, "still unmapped");
4081                         goto unlock;
4082                 }
4083         }
4084
4085         /* Ok, it's mapped. Make sure it's up-to-date */
4086         if (PageUptodate(page))
4087                 set_buffer_uptodate(bh);
4088
4089         if (!buffer_uptodate(bh)) {
4090                 err = -EIO;
4091                 ll_rw_block(READ, 1, &bh);
4092                 wait_on_buffer(bh);
4093                 /* Uhhuh. Read error. Complain and punt. */
4094                 if (!buffer_uptodate(bh))
4095                         goto unlock;
4096         }
4097
4098         if (ext4_should_journal_data(inode)) {
4099                 BUFFER_TRACE(bh, "get write access");
4100                 err = ext4_journal_get_write_access(handle, bh);
4101                 if (err)
4102                         goto unlock;
4103         }
4104
4105         zero_user(page, offset, length);
4106
4107         BUFFER_TRACE(bh, "zeroed end of block");
4108
4109         err = 0;
4110         if (ext4_should_journal_data(inode)) {
4111                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4112         } else {
4113                 if (ext4_should_order_data(inode))
4114                         err = ext4_jbd2_file_inode(handle, inode);
4115                 mark_buffer_dirty(bh);
4116         }
4117
4118 unlock:
4119         unlock_page(page);
4120         page_cache_release(page);
4121         return err;
4122 }
4123
4124 /*
4125  * Probably it should be a library function... search for first non-zero word
4126  * or memcmp with zero_page, whatever is better for particular architecture.
4127  * Linus?
4128  */
4129 static inline int all_zeroes(__le32 *p, __le32 *q)
4130 {
4131         while (p < q)
4132                 if (*p++)
4133                         return 0;
4134         return 1;
4135 }
4136
4137 /**
4138  *      ext4_find_shared - find the indirect blocks for partial truncation.
4139  *      @inode:   inode in question
4140  *      @depth:   depth of the affected branch
4141  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4142  *      @chain:   place to store the pointers to partial indirect blocks
4143  *      @top:     place to the (detached) top of branch
4144  *
4145  *      This is a helper function used by ext4_truncate().
4146  *
4147  *      When we do truncate() we may have to clean the ends of several
4148  *      indirect blocks but leave the blocks themselves alive. Block is
4149  *      partially truncated if some data below the new i_size is refered
4150  *      from it (and it is on the path to the first completely truncated
4151  *      data block, indeed).  We have to free the top of that path along
4152  *      with everything to the right of the path. Since no allocation
4153  *      past the truncation point is possible until ext4_truncate()
4154  *      finishes, we may safely do the latter, but top of branch may
4155  *      require special attention - pageout below the truncation point
4156  *      might try to populate it.
4157  *
4158  *      We atomically detach the top of branch from the tree, store the
4159  *      block number of its root in *@top, pointers to buffer_heads of
4160  *      partially truncated blocks - in @chain[].bh and pointers to
4161  *      their last elements that should not be removed - in
4162  *      @chain[].p. Return value is the pointer to last filled element
4163  *      of @chain.
4164  *
4165  *      The work left to caller to do the actual freeing of subtrees:
4166  *              a) free the subtree starting from *@top
4167  *              b) free the subtrees whose roots are stored in
4168  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4169  *              c) free the subtrees growing from the inode past the @chain[0].
4170  *                      (no partially truncated stuff there).  */
4171
4172 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4173                                   ext4_lblk_t offsets[4], Indirect chain[4],
4174                                   __le32 *top)
4175 {
4176         Indirect *partial, *p;
4177         int k, err;
4178
4179         *top = 0;
4180         /* Make k index the deepest non-null offset + 1 */
4181         for (k = depth; k > 1 && !offsets[k-1]; k--)
4182                 ;
4183         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4184         /* Writer: pointers */
4185         if (!partial)
4186                 partial = chain + k-1;
4187         /*
4188          * If the branch acquired continuation since we've looked at it -
4189          * fine, it should all survive and (new) top doesn't belong to us.
4190          */
4191         if (!partial->key && *partial->p)
4192                 /* Writer: end */
4193                 goto no_top;
4194         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4195                 ;
4196         /*
4197          * OK, we've found the last block that must survive. The rest of our
4198          * branch should be detached before unlocking. However, if that rest
4199          * of branch is all ours and does not grow immediately from the inode
4200          * it's easier to cheat and just decrement partial->p.
4201          */
4202         if (p == chain + k - 1 && p > chain) {
4203                 p->p--;
4204         } else {
4205                 *top = *p->p;
4206                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4207 #if 0
4208                 *p->p = 0;
4209 #endif
4210         }
4211         /* Writer: end */
4212
4213         while (partial > p) {
4214                 brelse(partial->bh);
4215                 partial--;
4216         }
4217 no_top:
4218         return partial;
4219 }
4220
4221 /*
4222  * Zero a number of block pointers in either an inode or an indirect block.
4223  * If we restart the transaction we must again get write access to the
4224  * indirect block for further modification.
4225  *
4226  * We release `count' blocks on disk, but (last - first) may be greater
4227  * than `count' because there can be holes in there.
4228  */
4229 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4230                              struct buffer_head *bh,
4231                              ext4_fsblk_t block_to_free,
4232                              unsigned long count, __le32 *first,
4233                              __le32 *last)
4234 {
4235         __le32 *p;
4236         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4237
4238         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4239                 flags |= EXT4_FREE_BLOCKS_METADATA;
4240
4241         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4242                                    count)) {
4243                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4244                                  "blocks %llu len %lu",
4245                                  (unsigned long long) block_to_free, count);
4246                 return 1;
4247         }
4248
4249         if (try_to_extend_transaction(handle, inode)) {
4250                 if (bh) {
4251                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4252                         ext4_handle_dirty_metadata(handle, inode, bh);
4253                 }
4254                 ext4_mark_inode_dirty(handle, inode);
4255                 ext4_truncate_restart_trans(handle, inode,
4256                                             blocks_for_truncate(inode));
4257                 if (bh) {
4258                         BUFFER_TRACE(bh, "retaking write access");
4259                         ext4_journal_get_write_access(handle, bh);
4260                 }
4261         }
4262
4263         for (p = first; p < last; p++)
4264                 *p = 0;
4265
4266         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4267         return 0;
4268 }
4269
4270 /**
4271  * ext4_free_data - free a list of data blocks
4272  * @handle:     handle for this transaction
4273  * @inode:      inode we are dealing with
4274  * @this_bh:    indirect buffer_head which contains *@first and *@last
4275  * @first:      array of block numbers
4276  * @last:       points immediately past the end of array
4277  *
4278  * We are freeing all blocks refered from that array (numbers are stored as
4279  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4280  *
4281  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4282  * blocks are contiguous then releasing them at one time will only affect one
4283  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4284  * actually use a lot of journal space.
4285  *
4286  * @this_bh will be %NULL if @first and @last point into the inode's direct
4287  * block pointers.
4288  */
4289 static void ext4_free_data(handle_t *handle, struct inode *inode,
4290                            struct buffer_head *this_bh,
4291                            __le32 *first, __le32 *last)
4292 {
4293         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4294         unsigned long count = 0;            /* Number of blocks in the run */
4295         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4296                                                corresponding to
4297                                                block_to_free */
4298         ext4_fsblk_t nr;                    /* Current block # */
4299         __le32 *p;                          /* Pointer into inode/ind
4300                                                for current block */
4301         int err;
4302
4303         if (this_bh) {                          /* For indirect block */
4304                 BUFFER_TRACE(this_bh, "get_write_access");
4305                 err = ext4_journal_get_write_access(handle, this_bh);
4306                 /* Important: if we can't update the indirect pointers
4307                  * to the blocks, we can't free them. */
4308                 if (err)
4309                         return;
4310         }
4311
4312         for (p = first; p < last; p++) {
4313                 nr = le32_to_cpu(*p);
4314                 if (nr) {
4315                         /* accumulate blocks to free if they're contiguous */
4316                         if (count == 0) {
4317                                 block_to_free = nr;
4318                                 block_to_free_p = p;
4319                                 count = 1;
4320                         } else if (nr == block_to_free + count) {
4321                                 count++;
4322                         } else {
4323                                 if (ext4_clear_blocks(handle, inode, this_bh,
4324                                                       block_to_free, count,
4325                                                       block_to_free_p, p))
4326                                         break;
4327                                 block_to_free = nr;
4328                                 block_to_free_p = p;
4329                                 count = 1;
4330                         }
4331                 }
4332         }
4333
4334         if (count > 0)
4335                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4336                                   count, block_to_free_p, p);
4337
4338         if (this_bh) {
4339                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4340
4341                 /*
4342                  * The buffer head should have an attached journal head at this
4343                  * point. However, if the data is corrupted and an indirect
4344                  * block pointed to itself, it would have been detached when
4345                  * the block was cleared. Check for this instead of OOPSing.
4346                  */
4347                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4348                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4349                 else
4350                         EXT4_ERROR_INODE(inode,
4351                                          "circular indirect block detected at "
4352                                          "block %llu",
4353                                 (unsigned long long) this_bh->b_blocknr);
4354         }
4355 }
4356
4357 /**
4358  *      ext4_free_branches - free an array of branches
4359  *      @handle: JBD handle for this transaction
4360  *      @inode: inode we are dealing with
4361  *      @parent_bh: the buffer_head which contains *@first and *@last
4362  *      @first: array of block numbers
4363  *      @last:  pointer immediately past the end of array
4364  *      @depth: depth of the branches to free
4365  *
4366  *      We are freeing all blocks refered from these branches (numbers are
4367  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4368  *      appropriately.
4369  */
4370 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4371                                struct buffer_head *parent_bh,
4372                                __le32 *first, __le32 *last, int depth)
4373 {
4374         ext4_fsblk_t nr;
4375         __le32 *p;
4376
4377         if (ext4_handle_is_aborted(handle))
4378                 return;
4379
4380         if (depth--) {
4381                 struct buffer_head *bh;
4382                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4383                 p = last;
4384                 while (--p >= first) {
4385                         nr = le32_to_cpu(*p);
4386                         if (!nr)
4387                                 continue;               /* A hole */
4388
4389                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4390                                                    nr, 1)) {
4391                                 EXT4_ERROR_INODE(inode,
4392                                                  "invalid indirect mapped "
4393                                                  "block %lu (level %d)",
4394                                                  (unsigned long) nr, depth);
4395                                 break;
4396                         }
4397
4398                         /* Go read the buffer for the next level down */
4399                         bh = sb_bread(inode->i_sb, nr);
4400
4401                         /*
4402                          * A read failure? Report error and clear slot
4403                          * (should be rare).
4404                          */
4405                         if (!bh) {
4406                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
4407                                                        "Read failure");
4408                                 continue;
4409                         }
4410
4411                         /* This zaps the entire block.  Bottom up. */
4412                         BUFFER_TRACE(bh, "free child branches");
4413                         ext4_free_branches(handle, inode, bh,
4414                                         (__le32 *) bh->b_data,
4415                                         (__le32 *) bh->b_data + addr_per_block,
4416                                         depth);
4417
4418                         /*
4419                          * Everything below this this pointer has been
4420                          * released.  Now let this top-of-subtree go.
4421                          *
4422                          * We want the freeing of this indirect block to be
4423                          * atomic in the journal with the updating of the
4424                          * bitmap block which owns it.  So make some room in
4425                          * the journal.
4426                          *
4427                          * We zero the parent pointer *after* freeing its
4428                          * pointee in the bitmaps, so if extend_transaction()
4429                          * for some reason fails to put the bitmap changes and
4430                          * the release into the same transaction, recovery
4431                          * will merely complain about releasing a free block,
4432                          * rather than leaking blocks.
4433                          */
4434                         if (ext4_handle_is_aborted(handle))
4435                                 return;
4436                         if (try_to_extend_transaction(handle, inode)) {
4437                                 ext4_mark_inode_dirty(handle, inode);
4438                                 ext4_truncate_restart_trans(handle, inode,
4439                                             blocks_for_truncate(inode));
4440                         }
4441
4442                         /*
4443                          * The forget flag here is critical because if
4444                          * we are journaling (and not doing data
4445                          * journaling), we have to make sure a revoke
4446                          * record is written to prevent the journal
4447                          * replay from overwriting the (former)
4448                          * indirect block if it gets reallocated as a
4449                          * data block.  This must happen in the same
4450                          * transaction where the data blocks are
4451                          * actually freed.
4452                          */
4453                         ext4_free_blocks(handle, inode, 0, nr, 1,
4454                                          EXT4_FREE_BLOCKS_METADATA|
4455                                          EXT4_FREE_BLOCKS_FORGET);
4456
4457                         if (parent_bh) {
4458                                 /*
4459                                  * The block which we have just freed is
4460                                  * pointed to by an indirect block: journal it
4461                                  */
4462                                 BUFFER_TRACE(parent_bh, "get_write_access");
4463                                 if (!ext4_journal_get_write_access(handle,
4464                                                                    parent_bh)){
4465                                         *p = 0;
4466                                         BUFFER_TRACE(parent_bh,
4467                                         "call ext4_handle_dirty_metadata");
4468                                         ext4_handle_dirty_metadata(handle,
4469                                                                    inode,
4470                                                                    parent_bh);
4471                                 }
4472                         }
4473                 }
4474         } else {
4475                 /* We have reached the bottom of the tree. */
4476                 BUFFER_TRACE(parent_bh, "free data blocks");
4477                 ext4_free_data(handle, inode, parent_bh, first, last);
4478         }
4479 }
4480
4481 int ext4_can_truncate(struct inode *inode)
4482 {
4483         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4484                 return 0;
4485         if (S_ISREG(inode->i_mode))
4486                 return 1;
4487         if (S_ISDIR(inode->i_mode))
4488                 return 1;
4489         if (S_ISLNK(inode->i_mode))
4490                 return !ext4_inode_is_fast_symlink(inode);
4491         return 0;
4492 }
4493
4494 /*
4495  * ext4_truncate()
4496  *
4497  * We block out ext4_get_block() block instantiations across the entire
4498  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4499  * simultaneously on behalf of the same inode.
4500  *
4501  * As we work through the truncate and commmit bits of it to the journal there
4502  * is one core, guiding principle: the file's tree must always be consistent on
4503  * disk.  We must be able to restart the truncate after a crash.
4504  *
4505  * The file's tree may be transiently inconsistent in memory (although it
4506  * probably isn't), but whenever we close off and commit a journal transaction,
4507  * the contents of (the filesystem + the journal) must be consistent and
4508  * restartable.  It's pretty simple, really: bottom up, right to left (although
4509  * left-to-right works OK too).
4510  *
4511  * Note that at recovery time, journal replay occurs *before* the restart of
4512  * truncate against the orphan inode list.
4513  *
4514  * The committed inode has the new, desired i_size (which is the same as
4515  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4516  * that this inode's truncate did not complete and it will again call
4517  * ext4_truncate() to have another go.  So there will be instantiated blocks
4518  * to the right of the truncation point in a crashed ext4 filesystem.  But
4519  * that's fine - as long as they are linked from the inode, the post-crash
4520  * ext4_truncate() run will find them and release them.
4521  */
4522 void ext4_truncate(struct inode *inode)
4523 {
4524         handle_t *handle;
4525         struct ext4_inode_info *ei = EXT4_I(inode);
4526         __le32 *i_data = ei->i_data;
4527         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4528         struct address_space *mapping = inode->i_mapping;
4529         ext4_lblk_t offsets[4];
4530         Indirect chain[4];
4531         Indirect *partial;
4532         __le32 nr = 0;
4533         int n;
4534         ext4_lblk_t last_block;
4535         unsigned blocksize = inode->i_sb->s_blocksize;
4536
4537         if (!ext4_can_truncate(inode))
4538                 return;
4539
4540         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4541
4542         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4543                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4544
4545         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4546                 ext4_ext_truncate(inode);
4547                 return;
4548         }
4549
4550         handle = start_transaction(inode);
4551         if (IS_ERR(handle))
4552                 return;         /* AKPM: return what? */
4553
4554         last_block = (inode->i_size + blocksize-1)
4555                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4556
4557         if (inode->i_size & (blocksize - 1))
4558                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4559                         goto out_stop;
4560
4561         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4562         if (n == 0)
4563                 goto out_stop;  /* error */
4564
4565         /*
4566          * OK.  This truncate is going to happen.  We add the inode to the
4567          * orphan list, so that if this truncate spans multiple transactions,
4568          * and we crash, we will resume the truncate when the filesystem
4569          * recovers.  It also marks the inode dirty, to catch the new size.
4570          *
4571          * Implication: the file must always be in a sane, consistent
4572          * truncatable state while each transaction commits.
4573          */
4574         if (ext4_orphan_add(handle, inode))
4575                 goto out_stop;
4576
4577         /*
4578          * From here we block out all ext4_get_block() callers who want to
4579          * modify the block allocation tree.
4580          */
4581         down_write(&ei->i_data_sem);
4582
4583         ext4_discard_preallocations(inode);
4584
4585         /*
4586          * The orphan list entry will now protect us from any crash which
4587          * occurs before the truncate completes, so it is now safe to propagate
4588          * the new, shorter inode size (held for now in i_size) into the
4589          * on-disk inode. We do this via i_disksize, which is the value which
4590          * ext4 *really* writes onto the disk inode.
4591          */
4592         ei->i_disksize = inode->i_size;
4593
4594         if (n == 1) {           /* direct blocks */
4595                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4596                                i_data + EXT4_NDIR_BLOCKS);
4597                 goto do_indirects;
4598         }
4599
4600         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4601         /* Kill the top of shared branch (not detached) */
4602         if (nr) {
4603                 if (partial == chain) {
4604                         /* Shared branch grows from the inode */
4605                         ext4_free_branches(handle, inode, NULL,
4606                                            &nr, &nr+1, (chain+n-1) - partial);
4607                         *partial->p = 0;
4608                         /*
4609                          * We mark the inode dirty prior to restart,
4610                          * and prior to stop.  No need for it here.
4611                          */
4612                 } else {
4613                         /* Shared branch grows from an indirect block */
4614                         BUFFER_TRACE(partial->bh, "get_write_access");
4615                         ext4_free_branches(handle, inode, partial->bh,
4616                                         partial->p,
4617                                         partial->p+1, (chain+n-1) - partial);
4618                 }
4619         }
4620         /* Clear the ends of indirect blocks on the shared branch */
4621         while (partial > chain) {
4622                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4623                                    (__le32*)partial->bh->b_data+addr_per_block,
4624                                    (chain+n-1) - partial);
4625                 BUFFER_TRACE(partial->bh, "call brelse");
4626                 brelse(partial->bh);
4627                 partial--;
4628         }
4629 do_indirects:
4630         /* Kill the remaining (whole) subtrees */
4631         switch (offsets[0]) {
4632         default:
4633                 nr = i_data[EXT4_IND_BLOCK];
4634                 if (nr) {
4635                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4636                         i_data[EXT4_IND_BLOCK] = 0;
4637                 }
4638         case EXT4_IND_BLOCK:
4639                 nr = i_data[EXT4_DIND_BLOCK];
4640                 if (nr) {
4641                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4642                         i_data[EXT4_DIND_BLOCK] = 0;
4643                 }
4644         case EXT4_DIND_BLOCK:
4645                 nr = i_data[EXT4_TIND_BLOCK];
4646                 if (nr) {
4647                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4648                         i_data[EXT4_TIND_BLOCK] = 0;
4649                 }
4650         case EXT4_TIND_BLOCK:
4651                 ;
4652         }
4653
4654         up_write(&ei->i_data_sem);
4655         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4656         ext4_mark_inode_dirty(handle, inode);
4657
4658         /*
4659          * In a multi-transaction truncate, we only make the final transaction
4660          * synchronous
4661          */
4662         if (IS_SYNC(inode))
4663                 ext4_handle_sync(handle);
4664 out_stop:
4665         /*
4666          * If this was a simple ftruncate(), and the file will remain alive
4667          * then we need to clear up the orphan record which we created above.
4668          * However, if this was a real unlink then we were called by
4669          * ext4_delete_inode(), and we allow that function to clean up the
4670          * orphan info for us.
4671          */
4672         if (inode->i_nlink)
4673                 ext4_orphan_del(handle, inode);
4674
4675         ext4_journal_stop(handle);
4676 }
4677
4678 /*
4679  * ext4_get_inode_loc returns with an extra refcount against the inode's
4680  * underlying buffer_head on success. If 'in_mem' is true, we have all
4681  * data in memory that is needed to recreate the on-disk version of this
4682  * inode.
4683  */
4684 static int __ext4_get_inode_loc(struct inode *inode,
4685                                 struct ext4_iloc *iloc, int in_mem)
4686 {
4687         struct ext4_group_desc  *gdp;
4688         struct buffer_head      *bh;
4689         struct super_block      *sb = inode->i_sb;
4690         ext4_fsblk_t            block;
4691         int                     inodes_per_block, inode_offset;
4692
4693         iloc->bh = NULL;
4694         if (!ext4_valid_inum(sb, inode->i_ino))
4695                 return -EIO;
4696
4697         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4698         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4699         if (!gdp)
4700                 return -EIO;
4701
4702         /*
4703          * Figure out the offset within the block group inode table
4704          */
4705         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4706         inode_offset = ((inode->i_ino - 1) %
4707                         EXT4_INODES_PER_GROUP(sb));
4708         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4709         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4710
4711         bh = sb_getblk(sb, block);
4712         if (!bh) {
4713                 EXT4_ERROR_INODE_BLOCK(inode, block,
4714                                        "unable to read itable block");
4715                 return -EIO;
4716         }
4717         if (!buffer_uptodate(bh)) {
4718                 lock_buffer(bh);
4719
4720                 /*
4721                  * If the buffer has the write error flag, we have failed
4722                  * to write out another inode in the same block.  In this
4723                  * case, we don't have to read the block because we may
4724                  * read the old inode data successfully.
4725                  */
4726                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4727                         set_buffer_uptodate(bh);
4728
4729                 if (buffer_uptodate(bh)) {
4730                         /* someone brought it uptodate while we waited */
4731                         unlock_buffer(bh);
4732                         goto has_buffer;
4733                 }
4734
4735                 /*
4736                  * If we have all information of the inode in memory and this
4737                  * is the only valid inode in the block, we need not read the
4738                  * block.
4739                  */
4740                 if (in_mem) {
4741                         struct buffer_head *bitmap_bh;
4742                         int i, start;
4743
4744                         start = inode_offset & ~(inodes_per_block - 1);
4745
4746                         /* Is the inode bitmap in cache? */
4747                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4748                         if (!bitmap_bh)
4749                                 goto make_io;
4750
4751                         /*
4752                          * If the inode bitmap isn't in cache then the
4753                          * optimisation may end up performing two reads instead
4754                          * of one, so skip it.
4755                          */
4756                         if (!buffer_uptodate(bitmap_bh)) {
4757                                 brelse(bitmap_bh);
4758                                 goto make_io;
4759                         }
4760                         for (i = start; i < start + inodes_per_block; i++) {
4761                                 if (i == inode_offset)
4762                                         continue;
4763                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4764                                         break;
4765                         }
4766                         brelse(bitmap_bh);
4767                         if (i == start + inodes_per_block) {
4768                                 /* all other inodes are free, so skip I/O */
4769                                 memset(bh->b_data, 0, bh->b_size);
4770                                 set_buffer_uptodate(bh);
4771                                 unlock_buffer(bh);
4772                                 goto has_buffer;
4773                         }
4774                 }
4775
4776 make_io:
4777                 /*
4778                  * If we need to do any I/O, try to pre-readahead extra
4779                  * blocks from the inode table.
4780                  */
4781                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4782                         ext4_fsblk_t b, end, table;
4783                         unsigned num;
4784
4785                         table = ext4_inode_table(sb, gdp);
4786                         /* s_inode_readahead_blks is always a power of 2 */
4787                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4788                         if (table > b)
4789                                 b = table;
4790                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4791                         num = EXT4_INODES_PER_GROUP(sb);
4792                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4793                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4794                                 num -= ext4_itable_unused_count(sb, gdp);
4795                         table += num / inodes_per_block;
4796                         if (end > table)
4797                                 end = table;
4798                         while (b <= end)
4799                                 sb_breadahead(sb, b++);
4800                 }
4801
4802                 /*
4803                  * There are other valid inodes in the buffer, this inode
4804                  * has in-inode xattrs, or we don't have this inode in memory.
4805                  * Read the block from disk.
4806                  */
4807                 get_bh(bh);
4808                 bh->b_end_io = end_buffer_read_sync;
4809                 submit_bh(READ_META, bh);
4810                 wait_on_buffer(bh);
4811                 if (!buffer_uptodate(bh)) {
4812                         EXT4_ERROR_INODE_BLOCK(inode, block,
4813                                                "unable to read itable block");
4814                         brelse(bh);
4815                         return -EIO;
4816                 }
4817         }
4818 has_buffer:
4819         iloc->bh = bh;
4820         return 0;
4821 }
4822
4823 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4824 {
4825         /* We have all inode data except xattrs in memory here. */
4826         return __ext4_get_inode_loc(inode, iloc,
4827                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4828 }
4829
4830 void ext4_set_inode_flags(struct inode *inode)
4831 {
4832         unsigned int flags = EXT4_I(inode)->i_flags;
4833
4834         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4835         if (flags & EXT4_SYNC_FL)
4836                 inode->i_flags |= S_SYNC;
4837         if (flags & EXT4_APPEND_FL)
4838                 inode->i_flags |= S_APPEND;
4839         if (flags & EXT4_IMMUTABLE_FL)
4840                 inode->i_flags |= S_IMMUTABLE;
4841         if (flags & EXT4_NOATIME_FL)
4842                 inode->i_flags |= S_NOATIME;
4843         if (flags & EXT4_DIRSYNC_FL)
4844                 inode->i_flags |= S_DIRSYNC;
4845 }
4846
4847 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4848 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4849 {
4850         unsigned int vfs_fl;
4851         unsigned long old_fl, new_fl;
4852
4853         do {
4854                 vfs_fl = ei->vfs_inode.i_flags;
4855                 old_fl = ei->i_flags;
4856                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4857                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4858                                 EXT4_DIRSYNC_FL);
4859                 if (vfs_fl & S_SYNC)
4860                         new_fl |= EXT4_SYNC_FL;
4861                 if (vfs_fl & S_APPEND)
4862                         new_fl |= EXT4_APPEND_FL;
4863                 if (vfs_fl & S_IMMUTABLE)
4864                         new_fl |= EXT4_IMMUTABLE_FL;
4865                 if (vfs_fl & S_NOATIME)
4866                         new_fl |= EXT4_NOATIME_FL;
4867                 if (vfs_fl & S_DIRSYNC)
4868                         new_fl |= EXT4_DIRSYNC_FL;
4869         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4870 }
4871
4872 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4873                                   struct ext4_inode_info *ei)
4874 {
4875         blkcnt_t i_blocks ;
4876         struct inode *inode = &(ei->vfs_inode);
4877         struct super_block *sb = inode->i_sb;
4878
4879         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4880                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4881                 /* we are using combined 48 bit field */
4882                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4883                                         le32_to_cpu(raw_inode->i_blocks_lo);
4884                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4885                         /* i_blocks represent file system block size */
4886                         return i_blocks  << (inode->i_blkbits - 9);
4887                 } else {
4888                         return i_blocks;
4889                 }
4890         } else {
4891                 return le32_to_cpu(raw_inode->i_blocks_lo);
4892         }
4893 }
4894
4895 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4896 {
4897         struct ext4_iloc iloc;
4898         struct ext4_inode *raw_inode;
4899         struct ext4_inode_info *ei;
4900         struct inode *inode;
4901         journal_t *journal = EXT4_SB(sb)->s_journal;
4902         long ret;
4903         int block;
4904
4905         inode = iget_locked(sb, ino);
4906         if (!inode)
4907                 return ERR_PTR(-ENOMEM);
4908         if (!(inode->i_state & I_NEW))
4909                 return inode;
4910
4911         ei = EXT4_I(inode);
4912         iloc.bh = 0;
4913
4914         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4915         if (ret < 0)
4916                 goto bad_inode;
4917         raw_inode = ext4_raw_inode(&iloc);
4918         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4919         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4920         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4921         if (!(test_opt(inode->i_sb, NO_UID32))) {
4922                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4923                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4924         }
4925         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4926
4927         ei->i_state_flags = 0;
4928         ei->i_dir_start_lookup = 0;
4929         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4930         /* We now have enough fields to check if the inode was active or not.
4931          * This is needed because nfsd might try to access dead inodes
4932          * the test is that same one that e2fsck uses
4933          * NeilBrown 1999oct15
4934          */
4935         if (inode->i_nlink == 0) {
4936                 if (inode->i_mode == 0 ||
4937                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4938                         /* this inode is deleted */
4939                         ret = -ESTALE;
4940                         goto bad_inode;
4941                 }
4942                 /* The only unlinked inodes we let through here have
4943                  * valid i_mode and are being read by the orphan
4944                  * recovery code: that's fine, we're about to complete
4945                  * the process of deleting those. */
4946         }
4947         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4948         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4949         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4950         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4951                 ei->i_file_acl |=
4952                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4953         inode->i_size = ext4_isize(raw_inode);
4954         ei->i_disksize = inode->i_size;
4955 #ifdef CONFIG_QUOTA
4956         ei->i_reserved_quota = 0;
4957 #endif
4958         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4959         ei->i_block_group = iloc.block_group;
4960         ei->i_last_alloc_group = ~0;
4961         /*
4962          * NOTE! The in-memory inode i_data array is in little-endian order
4963          * even on big-endian machines: we do NOT byteswap the block numbers!
4964          */
4965         for (block = 0; block < EXT4_N_BLOCKS; block++)
4966                 ei->i_data[block] = raw_inode->i_block[block];
4967         INIT_LIST_HEAD(&ei->i_orphan);
4968
4969         /*
4970          * Set transaction id's of transactions that have to be committed
4971          * to finish f[data]sync. We set them to currently running transaction
4972          * as we cannot be sure that the inode or some of its metadata isn't
4973          * part of the transaction - the inode could have been reclaimed and
4974          * now it is reread from disk.
4975          */
4976         if (journal) {
4977                 transaction_t *transaction;
4978                 tid_t tid;
4979
4980                 read_lock(&journal->j_state_lock);
4981                 if (journal->j_running_transaction)
4982                         transaction = journal->j_running_transaction;
4983                 else
4984                         transaction = journal->j_committing_transaction;
4985                 if (transaction)
4986                         tid = transaction->t_tid;
4987                 else
4988                         tid = journal->j_commit_sequence;
4989                 read_unlock(&journal->j_state_lock);
4990                 ei->i_sync_tid = tid;
4991                 ei->i_datasync_tid = tid;
4992         }
4993
4994         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4995                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4996                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4997                     EXT4_INODE_SIZE(inode->i_sb)) {
4998                         ret = -EIO;
4999                         goto bad_inode;
5000                 }
5001                 if (ei->i_extra_isize == 0) {
5002                         /* The extra space is currently unused. Use it. */
5003                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5004                                             EXT4_GOOD_OLD_INODE_SIZE;
5005                 } else {
5006                         __le32 *magic = (void *)raw_inode +
5007                                         EXT4_GOOD_OLD_INODE_SIZE +
5008                                         ei->i_extra_isize;
5009                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5010                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5011                 }
5012         } else
5013                 ei->i_extra_isize = 0;
5014
5015         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5016         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5017         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5018         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5019
5020         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5021         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5022                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5023                         inode->i_version |=
5024                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5025         }
5026
5027         ret = 0;
5028         if (ei->i_file_acl &&
5029             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5030                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5031                                  ei->i_file_acl);
5032                 ret = -EIO;
5033                 goto bad_inode;
5034         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5035                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5036                     (S_ISLNK(inode->i_mode) &&
5037                      !ext4_inode_is_fast_symlink(inode)))
5038                         /* Validate extent which is part of inode */
5039                         ret = ext4_ext_check_inode(inode);
5040         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5041                    (S_ISLNK(inode->i_mode) &&
5042                     !ext4_inode_is_fast_symlink(inode))) {
5043                 /* Validate block references which are part of inode */
5044                 ret = ext4_check_inode_blockref(inode);
5045         }
5046         if (ret)
5047                 goto bad_inode;
5048
5049         if (S_ISREG(inode->i_mode)) {
5050                 inode->i_op = &ext4_file_inode_operations;
5051                 inode->i_fop = &ext4_file_operations;
5052                 ext4_set_aops(inode);
5053         } else if (S_ISDIR(inode->i_mode)) {
5054                 inode->i_op = &ext4_dir_inode_operations;
5055                 inode->i_fop = &ext4_dir_operations;
5056         } else if (S_ISLNK(inode->i_mode)) {
5057                 if (ext4_inode_is_fast_symlink(inode)) {
5058                         inode->i_op = &ext4_fast_symlink_inode_operations;
5059                         nd_terminate_link(ei->i_data, inode->i_size,
5060                                 sizeof(ei->i_data) - 1);
5061                 } else {
5062                         inode->i_op = &ext4_symlink_inode_operations;
5063                         ext4_set_aops(inode);
5064                 }
5065         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5066               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5067                 inode->i_op = &ext4_special_inode_operations;
5068                 if (raw_inode->i_block[0])
5069                         init_special_inode(inode, inode->i_mode,
5070                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5071                 else
5072                         init_special_inode(inode, inode->i_mode,
5073                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5074         } else {
5075                 ret = -EIO;
5076                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5077                 goto bad_inode;
5078         }
5079         brelse(iloc.bh);
5080         ext4_set_inode_flags(inode);
5081         unlock_new_inode(inode);
5082         return inode;
5083
5084 bad_inode:
5085         brelse(iloc.bh);
5086         iget_failed(inode);
5087         return ERR_PTR(ret);
5088 }
5089
5090 static int ext4_inode_blocks_set(handle_t *handle,
5091                                 struct ext4_inode *raw_inode,
5092                                 struct ext4_inode_info *ei)
5093 {
5094         struct inode *inode = &(ei->vfs_inode);
5095         u64 i_blocks = inode->i_blocks;
5096         struct super_block *sb = inode->i_sb;
5097
5098         if (i_blocks <= ~0U) {
5099                 /*
5100                  * i_blocks can be represnted in a 32 bit variable
5101                  * as multiple of 512 bytes
5102                  */
5103                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5104                 raw_inode->i_blocks_high = 0;
5105                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5106                 return 0;
5107         }
5108         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5109                 return -EFBIG;
5110
5111         if (i_blocks <= 0xffffffffffffULL) {
5112                 /*
5113                  * i_blocks can be represented in a 48 bit variable
5114                  * as multiple of 512 bytes
5115                  */
5116                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5117                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5118                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5119         } else {
5120                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5121                 /* i_block is stored in file system block size */
5122                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5123                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5124                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5125         }
5126         return 0;
5127 }
5128
5129 /*
5130  * Post the struct inode info into an on-disk inode location in the
5131  * buffer-cache.  This gobbles the caller's reference to the
5132  * buffer_head in the inode location struct.
5133  *
5134  * The caller must have write access to iloc->bh.
5135  */
5136 static int ext4_do_update_inode(handle_t *handle,
5137                                 struct inode *inode,
5138                                 struct ext4_iloc *iloc)
5139 {
5140         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5141         struct ext4_inode_info *ei = EXT4_I(inode);
5142         struct buffer_head *bh = iloc->bh;
5143         int err = 0, rc, block;
5144
5145         /* For fields not not tracking in the in-memory inode,
5146          * initialise them to zero for new inodes. */
5147         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5148                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5149
5150         ext4_get_inode_flags(ei);
5151         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5152         if (!(test_opt(inode->i_sb, NO_UID32))) {
5153                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5154                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5155 /*
5156  * Fix up interoperability with old kernels. Otherwise, old inodes get
5157  * re-used with the upper 16 bits of the uid/gid intact
5158  */
5159                 if (!ei->i_dtime) {
5160                         raw_inode->i_uid_high =
5161                                 cpu_to_le16(high_16_bits(inode->i_uid));
5162                         raw_inode->i_gid_high =
5163                                 cpu_to_le16(high_16_bits(inode->i_gid));
5164                 } else {
5165                         raw_inode->i_uid_high = 0;
5166                         raw_inode->i_gid_high = 0;
5167                 }
5168         } else {
5169                 raw_inode->i_uid_low =
5170                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5171                 raw_inode->i_gid_low =
5172                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5173                 raw_inode->i_uid_high = 0;
5174                 raw_inode->i_gid_high = 0;
5175         }
5176         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5177
5178         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5179         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5180         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5181         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5182
5183         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5184                 goto out_brelse;
5185         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5186         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5187         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5188             cpu_to_le32(EXT4_OS_HURD))
5189                 raw_inode->i_file_acl_high =
5190                         cpu_to_le16(ei->i_file_acl >> 32);
5191         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5192         ext4_isize_set(raw_inode, ei->i_disksize);
5193         if (ei->i_disksize > 0x7fffffffULL) {
5194                 struct super_block *sb = inode->i_sb;
5195                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5196                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5197                                 EXT4_SB(sb)->s_es->s_rev_level ==
5198                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5199                         /* If this is the first large file
5200                          * created, add a flag to the superblock.
5201                          */
5202                         err = ext4_journal_get_write_access(handle,
5203                                         EXT4_SB(sb)->s_sbh);
5204                         if (err)
5205                                 goto out_brelse;
5206                         ext4_update_dynamic_rev(sb);
5207                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5208                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5209                         sb->s_dirt = 1;
5210                         ext4_handle_sync(handle);
5211                         err = ext4_handle_dirty_metadata(handle, NULL,
5212                                         EXT4_SB(sb)->s_sbh);
5213                 }
5214         }
5215         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5216         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5217                 if (old_valid_dev(inode->i_rdev)) {
5218                         raw_inode->i_block[0] =
5219                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5220                         raw_inode->i_block[1] = 0;
5221                 } else {
5222                         raw_inode->i_block[0] = 0;
5223                         raw_inode->i_block[1] =
5224                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5225                         raw_inode->i_block[2] = 0;
5226                 }
5227         } else
5228                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5229                         raw_inode->i_block[block] = ei->i_data[block];
5230
5231         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5232         if (ei->i_extra_isize) {
5233                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5234                         raw_inode->i_version_hi =
5235                         cpu_to_le32(inode->i_version >> 32);
5236                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5237         }
5238
5239         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5240         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5241         if (!err)
5242                 err = rc;
5243         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5244
5245         ext4_update_inode_fsync_trans(handle, inode, 0);
5246 out_brelse:
5247         brelse(bh);
5248         ext4_std_error(inode->i_sb, err);
5249         return err;
5250 }
5251
5252 /*
5253  * ext4_write_inode()
5254  *
5255  * We are called from a few places:
5256  *
5257  * - Within generic_file_write() for O_SYNC files.
5258  *   Here, there will be no transaction running. We wait for any running
5259  *   trasnaction to commit.
5260  *
5261  * - Within sys_sync(), kupdate and such.
5262  *   We wait on commit, if tol to.
5263  *
5264  * - Within prune_icache() (PF_MEMALLOC == true)
5265  *   Here we simply return.  We can't afford to block kswapd on the
5266  *   journal commit.
5267  *
5268  * In all cases it is actually safe for us to return without doing anything,
5269  * because the inode has been copied into a raw inode buffer in
5270  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5271  * knfsd.
5272  *
5273  * Note that we are absolutely dependent upon all inode dirtiers doing the
5274  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5275  * which we are interested.
5276  *
5277  * It would be a bug for them to not do this.  The code:
5278  *
5279  *      mark_inode_dirty(inode)
5280  *      stuff();
5281  *      inode->i_size = expr;
5282  *
5283  * is in error because a kswapd-driven write_inode() could occur while
5284  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5285  * will no longer be on the superblock's dirty inode list.
5286  */
5287 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5288 {
5289         int err;
5290
5291         if (current->flags & PF_MEMALLOC)
5292                 return 0;
5293
5294         if (EXT4_SB(inode->i_sb)->s_journal) {
5295                 if (ext4_journal_current_handle()) {
5296                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5297                         dump_stack();
5298                         return -EIO;
5299                 }
5300
5301                 if (wbc->sync_mode != WB_SYNC_ALL)
5302                         return 0;
5303
5304                 err = ext4_force_commit(inode->i_sb);
5305         } else {
5306                 struct ext4_iloc iloc;
5307
5308                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5309                 if (err)
5310                         return err;
5311                 if (wbc->sync_mode == WB_SYNC_ALL)
5312                         sync_dirty_buffer(iloc.bh);
5313                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5314                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5315                                          "IO error syncing inode");
5316                         err = -EIO;
5317                 }
5318                 brelse(iloc.bh);
5319         }
5320         return err;
5321 }
5322
5323 /*
5324  * ext4_setattr()
5325  *
5326  * Called from notify_change.
5327  *
5328  * We want to trap VFS attempts to truncate the file as soon as
5329  * possible.  In particular, we want to make sure that when the VFS
5330  * shrinks i_size, we put the inode on the orphan list and modify
5331  * i_disksize immediately, so that during the subsequent flushing of
5332  * dirty pages and freeing of disk blocks, we can guarantee that any
5333  * commit will leave the blocks being flushed in an unused state on
5334  * disk.  (On recovery, the inode will get truncated and the blocks will
5335  * be freed, so we have a strong guarantee that no future commit will
5336  * leave these blocks visible to the user.)
5337  *
5338  * Another thing we have to assure is that if we are in ordered mode
5339  * and inode is still attached to the committing transaction, we must
5340  * we start writeout of all the dirty pages which are being truncated.
5341  * This way we are sure that all the data written in the previous
5342  * transaction are already on disk (truncate waits for pages under
5343  * writeback).
5344  *
5345  * Called with inode->i_mutex down.
5346  */
5347 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5348 {
5349         struct inode *inode = dentry->d_inode;
5350         int error, rc = 0;
5351         const unsigned int ia_valid = attr->ia_valid;
5352
5353         error = inode_change_ok(inode, attr);
5354         if (error)
5355                 return error;
5356
5357         if (is_quota_modification(inode, attr))
5358                 dquot_initialize(inode);
5359         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5360                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5361                 handle_t *handle;
5362
5363                 /* (user+group)*(old+new) structure, inode write (sb,
5364                  * inode block, ? - but truncate inode update has it) */
5365                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5366                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5367                 if (IS_ERR(handle)) {
5368                         error = PTR_ERR(handle);
5369                         goto err_out;
5370                 }
5371                 error = dquot_transfer(inode, attr);
5372                 if (error) {
5373                         ext4_journal_stop(handle);
5374                         return error;
5375                 }
5376                 /* Update corresponding info in inode so that everything is in
5377                  * one transaction */
5378                 if (attr->ia_valid & ATTR_UID)
5379                         inode->i_uid = attr->ia_uid;
5380                 if (attr->ia_valid & ATTR_GID)
5381                         inode->i_gid = attr->ia_gid;
5382                 error = ext4_mark_inode_dirty(handle, inode);
5383                 ext4_journal_stop(handle);
5384         }
5385
5386         if (attr->ia_valid & ATTR_SIZE) {
5387                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5388                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5389
5390                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5391                                 return -EFBIG;
5392                 }
5393         }
5394
5395         if (S_ISREG(inode->i_mode) &&
5396             attr->ia_valid & ATTR_SIZE &&
5397             (attr->ia_size < inode->i_size ||
5398              (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5399                 handle_t *handle;
5400
5401                 handle = ext4_journal_start(inode, 3);
5402                 if (IS_ERR(handle)) {
5403                         error = PTR_ERR(handle);
5404                         goto err_out;
5405                 }
5406
5407                 error = ext4_orphan_add(handle, inode);
5408                 EXT4_I(inode)->i_disksize = attr->ia_size;
5409                 rc = ext4_mark_inode_dirty(handle, inode);
5410                 if (!error)
5411                         error = rc;
5412                 ext4_journal_stop(handle);
5413
5414                 if (ext4_should_order_data(inode)) {
5415                         error = ext4_begin_ordered_truncate(inode,
5416                                                             attr->ia_size);
5417                         if (error) {
5418                                 /* Do as much error cleanup as possible */
5419                                 handle = ext4_journal_start(inode, 3);
5420                                 if (IS_ERR(handle)) {
5421                                         ext4_orphan_del(NULL, inode);
5422                                         goto err_out;
5423                                 }
5424                                 ext4_orphan_del(handle, inode);
5425                                 ext4_journal_stop(handle);
5426                                 goto err_out;
5427                         }
5428                 }
5429                 /* ext4_truncate will clear the flag */
5430                 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5431                         ext4_truncate(inode);
5432         }
5433
5434         if ((attr->ia_valid & ATTR_SIZE) &&
5435             attr->ia_size != i_size_read(inode))
5436                 rc = vmtruncate(inode, attr->ia_size);
5437
5438         if (!rc) {
5439                 setattr_copy(inode, attr);
5440                 mark_inode_dirty(inode);
5441         }
5442
5443         /*
5444          * If the call to ext4_truncate failed to get a transaction handle at
5445          * all, we need to clean up the in-core orphan list manually.
5446          */
5447         if (inode->i_nlink)
5448                 ext4_orphan_del(NULL, inode);
5449
5450         if (!rc && (ia_valid & ATTR_MODE))
5451                 rc = ext4_acl_chmod(inode);
5452
5453 err_out:
5454         ext4_std_error(inode->i_sb, error);
5455         if (!error)
5456                 error = rc;
5457         return error;
5458 }
5459
5460 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5461                  struct kstat *stat)
5462 {
5463         struct inode *inode;
5464         unsigned long delalloc_blocks;
5465
5466         inode = dentry->d_inode;
5467         generic_fillattr(inode, stat);
5468
5469         /*
5470          * We can't update i_blocks if the block allocation is delayed
5471          * otherwise in the case of system crash before the real block
5472          * allocation is done, we will have i_blocks inconsistent with
5473          * on-disk file blocks.
5474          * We always keep i_blocks updated together with real
5475          * allocation. But to not confuse with user, stat
5476          * will return the blocks that include the delayed allocation
5477          * blocks for this file.
5478          */
5479         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5480         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5481         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5482
5483         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5484         return 0;
5485 }
5486
5487 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5488                                       int chunk)
5489 {
5490         int indirects;
5491
5492         /* if nrblocks are contiguous */
5493         if (chunk) {
5494                 /*
5495                  * With N contiguous data blocks, it need at most
5496                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5497                  * 2 dindirect blocks
5498                  * 1 tindirect block
5499                  */
5500                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5501                 return indirects + 3;
5502         }
5503         /*
5504          * if nrblocks are not contiguous, worse case, each block touch
5505          * a indirect block, and each indirect block touch a double indirect
5506          * block, plus a triple indirect block
5507          */
5508         indirects = nrblocks * 2 + 1;
5509         return indirects;
5510 }
5511
5512 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5513 {
5514         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5515                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5516         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5517 }
5518
5519 /*
5520  * Account for index blocks, block groups bitmaps and block group
5521  * descriptor blocks if modify datablocks and index blocks
5522  * worse case, the indexs blocks spread over different block groups
5523  *
5524  * If datablocks are discontiguous, they are possible to spread over
5525  * different block groups too. If they are contiuguous, with flexbg,
5526  * they could still across block group boundary.
5527  *
5528  * Also account for superblock, inode, quota and xattr blocks
5529  */
5530 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5531 {
5532         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5533         int gdpblocks;
5534         int idxblocks;
5535         int ret = 0;
5536
5537         /*
5538          * How many index blocks need to touch to modify nrblocks?
5539          * The "Chunk" flag indicating whether the nrblocks is
5540          * physically contiguous on disk
5541          *
5542          * For Direct IO and fallocate, they calls get_block to allocate
5543          * one single extent at a time, so they could set the "Chunk" flag
5544          */
5545         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5546
5547         ret = idxblocks;
5548
5549         /*
5550          * Now let's see how many group bitmaps and group descriptors need
5551          * to account
5552          */
5553         groups = idxblocks;
5554         if (chunk)
5555                 groups += 1;
5556         else
5557                 groups += nrblocks;
5558
5559         gdpblocks = groups;
5560         if (groups > ngroups)
5561                 groups = ngroups;
5562         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5563                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5564
5565         /* bitmaps and block group descriptor blocks */
5566         ret += groups + gdpblocks;
5567
5568         /* Blocks for super block, inode, quota and xattr blocks */
5569         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5570
5571         return ret;
5572 }
5573
5574 /*
5575  * Calulate the total number of credits to reserve to fit
5576  * the modification of a single pages into a single transaction,
5577  * which may include multiple chunks of block allocations.
5578  *
5579  * This could be called via ext4_write_begin()
5580  *
5581  * We need to consider the worse case, when
5582  * one new block per extent.
5583  */
5584 int ext4_writepage_trans_blocks(struct inode *inode)
5585 {
5586         int bpp = ext4_journal_blocks_per_page(inode);
5587         int ret;
5588
5589         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5590
5591         /* Account for data blocks for journalled mode */
5592         if (ext4_should_journal_data(inode))
5593                 ret += bpp;
5594         return ret;
5595 }
5596
5597 /*
5598  * Calculate the journal credits for a chunk of data modification.
5599  *
5600  * This is called from DIO, fallocate or whoever calling
5601  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5602  *
5603  * journal buffers for data blocks are not included here, as DIO
5604  * and fallocate do no need to journal data buffers.
5605  */
5606 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5607 {
5608         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5609 }
5610
5611 /*
5612  * The caller must have previously called ext4_reserve_inode_write().
5613  * Give this, we know that the caller already has write access to iloc->bh.
5614  */
5615 int ext4_mark_iloc_dirty(handle_t *handle,
5616                          struct inode *inode, struct ext4_iloc *iloc)
5617 {
5618         int err = 0;
5619
5620         if (test_opt(inode->i_sb, I_VERSION))
5621                 inode_inc_iversion(inode);
5622
5623         /* the do_update_inode consumes one bh->b_count */
5624         get_bh(iloc->bh);
5625
5626         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5627         err = ext4_do_update_inode(handle, inode, iloc);
5628         put_bh(iloc->bh);
5629         return err;
5630 }
5631
5632 /*
5633  * On success, We end up with an outstanding reference count against
5634  * iloc->bh.  This _must_ be cleaned up later.
5635  */
5636
5637 int
5638 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5639                          struct ext4_iloc *iloc)
5640 {
5641         int err;
5642
5643         err = ext4_get_inode_loc(inode, iloc);
5644         if (!err) {
5645                 BUFFER_TRACE(iloc->bh, "get_write_access");
5646                 err = ext4_journal_get_write_access(handle, iloc->bh);
5647                 if (err) {
5648                         brelse(iloc->bh);
5649                         iloc->bh = NULL;
5650                 }
5651         }
5652         ext4_std_error(inode->i_sb, err);
5653         return err;
5654 }
5655
5656 /*
5657  * Expand an inode by new_extra_isize bytes.
5658  * Returns 0 on success or negative error number on failure.
5659  */
5660 static int ext4_expand_extra_isize(struct inode *inode,
5661                                    unsigned int new_extra_isize,
5662                                    struct ext4_iloc iloc,
5663                                    handle_t *handle)
5664 {
5665         struct ext4_inode *raw_inode;
5666         struct ext4_xattr_ibody_header *header;
5667
5668         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5669                 return 0;
5670
5671         raw_inode = ext4_raw_inode(&iloc);
5672
5673         header = IHDR(inode, raw_inode);
5674
5675         /* No extended attributes present */
5676         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5677             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5678                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5679                         new_extra_isize);
5680                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5681                 return 0;
5682         }
5683
5684         /* try to expand with EAs present */
5685         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5686                                           raw_inode, handle);
5687 }
5688
5689 /*
5690  * What we do here is to mark the in-core inode as clean with respect to inode
5691  * dirtiness (it may still be data-dirty).
5692  * This means that the in-core inode may be reaped by prune_icache
5693  * without having to perform any I/O.  This is a very good thing,
5694  * because *any* task may call prune_icache - even ones which
5695  * have a transaction open against a different journal.
5696  *
5697  * Is this cheating?  Not really.  Sure, we haven't written the
5698  * inode out, but prune_icache isn't a user-visible syncing function.
5699  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5700  * we start and wait on commits.
5701  *
5702  * Is this efficient/effective?  Well, we're being nice to the system
5703  * by cleaning up our inodes proactively so they can be reaped
5704  * without I/O.  But we are potentially leaving up to five seconds'
5705  * worth of inodes floating about which prune_icache wants us to
5706  * write out.  One way to fix that would be to get prune_icache()
5707  * to do a write_super() to free up some memory.  It has the desired
5708  * effect.
5709  */
5710 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5711 {
5712         struct ext4_iloc iloc;
5713         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5714         static unsigned int mnt_count;
5715         int err, ret;
5716
5717         might_sleep();
5718         err = ext4_reserve_inode_write(handle, inode, &iloc);
5719         if (ext4_handle_valid(handle) &&
5720             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5721             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5722                 /*
5723                  * We need extra buffer credits since we may write into EA block
5724                  * with this same handle. If journal_extend fails, then it will
5725                  * only result in a minor loss of functionality for that inode.
5726                  * If this is felt to be critical, then e2fsck should be run to
5727                  * force a large enough s_min_extra_isize.
5728                  */
5729                 if ((jbd2_journal_extend(handle,
5730                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5731                         ret = ext4_expand_extra_isize(inode,
5732                                                       sbi->s_want_extra_isize,
5733                                                       iloc, handle);
5734                         if (ret) {
5735                                 ext4_set_inode_state(inode,
5736                                                      EXT4_STATE_NO_EXPAND);
5737                                 if (mnt_count !=
5738                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5739                                         ext4_warning(inode->i_sb,
5740                                         "Unable to expand inode %lu. Delete"
5741                                         " some EAs or run e2fsck.",
5742                                         inode->i_ino);
5743                                         mnt_count =
5744                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5745                                 }
5746                         }
5747                 }
5748         }
5749         if (!err)
5750                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5751         return err;
5752 }
5753
5754 /*
5755  * ext4_dirty_inode() is called from __mark_inode_dirty()
5756  *
5757  * We're really interested in the case where a file is being extended.
5758  * i_size has been changed by generic_commit_write() and we thus need
5759  * to include the updated inode in the current transaction.
5760  *
5761  * Also, dquot_alloc_block() will always dirty the inode when blocks
5762  * are allocated to the file.
5763  *
5764  * If the inode is marked synchronous, we don't honour that here - doing
5765  * so would cause a commit on atime updates, which we don't bother doing.
5766  * We handle synchronous inodes at the highest possible level.
5767  */
5768 void ext4_dirty_inode(struct inode *inode)
5769 {
5770         handle_t *handle;
5771
5772         handle = ext4_journal_start(inode, 2);
5773         if (IS_ERR(handle))
5774                 goto out;
5775
5776         ext4_mark_inode_dirty(handle, inode);
5777
5778         ext4_journal_stop(handle);
5779 out:
5780         return;
5781 }
5782
5783 #if 0
5784 /*
5785  * Bind an inode's backing buffer_head into this transaction, to prevent
5786  * it from being flushed to disk early.  Unlike
5787  * ext4_reserve_inode_write, this leaves behind no bh reference and
5788  * returns no iloc structure, so the caller needs to repeat the iloc
5789  * lookup to mark the inode dirty later.
5790  */
5791 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5792 {
5793         struct ext4_iloc iloc;
5794
5795         int err = 0;
5796         if (handle) {
5797                 err = ext4_get_inode_loc(inode, &iloc);
5798                 if (!err) {
5799                         BUFFER_TRACE(iloc.bh, "get_write_access");
5800                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5801                         if (!err)
5802                                 err = ext4_handle_dirty_metadata(handle,
5803                                                                  NULL,
5804                                                                  iloc.bh);
5805                         brelse(iloc.bh);
5806                 }
5807         }
5808         ext4_std_error(inode->i_sb, err);
5809         return err;
5810 }
5811 #endif
5812
5813 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5814 {
5815         journal_t *journal;
5816         handle_t *handle;
5817         int err;
5818
5819         /*
5820          * We have to be very careful here: changing a data block's
5821          * journaling status dynamically is dangerous.  If we write a
5822          * data block to the journal, change the status and then delete
5823          * that block, we risk forgetting to revoke the old log record
5824          * from the journal and so a subsequent replay can corrupt data.
5825          * So, first we make sure that the journal is empty and that
5826          * nobody is changing anything.
5827          */
5828
5829         journal = EXT4_JOURNAL(inode);
5830         if (!journal)
5831                 return 0;
5832         if (is_journal_aborted(journal))
5833                 return -EROFS;
5834
5835         jbd2_journal_lock_updates(journal);
5836         jbd2_journal_flush(journal);
5837
5838         /*
5839          * OK, there are no updates running now, and all cached data is
5840          * synced to disk.  We are now in a completely consistent state
5841          * which doesn't have anything in the journal, and we know that
5842          * no filesystem updates are running, so it is safe to modify
5843          * the inode's in-core data-journaling state flag now.
5844          */
5845
5846         if (val)
5847                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5848         else
5849                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5850         ext4_set_aops(inode);
5851
5852         jbd2_journal_unlock_updates(journal);
5853
5854         /* Finally we can mark the inode as dirty. */
5855
5856         handle = ext4_journal_start(inode, 1);
5857         if (IS_ERR(handle))
5858                 return PTR_ERR(handle);
5859
5860         err = ext4_mark_inode_dirty(handle, inode);
5861         ext4_handle_sync(handle);
5862         ext4_journal_stop(handle);
5863         ext4_std_error(inode->i_sb, err);
5864
5865         return err;
5866 }
5867
5868 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5869 {
5870         return !buffer_mapped(bh);
5871 }
5872
5873 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5874 {
5875         struct page *page = vmf->page;
5876         loff_t size;
5877         unsigned long len;
5878         int ret = -EINVAL;
5879         void *fsdata;
5880         struct file *file = vma->vm_file;
5881         struct inode *inode = file->f_path.dentry->d_inode;
5882         struct address_space *mapping = inode->i_mapping;
5883
5884         /*
5885          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5886          * get i_mutex because we are already holding mmap_sem.
5887          */
5888         down_read(&inode->i_alloc_sem);
5889         size = i_size_read(inode);
5890         if (page->mapping != mapping || size <= page_offset(page)
5891             || !PageUptodate(page)) {
5892                 /* page got truncated from under us? */
5893                 goto out_unlock;
5894         }
5895         ret = 0;
5896         if (PageMappedToDisk(page))
5897                 goto out_unlock;
5898
5899         if (page->index == size >> PAGE_CACHE_SHIFT)
5900                 len = size & ~PAGE_CACHE_MASK;
5901         else
5902                 len = PAGE_CACHE_SIZE;
5903
5904         lock_page(page);
5905         /*
5906          * return if we have all the buffers mapped. This avoid
5907          * the need to call write_begin/write_end which does a
5908          * journal_start/journal_stop which can block and take
5909          * long time
5910          */
5911         if (page_has_buffers(page)) {
5912                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5913                                         ext4_bh_unmapped)) {
5914                         unlock_page(page);
5915                         goto out_unlock;
5916                 }
5917         }
5918         unlock_page(page);
5919         /*
5920          * OK, we need to fill the hole... Do write_begin write_end
5921          * to do block allocation/reservation.We are not holding
5922          * inode.i__mutex here. That allow * parallel write_begin,
5923          * write_end call. lock_page prevent this from happening
5924          * on the same page though
5925          */
5926         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5927                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5928         if (ret < 0)
5929                 goto out_unlock;
5930         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5931                         len, len, page, fsdata);
5932         if (ret < 0)
5933                 goto out_unlock;
5934         ret = 0;
5935 out_unlock:
5936         if (ret)
5937                 ret = VM_FAULT_SIGBUS;
5938         up_read(&inode->i_alloc_sem);
5939         return ret;
5940 }